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Abstract

The Controller Area Network (CAN) is a field bus that is nowadays widespread
in distributed embedded systems due to its electrical robustness, low price, and de-
terministic access delay. However, its use in safety-critical applications has been
controversial due to dependability limitations, such as those arising from its bus
topology. In particular, in a CAN bus there are multiple components such that if
any of them is faulty, a general failure of the communication system may happen.
In this document, we propose the design of a new active star topology called CAN-
centrate1. Our design solves the limitations indicated above by means of an active
hub which prevents error propagation from any of its ports to the others. CAN-
centrate exhibits improved fault diagnosis and isolation mechanisms with respect
to both all communication systems that rely on a CAN bus and all commercially
available CAN communication systems based on a hub. Due to the specific char-
acteristics of our hub, CANcentrate is fully compatible with existing CAN con-
trollers, but requires double links. The present document is devoted to report in
detail the work we have done regarding CANcentrate. First, the document com-
pares bus and star topologies, analyzes related work and describes the CANcentrate
basics, paying special attention to the mechanisms used for detecting faulty ports.
Afterwards, the document explains the reintegration policy the hub performs to
deal with transient faults and addresses some issues concerning the cabling length
in a star topology. Finally it describes the implementation and tests of a prototype
of CANcentrate.2.

1The contents of this document have been the subject of a patent filing submitted on the 16th of September
of 2004.

2This work was partially supported by the European Commission through the Network of Excellence
ARTIST2 (IST-004527).
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Figure 1: Examples of failures of the communication system

1 Introduction

The Controller Area Network (CAN) protocol is a fieldbus which fulfills the commu-
nication requirements of many distributed embedded systems. In particular, CAN pro-
vides high reliability and good real-time performance with very low cost. Due to this,
the CAN protocol is nowadays used in a wide range of applications, such as factory
automation or in-vehicle communication.

Nevertheless, communication systems based on CAN present several specific de-
pendability problems, some of which are caused by the bus topology of this protocol.
The main drawback of any protocol using a bus topology is that the structure of the
network presents multiple components, i.e. cables, connectors and circuits in nodes,
which have direct electrical connections to each other without proper error contain-
ment. As a consequence, a fault in the bus interface of one node may generate errors
that propagate to the remaining nodes and effectively prevent further communication
to take place, leading to a global failure of the communication system. This situation is
depicted in caseA of Figure 1 in which a fault in the medium access circuitry of node 2,
e.g. with the transmitted bits stuck at a fixed value (a dominant value in case of CAN),
blocks the communication channel and none of the nodes can communicate with each
other. Similar situations can happen with short circuits in the bus transmission medium
or the connectors.

Moreover, a bus is shared by all communication paths between every subset of
nodes. Consequently, a partition in just one point necessarily leads to a disruption
of many communication paths. Even if both partitions can continue operating inde-
pendently, i.e. the respective nodes can still communicate with each other, the global
communication capabilities may have been substantially reduced. This is depicted in
caseB of Figure 1 in which a partition in the bus mid point blocks any further commu-
nication between nodes 1 and 2 with nodes 3 and 4.

Finally, caseC shows the situation in which there is a partition in the local con-
nection of node 4 with the bus that does not affect the bus integrity and which leaves
the inputs of the node’s reception port floating. Consequently, node 4 becomes isolated
but the communication among the remaining nodes is unaffected. From the commu-
nication system point of view, this is the desired behavior when a fault occurs in one
node or node bus interface, because it exhibits the least impact on the communication
system itself.

The general framework within which this work has been developed addresses two
main objectives. The first objective is to prevent situations in which one single fault
in the communication system affects the communication capabilities of more than one
node, e.g. casesA andB in Figure 1. In practice, we achieve this objective by using an
appropriate topology, namely a star, whose hub enforces the necessary error contain-
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ment. As it will be seen later, the hub in a star is a natural location to perform error
detection and containment, by blocking error propagation from faulty nodes to the rest
to the system at the respective hub port. Furthermore, the links that connect each node
to the hub are dedicated and thus, faults occurring on them can be isolated together
with only the respective node.

Nevertheless, the star topology still contains one single point of failure, i.e. the hub,
which if faulty may lead to a global communication failure. Even so, we consider the
star topology to be a good choice because it is easier to improve dependability for the
unique single point of failure of the star, e.g. the hub can be placed in a more protected
area within the system, than for the multiple components that may cause a commu-
nication failure in a bus topology. Moreover, replicated star topologies can be used
to tolerate either hub as well as link faults. A broader analysis of the communication
system dependability aspects can be found in [1] concerning a comparison between
TTP/C and Flexray. The specific issue of network topology is also therein discussed,
in which the benefits of a star topology over a bus are clear. Such benefits are also the
reason for the shift in Ethernet networks, which occurred through the 90s, from a bus
to a star topology.

The second objective of our general framework is to exploit the possibilities the star
topology offers to further improve dependability of a CAN network. This dependabil-
ity improvement can be achieved by taking advantage of an intelligent hub, provided
with the necessary capabilities to mitigate the impact on the entire system caused by
faults not included in the scope of the first objective, i.e. those which do not make it
impossible for the nodes to communicate. For instance, the hub could prevent that any
node impersonates another node, thus restricting the failure semantics of the nodes.

This document is devoted to the first objective, only, and it addresses the design
of a simplex star topology with one active hub. We call the resultant communication
infrastructure CANcentrate. Both the design of a replication scheme for CANcentrate
as well as the achievement of the second objective pointed out above will be the subject
of future work.

One requirement was imposed from the beginning on the CANcentrate’s design:
the preservation of all the characteristics of the CAN protocol that are related to de-
pendability. Concerning this requirement, particular care was taken to maintain the
frame format and all mechanisms for channel error detection and signalling exactly as
they are defined in CAN. As a consequence of this compatibility with the standard CAN
specification, off-the-shelf CAN controllers can be used in the nodes of CANcentrate.

In the following section we discuss the properties of existing solutions to improve
the dependability properties of CAN, focusing on the advantages of a simplex star
topology with respect to simplex and replicated bus topologies. Moreover, existing
work on star topologies for CAN is also presented. Section 3 presents the architec-
ture of CANcentrate. Section 4 discusses the mechanisms that the hub of CANcen-
trate includes in order to diagnose faulty nodes and disconnect them from the network.
Special attention is paid to explain the mechanisms the hub provides for diagnosing
bit-flipping faults. These mechanisms are deeply explained in Section 5. Moreover,
Section 6 makes several considerations about the advantages and disadvantages of the
mechanisms for diagnosing bit-flipping faults, as well as Section 7 discusses about the
values of the parameters for configuring these mechanisms. Section 8 explains the pol-
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icy the hub follows in order to re-enable ports that are blocked due to a previous error
confinement decision. Section 9 addresses issues related to the cabling length. A pro-
totype implementation of CANcentrate is described in Section 10. Finally, Section 11
considers future work and Section 12 concludes the document.

2 Problem statement

Despite the good dependability properties exhibited by the CAN protocol, it still presents
some drawbacks. In particular, there are multiple components of the network such that
a single fault in any of them may make impossible the communication of more than
one node, as referred in Section 1. In spite of the existence of several techniques pre-
viously proposed in the literature to confine the effect of such faults in CAN systems
(see Section 2.2), such techniques are not completely effective in the sense that they
still allow single faults of different types and occurring in different physical points to
make impossible the communication of more than one node, leading in some cases to
a global communication failure.

For the purpose of this document, we will definesevere communication failures, as
those in which the communication capabilities of two or more nodes in the system are
permanently affected. Note that severe communication failures include global commu-
nication failures, since a global communication failure can be considered as a partic-
ular case of a severe communication failure in which the communication capabilities
of all nodes are affected. Once we have defined severe communication failure, we can
rewrite the objective of this work as preventing the existence of multiple components in
the network such that a single fault in any of them may cause a severe communication
failure.

