Department of Mathematical Sciences and Informatics. UIB.
Technical report A-02-2007

On the Management of Media Replication in
ReCANcentrate

Manuel Barranco, Judin Proenza
Dpt. Matermatiques i Infornatica
Universitat de les llles Balears, Spain

Luis Almeida
DET/IEETA
Universidade de Aveiro, Portugal

September 13, 2007

Abstract

Distributed embedded control systems for safety-critical applicatiangnea
high level of dependability. Despite the existence of communication pristeaoh
as TTP or FlexRay specifically developed to provide that level of degislity,
there has also been an increasing interest in CAN, given its low-codtiedé co-
bustness, good real-time properties and widespread use. Howeveselof CAN
in these applications has been controversial due to dependability limitations. T
overcome some of those limitations, namely those arising from its nomdedt
bus topology, we have proposed a replicated star topology, ReCAMNtenirhich
is transparent for any CAN-based application and protocol, and waise in-
corporate the necessary fault-treatment and fault tolerance megisania this
document we focus on how each node of ReCANcentrate managesiisents-
sions and the receptions on the replicated star, as well as how it tolenaitss fa

1 Introduction

Distributed embedded control systems for safety-critigadlications, e.g., X-by-Wire
systems, are widespread in several domains, such as avimmitthe automotive in-
dustry. One of the most important requirements of theseilliged systems is to rely
on a high-dependable communication infrastructure. dknse, a big effort is being
made in developing high-reliable communication infrastuwes, such as TTP [1] and
FlexRay [2]. These infrastructures fulfill high reliabyliin part, by means of replicated
communication media architectures, which provide the ssagy fault tolerance.
However, there has also been a growing interest in using CANof CAN-based

protocols, e.g. FlexCAN [4], given its high electrical raiuess, low price, and bounded
access delay. In addition, CAN has been extensively usedhutipe for over 13 years
with low failure rates [5]. Nevertheless, the use of CAN iitical applications has

been controversial due to dependability limitations. Sarhéhese limitations arise
from its non-redundant bus topology, which lacks the nesmgssrror-containment and
fault tolerance mechanisms. In order to overcome thestdiimns, we have developed
a new replicated star topology, called ReCANcentrate thatides two hubs [6] (see
Figure 1). In ReCANCcentrate each node is connected to edtlvya dedicated link
that contains an uplink and a downlink. Additionally, botlibls are interconnected by
means of at least twimterlinks each of which contains two independent sublinks, one
for each direction. Each hub includes fault-treatment bditias to contain errors orig-
inated at nodes [7], and to provide tolerance to hub and hok$. ReCANcentrate is
fully compatible with CAN and commercial off-the-shelf (TS) CAN components,
being transparent for any CAN-based application. In thig,viReCANcentrate can
make CAN appropriate for the most demanding safety-ctiigatems, providing for
CAN many of the features concerning fault tolerance thatygigal of protocols such
as TTP and FlexRay.

Uplink

Hub, Downlink Node j

Interlink
Node i

-
-
-
T

>
7’
! 1 ’
Subl:niT| K
Stiblink
¥ i)
s

Hub, Node k

Figure 1: Architecture of ReCANcentrate

This document focuses on the management of the replicaedetformed in each
node. Notice that ReCANcentrate uses active replicatedanredrder to provide fault
tolerance. For this purpose, the same data is transmitearailel throughout each of
the media replicas; so that, in principle, each commurdcatinedium, i.e. each star,
can be considered as a channel that conveys a replica ofrtteedszta.

One of the major problems when managing active replicatesiodls in parallel
is that each node must be able to deal with redundant frameticeNthat to transmit
in parallel does not guarantee the traffic to be equal in ahakls. Therefore, each
node must determine whether or not two frames received fareift instants of time,
each one through a different channel, are in fact copieseo$éime frame (duplicates).
Moreover, the node must also be able to diagnose when a fraceéved from one
channel is omitted from the others (omissions).

Synchronizing frame transmissions and receptions achessdtwork is a possible
solution. This synchronization is easily achieved in titriggered protocols, such as
TTP and FlexRay, since they rely on a TDMA transmission sehewith TDMA each
frame is expected to be transmitted quasi-simultaneoasiy ichannels at predefined
time slots. Hence, to remove duplicates and to detect oomis$s straightforward.

