
On the Management of Media Replication in
ReCANcentrate

Manuel Barranco, Julián Proenza
Dpt. Matem̀atiques i Inform̀atica

Universitat de les Illes Balears, Spain

Luı́s Almeida
DET/IEETA

Universidade de Aveiro, Portugal

September 13, 2007

Abstract

Distributed embedded control systems for safety-critical applications require a
high level of dependability. Despite the existence of communication protocols such
as TTP or FlexRay specifically developed to provide that level of dependability,
there has also been an increasing interest in CAN, given its low-cost, electrical ro-
bustness, good real-time properties and widespread use. However, the use of CAN
in these applications has been controversial due to dependability limitations. To
overcome some of those limitations, namely those arising from its non-redundant
bus topology, we have proposed a replicated star topology, ReCANcentrate, which
is transparent for any CAN-based application and protocol, and whosehubs in-
corporate the necessary fault-treatment and fault tolerance mechanisms. In this
document we focus on how each node of ReCANcentrate manages the transmis-
sions and the receptions on the replicated star, as well as how it tolerates faults.

1 Introduction

Distributed embedded control systems for safety-criticalapplications, e.g., X-by-Wire
systems, are widespread in several domains, such as avionics and the automotive in-
dustry. One of the most important requirements of these distributed systems is to rely
on a high-dependable communication infrastructure. In this sense, a big effort is being
made in developing high-reliable communication infrastructures, such as TTP [1] and
FlexRay [2]. These infrastructures fulfill high reliability, in part, by means of replicated
communication media architectures, which provide the necessary fault tolerance.

However, there has also been a growing interest in using CAN [3], or CAN-based
protocols, e.g. FlexCAN [4], given its high electrical robustness, low price, and bounded
access delay. In addition, CAN has been extensively used in practice for over 13 years
with low failure rates [5]. Nevertheless, the use of CAN in critical applications has

1

Department of Mathematical Sciences and Informatics. UIB.
Technical report A-02-2007

been controversial due to dependability limitations. Someof these limitations arise
from its non-redundant bus topology, which lacks the necessary error-containment and
fault tolerance mechanisms. In order to overcome these limitations, we have developed
a new replicated star topology, called ReCANcentrate that includes two hubs [6] (see
Figure 1). In ReCANcentrate each node is connected to each hub by a dedicated link
that contains an uplink and a downlink. Additionally, both hubs are interconnected by
means of at least twointerlinkseach of which contains two independent sublinks, one
for each direction. Each hub includes fault-treatment capabilities to contain errors orig-
inated at nodes [7], and to provide tolerance to hub and link faults. ReCANcentrate is
fully compatible with CAN and commercial off-the-shelf (COTS) CAN components,
being transparent for any CAN-based application. In this way, ReCANcentrate can
make CAN appropriate for the most demanding safety-critical systems, providing for
CAN many of the features concerning fault tolerance that aretypical of protocols such
as TTP and FlexRay.

Hub2

Hub1

Node i

Node j

Node k

Interlink

Sublink

Uplink

Downlink

Sublink

Figure 1: Architecture of ReCANcentrate

This document focuses on the management of the replicated star performed in each
node. Notice that ReCANcentrate uses active replicated media in order to provide fault
tolerance. For this purpose, the same data is transmitted inparallel throughout each of
the media replicas; so that, in principle, each communication medium, i.e. each star,
can be considered as a channel that conveys a replica of the same data.

One of the major problems when managing active replicated channels in parallel
is that each node must be able to deal with redundant frames. Notice that to transmit
in parallel does not guarantee the traffic to be equal in all channels. Therefore, each
node must determine whether or not two frames received at different instants of time,
each one through a different channel, are in fact copies of the same frame (duplicates).
Moreover, the node must also be able to diagnose when a frame received from one
channel is omitted from the others (omissions).

Synchronizing frame transmissions and receptions across the network is a possible
solution. This synchronization is easily achieved in time-triggered protocols, such as
TTP and FlexRay, since they rely on a TDMA transmission schema. With TDMA each
frame is expected to be transmitted quasi-simultaneously in all channels at predefined
time slots. Hence, to remove duplicates and to detect omissions is straightforward.