In order to better understand how CANcentrate achieves this objective, next we
describe the fault model and fault assumptions considered in this work.

2.1 Fault model

The fault model gathers the different kinds of faults that may happen in the components
of a CAN network and that may cause a severe communication failure:

• Stuck-at nodefault. It occurs whenever a given node is damaged and issues
a constant bit value. Two types of stuck-at fault exist: stuck-at-dominant and
stuck-at-recessive faults, depending on whether the bit value issued by the faulty
node has dominant or recessive value respectively. Since the physical layer of
CAN is equivalent to a logic-AND of every node’s contribution, only a stuck-
at-dominant fault may cause a severe communication failure (the recessive bit is
implemented as the logical ’1’ value).

• Shorted mediumfault. This occurs whenever the medium is electrically con-
nected to battery or to ground due to a short-circuit. For obvious reasons, this
fault prevents any communication. When fault-tolerant cabling is used, as rec-
ommended in CAN [2], such a fault only happens when both wires are shorted
to a fixed low impedance electrical source.
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• Medium partitionfault. It occurs whenever the medium is interrupted in such a
way that the network is broken into several subnetworks, which are callednet-
work partitions. Therefore, any two nodes which are each one in a different
partition can no longer communicate with each other. Moreover, signal reflec-
tions at the open extremities may cause channel errors that prevent nodes in the
same partition from communicating properly [2].

• Bit-flipping fault. This occurs whenever a component of the network (either
a node or a medium) exhibits afail-uncontrolledbehavior and starts sending
erroneous and random bits with no restrictions in the value domain. In this case,
even if a node is trying to send a correct bit stream, this is destroyed by the
dominant bits of the bit-flipping stream. Some potential causes of this fault are:
a damaged node that sends random bit values; a bad welding on the medium
connector that generates random bit values, etc.

• Babbling-idiot fault. It occurs whenever a node sends messages that are erro-
neous in the time domain, then consuming more resources that it really needs
and starving the other nodes of the appropriate resources for communicating [3].
For instance, this type of faults may happen as a consequence of a software fault
in a node that results in an infinite loop that sends messages continuously. To
deal with this kind of faults requires knowledge about the scheduling of the mes-
sages, which depends on the application executed at nodes. However, in the
context of this present work we focus on a solution independent of the applica-
tion. Therefore, although a babbling-idiot fault may provoke a severe failure of
the communication system, we postpone its treatment for future work. Note that,
for instance, it is suitable to include in the hub a bus-guardian, similar to the one
proposed in [3], for dealing with faults in the time domain.

Beyond the types of faults considered in this work as state above, we make no
assumptions on the frequency and duration of errors that may occur in any port or
group of ports. The only assumption made, since hub replication is not considered, is
that the hub itself will not fail.

2.2 Potential solutions

Some of the faults presented above can be confined in bus-based CAN systems, up to
a certain extent, using techniques that are already known. These techniques rely on the
use of replicated transmission media as well as on the use ofbus guardians. However,
due to the characteristics that are inherent to the bus topology, said techniques do not
prevent the existence of multiple components such that a single fault in any of them
may cause a severe failure of the communication system.

The use of replicated transmission media generally allows nodes to detect a faulty
medium by comparing the values received from each of the replicas [4] [5]. In this way,
nodes can disable the faulty medium so that the communication system can still provide
a correct service. Nevertheless, this solution does not prevent a faulty node (e.g. a
stuck-at-dominant node) from causing a failure of the whole communication system
by sending erroneous information to all replicated media. Moreover, this solution has
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a more subtle weakness; regardless of the routing of the replicated media, they have to
come together near every node of the system. This spatial proximity is a potential cause
of common-modefailures of the replicated media system. For instance, a smash near
any node may cause a partition of all media, thus leading to a severe communication
failure [6].

A different architecture, which is used in RedCAN [7], connects nodes by means
of a special ring in which one of its sectors is redundant and left inactive, so that
the resultant topology is a bus. The ring can be reconfigured by shutting down one
or more adjacent sectors and activating the redundant one. This is carried out when
a stuck-at fault of the medium occurs in one or some active and adjacent sectors or
if the node or nodes that connect adjacent sectors crash. The main disadvantage of
RedCAN is that it only deals with faults occurring in adjacent sectors or contiguous
nodes. Moreover, this solution increases the complexity of the network nodes, thus
increasing their probability of failure, and uses specific RedCAN hardware.

On the other hand, the use of bus guardians prevents the propagation of errors
from any node, enforcing a fail-silent behavior [3] of the nodes. A bus guardian is
a device which supervises the output of a node to its bus interface in order to detect
incorrect behavior. In this way, a faulty node, such as a stuck-at-dominant node or
a bit-flipping node, can be easily detected and isolated from the rest of the system.
Nevertheless, the weak point of this approach is that fault independence between a
node and its corresponding bus guardian is not completely ensured due to potential
common-mode failures. These can be caused either by spatial proximity of a node
and its bus guardian, or by sharing resources or procedures, e.g. power supply, system
clock, clock synchronization algorithm. Moreover, the use of bus guardians is useless
for containing error propagation from a faulty medium.

From the above discussion we can conclude that even though the use of replicated
media as well as bus guardians significantly improves the dependability characteristics
of CAN, these mechanisms –even if they are used together in the same system– still
allow multiple components to cause severe failures of the communication system, and
therefore they do not fulfill the aim of this work. Thus, alternative solutions have been
researched, namely those based on a star topology.

In a star topology, each node is connected to a central element, thehub, by its
own link. This provides a natural way of enforcing confinement of faulty transmission
media by isolating the respective links at the respective hub ports. Furthermore, the
hub has a privileged view of the system, as it simultaneously knows the contribution
from every node and thus, it can play the role of bus guardian of each node. In this
way, spatial proximity between a node and its corresponding bus guardian is avoided.
Moreover, the links of a star topology only come into spatial proximity at the center of
the star.

It is obvious that the main drawback of a star topology is that the hub represents a
single point of failure. In addition, the complexity of the error-detection and fault-
treatment mechanisms included in the hub implies that its probability of failure is
higher than it could be for simpler components, such as a bus guardian. Neverthe-
less, different strategies can be adopted in order to face this problem. For instance, the
hub reliability can be increased by placing it in a well-protected zone inside the physi-
cal system or by investing in its quality or even by adopting a replicated star topology.
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However, as stated in Section 1, this problem is out of the scope of this document and
will be addressed in the future.

2.3 Available star topologies for CAN

Even though the star topology provides a good basis to improve the dependability of
the communication system, the adoption of such a topology is not enough. Additional
mechanisms should be included in the hub in order to detect and isolate faulty com-
ponents and achieve the behavior of what we call theideal star, that is a star-based
system in which the hub includes all the mechanisms which are necessary to ensure
containment of all errors which may cause a severe communication failure. Some star
topologies for CAN can be found in the literature [8] [9] [10] [11]. Although these so-
lutions provide some mechanisms to deal with faulty components, any of them either
do not address severe communication failures [8] [9] [11] or deal only with stuck-at-
dominant faults [10]. Thus, none of them includes the mechanisms which are required
to prevent all the faults described in Section 2.1 from generating severe communication
failures.

In [8] [9], a passive star network topology for CAN is presented. This solution relies
on the use of a central element, called thestar coupler, which acts as a concentrator
where all the incoming signals are coupled. The result of this coupling is then broadcast
to the nodes. In what concerns dependability, the only advantage this solution presents
when compared to a bus-based CAN system is the reduction of the spatial proximity
problem between different links. This reduction is possible since the links only come
into physical proximity at the center of the star. However, this kind of star couplers
shows some technical drawbacks that discourage its use from the practical point of
view. On the one hand, large coupling loses impose strong limitations on the star
radius (5 to 10 meters) and hence force nodes to communicate at low bit rates. On the
other hand, the coupling of the incoming signals causes some electrical problems, such
as resonances, harmonics or disturbances, which require the use of complex hardware
solutions.