Unfortunately, CAN provides no means for synchronizingrfes in different repli-
cas. Therefore, due to the error-signaling and arbitratienhanisms of CAN, a single
bit error in one channel is enough to lead its traffic to evatva different way than in

the other replicas. Thus, additional mechanisms have bemoged in the literature
to cope with this problem. Some solutions, such as FlexCAHN,irtended to pro-

vide some sort of synchronization, coordinating the traesions and receptions on
the channels by means of timers. Another interesting smiuproposed in [8], avoids
the necessity of dealing with duplicates and simplifies thtection of omissions, by
coupling the streams received from all replicas, at thegbi¢ll, in each node.

It would be possible to adopt any of these existing soluti@nsiealing with re-
dundant frames in ReCANcentrate. However, either they angptex and expensive
in terms of hardware and software, or they limit the accumicthe fault diagnosis
performed by each hub [6]. Fortunately, ReCANcentratenaleach node to remove
duplicates and to detect omissions in a very simple way tbas dot present these
disadvantages. This is the first topic covered in this docume

The other main problem that must be solved by each node wheagira repli-
cated media is to detect when a fault in the media prevent®iit tommunicating
through a given medium; so that the node can continue conuatimg using only non-
faulty medium replicas. The complexity of this problem degeon the architecture of
the communication subsystem. The second contribution Gf/AREentrate presented
here is that it allows each node to easily perform such reduiault diagnosis and
passivation.

In this document we firstly address the basic charactesisfic€ AN and ReCAN-
centrate. We then focus on how ReCANcentrate allows nodesddly manage the
replicated media and explain the proposed managemetit Adedrwards, we describe
the basics of a possible software implementation of suchagement using hardware
COTS components, and, finally, we conclude the document.

2 CAN and ReCANcentrate basics

The Controller Area Network (CAN) protocol is a field bus whitulfills the com-
munication requirements of many distributed embeddederyst Probably the most
important characteristic of CAN is that its physical layemplements a wired-AND
function of every node contribution, thereby providing ardeant/recessive transmis-
sion. This property guarantees that whenever one of thesntvdesmits a dominant
bit value, i.e. a logical '0’, this value is received by alkthodes in the network. In
contrast, a recessive bit value, i.e. alogical '1’, is ordgeived as long as every node
issues a recessive.

Moreover, CAN communication relies on a complex bit syncization mecha-
nism which guarantees that nodes have a quasi-simultavéguof every single bit
on the medium. This bit synchronization allows the defimitaf a number of addi-
tional mechanisms [3], which significantly improve the degebility properties and
real-time response of CAN [9]. One of the properties that G&\sommonly assumed
to have is the referred to asomic broadcastwhich guarantees that a frame is either
simultaneously accepted by all nodes or by none. This ptpjseof capital importance
in fault tolerance and real-time distributed systems [10].

However, one of the main impediments for using CAN in safeftieal control
systems is that it relies on a non-redundant bus topologyptttvides scarce error-

containment and fault tolerance mechanisms. For this reas@AN bus includes

multiple single points of failure, i.e. components whosiufa cause the failure of
the overall system [9]. Particularly, the faults that maysm a generalized failure
in CAN are: stuck-at-dominant and stuck-at-recessivetsamthich can occur within

nodes or in the medium; medium partition faults, which oaghenever the network is
physically broken into several subnetworks; bit-flippiagits, which occur whenever
a network component, either node or medium, sends randamnesus bits with no

restrictions in value or time domains; and babbling idiatlfa that occur whenever a
node sends incorrect frames that are erroneous in the timaidpcausing undesired
interference [11].

In order to eliminate all single points of failure from a CAMtwork we have de-
veloped a new replicated star topology called ReCANcen{6it(see Figure 1). Each
hub receives each node contribution through the correspgongblink, couples all the
non-faulty contributions with a logical AND function, anddadcasts the resultant cou-
pled signal through the downlinks. The use of an uplink andwardink allows each
hub to monitor each node contribution separately and déatty transmissions. Per-
manently stuck-at or bit-flipping contributions are digahland so not propagated to
the coupled signal, thus being confined to the port of origifurther improvement of
ReCANcentrate concerns the detection and passivationbtiling-idiot faults, which
could be achieved in a relatively simple way [7].