Unfortunately, CAN provides no means for synchronizing frames in different repli-
cas. Therefore, due to the error-signaling and arbitrationmechanisms of CAN, a single
bit error in one channel is enough to lead its traffic to evolvein a different way than in

2

the other replicas. Thus, additional mechanisms have been proposed in the literature
to cope with this problem. Some solutions, such as FlexCAN, are intended to pro-
vide some sort of synchronization, coordinating the transmissions and receptions on
the channels by means of timers. Another interesting solution, proposed in [8], avoids
the necessity of dealing with duplicates and simplifies the detection of omissions, by
coupling the streams received from all replicas, at the bit level, in each node.

It would be possible to adopt any of these existing solutionsfor dealing with re-
dundant frames in ReCANcentrate. However, either they are complex and expensive
in terms of hardware and software, or they limit the accuracyof the fault diagnosis
performed by each hub [6]. Fortunately, ReCANcentrate allows each node to remove
duplicates and to detect omissions in a very simple way that does not present these
disadvantages. This is the first topic covered in this document.

The other main problem that must be solved by each node when managing repli-
cated media is to detect when a fault in the media prevents it from communicating
through a given medium; so that the node can continue communicating using only non-
faulty medium replicas. The complexity of this problem depends on the architecture of
the communication subsystem. The second contribution of ReCANcentrate presented
here is that it allows each node to easily perform such required fault diagnosis and
passivation.

In this document we firstly address the basic characteristics of CAN and ReCAN-
centrate. We then focus on how ReCANcentrate allows nodes toeasily manage the
replicated media and explain the proposed management itself. Afterwards, we describe
the basics of a possible software implementation of such management using hardware
COTS components, and, finally, we conclude the document.

2 CAN and ReCANcentrate basics

The Controller Area Network (CAN) protocol is a field bus which fulfills the com-
munication requirements of many distributed embedded systems. Probably the most
important characteristic of CAN is that its physical layer implements a wired-AND
function of every node contribution, thereby providing a dominant/recessive transmis-
sion. This property guarantees that whenever one of the nodes transmits a dominant
bit value, i.e. a logical ’0’, this value is received by all the nodes in the network. In
contrast, a recessive bit value, i.e. a logical ’1’, is only received as long as every node
issues a recessive.

Moreover, CAN communication relies on a complex bit synchronization mecha-
nism which guarantees that nodes have a quasi-simultaneousview of every single bit
on the medium. This bit synchronization allows the definition of a number of addi-
tional mechanisms [3], which significantly improve the dependability properties and
real-time response of CAN [9]. One of the properties that CANis commonly assumed
to have is the referred to asatomic broadcast, which guarantees that a frame is either
simultaneously accepted by all nodes or by none. This property is of capital importance
in fault tolerance and real-time distributed systems [10].

However, one of the main impediments for using CAN in safety-critical control
systems is that it relies on a non-redundant bus topology that provides scarce error-

3

containment and fault tolerance mechanisms. For this reason, a CAN bus includes
multiple single points of failure, i.e. components whose failure cause the failure of
the overall system [9]. Particularly, the faults that may cause a generalized failure
in CAN are: stuck-at-dominant and stuck-at-recessive faults, which can occur within
nodes or in the medium; medium partition faults, which occurwhenever the network is
physically broken into several subnetworks; bit-flipping faults, which occur whenever
a network component, either node or medium, sends random erroneous bits with no
restrictions in value or time domains; and babbling idiot faults that occur whenever a
node sends incorrect frames that are erroneous in the time domain, causing undesired
interference [11].

In order to eliminate all single points of failure from a CAN network we have de-
veloped a new replicated star topology called ReCANcentrate [6] (see Figure 1). Each
hub receives each node contribution through the corresponding uplink, couples all the
non-faulty contributions with a logical AND function, and broadcasts the resultant cou-
pled signal through the downlinks. The use of an uplink and a downlink allows each
hub to monitor each node contribution separately and detectfaulty transmissions. Per-
manently stuck-at or bit-flipping contributions are disabled, and so not propagated to
the coupled signal, thus being confined to the port of origin.A further improvement of
ReCANcentrate concerns the detection and passivation of babbling-idiot faults, which
could be achieved in a relatively simple way [7].

The replication strategy is such that nodes transmit the same data through both stars
in parallel. However, an error in one star could cause inconsistencies in the traffic of the
stars, making data replication more complex to manage. Hence, both hubs exchange
their traffic through the interlinks and perform a special AND coupling [6] to create
a single logical broadcast domain. Thereby the same value istransmitted bit by bit
through their downlinks, so that the quasi-simultaneous view of each bit is enforced in
the whole replicated domain.