Other star topologies for CAN are presented in in [9] and [10]. These topologies
rely on an active star coupler, which receives the incoming signals from the nodes bit
by bit, implements a logical AND function, and retransmits the result to all nodes.
By means of this coupling these stars overcome the technical problems of passive star
topologies.

Concerning the active star presented in [9], each node is connected to the star cou-
pler by an independent link constituted by two optical paths. In the star coupler, there
is a transceiver for each link (a so-callednode-coupler transceiver) as well as an in-
ternal CAN bus with few centimeters of length. In a first stage, signals from each link
are received by the respective node-coupler transceiver and transmitted without any
processing into the internal CAN bus. In a second stage, the resultant signals from the
internal CAN bus are received by each node-coupler transceiver and retransmitted to-
wards the corresponding node. Therefore, from the dependability point-of-view it just
reduces the spatial proximity problem between different links.

Regarding the star topologies available in [10], they present fault-diagnosis and
fault-isolation mechanisms for detecting and isolating ports that present a permanently

7



stuck-at-dominant fault. Since there are not technical information available describing
the mechanisms included in their star couplers, it is difficult to evaluate the performance
of their error detection mechanisms. However, they only use one link to connect each
node to the coupler; hence, it seems that they will present a significant amount of
time for diagnosing (they have to deal with the fact that nodes’ contributions are not
separated in the space). Beside this possible disadvantage, it is also worth noting that
they do not lead either with stuck-at-recessive faults or with bit-flipping faults.

In [11] other active star topology is suggested for CAN, namely StarCAN. The
main goal of this solution does not address network dependability, but network perfor-
mance. In particular, StarCAN achieves either an extension more than 10 times longer
than a typical CAN network or a bit rate 10 times higher than a typical CAN network.
Nevertheless, in order to fulfill this goal, StarCAN sacrifices one of the most important
characteristics of CAN, the in-bit response [2]. This decision has an enormous impact
on the dependability properties of the network. On the one hand, the lack of in-bit
response jeopardizes the so-calleddata consistencyof the CAN network, since incon-
sistency scenarios [12] [13] turn out to be more likely. On the other hand, despite the
use of some CAN mechanisms, e.g. arbitration and error signaling, off-the-shelf CAN
controllers cannot be used, raising issues about the practicality of the solution.

Therefore, none of the star topologies for CAN that have been studied fulfills our
goal of preventing the existence of multiple components such that a single fault in any
of them may cause a severe failure of the communication system. In fact, almost all
the studied star topologies do not even address this kind of failures, behaving as a bus
with enhanced resilience to spatial proximity faults.

This justifies the design of a new star topology for CAN, with special focus on
achieving the goal specified above, i.e. obtaining an ideal star.

3 Design of CANcentrate

In Section 2, it has been shown that neither bus topologies nor existing star topolo-
gies do fulfill the strong dependability requirements of many safety-critical systems,
since they allow a single fault in anyone of multiple network components to cause a
severe failure of the communication system. Due to this, we have proposed a new star
topology, called CANcentrate, which does not exhibit this drawback.

In the CANcentrate architecture, each node is connected through a dedicated link
to a different port of a central hub. As explained later on in this section, a node to-
gether with its dedicated link constitute an error-containment region. From the hub
perspective, a permanent fault within a given error-containment region manifests as a
permanently faulty port. Therefore, the hub can prevent a severe failure by detecting
and isolating any permanently faulty port.

This section is devoted to describing the CANcentrate architecture, paying special
attention to the internal structure of the hub. The fault diagnosis mechanisms that the
hub includes are thoroughly discussed in Sections 4 and 5.
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Figure 2: Architecture of CANcentrate

3.1 Design rationale

Probably the most important characteristic of CAN is the dominant/recessive transmis-
sion. This property guarantees that whenever one of the nodes transmits a bit with the
dominant value, this value is received by all the nodes in the network. In contrast, a
bit with the recessive value is only received as long as every node issues a recessive
value. Moreover, CAN communication relies on a complex bit synchronization mech-
anism which guarantees that nodes have a quasi-simultaneous view of every single bit
on the channel (the so-calledin-bit response). This mechanism uses the recessive to
dominant transitions of the signal on the channel in order to keep the nodes of the net-
work synchronized with respect to the node which is transmitting (the so-calledleading
transmitter). This bit synchronization limits the maximum bit rate of the network, but
at the same time allows definition of a number of additional mechanisms (e.g. bit-wise
arbitration, ACK bit, error frame), which significantly improve the dependability and
real-time properties of CAN networks [2]. Due to the relevance of these mechanisms,
it is very important to preserve them even if a star topology is used instead of a bus.

Assuming that the typical assignment is done, i.e. logical ’1’ to recessive value and
logical ’0’ to dominant value, in order to keep the dominant/recessive transmission, the
hub must implement a logical AND function of the contributions received from every
node. Moreover, and in order to preserve the in-bit response, this logical AND must be
performed within a fraction of one bit time, despite the extra delay which the internal
circuitry of the hub may cause.

Furthermore, the hub must include some mechanisms in order to identify perma-
nently faulty ports. These mechanisms, which are thoroughly described later on, re-
quire the hub to be able to discriminate the signal that any node transmits from the
signal resulting of the logical AND that the hub broadcasts to the nodes. A simple way
to separate both signals is through the use of two different cables for each link that
connects each node to the hub. Figure 2 shows the corresponding architecture in which
there are only point-to-point unidirectional electrical connections.

The cable that carries the signal from a node to the hub is called theuplink, whereas
the cable that carries back the resulting signal from the hub to the node is called the
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downlink. Each cable is of the same type as the twisted copper wiring used for im-
plementing typical CAN buses, which have a good resilience against electromagnetic
interferences. Moreover, each cable is terminated at both ends, the node and the hub.

Therefore, two transceivers are required at the end of each link; one for the up-
link and another one for the downlink. Figure 3 illustrates how the transceivers are
connected at the end of the node. Note that thereceive data outputpin (RxD) of the
uplink transceiver is left open whereas thetransmit data inputpin (TxD) of the down-
link transceiver is forced to have a recessive level (the logical ’1’ value). It is important
to remark that the CANcentrate architecture can be implemented with both off-the-self
CAN controllers and off-the-shelf CAN transceivers. This makes the solution practi-
cal and relatively low-cost. Nevertheless, the hub requires some specifically designed
hardware, as discussed next.

3.2 Internal structure of the hub

The hub plays a crucial role in the star topology since it performs two fundamental
functions. On the one hand, it implements the logical AND function which allows
preservation of the dominant/recessive transmission of CAN as well as the rest of de-
pendability mechanisms of CAN. On the other hand, it includes a number of fault-
treatment mechanisms in order to identify and isolate permanently faulty ports.

The hub is divided into three modules, namely theInput/Output Module, theCou-
pler Module, and theFault-Treatment Module. The structure and interconnections of
these modules are depicted in Figure 4.

The Input/Output Module is made up of a number of transceivers; two for each link.
As Figure 4 shows, one transceiver is assigned to every uplink in order to convert the
physical signal received from each node into a logical value that the hub can process,
B1..n. Moreover, one transceiver is assigned to every downlink so that the logical
output of the hub, the resultant coupled signalB0, is converted into a physical signal
that is broadcast to every node.

The Coupler Module is made up of an AND gate, which performs the coupling of
the uplink signals, and a number of OR gates, one per link, which allow the hub to
disable the contribution to the global AND from a specific uplink. In particular, the
contributions that are disabled are those from ports that have been diagnosed as being
permanently faulty. Since the AND gate replaces the wired-AND functionality of the
CAN bus, this means that the output of the Coupler Module,B0, would be the same of
a CAN bus where there were no permanently faulty component. The frame that results
from coupling the frames from the enabled ports (and, therefore, that would result in a
CAN bus without faulty nodes) is called theresultant framehereafter.