The replication strategy is such that nodes transmit theskata through both stars
in parallel. However, an error in one star could cause inisterscies in the traffic of the
stars, making data replication more complex to manage. éjdmath hubs exchange
their traffic through the interlinks and perform a special AMoupling [6] to create
a single logical broadcast domain. Thereby the same valtransmitted bit by bit
through their downlinks, so that the quasi-simultaneoesnof each bit is enforced in
the whole replicated domain.

In what concerns a hub fault, notice that it can only maniésshe transmission of
stuck-at or bit-flipping bits through one or more hub portsisTis because a hub has not
the capacity of building CAN frames [9]. A hub fault is confthat two different levels.
Firstly, each hub is able to detect errors in any sublink cgnrfrom the other hub
and to isolate it when faulty. Secondly, as will be explaitegdr, each node confines
the fault mainly using the CAN standard fault diagnosis naeitms, and continues
communicating through the non-faulty hub. This secondlle¥dault confinement
also applies to link faults, so that each node can toleratéaiture of one of its links.

3 Replicated media management in ReCANcentrate

3.1 Simplification of the media management

As already explained, since hubs are coupled, each nodeeseach bit from all hubs
quasi-simultaneously . In such a way, the set of hubs of Re¢@ltate can be seen
as a single hub that provides a single communication domiiis feature allows to
build a simple and reliable solution for replicated medianagement.

To better understand this, we can make an analogy betweeAfR=trate and a

CAN bus in which each node includes two controllers to acttesbus. As depicted in
Figure 2, the two coupled hubs are logically equivalent toigwe CAN bus, and each
link corresponds to a given stub. Thereby, each node doesavetto deal with a set
of replicated channels, but with different views of the sathannel, which is easier.

[— [—
oo og| 00 OOt

ontroller

|
Micro controller

= Btttk bt bt

001 00 00 OO 01 00 00 O0e----
00O O Node|[] [O O¢-------
L1 | J

Figure 2: Analogy between a bus and the coupled hubs.

In particular, the management of the replicated media caedheced to basically
trigger each transmission towards one of the hubs onlyewbiteiving from both hubs
at the same time. We proposed a sketch of this idea and thehaodeare architec-
ture needed to support it in [6]. The node is constituted byf S@omponents only:
two CAN controllers and a micro-controller, as depicted igure 2. A given CAN
controller is connected only to one hub by means of a dediagiénk and downlink,
using for this purpose two COTS transceivers [9].

One of the controllers acts as ttransmission controllerso that it is used to both
transmit the frames of its node and receive frames sent l®r oibdes. Note that the
transmission controlledoes not receive its own frames. The other controller is used
as thereception controller It receives frames transmitted by its own node, as well
as by other nodes. If one controller fails, the non-faulte @used asransmission
controller.

When a frame is successfully exchanged through the netwerkywhen alelivery
eventoccurs, each node expects that its two controllers quasitgneously notify
of that event. This quasi-simultaneous notification caruogttwo different manners.
On the one hand, if the node successfully transmits a frame&ansmission controller
and thereception controllemotify of the transmission and reception of this frame re-
spectively. On the other hand, if the node receives a framefsmn another node, it
expects to be simultaneously notified of its reception bywits CAN controllers.

Notice that the node must be fast enough to handle the paiotiffaations cor-
responding to a givedelivery evenbefore a newdelivery evenbccurs. As will be
explained, the fulfilment of this requirement is necessargdrrectly associate each
controller notification with its correspondirdelivery eventand further enhances the
capabilities of detecting controller faults.

Itis worth noting that all these simplifications are possilohder the hypothesis that
there is a single communication domain. Neverthelessettsea situation in which
such hypothesis does not hold: when each hub continuesiogupke contributions
of its own nodes and, meanwhile, both hubs are not coupled egth other. This
can only happen if all interlinks are faulty and, thus, isethat their corresponding
hub ports. Since ReCANcentrate uses several interlinkdeoete permanent interlink
failures, the probability of such a situation should be \evwy. How nodes manage two
independent stars when hubs become decoupled is beyonchihe af this document.

Leaving out the scenario in which all interlinks are fauttye fact that both stars
form a unique communication channel is valid even in preseridaults. This elimi-
nates the necessity for each node to deal with discrepapeiegen channels, which is
difficult and typical in other replicated media architeetsirin contrast, a fault can only
lead a node to observe that its two controllers differ in tiséon of the same channel.
As will be explained, to manage such local discrepanciesdxat controllers is simple.

Next, we analyze the faults that can occur in the commuminagubsystem, all
discrepancies they can provoke, and describe our reglicagglia management.