In what concerns a hub fault, notice that it can only manifestas the transmission of
stuck-at or bit-flipping bits through one or more hub ports. This is because a hub has not
the capacity of building CAN frames [9]. A hub fault is confined at two different levels.
Firstly, each hub is able to detect errors in any sublink coming from the other hub
and to isolate it when faulty. Secondly, as will be explainedlater, each node confines
the fault mainly using the CAN standard fault diagnosis mechanisms, and continues
communicating through the non-faulty hub. This second level of fault confinement
also applies to link faults, so that each node can tolerate the failure of one of its links.

3 Replicated media management in ReCANcentrate

3.1 Simplification of the media management

As already explained, since hubs are coupled, each node receives each bit from all hubs
quasi-simultaneously . In such a way, the set of hubs of ReCANcentrate can be seen
as a single hub that provides a single communication domain.This feature allows to
build a simple and reliable solution for replicated media management.

To better understand this, we can make an analogy between ReCANcentrate and a

4

CAN bus in which each node includes two controllers to accessthe bus. As depicted in
Figure 2, the two coupled hubs are logically equivalent to a unique CAN bus, and each
link corresponds to a given stub. Thereby, each node does nothave to deal with a set
of replicated channels, but with different views of the samechannel, which is easier.

Hub2 Hub1

Bus

Stub

Link

Node

Transceiver

CAN controller

Micro controller

Node

Figure 2: Analogy between a bus and the coupled hubs.

In particular, the management of the replicated media can bereduced to basically
trigger each transmission towards one of the hubs only, while receiving from both hubs
at the same time. We proposed a sketch of this idea and the nodehardware architec-
ture needed to support it in [6]. The node is constituted by COTS components only:
two CAN controllers and a micro-controller, as depicted in Figure 2. A given CAN
controller is connected only to one hub by means of a dedicated uplink and downlink,
using for this purpose two COTS transceivers [9].

One of the controllers acts as thetransmission controller, so that it is used to both
transmit the frames of its node and receive frames sent by other nodes. Note that the
transmission controllerdoes not receive its own frames. The other controller is used
as thereception controller. It receives frames transmitted by its own node, as well
as by other nodes. If one controller fails, the non-faulty one is used astransmission
controller.

When a frame is successfully exchanged through the network, i.e. when adelivery
eventoccurs, each node expects that its two controllers quasi-simultaneously notify
of that event. This quasi-simultaneous notification can occur in two different manners.
On the one hand, if the node successfully transmits a frame, thetransmission controller
and thereception controllernotify of the transmission and reception of this frame re-
spectively. On the other hand, if the node receives a frame sent from another node, it
expects to be simultaneously notified of its reception by itstwo CAN controllers.

Notice that the node must be fast enough to handle the pair of notifications cor-
responding to a givendelivery eventbefore a newdelivery eventoccurs. As will be
explained, the fulfilment of this requirement is necessary to correctly associate each
controller notification with its correspondingdelivery event, and further enhances the
capabilities of detecting controller faults.

5

It is worth noting that all these simplifications are possible under the hypothesis that
there is a single communication domain. Nevertheless, there is a situation in which
such hypothesis does not hold: when each hub continues coupling the contributions
of its own nodes and, meanwhile, both hubs are not coupled with each other. This
can only happen if all interlinks are faulty and, thus, isolated at their corresponding
hub ports. Since ReCANcentrate uses several interlinks to tolerate permanent interlink
failures, the probability of such a situation should be verylow. How nodes manage two
independent stars when hubs become decoupled is beyond the scope of this document.

Leaving out the scenario in which all interlinks are faulty,the fact that both stars
form a unique communication channel is valid even in presence of faults. This elimi-
nates the necessity for each node to deal with discrepanciesbetween channels, which is
difficult and typical in other replicated media architectures. In contrast, a fault can only
lead a node to observe that its two controllers differ in the vision of the same channel.
As will be explained, to manage such local discrepancies between controllers is simple.

Next, we analyze the faults that can occur in the communication subsystem, all
discrepancies they can provoke, and describe our replicated media management.

