Modelling MajorCAN with UPPAAL

Matias Bonet, Gabriel Donaire and JAni Proenza
Dept. de Materatiques i Infornatica, Universitat de les llles Balears, Palma de Mallorca, SPAIN
matias.bonet@uib.es, gabriel.donaire@uib.es and julian.proenza@uib.es

—EOF —
AbStraCt Receivers (Y) /Tr]r]dJoverloadflag | gets the frame once

Y set obliged to accept

The Controller Area Network (CAN) protocol produces Transmitter fails before retransmission
data inconsistencies in some scenarios. A previous work , detect e grorand schedules reransmission
proposed a new protocol called MajorCAN which is a small ~ Fecevers(9 Xset_;j does not get the frame
modification to CAN. MajorCAN does not present the re-
ported error scenarios thus ensuring data consistency. Al-

though MajorCAN has been thoroughly simulated, no formal

verification has been performed so far. In this paper we deransmitter suffers a hardware failure that prevents it from
scribe how we have modelled MajorCAN using a network Gompleting the retransmission, the nodes belongirg te-
timed automata indPPAAL. This is the first step of its formal cejve the frame whereas thoseX%fdo not. Another scenario
verification by means of model checking. [2] which has a higher probability of occurrence happens if
the transmitter can not see the error flag in the last bit of EOF
due to an additional disturbance in that bit. In this case, the
1. Introduction transmitter does not even try to retransmit the frame and the

i same inconsistent reception takes place.
The Controller Area Network (CAN) protocol, a field-bus The MajorCAN pl’OtOCOl [2] does not exhibit this kind of

first developed for automotive applications, is widely used iR.anarios and it is designed to ensure that for each frame

the automation industry as well. The main reason for its SUG| nodes agree on whether to accept it or not. We aim at

cess is its_(eal—time a.nd dependab_lg bghaviour. _ Among tlﬂ?rmally verifying that MajorCAN works properly by using
dependability properties, the specification of this standasgla model checket/PpPaaL [1]. The first step, which is to
claims that CAN presentata consistencyThis means that ., Jqel the protocol, is described in this paper.

within a CAN network it is guaranteed that a frame is either
simultaneously accepted by all nodes or by none. Besides the . s
existence of th):error ;)assiv)e/ statg3] in whigh this property “- MajorCAN ,,, protocol description
does not hold, Rufinet al. identified [3] some specific sce- The MajorCAN protocol [2] is designed to ensure data
narios in which some nodes receive a frame and some othemnsistency in the presence of upsoerroneous bits per
do not. The same authors proposed a set of protocols to frame. For this reason the notation MajorCANs used,
executed on top of CAN to solve the problem [3]. In a latewvherem has to be substituted by a specific value in each
analysis new scenarios of inconsistent communication wenestantiation of the protocol. The following explanation uses
identified in which both CAN and the proposed higher-layem as a parameter to achieve the maximum generality.
protocols fail [2]. In order to cope with all these scenarios Bothin CAN and in MajorCAN, the EOF contains no rel-
a modification to the CAN protocol called MajorCAN wasevant data. If a frame contains errors only in the bits of the
proposed [2]. EOF, it is a correct frame and could be accepted. Whether
In order to illustrate the scenarios of Rufiabal. let us it is accepted or not is just a matter of agreement among the
consider the case in Fig. 1. A disturbance corrupts the last bdifferent nodes, this is what MajorCAN has to do. In con-
one bit of theEnd Of Framefield (EOF) of the set of nodes trast, if errors are in bits previous to the EOF the frame must
called X. In the next bit, these receivers start the transmide rejected. According to the CAN specification whenever
sion of an error flag. Thdominantfirst bit of this error flag a CRC error is detected, transmission of an error flag starts
is seen by the nodes belonging to 3etand by the trans- at the bit following the ACK delimiter, that is at the first bit
mitter as an error in the last bit of their EOF. The nodes besf the EOF. Since a frame with a CRC error is clearly erro-
longing to X will reject the frame, the nodes belongingifo neous, its consistent rejection has to be ensured. Wp-td
will accept the frame following the CAN'’s last bit rule, andadditional errors in the first bits of the EOF may delay the
the transmitter will schedule the frame retransmission. If théetection of said error flag by some nodes. Therefore a node

Figure 1. Inconsistency scenarios in CAN [3]