This configuration causes an additional delay on the signal that the nodes receive.
For the bit synchronization of the nodes, this additional delay has to be taken into
account as a part of thepropagation time[2]. For all purposes it is similar to the extra
delay caused by an equivalently longer cable in a bus system.

Note that the output of the AND gate is connected to each and every one of the
downlink transceivers. In this way, the output of the hub (i.e. the coupled signal) does
not interfere with the signals received through the uplinks, so the contribution of every
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Figure 3: Configuration of the transceivers to connect a node to its link

node remains separated and further mechanisms can be applied in order to identify a
permanently faulty port.

The main purpose of the Fault-Treatment Module is to detect permanently faulty
ports and to isolate them from the system, so they cannot cause severe communication
failures. This function is carried out by performing bothfault diagnosis, which aims at
finding out the permanently faulty port, together withfault passivation, which aims at
isolating the permanently faulty port from the system.

The fault-diagnosis mechanisms of the Fault-Treatment Module require the identifi-
cation of the contributions from every uplink as well as knowledge of thecurrent state
of the resultant frame. This current state represents what all nodes are supposed to
have received from the hub until this moment, and therefore permits to forecast which
should be the proper contribution of each node for the following bit. Fortunately, the
use of two cables for each link keeps the contribution from each link separated, and
therefore the physical location of the faults can be more easily established. However,
this architecture does not allow the hub to discriminate between faults that are caused
by a faulty transmission medium and faults that are caused by a faulty node. Therefore,
as stated before, from the point of view of the hub, either a permanently faulty medium
or a permanently faulty node are viewed as a permanentlyfaulty port. The mechanisms
that have been devised in order to diagnose a permanently faulty port are thoroughly
described in Sections 4 and 5.

The current state of theresultant framedescribes the meaning of the bit of the
resultant framethat is currently being broadcast to all ports. The knowledge of such
current state requires to keep the synchronization of the hub with theresultant frame
at bit level as well as at frame level. The synchronization at bit level allows the hub
to agree with all the nodes about the beginning and the end of each bit time in order
to perform a correct sampling of the bit value; whereas the synchronization at frame
level allows the hub to agree with all the nodes about the location of each bit inside the
frame.

On the one hand, thePhysical Layer Moduleuses the typical CAN synchronization
mechanisms [2] for allowing the hub to synchronize with the bit stream at bit level and
this generates the reception and the transmission clocks (clkR and clkT respectively
in Figure 4). As in a normal CAN node, the reception clock indicates to the hub the
instant of time at which the input signal from the medium (the coupled signal and each
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port contribution in the case of the hub) must be sampled; whereas the transmission
clock indicates the instant of time at which a transmission bit value could be issued to
the medium if the hub needs to transmit a bit.

On the other hand, theRx CAN Moduleobserves the bit stream at the coupled signal
in order to achieve the synchronization at frame level. As a result of this synchroniza-
tion, it generates a set of signals,C, that together withB0 describes the current state
of the resultant framethat will be used for fault diagnosis by the Enabling/Disabling
units (Ena/Dis in Figure 4).

It is very important to note that an error detected by any CAN node (of CANcen-
trate or of a CAN bus) may arise due to a previous desynchronization at frame level that
leads to an inconsistent vision about the current state of theresultant frame. Therefore,
since a node cannot know the reason that provoked the error, it must assume that it has
lost the synchronization at frame level. In such situations, the CAN standard specifies
that any normally operating (error-active) node must globalize an error condition by
means of an activeerror flag and must cooperatively transmit anerror delimiterwith
the other nodes, in order to enforce the agreement among all the nodes about the cur-
rent state of theresultant frame[2]. More details about the error detection and error
globalization in CAN are explained in Section 3.3.

As stated above, the fault-diagnosis mechanisms of the Fault-Treatment Module
require knowledge of the current state of theresultant frame. Thus, the hub must keep
the synchronization at frame level with the other nodes in spite of the presence of er-
rors. To achieve this, when the hub detects an error in the resultant frame, it forces a
re-synchronization by means of an active error flag transmission. This is performed
by using theError Flag Generator Modulewithin the Fault-Treatment Module (er-
rorFlagGeneratorin Figure 4). This module receives the order of globalizing error
conditions detected in theresultant framefrom the RxCAN Module and transmits an
active error flag through a dedicated contribution,hubTx, driven into the global AND.

The specific error conditions that compel the hub to globalize an error condition
are thoroughly discussed in Section 3.3. It is worth noting that the error globalization
mechanism provided by the Error Flag Generator allows the hub to abort the transmis-
sion of a frame at any moment. Therefore, it allows inclusion of further fault-treatment
mechanisms, which are not included in the CAN protocol, e.g. to abort the transmis-
sion of a forged message due to a masquerading fault. Nevertheless, these issues will
be addressed in future work.

The ultimatefault diagnosisandfault passivationare carried out by theEnabling
/ Disablingunits (Ena/Disin Figure 4). Each one of these units uses the set of signals
C, which are better described in Section 3.4, and the resultant coupled signal,B0, to
know the current state of theresultant frame. This information is used together with
the contribution from its corresponding port (eitherB1, B2, etc.) in order to diagnose
whether its port is permanently faulty or not, as described in Sections 4 and 5.

Whenever a given Enabling/Disabling Unit diagnoses its corresponding hub port as
being permanently faulty, it removes the contribution of this port from the system by
issuing a logical ’1’ to the correspondingEnabling/Disablingsignal,ED1..n, which
is connected to the OR gate that corresponds to the faulty port (see Figure 4). This
effectively removes the contribution of this port to the global AND, being equivalent
to disconnecting the link, and the corresponding node, from the hub. In general, this
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Figure 4: Internal structure of the hub

mechanism is similar to the one proposed in [4] to manage, locally in each node, the
media redundancy in a replicated bus topology.

3.3 Error detection and globalization for synchronization

As described in Section 3.2, the hub detects and globalizes some errors in order to
maintain the synchronization with the other nodes. In order to understand these func-
tions it is important to remember some error management issues of the CAN protocol.

Any CAN node is able to detect five different error types [2]:stuff error, format
error, bit error, CRC errorandACK error. Such errors are detected by means of sev-
eral error detection mechanisms that check the correctness of the frame that the node
transmits or receives. These mechanisms, also specified in [2], respectively are:stuff
rule check, frame check, monitoring, 15 bit cyclic redundancy checkandacknowledge
check. Next, a summary about how such mechanisms are used for detecting the differ-
ent error types is presented.

• Stuff Error. Both, the transmitter and the receivers perform astuff rule checkto
test if the stream sent by the transmitter fulfils the stuff rule. This rule basically
specifies that the transmitter must insert a complementary bit, calledstuff bit,
whenever it has already transmitted five consecutive bits of the same polarity
(including stuff bits).

• Format error. Both, the transmitter and the receivers perform aframe checkto
test if the frame obeys the format rules. These rules define the characteristics of
each field of the frame: order within the frame, length and allowed bit values.
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• Bit error. Both, the transmitter and the receivers3 perform amonitoringof the
resultant framein order to check that whenever they transmit a dominant bit,
the resultant bit in the channel is a dominant bit. Moreover, the transmitter also
checks that whenever it transmits a recessive bit, the resultant bit is recessive
except in thearbitration field[2] and in the ACK slot.

• CRC error. The transmitter calculates a 15 bit cyclic redundancy code (CRC)
based on the bits of the frame that has already transmitted and, next, it transmits
such CRC in the last but two field of the frame. The receivers also calculate the
CRC and check if it matches with the CRC received (i.e. they perform a15-bit
cyclic redundancy check).

• ACK error. The receivers send a dominant bit value at a specific field called
ACK slot if they wish to acknowledge the correct reception of the frame. The
transmitter performs anACK checkto test if there is a dominant bit value in the
ACK slot and thus, to detect if at least one node has acknowledged the frame.