3.2 Discrepancies between the two visions of the single communi-
cation domain

We differentiate between faults occurring at the media: a hub, transceivers, connectors,
cables, etc., and at controllers. In what concerns media faults, recall that a hub has not
capacity of building CAN frames [9]. Thus, a hub fault can only manifest itself as the
transmission, through any of its ports, of syntactically incorrect bits. Because of the
same reason, faults at other parts of the media can also only manifest as the generation
of syntactically incorrect bit values.

Once a fault in the media is confined at the corresponding hub port, the controller
attached to that port will not notify its corresponding micro-controller of any further
transmission or reception. Thus, thereafter its node will constantly detect what we call
an omission discrepancy, which occurs when the node observes that only one of its
CAN controllers informs about the occurrence of adelivery event. In contrast, since in
ReCANcentrate there is a single communication domain, a non-confined media fault
will be signaled by all controllers by means of CANerror-flags[3]. This implies that,
in principle, it is impossible that any controller notifies about a transmission or a recep-
tion until the fault is confined and, hence, no discrepancy can take place meanwhile.
Nevertheless, there is an exception to this statement: the occurrence of any of thein-
consistency scenariosthat have been identified for standard CAN, which may occur
in the presence of errors in the last-but-one bit of a frame [10]. In these scenarios the
atomic broadcast is violated, even when there is a single communication domain. From
the point of view of a node of ReCANcentrate aninconsistency scenariomay manifest
as anomission discrepancy.

Regarding faults happening at controllers, we analyze their effects following the
well-known categorization of failures proposed in [12]. Wedistinguish betweencrash
andbyzantinecontroller failures. When a controller exhibits acrash failure, it stops
performing any action, so that the node will observe anomission discrepancythereafter.

6

In the case of presenting abyzantine failure, the controller fails arbitrarily with
no restrictions neither in the value domain nor in the time domain. Thus, abyzantine
failure in a controller can provoke not only anomission discrepancy, but also what we
call anon-omission discrepancy. A non-omission discrepancyoccurs whenever a node
observes that its two controllers notify of adelivery event, but they do not coincide
in the frame the event is related to. For example, a controller that exhibits a byzantine
failure in the time domain may notify with a very big delay theoccurrence of adelivery
event. If a delayed notification coincides in time with a notification related to a later
delivery event, the frames related to those events might not coincide provoking anon-
omission discrepancy.

3.3 Media management functionality of a node

In absence of faults, the management strategy to handle transmissions and receptions
in ReCANcentrate is simple. When a successful transmission and reception are respec-
tively notified from thetransmissionand thereceptioncontrollers, the node assumes
the transmission as correct and releases the reception buffer of thereception controller.
Otherwise, when a successful reception is notified from bothcontrollers, the node reads
the frame from one of them (no matter which), an releases their reception buffers.

Only minor changes in such strategy are required in order to deal with faults. No-
tice that it is not mandatory that a node handles all possiblefaults, which have been
identified in Section 3.2. On the one hand, it is not compulsory that a node detects any
of the inconsistent scenariosof CAN. First, because the probability of occurrence of
these scenarios has been controversial [5]. Second, because they are not a new prob-
lem introduced by the use of media replication, but an old problem of CAN, which can
be avoided using any of the modifications or additions to CAN that have been already
proposed [10]. Furthermore, since ReCANcentrate is transparent for any CAN-based
protocol, it can be used as their communication infrastructure anyway. Therefore, we
exclude the treatment ofinconsistent scenariosfrom our replicated media management.

Likewise, controller faults are also an old problem of communication subsystems,
e.g. in a typical non-redundant CAN bus, the controller of a node may forge notifica-
tions of transmissions and of receptions. Thus, to treat controller faults is not manda-
tory for a proper management of the replicated media. Nevertheless, since our node
hardware architecture includes two controllers, we propose that each node takes ad-
vantage of the discrepancies between them to detect controller faults to some extent.

Taking into account all these considerations, each node treats faults as follows.
First, a fault in the media can only provokeomission discrepanciesin which the con-
troller that has problems for communicating is the one that omits the notifications (in-
consistency scenariosare excluded). However, as explained in Section 3.2, anomission
discrepancycan also be provoked by abyzantinecontroller fault, so that the controller
that omits a notification may be the non-faulty controller. Thus, since anomission dis-
crepancydoes not indicate which controller has problems for communicating, it cannot
be used to diagnose media faults. Fortunately, a typical CANcontroller includes some
useful fault diagnosis mechanisms: aTransmission Error Counter(TEC), aReception
Error Counter(REC) [3], and a programmable threshold for them, callederror warn-
ing limit. We propose to use these mechanisms to treat media faults. Whenever any of

7

the error counters of a CAN controller reaches the referred limit, the node stops using
that controller for communicating, thereby isolating the faulty media.