(©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/EFTA.2007.4416948

first detecting an error in then+1)th bit of EOF or later can TACKy EoF w :
crcemror /| [r[erorflag [rr[r[r[rlr[r]r[rlrr[rlr[r[r]r

be sure that it was not caused by a CRC (or previous) error &it eror flag, no sampiing is performed, frame s rejected
y p &
and thus it can accept the frame. In contrast, a node first de- erorinrst [T [r[d] evorfag [r[r[r[r[[T I T T TeT (e[
. . . . -bit error flag, sampling is performet
tecting an error in the bits between the first one andhtltie _ :
. g . Erorinand /] [r[r[d] erorflag [r[r[r]r]r r[rlrrfr]r[r[r]r
should make its decision based on what the others are doing &it error flag, sampling s performed LA B B
In order to determine what the others are doing, this node | erorinara /T Ir[r[rld[emorfiag Jr[r[e]e e el elrlrlrlre’
. . . 6-bit error flag, sampling is performed
will samp_le the bit slots W_here only a node having detgcted Y A MEATA 3 3 Wi e AR A A AR A
the error in thelm + 1)th bit of EOF or later would send its 6-bieror flag, samping i performed
error flag..Aimed at doing this sampling able to tolerate the | Erorinstn a[tejrgr\ng\Jvst;nL;nlgdlslpe:ggnregag ARRRRRRRRET
m — 1 additional errors thaF may still occur, the node thatac- | T STl [
cepts the frame signals this with an extended error flag, and extended error flag, rame is accepted
the Ones samp“ng the CorreSpondlng blts Ckm@k_ 1 blts Errorin 7th é‘xthd‘erd‘errri:fl‘a;,‘f:a‘n:e‘\; LSCL%Jted e ﬂag |T]T.‘
and perform a majorlty vote (_)n these Value-S.)] Error in 8th AU e e e e [[r Jd] extended error flag [r [r/
More specifically, the MajorCAN EOF field will be di- extended erfor flag, frame is accepted
vided in two subfields: a first one of: bits and a second | Erorinon shrlelelelelrlele rldl exendedenorfiag [rlr
one from the(m + 1)th to the (3m — 3)th bit (see [2] for Enorintot /T T I [[F 16| exended errorfag [r [
a more detailed description of MajorCAN). A node detect- extended error flag, frame is accepted

AU [r [[r v [r [r [r [r [r [d]extended error flag [r [r/

ing an error in the second subfield of EOF accepts the frame| B n it e rorfng. fame s scoepisd
and notifies the acceptance with an error flag extended up t0 ¢, o1 100 T T T \§| extended error flag [7 17
the (3m + 5)th bit. In contrast, a node detecting an error extended ertorlag, frame 5 aceepted
in the first subfield must sample from tlge: + 7)th to the
(3m + 5)th bit, and perform a majority voting on these sam-
ples to see if the other nodes are accepting the frame. It is
important to remark that if any node detects its second error
during the bits corresponding to the EOF and the extended
error flags, this is not signaled with any additional error fla
Otherwise error flags of second errors could spoil the agr
ment process.

Fig. 2 shows the behaviour of a MajorCAMode when
the first error is detected in different bits of EOF. Vertica
arrows indicate the bits where the sampling is performed.

Figure 2. Behaviour of a MajorCAN; Node

SCast channels declared as, for exampteadcast chan

6. When one process is in a location from which there is
a transition labeled with! and one or more processes are
Iin locations from which there is a transition labeled with
all these transitions are enabled and if triggered, they are trig-
gered all at the same time. However, if there are no processes
) in locations from which there is a transition labeled with,
3. UPPAAL modelling features the transition labeled with! is enabled anyway.

An UPPAAL [1] model is built as a set of concurrent pro-
cesses. Each process is graphically designed as a timed-Locations in UPPAAL can be of three different types.
automaton. This automaton is represented as a graph whidlmong them we are just going to describe two, which are
haslocationsas nodes anttansitionsas arcs between loca- the types used in our model; normal locations and commit-
tions. The firing of each transition can depend oguard ted locations. Normal locations do not require any specific
and/or on asynchronizationA guard is an expression which explanation since they correspond to the behaviour described
uses the variables and clocks of the model in order to indso far. In contrast committed locations are such that if a
cate when the transition is enabled, i.e. may be fired. Thmodel has one or more active committed locations, no tran-
synchronization is the basic mechanism used®PAAL to sitions other than those leaving said locations can be enabled
coordinate the action of two or more different processes. and time may not pass until all active committed locations