3.2 Discrepancies between the two visions of the single comam-
cation domain

We differentiate between faults occurring at the media:la transceivers, connectors,
cables, etc., and at controllers. In what concerns meditsfaacall that a hub has not
capacity of building CAN frames [9]. Thus, a hub fault canyomlanifest itself as the
transmission, through any of its ports, of syntacticallgamect bits. Because of the
same reason, faults at other parts of the media can also aniifest as the generation
of syntactically incorrect bit values.

Once a fault in the media is confined at the corresponding lout) {he controller
attached to that port will not notify its corresponding nakarontroller of any further
transmission or reception. Thus, thereafter its node wilistantly detect what we call
an omission discrepan¢ywhich occurs when the node observes that only one of its
CAN controllers informs about the occurrence afdivery eventin contrast, since in
ReCANCcentrate there is a single communication domain, acoofined media fault
will be signaled by all controllers by means of CAdror-flags[3]. This implies that,
in principle, it is impossible that any controller notifigdsomt a transmission or a recep-
tion until the fault is confined and, hence, no discrepancytelie place meanwhile.
Nevertheless, there is an exception to this statement: dbierence of any of tha-
consistency scenaridbat have been identified for standard CAN, which may occur
in the presence of errors in the last-but-one bit of a fran®. [n these scenarios the
atomic broadcast is violated, even when there is a singleraamtation domain. From
the point of view of a node of ReCANcentrateiagonsistency scenarimay manifest
as anomission discrepancy

Regarding faults happening at controllers, we analyze #féects following the
well-known categorization of failures proposed in [12]. Wistinguish betweenrash
andbyzantinecontroller failures. When a controller exhibitsceash failure it stops
performing any action, so that the node will observearission discrepandpereafter.

In the case of presentinglayzantine failure the controller fails arbitrarily with
no restrictions neither in the value domain nor in the timemdm. Thus, dyzantine
failure in a controller can provoke not only amission discrepangyut also what we
call anon-omission discrepancy non-omission discrepanogccurs whenever a node
observes that its two controllers notify ofdelivery eventbut they do not coincide
in the frame the event is related to. For example, a contrtiil exhibits a byzantine
failure in the time domain may notify with a very big delay thecurrence of delivery
event If a delayed natification coincides in time with a notificatirelated to a later
delivery eventthe frames related to those events might not coincide progaanon-
omission discrepancy

3.3 Media management functionality of a node

In absence of faults, the management strategy to handlentiasions and receptions
in ReCANCcentrate is simple. When a successful transmissidmeception are respec-
tively notified from thetransmissiorand thereceptioncontrollers, the node assumes
the transmission as correct and releases the recepticer bfithereception controller
Otherwise, when a successful reception is notified from botttrollers, the node reads
the frame from one of them (no matter which), an releases tee¢ption buffers.

Only minor changes in such strategy are required in ordee#b with faults. No-
tice that it is not mandatory that a node handles all poss$éls, which have been
identified in Section 3.2. On the one hand, it is not compylsloat a node detects any
of theinconsistent scenariosf CAN. First, because the probability of occurrence of
these scenarios has been controversial [5]. Second, lretasare not a new prob-
lem introduced by the use of media replication, but an oldjenm of CAN, which can
be avoided using any of the modifications or additions to CA&t have been already
proposed [10]. Furthermore, since ReCANcentrate is tiamesp for any CAN-based
protocol, it can be used as their communication infrastmecanyway. Therefore, we
exclude the treatment @fconsistent scenaridsom our replicated media management.

Likewise, controller faults are also an old problem of conmigation subsystems,
e.g. in a typical non-redundant CAN bus, the controller obdenmay forge notifica-
tions of transmissions and of receptions. Thus, to treatraber faults is not manda-
tory for a proper management of the replicated media. Neeksss, since our node
hardware architecture includes two controllers, we prepbat each node takes ad-
vantage of the discrepancies between them to detect clentfallts to some extent.

