Department of Mathematical Sciences and Informatics. UIB.
Technical report A-03-2007

Enhancing the response of ReCANcentrate in
presence of faults

Manuel Barranco, Jun Proenza
Dpt. Ciencies Materatiques i Infornatica
Universitat de les llles Balears, Spain
manuel.barranco@uib.es, julian.proenza@uib.es

Luis Almeida

DET/IEETA
Universidade de Aveiro, Portugal

lda@det.ua.pt

September 13, 2007

Abstract

Safety-critical applications require high dependable communication infrastruc-
tures. In this context, the use of CAN has been controversial due to dependability
limitations. To overcome some of those limitations, we have proposed a repli-
cated star topology, ReCANcentrate, whose hubs incorporate the necessary fault-
treatment and fault tolerance mechanisms. Additionally, ReCANcentrate strongly
simplifies the management of the replicated media that each node performs. In
this document we propose additional mechanisms to enhance the fault tolerance of
ReCANcentrate and to enable graceful degradation in presence of faults.

1 Introduction

Distributed embedded control systems for safety-critical applications, e.g. X-by-Wire
systems, require high-dependable communication infrastructures [1]. In this context,
there has been a growing interest in using CAN [2], due to its advantages related to
dependability and real-time response. Nevertheless, the use of CAN in critical appli-
cations has been controversial due to dependability limitations. Some of them arise
from its non-redundant bus topology, which lacks the necessary error-containment and
fault tolerance mechanisms. To overcome these limitations, we have developed a new
replicated star topology, called ReCANcentrate that includes two hubs [3]. As depicted
in Figure[1, each node is connected to each hub by a dedicated link that contains an
uplink and a downlink. Both hubs are interconnected by means of at leagbteve

links each of which contains two independent sublinks, one for each direction. The
hubs exchange their traffic through the interlinks and they couple to each lother [3],
so that both hubs behave as one, i.e. a hub coupling is enforced. Additionally, each

Uplink
Hub; Downlink Node j
Interlink
Node i -z
PRt atd
- s 7/
<77,
2ot S L, Node k

Figure 1: Architecture of ReCANcentrate

hub includes fault-treatment capabilities to contain errors originated at nodes, and to
provide tolerance to hub, link and interlink faults. ReCANcentrate is fully compatible
with CAN and commercial off-the-shelf (COTS) CAN components, being transparent
for any CAN-based application.

Notice that ReCANcentrate uses active replicated media in order to provide fault
tolerance. For this purpose, the same data is transmitted in parallel through each of
the media replicas; so that, in principle, each communication medium, i.e. each star,
can be considered as a channel that conveys a replica of the same data. Two main
problems arise when managing active replicated channels in parallel. First, each node
must be able to deal with redundant frames; basically, it needs to detected omissions
and duplicates [4]. Second, each node must be able to detect when a fault in the media
prevents it from communicating through a given medium; so that the node can continue
communicating using only non-faulty medium replicas. Fortunately, the hub coupling
creates a single logical broadcast domain, so that nodes can use a simple replicated
media managemerit![4].

Although the hub coupling is fault tolerant due to the use of more than one interlink,
in this document we propose mechanisms to enhance the response of ReCANcentrate in
presence of faults. First, these mechanisms allow to consistently recover from transient
hub decouplings. Second, they enforce that, when the hub coupling is definitively lost,
both hubs and all nodes can consistently decide to communicate using two independent
broadcast domains, thereby enabling graceful degradation.

2 ReCANcentrate basics

The physical layer of CAN implements a wired-AND function of every node contri-
bution, thereby providing a dominant/recessive transmission [2]. Additionally, CAN
communication relies on a complex bit synchronization mechanism that guarantees
that nodes have a quasi-simultaneous view of every single bit on the medium. This al-
lows the definition of mechanismis [2] that improve CAN'’s dependability and real-time
response.

However, one of the main impediments for using CAN in safety-critical control
systems is that it relies on a bus topology with scarce error-containment and fault toler-
ance mechanisms. For this reason, a CAN bus includes multiple single points of failure,

i.e. components whose failure cause the failure of the overall system [3]. Particularly,
the faults that may cause a generalized failure in CAN lare [3]: stuck-at-dominant,
stuck-at-recessive and bit-flipping, which can occur within nodes or in the medium;
medium partition; and babbling idiot.

In order to eliminate all single points of failure from a CAN network we have de-
veloped a new replicated star topology called ReCANcentréate [3] (see [Figure 1). The
replication strategy is such that nodes transmit the same data through both stars in paral-
lel. Internally, each hub performs an AND coupling in two stages. In a first stage each
hub receives each node’s contribution through the corresponding uplink and couples
them, thereby obtaining what is called the contribution of that hub. This contribution
is sent to the other hub using one sublink of each interlink. In a second stage each hub
couples the contribution received from the other hub with its own contribution, and
broadcasts, through the downlinks, the resulting signal to the nodes that are attached to
it. These couplings create a single logical broadcast domain, since all hubs behave like
one, transmitting the same value bit by bit through their downlinks, i.e. nodes have a
quasi-simultaneous view of every single bit on the communication domain [3].