We have used two types of synchronizations. The firgire abandoned. A committed location is differentiated from
type isbinary synchronizatiothat uses normal channels de-a normal location with a “C” in the center of the circle used
clared as, e.gg¢han a. When a process is in a location for representing it. The last featureldPPAAL is the concept
from which there is a transition labeled with the only of template. Any of the various processes (automata) consti-
way for the transition to be enabled is that another processting the complete model can be designed using a template.
is in a location from which there is a transition labeled withA template is an automaton definition which has a set of pa-
a? and viceversa. If at a specific instant there are severemeters that can be of any of the data types acceptebbby
possible ways to have a pat anda?, one of them is PAAL. This is particularly useful for modelling distributed
non-deterministically chosen during model checking. Andystems like ours, since the same template can be used as a
the second type isroadcast synchronizatidhat uses broad- basis for defining each and everyone of the system’s nodes.

4. A model for MajorCAN 4.2. The model for a node

A number of decisions have been made to simplify the

Our quel for MajorCAN ISa network .Of timed aummat.amodelling of the nodes. First, given that the operations that
that consists of three parts: first, an arbitrary number of in-

e .~ "a node has to perform in MajorCAN in order to decide ac-
stantiations of a template callébde, each one modelling . Co
. . :) ceptation or rejection of each frame are the same for trans-
the behaviour of a single MajorCAN node; second, an au-.. . . .
. ! L mitter and receivers, we have decided to model both kinds
tomaton calledhit _st that forces allNode instantiations

to exchange each bit in a synchronized fashion; and third Of nodes with the same templatiidde). Second, Major-
9 y ' ' CAN is supposed to ensure consistency for each transmitted
automaton calle&rror _Counter that keeps the number

of erroneous bits per frame under the maximum number frame, therefore the modelling of the frame retransmission is
. . not required in order to prove data consistency. Note that for
that MajorCAN,, must be able to cope with. :) .
this reason the automatdnit _st stops generatingext!
when the bit counter reach&S, which is the Last Sampling
4.1. Bit synchronization bit. And third, all the problems that MajorCAN solves are
concentrated in the last bits of the frame. Thus, the rest of
As it happens in CAN, MajorCAN nodes resynchronize the frame’s bits have not been modelled.
each time a new bit is transmitted. The automaton called In Fig. 4, the resultindNode template can be seen. The
bit _st , which is depicted in Fig. 3, is intended to modelfirst modelled bit of the frame is the ACK delimiter. In case
this resynchronization. The aim is not to model the details @n error is detected by any node in this bit or in a previous
the CAN (or MajorCAN) resynchronization, but to provide aone by means of the CRC, said node has to start transmitting
basic mechanism for the different nodes in our model to, firsgn error flag in the next bit, which is the first bit of EOF. The
evolve bit by bitin a synchronized manner as it would happetiansition from thenitial location toack _delimiter
in a real network, second, decide the value of the bus durigodels the transition to the ACK delimiter bit. Once in this
each bit period and third, halt the complete model evolutiolpcation,Node may nondeterministically decide whether it
once the maximum number of bits has been transmitted. has not detected an error in this bit or in the CRC (and thus
In order to perform the last functiorit _st uses the it evolves to locatiorEOR or it has detected one (and thus
clockt to limit the duration of each single bit and the vari-It €volves toerror ~_flag _ACK. In the second casdlode
able bit to count the number of transmitted bits. From@enerates the binary synchronizatierror! for the er-
the initially active location, which igime _bit , bit _st or counter (se_e Section 4.3) to be able to count the number
evolves to locatioend _time to halt the model evolution as Of €/roneous bits. From locaticerror flag _ACK Node
soon asit reaches its maximum value. In contrast, while*ends @ regular error flag updatibgs to zero for EFL
said value is not reachetit _st evolves to the commit- (Error Flag .Length) consecutive bits and then irreversibly
ted locationbit _transition when the clock indicates €volves toreject _frame .
that the duration of a bitT_BIT) has elapsed. In this tran- I contrast, from locatiof=OFeach time a new bit has to
sition, t is reset in order to start counting the duration of® Processechext? is received), several possibilities have
the next bit,bit is increased and the global variatiies O be taken into account. On the one haNode may see
that models the value of the bus in that moment is presit€ value ‘1" in the bus without suffering an error or, having
to arecessivevalue (logical ‘1’). From the committed lo- bus the value ‘0, suffer an error that makes it see the value
cationbit _transition ,bit _st evolvesimmediatelyto ‘1. In both casesNode goes back to locatioEOFand if
the initial location generating the broadcast synchronizatidhréaches the maximum number of bits of the EGOFL)
next! . This will be received by all instantiations diode It irreversibly evolves to locatioaccept _frame . And on
that will use this synchronization to evolve simultaneousljn€ other handNode may also see the value ‘0" in the bus

and to decide the final value btis for the current bit. without suffering an error or, havirtus the value '1’, suffer
an error that makes it see the value ‘0’. In both cabkegle