Taking into account all these considerations, each nodastfaults as follows.
First, a fault in the media can only provokenission discrepancida which the con-
troller that has problems for communicating is the one timait®the notificationsif-
consistency scenari@e excluded). However, as explained in Section 3.®naission
discrepancycan also be provoked bytgyzantinecontroller fault, so that the controller
that omits a notification may be the non-faulty controllehus, since ammission dis-
crepancydoes not indicate which controller has problems for comatinig, it cannot
be used to diagnose media faults. Fortunately, a typical Cé&MNroller includes some
useful fault diagnosis mechanismsTi@nsmission Error CountefTEC), aReception
Error Counter(REC) [3], and a programmable threshold for them, calerdr warn-
ing limit. We propose to use these mechanisms to treat media faults:eléreany of

the error counters of a CAN controller reaches the refeirai, lthe node stops using
that controller for communicating, thereby isolating thalfy media.

Although anomission discrepancyannot be used to diagnose a media fault, it is
still necessary to decide whether or not the notification dielivery evenis valid.
We propose to use a best-effort strategy that consists imdsg the notified event
and its corresponding controller as correct, but withoagdbsing the controller that
omits it as faulty. If the notification was actually incorteto accept it is wrong, but
this situation can exclusively be provoked by a controléardf and we are not obliged
to deal with it. Moreover, at least the non-faulty controlie not penalized. If the
notification was correct, then the controller that omitteid faulty or was isolated due
to a media fault. In both cases the decision is correct becadows to tolerate the
fault. Itis worth noting that in other replicated media atebtures the decision of what
to do when observing omissions is not so simple. Sinceraission discrepanagoes
not happen between controllers but between channels, noggtsliagnose which fault
provoked it; otherwise they would not treat an important benof media faults.

In what concerns controller faults, it is possible to detdngzantinecontroller fault
when the notification from a faulty controller coincides imé with a notification of
the other controller, and both notifications refer to a défe frame, i.e. when aon-
omission discrepanayccurs. When this happens the node cannot know a priori which
controller is actually faulty. Hence, it has to stop comneating and run an internal
test in order to take a decision. This simple fault diagnéesigure is an advantage of
our approach compared with other solutions. Specially wadpect to those that use
only one CAN controller [8], since they cannot detect colierdfaults by means of a
simple comparison.

4 Replicated media management routines

Next we propose a possible implementation of the presemglitated media man-
agement. It consists in building a library that includestladl functionality needed to
abstract away the details of both, the node architecturdtendhanagement strategy.
This library basically includes a reception and a transimisbuffer, as well as a set of
interrupt service routines to handle different communacaévents.

In order to correctly manage the role that each controllestmarform during com-
munication, the library marks each controller as being ia ohthe following states:
transmission controllerreception controller and additionallynon-active controller
which means that the controller is not being used becausasitbkeen diagnosed as
faulty, or because it has just been initialized.

Notice that to base the structure of the library on a set arinpt service rou-
tines allows to reduce the overhead of the application whitherwise, would need
to periodically read the status registers of the CAN coldrdb check the state of the
communications. In particular, the library is devised te @AN controllers that at
least include three interrupts:ti@nsmit interrupt which originates whenever a frame
has been successfully transmittedreaeption interrupt which triggers whenever a
new frame has been received; ancearor interrupt, which is launched when therror
warning limitis reached, as well as when the controller changes from hewadved

in communication activities to not being communicating, iwhen it passes from the
active statg3] to the bus-off stateand viceversa. Additionally, the library assumes
that these interrupts have the same priority, so that theysarved following a FIFO
policy.

This section explains the basics of this library by brieflsatébing the general
logic structure of the service routines that are triggengthle referred interrupts.

4.1 Transmission and reception routines

The transmission routinend thereception routinerespectively handle thansmit
interruptand thereception interrupt Then, when aelivery evenbccurs, it is expected
that each controller of the node notifies of it by triggerimgmf these routines, which
will be executed in the micro-controller of the node.

It is worth noting that a node does not observe each bit in biatis exactly at the
same instant of time, and that its controllers (and transcg) have different internal
delays. Thus, whendelivery evenbccurs, one controller will be the first to interrupt
the micro-controller and will be served. Meanwhile the exam of the interrupt trig-
gered by the other controller will be pending. However, galared next, these two
routines cooperatively handle the event. For the sake gilgiity, the routine executed
first will be referred to asoutine A whereas the other agutine B

Besides performing the operations needed to handleeheery eventroutine A
has to check that the notifications performed by both coet®lrefer to the same
frame. If the result of this checking is affirmative, the lioetleaves an indication
of the correspondence between both notifications to routingo that routine3 does
not have to check it again. If the notifications do not refetht® same frame, then a
non-omission discrepanaccurs; routined notifies of it to the application, and exe-
cutes thequarantine routingior each controller to mark them asn-active as will be
explained in Section 4.2.