Depending on the number of the errors detected up to a given instant of time, a
node is in theerror-activestate, in theerror-passivestate or in thebus-offstate. Thus,
we consider that a node is error-active, error-passive or bus-off respectively. When
the number of errors anoperational node(i.e. a node involved in bus activities) has
detected is less than a specific threshold, it iserror-active; otherwise, it iserror-passive.
A node is bus-off after an initialization operation (p.e. when the node is powered up) or
after detecting a number of errors that exceeds a given threshold which indicates that
the node must isolate itself from the system (i.e. a bus-off node is not involved in bus
activities).

Whenever a node detects an error, it signals it by transmitting anerror flag. In the
case of an error-active node, such error flag is calledactive error flagand is constituted
by 6 consecutive dominant bits, whereas the error flag of an error-passive node, called
passive error flag, is constituted by 6 consecutive recessive bits. An active error flag
always violates the stuff rule and provokes all the nodes to detect an error and to signal
it too. In such a way, the error is globalized and the frame that was being transmitted is
rejected by all the nodes, i.e. we say that anerror globalizationoccurs. Nevertheless,
a passive error flag does not always force the other nodes to detect an error [2] and
thus, no globalization is ensured when an error-passive node signals an error. This is
an important issue sincedata consistency(which actually means that a frame must be
accepted by all nodes or by none of them [2]) can only be ensured if all nodes which
detect an error are able to globalize it.

In case anerror flag provokes a globalization, after transmitting their own error
flags, all the nodes cooperatively transmit anerror delimiterwhich is constituted by a
minimum of 8 recessive bits. The frame constituted by all the overlapped error flags,
followed by the cooperative error delimiter is callederror frame. The error delimiter
is built as follows. After transmitting their own error flags, the nodes continue trans-
mitting recessive bits until they monitor a pattern of 8 consecutive recessive bits in the

3A receiver can transmit a dominant bit during the signaling of an error flag as well as at the ACK slot to
acknowledge the frame (for more information about the CAN frame format, please see [2])
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channel. Note that since dominant values always overwrite recessive values, all nodes
will detect such bit pattern at the same time (as long as any node is transmitting its
active error flag, all nodes monitor dominant values) and then, they can consider that
are re-synchronized at frame level again after detecting it.

However, if a passive error flag does not provoke an error globalization, the error-
passive node continues transmitting recessive bits in order to detect the pattern of 8
consecutive recessive bits within theresultant frame. In this case, the detection of such
bit sequence not only can imply that an error delimiter ended, but that a transmitter
node ended a frame. This is because the last field of a non-error frame, theEnd-Of-
Frame (EOF), is constituted by 8 consecutive recessive bits. Note that theresultant
frame reaches theintermission field[2] after both, the transmission of the EOF and
the transmission of an error delimiter. Therefore, when the error-passive node detects
the pattern of 8 consecutive recessive bits, it can assume that considers again the same
state of theresultant framethe other nodes do, i.e. the intermission field, achieving the
synchronization at frame level.

Note that, since only an active error flag ensures the globalization of any error, the
hub must behave as an error-active node in what concerns error signaling. In this way,
the hub enforces re-synchronization at frame level despite the occurrence of an error.
However, as the hub is not the original transmitter of the message it can only detect
in the resultant framethose errors that a receiving CAN node would detect. More
specifically, the hub includes a subset of the CAN error detection mechanisms in order
to detect the: stuff error, format error and CRC error. Notice that the bit error is not
included in this list. The hub could also detect this kind of error by just monitoring the
downlinks. However this monitoring is not required because any error in the downlink
actually desynchronizes the corresponding node at frame level, which implies that,
sooner or later, this node will cause a stuff error, a format error or a CRC error in the
resultant frame.

As depicted in Figure 4, this error detection for ensuring the synchronization is
performed by the RxCAN Module, which orders the Error Flag Generator to globalize
an error by means of theiniErrorFramesignal.

3.4 State signals for the Enabling/Disabling units

As indicated in Section 3.2, the RxCAN Module, besides being responsible for ensur-
ing the synchronization at frame level, also provides the Enabling/Disabling units with
a set of signals,C, that gathers all the information that, together withB0, is needed
to know the meaning of the bit that is currently broadcast to all nodes, i.e. the current
state of theresultant frame(see Figure 4).

Next, these signals are explained (see Figure 5). Nevertheless, the reason why these
are the signals required by the Enabling/Disabling units for describing the current state
of theresultant framewill be more easily understood later on in Sections 4 and 5.

First, the meaning of a bit takes into account its type, i.e. whether the bit is a stuff
bit or not. ThebitStuffWaitedand thevalueBitStuffsignals indicate whether the bit that
is currently observed is a stuff bit or not and, in case it is a stuff bit, the expected correct
bit value according to the stuff rule, respectively.
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Second, the type of frame and the specific field of the frame in which the bit is
located also determines the meaning of the bit. CAN specifies five kinds of frames:
data frames (which carry data), remote frames (which do not carry data, but that request
for the transmission of an specific data frame), active error frames, passive error frames
and overload frames (which are aimed at achieving an extra delay between two different
data or remote frames). In addition, data frames an remote frames are always separated
from the preceding frame (regardless the type of the preceding frame) by means of a
sequence of recessive bits calledinterframe space. Theinterframe spaceis constituted
by two fields: theintermissionfield and theidle field. The information about both the
kind of frame and the specific field is codified by means of two signals: theframeField
and thelastBitEOFsignals. On the one hand, theframeFieldis a vector (a signal ofk
bits) that specifies the kind of frame the bit belongs to as well as the specific field within
the frame in which the bit is located. In particular, when aglobally detectable error
(i.e. an error in theresultant framewhich is detectable by using the error detection
mechanisms of a standard CAN receiver) is detected, the hub will signal it and thus,
such signal changes to indicate that an active error flag is being transmitted. On the
other hand, in spite of the fact that the last frame field, calledEnd of frame(EOF), is
constituted by 7 consecutive recessive bits, a dominant bit detected at the last bit of
the EOF does not provoke a format error, but an overload situation [2]. Therefore, the
additional signal,lastBitEOF, is needed to indicate whether the bit currently observed
is the last bit of theEnd of framefield (EOF) or not.

Finally, as will be explained later on in Sections 5.1, 5.2, 5.4 and 5.5, some er-
ror detection mechanisms included in the Enabling/Disabling units also need to know
whether the frame sent through the hub has passed the CRC checking performed by
the RxCAN Module or not. This information is provided by means of theCRCPassed
signal.

4 Fault-diagnosis mechanisms

The main objective of the fault-treatment mechanisms the hub includes is to detect and
isolate permanently faulty ports. However, two additional requirements are imposed:
to reduce the probability of isolating non-faulty ports and to reduce the probability of
data inconsistency.

The fault-passivation phase of fault treatment is performed by the ED signals as in-
dicated in Section 3.2. Current section is devoted to discussing how the fault-diagnosis
phase is carried out by the hub.

4.1 Fault-diagnosis rationale

The failures that are diagnosed by the Fault-Treatment Module cover all the failure
model presented in Section 2.1: stuck-at-dominant, stuck-at-recessive and bit-flipping
faults. Notice that a shorted medium manifests itself at the hub port as a stuck-at fault,
whereas a medium partition can manifest itself as either a stuck-at fault or a bit-flipping
fault. That is because a shorted medium is stuck to a constant voltage level (battery or
ground), whereas a medium partition can either force the medium to be stuck at a
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constant voltage level, or cause channel errors due to signal reflections at the open
extremities of the cable.

The fault-diagnosis mechanisms are essentially included in the Enabling/Disabling
units that operate separately on each port. As will be explained in Section 6.2, such
separately fault-diagnosis evaluation on each port allows the hub to achieve a high ac-
curacy when diagnosing a port as permanently faulty and, then, to reduce the probabil-
ity of isolating non-faulty ports. The internals of each one of these Enabling/Disabling
units are shown in the Figure 5.