R evolves to locatiorrroneous _bit .

bit < 'S t:=0, bit++, bus:=1 Fromerroneous _bit , in case the error was detected
after theMfirst bits of the EOFNode transmits an extended
error flag and later evolves ixcept _frame . In contrast,

if the error was detected in any one of the fivéibits, Node
transmits a regular error flag and then evolves to location
next! Sampling . As soon as the bit counter reaches the first bit
that has to be sample&$), Node increases the counter of
dominant bits YAQ each time it sees a ‘0’ (either because
there is a ‘0’ in the bus or because there is a ‘1’ but an error

time_bi
t<=T_BIT

end_time bit_transition

Figure 3. Thebit _st automaton

locally changes this value) and increases the counter of reces-

sive bits YRQ each time it sees a ‘1’ (again, either because

there is a ‘1’ or because there is a ‘0’ but an error locally
changes it). When the last bibi{==LS) has been sam-
pled, Node evolves toaccept _frame if more dominant
bits have been sampled ortgject _frame otherwise.

4.3. The error counter

As indicated at the beginning of Section 4, the goal of the
Error _Counter automaton depicted in Fig. 5 is to limit
the number of erroneous bits in a frame. From the descrip
tion of theNode template provided in Section 4.2, it is clear
that each time a node suffers an error that changes its vie
on the bus value, it notifies it by means of theor! bi-
nary synchronization. So each time a new bit is transmit:
ted (ext! is generated bypit _st), Error _Counter
evolves to locatiorerror _bit In case an error affects
this bit in any node and the maximum number of errors
(MAXE=M has not been reached, the error colt)(is in-
creased but only when the next bit is transmittedxt?).
Thereby if more than one node sees an error in this bit, th
error count is increased only once. Note in Fig. 4 that wher
EChas reached its maximum value, thede automaton is
unable to generate more errors.

5. Conclusion and future work

With the final goal of demonstrating that MajorCANen-
sures data consistency at frame level in the presence of up
m erroneous bits, we have developed a set of automata |
model the relevant features of the protocol behaviour. Wk
have already performed a thorough simulation and debug
ging of the resultant model using thlPPAAL simulator, and
we are planning to complete the model checking using thi
UPPAAL query language.

6. Acknowledgement

This work is partially supported by DPI 2005-09001-C03-
02 and FEDER funding.

References

[1] K. G. Larsen, P. Pettersson, and W. YipPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfi{l—
2):134-152, Oct. 1997.

J. Proenza and J. Miro-Julia. MajorCAN: A modification to the
Controller Area Network protocol to achieve Atomic Broad-
cast. InProceedings of the IEEE Int. Workshop on Group Com-
munications and Computations. IWGCC. Taipei, Taiygpril
2000.

J. Rufino, P. Vdssimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcast in CAN. Pmnoceedings of
the IEEE 28th Int. Symp. Fault-Tolerant Computing. FTCS-28.
Munich (Germany))June 1998.

(2]

(3]

Initial
) bus == 1 &&
nexts EC < MAXE
bus==1 error!
\9 errol_Flag_ACK
ack_delimiter
(bus==1)&&
; bus == 0 &&
bit<EOFL bit<EOFL 8& Next?
EC<MAXE EFC++,
bus:=0 EFC<EFL
error!
©
transmit_errgr_flag_ACK
bit == EOFL && bus == 1 &&
bus——1 bus==0 EC < MAXE EFC == EFL
error!
erroneus_bit e
bit <=M
extended_erro ' error_flag
next?
E_EFC++ EFC<EFL
bus:=0
transmit_error_flag
transmif]_extended EFC=—EFL
R
bus ==0 us==0 &&
VAC++ EC < MAXE
RC++
rror!
bus==1 &&
EC < MAXE
VAC++
bit<LS error! bit<LS
C
increasl?accept increase_reject
bit==LS /a bit==LS
VAC > VRC (VAC< VRC)
accept_frame reject_frame,
next? next?
Figure 4. TheNode template
EC<MAXE error?
error?
next? ‘
Initia ‘ T EC+t .
error_bit
Figure 5. TheError _Counter automaton