Notice that since routinel is the one that is executed first, it has to give enough
time to allow the trigger of routing3. If when this time expires, routin® has not
been launched yet, routidassumes that ammission discrepanoyccurred, and goes
ahead to perform alone the actions needed to handidetinery event

In what concerns routings, it must reset the indication (left by routing) that
informs about the correspondence between notificationser@tse, the execution of
a routine corresponding to a futudelivery eventwould accept an obsolete indica-
tion. Besides, routind? performs the actions needed to handledbbvery eventbut
without carrying out the operations already performed hyine A.

This cooperation between the two routines is only possttleei micro-controller
executes them fast enough to prevent that a delivery evenbccurs before they fin-
ish. Otherwise, a given routine could cooperate with a reutelated to a latetelivery
event The time used to execute them must not exceed the time eghjfiar transmit-
ting the shorter CANemote framg3]. Particularly, in a CAN network operating at
1Mbit/s and with a utilization of 100%, this time is aroundu49 Thus, the temporal
requirements of routines that handlelivery eventhave to be taken into account when
dimensioning the whole distributed system.

Figure 3 depicts the general logic structure of tfesmission routine First, the
routine checks if a former reception routine (which couldenbeen triggered first by
thereception controlley left an indication that confirms that the frame transmitted
been already received. If the result of this checking israfitive, the routine plays
the role of routineB. It knows that the frame was not only successfully trangditt
by thetransmission controllerbut also correctly received at theception controller
Then, it only needs to reset the indication, to notify thel@pgion of the successful
transmission, and to release the transmission buffer afah&oller.

If the result of the checking is negative, thhansmission routin@cts as a routine
A. It waits K units of time to give enough time to tmeception controllerto notify
the reception of the transmitted frame. If tikeeption controllenotifies the reception
of a frame, and that frame coincides with the transmitted thegransmission routine
leaves an indication of this correspondence. Then, it esttfie application of the suc-
cessful transmission, and releases the transmissiorrbOffieerwise, if frames do not
coincide, the routine notifies the application thaa-omission discrepanogccurred,
and executes thguarantine routingfor each controller. Finally, if theeception con-
troller does not notify the expected reception,@nission discrepancgccurred. In
this case, the routine does not indicate the correspongdbatgoes ahead.

Is it indicated that the frame transmitted
is the one that has been already
received?

Reset the indication. Wait K units of time.

Yes

—

Has the other controller
notified of a reception?2.

Is the frame received at the other controller

Yes equal to frame transmitted? No
Leave an indication of the correspondence Notify the application that a
between the frame received at the other non-omission discrepancy
controller and the frame transmitted. occurred and execute the
quarantine routine for each
¢ controller.

* Notify the application that the frame has been successfully transmitted. |4
« Release the transmission buffer for further transmissions.

Figure 3: Transmission routine

Figure 4 depicts the general logic structure of beeption routinelt is analogous
to thetransmission routine The main difference between them is that theeption
routinemust check whether the received frame is in fact a copy ofrtirad transmitted
through the other controller, or in contrast, it is a framatmitted by another node.

To know if the former possibility has occurred, the routingpects if the controller
whose notification is handling is marked as tieeeption controller If the result of
the inspection is affirmative, it knows that the other colteras thetransmission con-
troller, but it cannot still be sure of being handling the receptiba érame sent by
that controller. So it further inspects whether or not a fertransmission routindas

10

Yes Is it indicated that the frame received is

the one that has been already
Reset the
indication.

transmitted?

Has the other controller notified
of a transmission?

Is it indicated that the frame
received is the one that has
been already received?

Yes

a

Leave an indication of Notify the application
the correspondence that a non-omission
between the frame discrepancy occurred
transmitted at the other and execute the
controller and the frame quarantine routine for
received. each controller.

’—l

Is the frame transmitted by the other
controller equal to the frame received?

Has the other controller
notified of a reception?

Is the frame received in the other controller
equal to the frame received?