Although anomission discrepancycannot be used to diagnose a media fault, it is
still necessary to decide whether or not the notification of adelivery eventis valid.
We propose to use a best-effort strategy that consists in assuming the notified event
and its corresponding controller as correct, but without diagnosing the controller that
omits it as faulty. If the notification was actually incorrect, to accept it is wrong, but
this situation can exclusively be provoked by a controller fault and we are not obliged
to deal with it. Moreover, at least the non-faulty controller is not penalized. If the
notification was correct, then the controller that omitted it is faulty or was isolated due
to a media fault. In both cases the decision is correct because it allows to tolerate the
fault. It is worth noting that in other replicated media architectures the decision of what
to do when observing omissions is not so simple. Since anomission discrepancydoes
not happen between controllers but between channels, nodesmust diagnose which fault
provoked it; otherwise they would not treat an important number of media faults.

In what concerns controller faults, it is possible to detectabyzantinecontroller fault
when the notification from a faulty controller coincides in time with a notification of
the other controller, and both notifications refer to a different frame, i.e. when anon-
omission discrepancyoccurs. When this happens the node cannot know a priori which
controller is actually faulty. Hence, it has to stop communicating and run an internal
test in order to take a decision. This simple fault diagnosisfeature is an advantage of
our approach compared with other solutions. Specially withrespect to those that use
only one CAN controller [8], since they cannot detect controller faults by means of a
simple comparison.

4 Replicated media management routines

Next we propose a possible implementation of the presented replicated media man-
agement. It consists in building a library that includes allthe functionality needed to
abstract away the details of both, the node architecture andthe management strategy.
This library basically includes a reception and a transmission buffer, as well as a set of
interrupt service routines to handle different communication events.

In order to correctly manage the role that each controller must perform during com-
munication, the library marks each controller as being in one of the following states:
transmission controller, reception controller, and additionallynon-active controller,
which means that the controller is not being used because it has been diagnosed as
faulty, or because it has just been initialized.

Notice that to base the structure of the library on a set of interrupt service rou-
tines allows to reduce the overhead of the application which, otherwise, would need
to periodically read the status registers of the CAN controller to check the state of the
communications. In particular, the library is devised to use CAN controllers that at
least include three interrupts: atransmit interrupt, which originates whenever a frame
has been successfully transmitted; areception interrupt, which triggers whenever a
new frame has been received; and anerror interrupt, which is launched when theerror
warning limit is reached, as well as when the controller changes from beinginvolved

8

in communication activities to not being communicating, i.e. when it passes from the
active state[3] to the bus-off state, and viceversa. Additionally, the library assumes
that these interrupts have the same priority, so that they are served following a FIFO
policy.

This section explains the basics of this library by briefly describing the general
logic structure of the service routines that are triggered by the referred interrupts.

4.1 Transmission and reception routines

The transmission routineand thereception routinerespectively handle thetransmit
interruptand thereception interrupt. Then, when adelivery eventoccurs, it is expected
that each controller of the node notifies of it by triggering one of these routines, which
will be executed in the micro-controller of the node.

It is worth noting that a node does not observe each bit in bothstars exactly at the
same instant of time, and that its controllers (and transceivers) have different internal
delays. Thus, when adelivery eventoccurs, one controller will be the first to interrupt
the micro-controller and will be served. Meanwhile the execution of the interrupt trig-
gered by the other controller will be pending. However, as explained next, these two
routines cooperatively handle the event. For the sake of simplicity, the routine executed
first will be referred to asroutine A, whereas the other asroutine B.

Besides performing the operations needed to handle thedelivery event, routineA
has to check that the notifications performed by both controllers refer to the same
frame. If the result of this checking is affirmative, the routine leaves an indication
of the correspondence between both notifications to routineB, so that routineB does
not have to check it again. If the notifications do not refer tothe same frame, then a
non-omission discrepancyoccurs; routineA notifies of it to the application, and exe-
cutes thequarantine routinefor each controller to mark them asnon-active, as will be
explained in Section 4.2.