Errors generated by a fault can corrupt the frame being broadcast and lead all nodes
to lose the bit synchronization. ReCANcentrate uses the same mechanism as standard
CAN to enforce data consistency in such cases. When a node or a hub detects an
erroneous bit, it globalizes the error by signalling an error-frame, which compels all
nodes to reject the frame that is being broadcast and to signal the error too. During the
error-signalling all nodes become synchronized again, so that the rejected frame can be
transmitted again once the signalling is finished. Nevertheless, if a permanent fault is
not correctly isolated, nodes will be signaling errors until they become disconnected.
Fortunately, the use of an uplink and a downlink within each link and the use of two
independent sublinks in each interlink, allow each hub to monitor the contribution of
each node and of the other hub separately and diagnose the localization of any fault.
Permanent stuck-at or bit-flipping contributions are disabled, and so not coupled, thus
being confined to the port of origin.

Finally, for the sake of survivability, each hub uses a specific restoration policy to
re-couple any port contribution, after a given time period during which no errors are
received through that port.

2.1 Replicated media management at each node

Since hubs are coupled and enforce a single communication domain, each node does
not have to deal with a set of replicated channels, but with different views of the same
channel, which is easier. Specifically, each node can manage the replicated media by
simply performing each transmission through one of the media replicas, i.e. through
one hub, only, while receiving from both hubs at the same time. The node is constituted
by COTS components only: two CAN controllers and a micro-controller (Figure 2).
Each CAN controller is connected only to one hub by means of a dedicated uplink
and downlink, using for this purpose two COTS transceivers [3]. Each node can easily
remove duplicates and detect omissions, since it is expected that both controllers quasi-
simultaneously notify of each frame exchanged on the network [4]

Link to hub 1 Link to hub 2

| 4
Tx

| 4

CAN CAN
Controller Controller

" &7

Micro
Controller

Figure 2: Node hardware architecture

Additionally, it is simplified how each node treats any fault occurring in the me-
dia, i.e. hub, connectors, cables, etc. A fault in the media can only lead one or more
nodes to observe that one of its two controllers omits notifications of transmissions
and of receptions, or accumulates too many errors. In the first case, the fault is toler-
ated since the node continues communicating through the other controller. In the sec-
ond case, the node uses the typical CAN fault diagnosis mechanisms to diagnose that
the impaired controller cannot communicate. Specifically, this happens whenever the
Transmission Error CountefTEC) [2] or theReception Error CountefREC) reaches
a programmable threshold, calledor warning limit

3 Fault response enhancements

The referred simple media management is possible under the hypothesis that there is a
single communication domain, i.e. as long as hubs are coupled. In order to enforce this
hypothesis even in presence of faults, hubs are interconnected by means of more than
one interlink, thereby tolerating sublink and sublink ports failures. Moreover, each hub
has the ability to restore transiently faulty sublinks, which increases interlink surviv-
ability. In this document we propose to use this ability of restoring sublinks to recover
from situations in which both hubs are decoupled, but there are, at least, two sublinks
(that would allow hubs to exchange their traffic) whose failure is only transient. Ad-
ditionally, we want to enable graceful degradation when hubs become permanently
decoupled, since nodes could still use a different media management strategy, e.g. they
could use both stars independently. In order to achieve these two objectives, it is nec-
essary to further enhance the response of ReCANcentrate in front of faults.

The first enhancement is to prevent nodes from communicating as long as a hub
decoupling is not detected and treated. Otherwise, nodes will manage the replicated
media incorrectly believing that there is a single communication domain, which might
lead to undesired situations, e.g. an inconsistency will occur when a frame sent by a
node is not received by a subset of nodes that might have lost the connection with the
hub the frame is sent to.

Taking into account the ReCANcentrate’s fault model, hubs become decoupled in
three cases. First, when at least one hub isolates all its incoming sublinks, due to stuck-
at or bit-flipping faults. A node has no mechanism to detect such a situation, and al-
though the hub that isolates all sublinks knows that a decoupling took place, currently it
has no mechanisms to notify nodes of it. Moreover, even if hubs had this kind of mech-
anism, nothing ensures that the other hub also performs a decoupling (or that both hubs
decouple each other at the same time), so that nodes could be inconsistently informed
about a decoupling. The second case in which hubs become decoupled is when all the
incoming sublinks that a hub was considering as non faulty suffer a stuck-at-recessive
fault. In contrast to what happens with a stuck-at-dominant or a bit-flipping, a stuck-
at-recessive fault does not necessarily generate errors that block the communications.
Thus, nodes might incorrectly believe that there is a single communication domain as
long as hubs do not diagnose the stuck-at-recessive. Finally, we want to introduce a
third case of hub decoupling by adding some malicious faults to the hub’s fault model.
We consider that a fault in the internal circuitry of the hub may compel it not to couple
the contribution that comes from the other hub or/and not to send its own contribution
to that hub. Furthermore, it is even possible that a hub fails by not detecting a hub
decoupling when it has isolated all its incoming sublinks.