On the one hand, each Enabling/Disabling Unit has a dedicatedevent counterand
an associatedmanager modulefor each type of fault that must be detected: theDom-
inant Bit Counter(DBC) and theDBC Manager Modulefor stuck-at-dominant faults;
the Non-Acknowledge Counter(NACKC) and theNACKC Manager Modulefor the
stuck-at-recessive; and theBit-Flipping Counter(BFC) and theBFC Manager Module
for the bit-flipping faults. Each management module basically analyzes the coupled
signal,B0, the port contributionBi and the control signalsC, from Rx CAN, in order
to decide how to increase or decrease its corresponding event counter.

On the other hand, the Enabling/disabling Unit has aThreshold Control Module
that is aimed at declaring the port as permanently faulty when it corresponds as well
as to isolate its contribution. The Threshold Control Module takes into account the
value registered by each event counter and is programmed with a specific threshold for
each of them: theDominant Bit Threshold(DBT), the Non-Acknowledge Threshold
(NACKT) and theBit-Flipping Threshold(BFT). Whenever any of the event counters
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exceeds its corresponding threshold, the Threshold Control Module isolates the port
contribution by setting the correspondingEDi signal to ’1’ and resets all the event
counters and their managers. However, in order to increase the tolerance to transient
errors, the Threshold Control Module may use a specific reintegration policy to re-
enable the port contribution and to allow the operation of all managers again, after a
given period ofinactivity is observed at the port. This reintegration policy is explained
later on in Section 8.

Concerning the additional requirement of reducing the probability of data incon-
sistency, the following issues have to be taken into account. It is worth noting that
since data consistency is not ensured whenever a CAN node reaches the error-passive
state (an error-passive node cannot always force the globalization of an error, see Sec-
tion 3.3), the hub must not accept error-passive nodes. Therefore, the fault-diagnosis
mechanisms of the hub are devised in order to consider the behavior of such nodes
as incorrect. This will eventually lead to the isolation of the hub’s port correspond-
ing to an error-passive node. Moreover, as will be explained later on in Section 7, the
hub can be configured in order to reduce as much as possible the probability of any
node achieving the error-passive state and then, to even reduce the probability of data
inconsistency of standard CAN network.

4.2 Stuck-at-dominant faults

In order to detect stuck-at-dominant faults, each DBC counts the number of consecutive
dominant bits that are received from its corresponding port. The DBC is increased in
one unit each time its corresponding manager observes a dominant bit value on the
uplink, and it is reset as soon as its manager observes a recessive value.

The DBC value is compared to theDominant Bit Threshold(DBT) and, whenever a
DBC exceeds the DBT, the Threshold Control Module isolates the corresponding port.

The DBT is configured in order to maximize the chances to differentiate between
situations in which a stuck-at-dominant fault really exists and situations in which the
channel is occupied by many consecutive dominant bits, although there is not a stuck-
at-dominant fault. The maximum number of allowed consecutive dominant bits before
diagnosing a stuck-at-dominant fault takes into account two different contributions:

DBT = (Tstuff+ 1) + N ∗ TerrorFlag

The first term,Tstuff+ 1, specifies the minimum number of consecutive dominant
bits that violates the stuffing rule in a CAN network (6 bits). This term includes the
maximum number of consecutive dominant bits allowed in CAN,Tstuff, plus the ad-
ditional dominant bit needed for violating the stuff rule. Whenever the stuff rule is
violated, it is expected that all nodes start to send an active error flag. Nevertheless, it
is possible that a node detects a second error during its own error flag and starts send-
ing again an active error flag, thereby prolonging the sequence of consecutive dominant
bits. In the worst case, a node will see this second error in the last bit of its first error
flag, and will send a consecutive active error flag. The second term,N ∗ TerrorFlag,
is intended to cover these situations. It specifies the maximum number of consecutive
dominant bits that are considered as overlapped or consecutive active error flags. In
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other words, it indicates the maximum amount of time a node is allowed to transmit
overlapped or consecutive error flags, measured in number of bits.

Note that forN = 2 the threshold coincides with the one proposed in [4]. In that
case, the threshold can be exceeded if two additional errors occur in the error flag that
follows a violation of the stuff rule, leading to an erroneous diagnosis of a stuck-at-
dominant fault. Using a higher value ofN reduces the probability of performing an
erroneous stuck-at-dominant diagnosis.

The value ofN can be configured depending on the application. For instance, in a
hazarding environment, we may consider thatN = 4 is tolerant enough and does not
imply a significant loss of reactivity in diagnosing stuck-at-dominant faults.

4.3 Stuck-at-recessive faults

Due to the AND function that the hub implements, a port suffering a stuck-at-recessive
fault does not interfere the communication among the rest of the nodes in the star.
Therefore, this kind of fault does not generate a severe failure of the communication
system. Nevertheless, detection of this kind of faults may still be useful in order to
implement additional fault-tolerance mechanisms at higher levels of the system archi-
tecture, for example to detect a crashed or absent node.

The detection of stuck-at-recessive faults poses an additional difficulty because a
CAN node may be without transmitting, which actually means sending recessive val-
ues, for a long time. Therefore, it would be theoretically impossible to differentiate
between a stuck-at recessive node and an operational but non-transmitting node. Nev-
ertheless, the CAN protocol specifies that every CAN controller must transmit a dom-
inant bit in the ACK slot of every frame that is correctly received [2]. Therefore, the
absence of this bit can be used to detect stuck-at-recessive ports.

For each port, such detection is carried out by a specificNon-Acknowledge Counter
(NACKC) and its management module,NACKC Manager Module. Whenever the
NACKC Manager detects, thanks to theC signals, that the current state of theresultant
frame is the ACK slot and that the frame has passed the CRC checking, it checks in
Bi if the node is sending a dominant value to acknowledge the frame. If this dominant
value is not sent, then the NACKC Manager increases the NACKC.

The NACKC Manager decreases the NACKC whenever a dominant bit is issued
through the port. It is important to note that by decreasing the counter, instead of
resetting it when detecting a dominant bit value, the hub can detect not only stuck-at-
recessive failures, but also nodes that tend to be stuck-at-recessive.

When the NACKC exceeds theNon-Acknowledge Threshold(NACKT), the Thresh-
old Control Module does not disable the port, but notifies the user about the inactivity
of the port by means of a LED. The specific value for the NACKT can be configured
depending on how strict we want to be when considering a port as being stuck-at-
recessive. For instance, since an error-active node should send an active error flag after
omitting an ACK bit, even a NACKT value equal to 1 can be considered if we want to
be very strict when detecting a crashed or absent node.
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4.4 Bit-flipping faults

As said before, a bit-flipping fault occurs whenever a component of the network sends
erroneous and random bits with no restrictions in the value domain. From the hub point
of view, such kind of fault manifests as any of its ports receiving too many arbitrarily
erroneous sequences of bits.

The CAN standard specifies some mechanisms in each node that can be used in
order to detect such kind of faults. Each CAN node includes aTransmission Error
Counter(TEC) and aReception Error Counter(REC). These counters are increased
and decreased following some rules established in the CAN specification. When any
of these counters exceeds a given threshold, the corresponding CAN node reduces its
impact on the communication process by going in theerror passivestate. Moreover, a
CAN node may disconnect itself from the network by entering into thebus-offstate [2]
if a second threshold is also exceeded. This fault-confinement mechanisms are aimed at
preventing further propagation of local errors. See Section 3.3 for a further explanation
about the error-passive and bus-off states.