Notice that since routineA is the one that is executed first, it has to give enough
time to allow the trigger of routineB. If when this time expires, routineB has not
been launched yet, routineA assumes that anomission discrepancyoccurred, and goes
ahead to perform alone the actions needed to handle thedelivery event.

In what concerns routineB, it must reset the indication (left by routineA) that
informs about the correspondence between notifications. Otherwise, the execution of
a routine corresponding to a futuredelivery eventwould accept an obsolete indica-
tion. Besides, routineB performs the actions needed to handle thedelivery event, but
without carrying out the operations already performed by routineA.

This cooperation between the two routines is only possible if the micro-controller
executes them fast enough to prevent that a newdelivery eventoccurs before they fin-
ish. Otherwise, a given routine could cooperate with a routine related to a laterdelivery
event. The time used to execute them must not exceed the time required for transmit-
ting the shorter CANremote frame[3]. Particularly, in a CAN network operating at
1Mbit/s and with a utilization of 100%, this time is around 49us. Thus, the temporal
requirements of routines that handledelivery eventshave to be taken into account when
dimensioning the whole distributed system.

9

Figure 3 depicts the general logic structure of thetransmission routine. First, the
routine checks if a former reception routine (which could have been triggered first by
thereception controller) left an indication that confirms that the frame transmittedhas
been already received. If the result of this checking is affirmative, the routine plays
the role of routineB. It knows that the frame was not only successfully transmitted
by thetransmission controller, but also correctly received at thereception controller.
Then, it only needs to reset the indication, to notify the application of the successful
transmission, and to release the transmission buffer of thecontroller.

If the result of the checking is negative, thetransmission routineacts as a routine
A. It waits K units of time to give enough time to thereception controllerto notify
the reception of the transmitted frame. If thereception controllernotifies the reception
of a frame, and that frame coincides with the transmitted one, thetransmission routine
leaves an indication of this correspondence. Then, it notifies the application of the suc-
cessful transmission, and releases the transmission buffer. Otherwise, if frames do not
coincide, the routine notifies the application that anon-omission discrepancyoccurred,
and executes thequarantine routinefor each controller. Finally, if thereception con-
troller does not notify the expected reception, anomission discrepancyoccurred. In
this case, the routine does not indicate the correspondence, but goes ahead.

Reset the indication. Wait K units of time.

Has the other controller
notified of a reception?

Is the frame received at the other controller
equal to frame transmitted?

Leave an indication of the correspondence
between the frame received at the other
controller and the frame transmitted.

• Notify the application that the frame has been successfully transmitted.
• Release the transmission buffer for further transmissions.

Yes No

Yes

No Yes

No

Is it indicated that the frame transmitted
is the one that has been already

received?

Notify the application that a
non-omission discrepancy
occurred and execute the
quarantine routine for each
controller.

Figure 3: Transmission routine

Figure 4 depicts the general logic structure of thereception routine. It is analogous
to the transmission routine. The main difference between them is that thereception
routinemust check whether the received frame is in fact a copy of the frame transmitted
through the other controller, or in contrast, it is a frame transmitted by another node.

To know if the former possibility has occurred, the routine inspects if the controller
whose notification is handling is marked as thereception controller. If the result of
the inspection is affirmative, it knows that the other controller is thetransmission con-
troller, but it cannot still be sure of being handling the reception of a frame sent by
that controller. So it further inspects whether or not a former transmission routinehas

10

Is the controller marked as the reception
controller?

Wait K units of time.

Has the other controller notified
of a transmission?

Is it indicated that the frame
received is the one that has

been already received?

Leave an indication of the correspondence
between the frame received at the other
controller and the frame received.

Transfer the frame to the reception buffer of the library.

Yes No

Yes

No

Yes

No

Is it indicated that the frame received is
the one that has been already

transmitted?
Reset the
indication.

Yes

Is the frame transmitted by the other
controller equal to the frame received?

Notify the application
that a non-omission
discrepancy occurred
and execute the
quarantine routine for
each controller. Has the other controller

notified of a reception?

Is the frame received in the other controller
equal to the frame received?

No

No

No

Yes

Yes

Release the receive
buffer of the controller.

No

Yes

• Notify the application that a
non-omission discrepancy
occurred and execute the
quarantine routine for each
controller.

Leave an indication of
the correspondence
between the frame
transmitted at the other
controller and the frame
received.

Reset the
indication.