Leave an indication of the correspondence * Notify the application that a
between the frame received at the other non-omission discrepancy
controller and the frame received. occurred and execute the
A 4 * quarantine routine for each

Release the receive - - y controller.
buffer of the controller. |Transfer the frame to the reception buffer of the library. I:

Figure 4: Reception routine

indicated such correspondence. Moreover, if this cornedence is also not indicated,
the reception routinestill does not discard being handling the reception of asran
mission, since maybe thteansmission routinés going to trigger later on. Hence, it
waits a possible notification of transmission from the ottentroller. If it occurs, the
routine is the responsible for testing the correspondert@den the frame it handles
and the frame transmitted. But if the notification of transsion does not happen, it
definitively abandons the possibility of handling a recep®f a frame of its own node.
Nevertheless, it does not assumeaanission discrepan¢yut continues as explained
next.

When the routine knows that the unique possibility left is éoHandling the re-
ception of a frame sent by another node, it must check if a éomeception routine
has indicated the correspondence between the two recemee$. If this correspon-
dence was indicated, the routine only needs to reset theaitidn and to release the
reception buffer of its corresponding controller. Othessyiit acts as the routiné and
must check the correspondence with the frame that is exppéctbe received at the
other controller. If this correspondence is successfudlyficmed, the routine leaves an
indication of it, transfers the received frame to the reicepbuffer of the library, and
releases the reception buffer of its corresponding cdaetrol

11

4.2 Error state routines

Theerror state routinehandle two events: the diagnosis of a controller as beintyfau
and the decision of reintegrating it. These two events apeaively handled by two
routines: thequarantine routineand thereintegration routine

Thequarantine routings executed when a controller triggersearor interruptdue
to the reaching of iterror warning limit In addition, whenever the node observes a
non-omission discrepangthis routine is executed one time for each controller. $dea
refer to Section 3.3 for an explanation of when a controBatiagnosed as faulty.

Firstly, this routine resets the corresponding controldotice that each hub per-
forms a reintegration policy [9] that demands the contrdbebe inactive for a specific
period of time. Once is reset, a CAN controller entersthe-off statein which it does
not communicate. This opens the possibility of its reirégign at its hub port, if it was
isolated by the hub as a consequence of a transient faultedwer, this reset can be
the first action of a test performed by the node to determinielwtontroller is faulty
after detecting @on-omission discrepancy

Additionally, this routine has to mark the correspondingteoller asnon-active
and to further perform three verifications. Firstly, it hascheck if a transmission
request was pending on the controller. If the result of thecking is affirmative, the
routine must notify the application that such request wastad. Secondly, if the
controller was thdransmission controllerthe routine has to assign this role to the
other controller. Finally, if the other controller is aldgamarked asion-active the
routine must notify the application that it is not possildebmmunicate with the other
nodes.

Regarding theeintegration routine it performs the actions needed to use again a
controller that was previously quarantined. On the one harisl executed when the
controller triggers therror interruptas a consequence of passing fromtihs-off state
to theactive state This happens when, after a reset, the controller monitersin
conditions [3] that lead it to consider that, maybe, it iseaiol communicate again. On
the other hand, thesintegration routineis also executed when afterren-omission
discrepancythe node runs a test that diagnoses said controller as nity-fa

Basically, the routine has to mark the controller asrteptionor thetransmission
controller depending on whether or not the other contradlenarked as th&#ansmis-
sion controller In case that the other controller is markechas-active it also has to
notify the application that it is possible to communicataiag

Finally, notice that the execution ofraintegration routineis not enough to ensure
that the corresponding controller is not isolated at its pati. However, to re-use a
controller that actually cannot communicate with the othedes will not cause any
problem. The controller only will generate omissions, aritl @entually reach the
error warning limit, thereby being quarantined again.

5 Conclusions

Communication infrastructures for safety-critical distited control systems, such as
TTP and FlexRay, are evolving towards the use of replicatediaarchitectures to

12

fulfill the required high reliability by means of fault tokmce. Besides, there is an
increasing interest of using CAN in safety-critical apptions, due to its robustness
and widespread use. However, the non-redundant bus tgpiloglies on lacks the
appropriate error-containment and fault tolerance masha@n To provide these mech-
anisms, we developed a replicated star topology called R&@Atrate, which ad-
ditionally yields interesting advantages compared witheotCAN replicated media
architectures [6].