Nevertheless, these mechanisms based on the TEC/REC included in each CAN
node present some deficiencies that make little advisable for the hub to rely on these
mechanisms for achieving fault confinement. First, normal CAN nodes can fail in
arbitrary ways and for this reason may stop performing fault confinement. Second,
if a medium is the source of bit-flipping faults affecting all nodes, it cannot be iso-
lated by the nodes. Finally, the accuracy of the error detection strategy followed by
the TEC/REC is limited by the restricted vision that the bus imposes, in which the
contributions of all nodes are mixed. Thus, we decided to implement in each En-
abling/Disabling Unit a dedicatedBit-Flipping Counter(BFC) and its associatedBFC
Manager.

Each BFC Manager is aimed at detecting errors in its port contribution. The BFC
Manager increases and decreases its BFC depending on the errors it detects. Whenever
the BFC exceeds a givenBit-Flipping Threshold(BFT), the BFC Manager diagnoses
its port as being permanently faulty and isolates it by mean of the correspondingED
signal.

The details of the error detection mechanisms included by the BFC Manager are
thoroughly explained in Section 5. Whereas the specific values for increasing and
decreasing the BFC, as well as the value for the BFT are explained in Section 7.

5 Fault-diagnosis of bit-flipping faults

As explained in Section 4.4, the fault-diagnosis mechanisms for detecting permanently
bit-flipping faults are implemented in each Enabling/Disabling Unit by aBit-Flipping
Counter Manager(BFC Manager) and its correspondingBit-Flipping Counter(BFC).

The privileged vision of the hub about each port contribution allows each BFC
Manager to evaluate the correctness of its corresponding port by checking that its con-
tribution does not deviate from the correct behavior expected according to the current
state of theresultant frame. The expected behavior of a given node depends also on the
role currently played by this node (i.e. whether the node is a transmitter or a receiver),
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on the error conditions detected on theresultant frameby the RxCAN Module and,
finally, on the error conditions detected by each BFC Manager on the contribution of
its corresponding node.

Although the behavior of a CAN node is quite complex in the general case, we have
been able to identify four independent types of behaviors. These types of behaviors are:
the behavior of a transmitter node during a data frame and a remote frame in which no
error has been detected so far (see Section 3.4 for a further explanation about each type
of frame); the behavior of a receiver node during a data frame, a remote frame and the
interframe space4 in which no error has been detected so far; the behavior of a node
after an error condition is detected; and the behavior of a node after the detection of an
overload condition.

Note that each BFC Manager performs the error detection based on the expected
behavior according to the current state of theresultant frame. Although the BFC Man-
ager monitors the couple signal,B0, and then it knows which is the bit value currently
being broadcasted, it does not calculate the rest of the properties that describes the cur-
rent state of the resultant frame. Instead, in order to save circuitry resources, the BFC
Manager uses the set of signalsC provided by the RxCAN Module (see Section 3.4).
Furthermore, each BFC Manager observes its corresponding contribution,Bi, and has
the necessary knowledge about the CAN protocol to detect errors in its contribution
according to the current state of theresultant frame.

It is also worth noting that a BFC Manager does not observe the activity of the other
BFC Managers, but takes into account the current state of theresultant frameand the
contribution of its node in order to take error detection decisions. This is because the
evaluation of the correctness of a node can be based only on the node’s correct behavior
according to the node’s knowledge about the current state of theresultant frame(it has
no sense to demand that a CAN node detects erroneous situations beyond the error
detection capabilities of the CAN protocol).

This section is devoted to explaining the different types of error detection mecha-
nisms included in the BFC Manager.

However, before discussing all these issues, note that all the error types detected by
the BFC Manager take into account the current role played by the node connected to its
port (i.e. if it is a transmitter or a receiver). The role is decided during the arbitration
phase, in which the conflict that arises when more than one node tries to gain access
to the medium for transmitting is resolved by a contention-based arbitration using the
identifiers of the nodes and the AND-logic property of the physical layer [2]. During
such arbitration phase, a BFC Manager assumes that its corresponding node has lost
the arbitration and becomes a receiver whenever its bit contribution is recessive and
the resultant coupled signal has a dominant value. Under normal circumstances, after
the arbitration phase only one node considers itself as the transmitter and only the BFC
Manager corresponding to such node considers it to be the transmitter (a special type
of scenarios in which this is not ensured is explained later on in Section 6.3).

4Notice that all the nodes are considered as receivers during the interframe space.
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5.1 Error detection on the transmitter node’s contribution

The first type of errors the BFC Manager can detect is based on the expected behav-
ior of the transmitter node during a data frame or a remote frame in which no error
has been detected so far. The error detection for evaluating this type of behavior is
not trivial because although a transmitter node must respect the restrictions imposed
by the CAN standard, it is rather free to send the bit values it wishes. Fortunately,
the most complete set of error-detection mechanisms available for detecting errors in
the contribution of a transmitter is already specified in the CAN protocol [2]. These
mechanisms are:stuff rule check, frame check, monitoring, 15-bit cyclic redundancy
checkandacknowledge check. However, notice that these error-detection mechanisms
are based on the observation of theresultant framein which the contribution of the
transmitter is mixed with the contributions of all the other nodes. Therefore, the BFC
Manager adapts all these error-detection mechanisms in order to directly detect errors
in the contribution of the transmitter node.

To implement these error detection mechanisms, a typical CAN node needs to ob-
serve the bit value it wishes to send and the current value on the bus. By observing the
bus, the CAN node is able to know which is the resultant bit in the bus (the bus acts as
a logical AND gate), as well as to calculate, bit by bit, the current state of theresultant
frame.

In order to adapt the error detection mechanisms of the CAN protocol, the BFC
Manager observes its corresponding port’s contribution,Bi, the couples signalB0,
and the set of signalsC provided by the RxCAN Module. TheBi signal allows the
BFC Manager to know which is the value of the bit sent by the node (since a node
together with its corresponding link are considered as an error-containment region, the
BFC Manager assumes that the bit issued through the port is the bit the node wishes
to send). Additionally the BFC Manger uses the signalB0 to know the value of the
resultant bit that (as in a bus) all the nodes should see. Finally, the set of signalsC
complete the description of the current state of theresultant frame.

Also note that since after the arbitration phase only one node is considered as the
transmitter (see Section 5), only one BFC Manager will consider its corresponding
contribution as the transmitter node’s contribution during the rest of the data or remote
frame. Next, it is specifically explained how the BFC Manager corresponding to the
transmitter node adapts each CAN error detection mechanism.

(1) Stuff rule check. The BFC Manager corresponding to the transmitter node per-
forms astuff rule checkon the stream sent by the transmitter. The signalbitStuffWaited
included inC indicates whether the current bit of theresultant frameis a stuff bit or
not, whereas the signalvalueBitStuffincluded inC indicates the correct bit value ex-
pected for fulfilling the stuff rule. Whenever the signalbitStuffWaitedindicates that the
current bit is a stuff bit, the BFC Manager corresponding to the transmitter checks if
the stuff rule is fulfilled by analyzing whether the bit issued through its corresponding
port,Bi, matches with the bit value indicated in the signalvalueBitStuff.

(2) Frame check. The BFC Manager corresponding to the transmitter checks that
the transmitter’s contribution respects the frame format (during a data or a remote
frame) specified in the CAN protocol, i.e. the BFC Manager performs aframe checkon
the transmitter’s contribution (see Section 3.3 for a further explanation of the different
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types of frames). For data and remote frames, the transmitter is allowed to send dom-
inant bits and recessive bits depending on the current field being transmitted [2]. In
what concerns the signals involved to perform suchframe check, the vectorframeField
included inC indicates which is the kind of frame and the field within the frame the
current bit belongs to. The BFC Manager uses its knowledge about the CAN proto-
col in order to check whether the contribution of its corresponding port,Bi, respects
the frame format according to the kind of frame and the field indicated by the vector
frameField.