Figure 4: Reception routine

indicated such correspondence. Moreover, if this correspondence is also not indicated,
the reception routinestill does not discard being handling the reception of a trans-
mission, since maybe thetransmission routineis going to trigger later on. Hence, it
waits a possible notification of transmission from the othercontroller. If it occurs, the
routine is the responsible for testing the correspondence between the frame it handles
and the frame transmitted. But if the notification of transmission does not happen, it
definitively abandons the possibility of handling a reception of a frame of its own node.
Nevertheless, it does not assume anomission discrepancy, but continues as explained
next.

When the routine knows that the unique possibility left is to be handling the re-
ception of a frame sent by another node, it must check if a former reception routine
has indicated the correspondence between the two received frames. If this correspon-
dence was indicated, the routine only needs to reset the indication and to release the
reception buffer of its corresponding controller. Otherwise, it acts as the routineA and
must check the correspondence with the frame that is expected to be received at the
other controller. If this correspondence is successfully confirmed, the routine leaves an
indication of it, transfers the received frame to the reception buffer of the library, and
releases the reception buffer of its corresponding controller.

11

4.2 Error state routines

Theerror state routineshandle two events: the diagnosis of a controller as being faulty,
and the decision of reintegrating it. These two events are respectively handled by two
routines: thequarantine routineand thereintegration routine.

Thequarantine routineis executed when a controller triggers anerror interruptdue
to the reaching of itserror warning limit. In addition, whenever the node observes a
non-omission discrepancy, this routine is executed one time for each controller. Please,
refer to Section 3.3 for an explanation of when a controller is diagnosed as faulty.

Firstly, this routine resets the corresponding controller. Notice that each hub per-
forms a reintegration policy [9] that demands the controller to be inactive for a specific
period of time. Once is reset, a CAN controller enters thebus-off state, in which it does
not communicate. This opens the possibility of its reintegration at its hub port, if it was
isolated by the hub as a consequence of a transient fault. Moreover, this reset can be
the first action of a test performed by the node to determine which controller is faulty
after detecting anon-omission discrepancy.

Additionally, this routine has to mark the corresponding controller asnon-active,
and to further perform three verifications. Firstly, it has to check if a transmission
request was pending on the controller. If the result of the checking is affirmative, the
routine must notify the application that such request was aborted. Secondly, if the
controller was thetransmission controller, the routine has to assign this role to the
other controller. Finally, if the other controller is already marked asnon-active, the
routine must notify the application that it is not possible to communicate with the other
nodes.

Regarding thereintegration routine, it performs the actions needed to use again a
controller that was previously quarantined. On the one hand, it is executed when the
controller triggers theerror interruptas a consequence of passing from thebus-off state
to theactive state. This happens when, after a reset, the controller monitors certain
conditions [3] that lead it to consider that, maybe, it is able to communicate again. On
the other hand, thereintegration routineis also executed when after anon-omission
discrepancythe node runs a test that diagnoses said controller as non-faulty.

Basically, the routine has to mark the controller as thereceptionor thetransmission
controller depending on whether or not the other controlleris marked as thetransmis-
sion controller. In case that the other controller is marked asnon-active, it also has to
notify the application that it is possible to communicate again.

Finally, notice that the execution of areintegration routineis not enough to ensure
that the corresponding controller is not isolated at its hubport. However, to re-use a
controller that actually cannot communicate with the othernodes will not cause any
problem. The controller only will generate omissions, and will eventually reach the
error warning limit, thereby being quarantined again.

5 Conclusions

Communication infrastructures for safety-critical distributed control systems, such as
TTP and FlexRay, are evolving towards the use of replicated media architectures to

12

fulfill the required high reliability by means of fault tolerance. Besides, there is an
increasing interest of using CAN in safety-critical applications, due to its robustness
and widespread use. However, the non-redundant bus topology it relies on lacks the
appropriate error-containment and fault tolerance mechanisms. To provide these mech-
anisms, we developed a replicated star topology called ReCANcentrate, which ad-
ditionally yields interesting advantages compared with other CAN replicated media
architectures [6].