The second necessary enhancement is to enforce that both hubs and all nodes agree
on whether it is possible to recover from a hub decoupling, or only graceful degradation
is viable. Notice that we focus on how to enforce such agreement; the specific strategy
nodes use to communicate using two decoupled hubs is beyond of scope.

4 ACK interdependence

We have devised a new mechanism that blocks the communication in both stars when
hubs become decoupled, in order to prevent any node from communicating before the
decoupling is detected and treated. This mechanism relies on the fact that, in CAN,
each frame must be acknowledged by at least one receiver node sending a dominant bit
during theACK slot[2]. Otherwise, the transmitter observes a recessive bit during the
ACK slot, aborts the transmission of the frame signaling an error, and tries to retransmit
it. We have modified the behavior of the hub, so that during the ACK slot of every
frame it only broadcasts a dominant bit to its own nodes, if that dominant bit is actually
received in the contribution from the other hub. In other words, the hub does not
propagate the ACK bit received from its nodes, but only the ACK bit received from the
nodes connected to the other hub. Thereby, no frame will be exchanged in any star if
both stars are not correctly coupled and synchronized, i.ACGiinterdependencs
created between both stars.

Additionally, whenever hubs become definitively decoupled, each one of them
changes its mode of operating, to broadcast the ACK bits received from its own nodes.
This allows nodes to use both stars independently.

Notice that theACK interdependencenechanism fulfills the first enhancement
specified in Sectiop|3; even in presence of the new malicious hub faults we have added
to our fault model. This is because tA€K interdependencmakes it not necessary
that any hub detects a decoupling to prevent nodes from communicating.

Nevertheless, thACK interdependencamechanism relies on a new hypothesis: no
hub does propagate the ACK bits of its own nodes. Thus, it is necessary to restrict the
failure semantics of the hub to ensure that it cannot maliciously fail by not fulfilling
this hypothesis. For this purpose, we are devising a kind of bus-guardian for each hub
that we callACK Unit. This unit will prevent its corresponding hub from incorrectly
broadcasting the ACK bits received from its own nodes. An important requirement has
been imposed to the design of tA€K Unit to guarantee the failure independence
between this unit and its corresponding hub.

5 Consistent Network Reconfiguration

The second enhancement specified in Se¢fjon 3 claims for a mechanism that ensures
that, when a hub decoupling occurs, nodes and the hubs agree on whether the single
communication domain can be reestablished, or only graceful degradation is viable
because hubs are definitively decoupled. To achieve this, we have proposed a new pro-
tocol calledNetwork Reconfiguration Agreement Protoctihe basic idea underlying
it is that each hub must be able to notify of its presence by means of a frame whose
identifier is reserved to that hub, i.e. by means ofdentification FrameMoreover, in
order to ensure that a hub can notify of its presence when needed, thaetvtification
Framesrespectively have the two highest priority frame identifiers.

Figurg 3 depicts an sketch of tNetwork Reconfiguration Agreement Protoddie
first phase is th&ublink Restoration Phasduring which both hubs consistently de-
cide whether or not they couple again. It can be summarized as follows. Firstly, the
hub compels the other hub to also execute this phase, by forcing it to isolate all its
incoming sublinks. Then it forces all CAN controllers connected to it to enter into the
bus-off stateso that they will not try to communicate. Secondly, hubs test the sublinks
in order to decide whether or not it is possible to communicate with each other. For
this, each hub restores its incoming sublinks that are silent, i.e. sublinks from which it
only receives recessive bits, and tries to alternatively exchange with the other hub its
Identification framelf after a given interval of time, hubs are coupled again, they ex-
ecute theNode Restoration Phas®therwise, they execute ttizefinitive Decoupling
Signalling Phase

The Node Restoration Phasg@ms at joining nodes in such a way that, when it
finishes, all joined nodes can consistently start to communicate at the same time using
the single communication domain. First, the hub restores the ports corresponding to
all CAN controllers that have been silent during theblink Restoration Phas&hen,
hubs cooperate to constantly broadcast through the whole communication domain their
Identification frameslternatively. If after a given interval of time, hubs have monitored
a given number ofdentification framegairs, the phase successfully finishes. At this
point, each hub has only kept restored controllers that have not generated errors and
that have acknowledged aigentification frameof the other hub, i.e. only nodes that
have detected the reestablishment of the single communication domain.