In this document we have proposed the management of theatgadi media per-
formed in each node of the network. Such management takestde of the fact that
the hubs of ReCANcentrate are coupled with each other, ifgdoecing both stars to
behave as a uniqgue communication channel. Each node céy remsove duplicates
and detect omissions, since its two controllers are atththéhe same channel and,
thus, it is expected that they quasi-simultaneously natifgach frame exchanged on
the network. Furthermore, a node can easily diagnose arsivptesa fault in one of
the stars. A fault in the medium of a star prevents from comioating one of the
controllers of one or more nodes. When this happens, an effexide observes that
its impaired controller either omits notifications of trarissions and of receptions, or
accumulates too many errors. In the first case, the faultlésated since the node
continues communicating through the other controller. hie $econd case, the node
uses the fault diagnosis mechanisms already provided by,Gé&Niagnose that the
impaired controller cannot communicate.

Moreover, controller faults can also be tolerated to sontergeyond the capa-
bilities of CAN and other CAN redundant architectures. Irtigalar, a node becomes
aware of the failure of one of its controllers when it obsertleat its two controllers
quasi-simultaneously notify of the exchange of differeanfes.

Finally, we have presented a possible software implemientatf the proposed
replicated media management, by briefly describing the rgétagyic structure of its
main functions.

FTUs: nodos fail-silent (como ttp) la estrella podra seretgsaria en terminos
estadisticos. Lo unico que gana: proximity, common-motte, e

Estos parametros son adems muy difciles de cuantificar.

En cambio, si comparamos implementacin nodos fail-silenbes con imple-
mentacin sin nodes fail-silent en la estrella; aqu podeneos/gntaja de la estrella:
puede que la fiabilidad sea mayor en la estrella (hodos cgusa el bus), ms barato

more fail-silent... no queda clara la aportacion estrella.

- FTUs complexity, only to bus (in duplicate nodes).

- FTUs more

- Numbers of

Teniendo nodos duplicados la semantica de averias de los esth ms restringida,
cosa que el hub no puede: mensajes semanticamente inosrrect

References

[1] H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Faulei€rant and Real-
Time Systems,JEEE COMPUTERJanuary 1994.

13

[2] FlexRay' M, “FlexRay Communications System - Protocol Specificati@msion
2.0,” FlexRay ™, 2003.

[3] ISO, “ISO11898. Road vehicles - Interchange of digitdbrmation - Controller
Area Network (CAN) for high-speed communication,” 1993.

[4] J. R. Pimentel and J. A. Fonseca, “FIexCAN: A Flexible Aitecture for Highly
Dependable Embedded Application$fie 3rd International Workshop on Real-
Time Networks, Catania, Italyjuly 2004.

[5] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca,g¥periment to Assess Bit
Error Rate in CAN,"Proceedings of 3rd International Workshop on Real-Time
Networks, Catania, Italy2004.

[6] M. Barranco, L.Almeida, and J. Proenza, “ReCANcentrafereplicated star
topology for CAN networks, ETFA 2005. 18" IEEE International Conference
on Emerging Technologies and Factory Automation, Cataitedy, 2005.

[7] M. Barranco, L. Almeida, and J. Proenza, “Experimentdessment of ReCAN-
centrate, a replicated star topology for CAN,"Safety-Critical Automotive Sys-
tems Society of Automotive Engineers, USA, 2006.

[8] J. Rufino, P. Veissimo, and G. Arroz, “A Columbus’ Egg Idea for CAN Me-
dia RedundancyFTCS-29. The 29th International Symposium on Fault-Tolera
Computing, Winconsin, USAune 1999.

[9] M. Barranco, J. Proenza, G. Réguez-Navas, and L. Almeida, “An Active Star
Topology for Improving Fault Confinement in CAN Network$EZEE Transac-
tions on Industrial Informatics, vol. 2, issue@. 78-85, May 2006.

[10] J. Proenza and J. Miro-Julia, “MajorCAN: A modificatibmthe Controller Area
Network to achieve Atomic BroadcastEEE Int. Workshop on Group Commu-
nication and Computations, Taipei, Taiw&000.

[11] I. Broster and A. Burns, “An Analyzable Bus-Guardian Event-Triggered Com-

munication,” inProceedings of the 24th Real-time Systems Symposium (RTSS)

Cancun, Mexico: IEEE, Dec 2003, pp. 410-419.

[12] S. Poledna, “System model and terminology. In Faullefant Real-Time Sys-
tems: The Problem of Replica Determinism, Real-Time Systathapter 3,” in
Engineering and Computer Scienc&luwer Academic Publishers, Boston, Dor-
drecht, London, 1996, pp. 21-30.

14