In this document we have proposed the management of the replicated media per-
formed in each node of the network. Such management takes advantage of the fact that
the hubs of ReCANcentrate are coupled with each other, thereby forcing both stars to
behave as a unique communication channel. Each node can easily remove duplicates
and detect omissions, since its two controllers are attached to the same channel and,
thus, it is expected that they quasi-simultaneously notifyof each frame exchanged on
the network. Furthermore, a node can easily diagnose and passivate a fault in one of
the stars. A fault in the medium of a star prevents from communicating one of the
controllers of one or more nodes. When this happens, an affected node observes that
its impaired controller either omits notifications of transmissions and of receptions, or
accumulates too many errors. In the first case, the fault is tolerated since the node
continues communicating through the other controller. In the second case, the node
uses the fault diagnosis mechanisms already provided by CAN, to diagnose that the
impaired controller cannot communicate.

Moreover, controller faults can also be tolerated to some extent beyond the capa-
bilities of CAN and other CAN redundant architectures. In particular, a node becomes
aware of the failure of one of its controllers when it observes that its two controllers
quasi-simultaneously notify of the exchange of different frames.

Finally, we have presented a possible software implementation of the proposed
replicated media management, by briefly describing the general logic structure of its
main functions.

FTUs: nodos fail-silent (como ttp) la estrella podra ser innecesaria en terminos
estadisticos. Lo unico que gana: proximity, common-mode, etc.

Estos parametros son adems muy difciles de cuantificar.
En cambio, si comparamos implementacin nodos fail-silent en bus con imple-

mentacin sin nodes fail-silent en la estrella; aqu podemos ver ventaja de la estrella:
puede que la fiabilidad sea mayor en la estrella (nodos complejos en el bus), ms barato

more fail-silent... no queda clara la aportacion estrella.
- FTUs complexity, only to bus (in duplicate nodes).
- FTUs more
- Numbers of
Teniendo nodos duplicados la semantica de averias de los nodos esta ms restringida,

cosa que el hub no puede: mensajes semanticamente incorrectos.

References

[1] H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Fault-Tolerant and Real-
Time Systems,”IEEE COMPUTER, January 1994.

13

[2] FlexRayTM , “FlexRay Communications System - Protocol Specification,Version
2.0,” FlexRayTM , 2003.

[3] ISO, “ISO11898. Road vehicles - Interchange of digital information - Controller
Area Network (CAN) for high-speed communication,” 1993.

[4] J. R. Pimentel and J. A. Fonseca, “FlexCAN: A Flexible Architecture for Highly
Dependable Embedded Applications,”The 3rd International Workshop on Real-
Time Networks, Catania, Italy, July 2004.

[5] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca, “Anexperiment to Assess Bit
Error Rate in CAN,”Proceedings of 3rd International Workshop on Real-Time
Networks, Catania, Italy, 2004.

[6] M. Barranco, L.Almeida, and J. Proenza, “ReCANcentrate: A replicated star
topology for CAN networks,”ETFA 2005. 10th IEEE International Conference
on Emerging Technologies and Factory Automation, Catania,Italy, 2005.

[7] M. Barranco, L. Almeida, and J. Proenza, “Experimental assessment of ReCAN-
centrate, a replicated star topology for CAN,” inSafety-Critical Automotive Sys-
tems. Society of Automotive Engineers, USA, 2006.

[8] J. Rufino, P. Veŕıssimo, and G. Arroz, “A Columbus’ Egg Idea for CAN Me-
dia Redundancy,”FTCS-29. The 29th International Symposium on Fault-Tolerant
Computing, Winconsin, USA, June 1999.

[9] M. Barranco, J. Proenza, G. Rodrı́guez-Navas, and L. Almeida, “An Active Star
Topology for Improving Fault Confinement in CAN Networks,”IEEE Transac-
tions on Industrial Informatics, vol. 2, issue 2, pp. 78–85, May 2006.

[10] J. Proenza and J. Miro-Julia, “MajorCAN: A modificationto the Controller Area
Network to achieve Atomic Broadcast,”IEEE Int. Workshop on Group Commu-
nication and Computations, Taipei, Taiwan, 2000.

[11] I. Broster and A. Burns, “An Analyzable Bus-Guardian for Event-Triggered Com-
munication,” inProceedings of the 24th Real-time Systems Symposium (RTSS).
Cancun, Mexico: IEEE, Dec 2003, pp. 410–419.

[12] S. Poledna, “System model and terminology. In Fault-Tolerant Real-Time Sys-
tems: The Problem of Replica Determinism, Real-Time Systems, chapter 3,” in
Engineering and Computer Science. Kluwer Academic Publishers, Boston, Dor-
drecht, London, 1996, pp. 21–30.

14