Notice that since data consistency applies to the communication between both hubs
and, when hubs are coupled, to all the communication domain, hubs consistently reach
the end of these two phases at the same time. Moreover, duringdtie Restora-

Sublink Restoration Phase
T
* Enforce the other hub to also isolate all its > Definitive Decoupling Signalling
incoming sublinks. Phase
e Force all nodes to enter bus-off state. |

I ¢ Isolate all sublinks.

* Restore all silent incoming sublinks. « Enforce the other hub to also isolate all its
e Constantly exchange the Identification sublinks.
Frame alternatively with the other hub. e Force all nodes to enter bus-off state.

T
¢ Restore all silent nodes.

No| |e Constantly broadcast (only to own
nodes) the Identification Frame.

Has the Sublink
Restoration Phase
successfully finished?

Has the Definitive
Decoupling Signalling
Phase timer expired?

Node Restoration Phase
|
¢ Restore all nodes that have been silent
during the Sublink Reintegration Phase.
e Constantly broadcast the Identification
Frame alternatively with the other hub.

¢ Stop broadcasting the Identification Frame

e Only nodes that have acknowledged the
Identification Frame and that have not
generated errors are kept restored.

Has the Node
Restoration Phase
successfully finished?

No

o Stop broadcasting the Identification Frame

e Only nodes that have acknowledged the
Identification Frame of the other hub and that
have not generated errors are kept restored.

Figure 3: Network Reconf. Agreement

tion Phasenodes cannot communicate with each other, sincédiwtification frames
block their access to the media. This enforces that restored nodes can consistently start
to communicate at the same time when this phase finishes.

The Definitive Decoupling Signalling Phase devoted to enforcing that all nodes
agree on that it is not possible to reestablish the single communication domain. In
a first step, each hub forces the other hub to also execute this phase, and all CAN
controllers connected to it to enter into the bus-off state. In a second stage, the hub
restores the ports corresponding to the controllers that have been silent during the first
step, and starts to constantly send its ddentification frameo them. A hub finishes
the phase whenever it has successfully sent a given numiemffication framesor
when the timer that limits the duration of this phase expires. At this point, the hub has
only kept restored the ports corresponding to controllers that have not generated errors,
and that have acknowledged the transmissions dfiéstification frame Notice that
during the second stage of this phase, the hub blocks the communication by constantly
transmitting itsldentification frame This guarantees that all restored controllers can
consistently star to communicate through the hub at the same time when the phase
finishes. However, hubs are not coupled and, hence, this phase can evolve in a different
way in both stars. Thus, it can be guaranteed neither that both stars become available

for communicating at the same time, nor that the same nodes can communicate through
each of them.

Finally, in order to make it possible thdetwork Reconfiguration Agreement Pro-
tocol, we need to restrict the failure semantics of the hub, so that it cannot forge the
Identification Frameof the other hub. For this purpose, tlidentification Framemnust
be completely pre-builded, e.g. recorded in a ROM. Thereby, the probability that faults
lead a hub to successfully transmit a frame other thalu@stification Framas negli-
gible; because it could only happen if faults altere also the CRC field in a way that its
value is correct with respect to the other frame fields. Additionally, each hub must be
able of detecting and isolating any node that sends a frame with any of the identifiers
reserved for thédentification frames

6 Conclusions

In this document we propose two new mechanisms for ReCANcentrate that allow to
consistently recover from a transient hub decoupling, and to enable graceful degrada-
tion when hubs become permanently decoupled. On the one hand, these mechanisms
ensure data consistency at the frame level when a hub decoupling has not been already
detected; while hubs try to reestablish the hub coupling; as well as when hubs and
nodes decide that the coupling is definitively lost. On the other hand, one of these
mechanisms enforces that both hubs and all nodes agree on whether it is possible to
recover from a hub decoupling or only graceful degradation is viable. Furthermore, we
have identified the failure semantics restrictions of hubs and nodes that are required by
such mechanisms, and we have briefly pointed out how to fulfill these requirements.

References

[1] H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Fault-Tolerant and Real-Time
Systems, JTEEE COMPUTERJanuary 1994.

[2] 1SO, “1S011898. Road vehicles - Interchange of digital information - Controller
area network (CAN) for high-speed communication,” 1993.

[3] M. Barranco, L.Almeida, and J. Proenza, “ReCANcentrate: A replicated star topol-
ogy for CAN networks,”ETFA 2005. 18" IEEE International Conference on
Emerging Technologies and Factory Automation, Catania, J2005.

[4] M. Barranco, J. Proenza, and L.Almeida, “Management of Media Replication in
ReCANcentrate,Submitted to: EUC 2007. The 2007 IFIP International Confer-
ence on Embedded and Ubiquitous Computing, Taipei, TqiR@@7.