(3) Monitoring. As explained in Section 3.3, the transmitter node in a CAN bus per-
forms amonitoringof the resultant framein order to check that whenever it transmits
a bit, such bit value is the value seen in theresultant frame(except during the arbitra-
tion phase and in the ACK slot, where it is allowed that a dominant bit overwrites a
recessive bit sent by the transmitter).

As said before, the BFC Manager considers its corresponding node and its link
(that includes the uplink and the downlink) as a single error-containment region and,
thus, it assumes that the bit observed in its corresponding port’s contribution is the bit
sent by the node. Nevertheless, the BFC Manager cannot be sure about which is the
real bit value the node sends and receives since errors can occur in the uplink and the
downlink. Therefore, the BFC Manager corresponding to the transmitter cannot know
when the transmitter detects a bit error.

However, notice that if a bit error occurs, the BFC Manager corresponding to the
transmitter is able to detect, sooner or later within the frame, that the transmitter had
any kind of problem by means of any of the error detection mechanisms based on the
CAN protocol it adapts (stuff error, format, CRC error). This is because the transmit-
ter node should signal an error when detecting a bit error. Thus, such error signaling
forces the BFC Manager corresponding to the transmitter to detect an error by means
of any of the CAN error detection mechanisms it adapts. In addition, even if the trans-
mitter does not signal the bit error (due to extra errors the transmitter may not detect
that the bit value it sent changed when reaching the hub), the BFC Manager will also
detect an error in the frame later. That is because the error mechanisms of the CAN
protocol ensure that an error will be detected if less than 5 errors occur within the same
frame [2]. For instance, a bit-error that is not signaled by the transmitter will provoke
a CRC error.

(4) 15-bit cyclic redundancy check. As said before in Section 3.3, the transmitter
node calculates and sends within the frame a 15-bit cyclic redundancy code based on
the bits of the frame it has already transmitted. Note that if the contribution of any
port corresponding to a receiver node changes any of the bits that constitute the content
of the CRC or that are included in the set of bits from which the CRC is calculated,
then the transmitter node should detect such situation as a bit error and should abort
the transmission of the frame by signaling an error. Therefore, it is assumed that the
responsible for the correctness of the value of the CRC that can be seen in theresultant
frameis the transmitter. Thus, only the BFC Manager corresponding to the transmitter
has to check that the frame passes the15-bit cyclic redundancy checkperformed by
the RxCAN Module over theresultant framewithin the hub. Regarding the signals
involved in the CRC error detection, the signalCRCPassedincluded inC indicates
whether the frame has passed the CRC check performed by the RxCAN Module or

23



not. The vectorframeFieldincluded inC indicates the frame and the field that is cur-
rently being transmitted and, indirectly, when the CRC field ends. The BFC Manager
corresponding to the transmitter observes the vectorframeFieldin order to know when
the CRC field ended, and then, checks by means of the signalCRCPassedif the frame
has passed the CRC15-bit cyclic redundancy check.

(5) Acknowledge check. In CAN, when no receiver node acknowledges the frame,
the transmitter detects an ACK error by means of theACK check. Notice that since in
CAN the transmitter uses theACK checkin order to know if the frame it sent passes
such CRC check, it does not perform the15-bit cyclic redundancy check. However,
since the BFC Manager corresponding to the transmitter already performs the15-bit
cyclic redundancy check, it does not use the knowledge in which theACK checkis
based on to detect a CRC error in the transmitter contribution. Also note that to use the
ACK checkinstead of the15-bit cyclic redundancy checkin order to detect a CRC error
in the transmitter contribution is not feasible. AnACK errorcan also occur, even if the
contribution of the transmitter is correct, if the receiver nodes (or their links) have any
problem and are not able to acknowledge a correct frame. Therefore, since the aim of
the hub is to isolate permanently faulty ports and not to isolate correct ports, the15-bit
cyclic redundancy checkbut not theACK checkshould be performed for detecting CRC
errors in the transmitter’s contribution.

5.2 Error detection on the contribution of receiver nodes

As stated in Section 5, BFC Manager is able to detect a second type of errors, namely
errors in the contribution of a receiver node during data frames, remote frames and
interframe spaces in which no error has been detected so far.

Contrary to the case of error detection on the contribution of a transmitter node
(explained above in Section 5.1), the error detection on the contribution of a receiver
node is easy. This is because a receiver is only allowed to send recessive bits, except in
two cases: during the ACK slot within a data and a remote frame, and during theidle
field.

Next, it is explained how the BFC Manager corresponding to a receiver node specif-
ically checks its node contribution during the ACK slot and theidle field.

In what concerns the ACK slot, it is important to note that a receiver node must
only acknowledge a frame if it has not detected any error (including the CRC error).
In the case a receiver node detects an error in the CRC, it does not acknowledge the
frame, but signals the error in the first bit of theEnd Of Framefield (EOF) of the frame
(which is located after the ACK slot).

The BFC Manager corresponding to a receiver node expects that the result of the
CRC checking performed by the receiver is equal to the result of the CRC checking
performed by the RxCAN Module. If the CRC checking performed by the receiver
node does not coincide with the CRC checking performed by the RxCAN Module it
means that an error occurred in the receiver node or in its downlink. Therefore, the BFC
Manager corresponding to a receiver node will allow its corresponding node to send a
dominant bit in the ACK slot only if the frame has passed the CRC check performed
by the RxCAN Module. Otherwise, the BFC Manager will expect the receiver to send
a recessive bit in the ACK slot.
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With regard to the signals that are involved in such error detection, the vectorfield-
Frame included inC indicates which kind of frame and which field within the frame
the current bit belongs to, whereas the signalCRCPassedindicates whether the frame
has passed the CRC check performed by the RxCAN Module. When thefieldFrame
indicates that the current bit belongs to the ACK slot, the BFC Manager corresponding
to the receiver will expect its corresponding node to send a dominant bit in the ACK
slot if the signalCRCPassedindicates that the frame has passed the CRC check; other-
wise, it will expect its corresponding receiver node to send a recessive bit in the ACK
slot. Nevertheless, note that since the lack of the ACK bit is used for detecting stuck-
at-recessive faults, a node not sending a expected ACK slot should not be considered
as a bit-flipping behavior.

Note that since each BFC Manager corresponding to a receiver node independently
checks its node contribution, a receiver node omitting the acknowledge can be detected
even though in theresultant framethe ACK slot has a dominant value. This represents
an improvement when compared with CAN, where it is impossible to detect a node
omitting an ACK if any other node is acknowledging the frame.

Beside the case of the ACK slot, the other exception in which the BFC Manager
corresponding to a receiver allows its receiver node to send a dominant bit is during
the idle field (when no frame is being sent). During such field, any receiver node that
wishes to send a frame starts the transmission of such frame by means of a dominant
bit which constitutes the so calledStart Of Frame(SOF). When this occurs, the BFC
Manager of the receiver node will not consider it as an error, but instead that the receiver
node becomes a transmitter.

Hence, after monitoring a SOF through its port, the BFC Manager will apply the
error detection mechanisms for the contribution of a transmitter node described above
in Section 5.1. However, the BFC Manager will consider that its corresponding node
becomes again a receiver if during the arbitration phase its node sends a recessive bit
and at the same time a dominant bit is observed in the coupled signal. This actually
means that the node loses the arbitration against any other node that sends a frame with
an identifier with higher priority. Thus, if a BFC Manager detects that its corresponding
node has lost the arbitration, it will check that this node acts as a receiver during the
rest of the frame, thus using the error detection mechanisms just described above.

5.3 Error detection on nodes’ contribution after detecting error
conditions

As explained in Section 5, there are different types of errors that can be detected on
each port contribution. In Sections 5.1 and 5.2 the error detection mechanisms for
detecting erroneous contributions of a transmitter and of a receiver as long as no error
is detected has been explained. These error detection mechanisms are independently
used by each BFC Manager, which basically detects an error in its corresponding port
by checking that its contribution agrees with the expected behavior according to the
current state of theresultant frame. The third type of errors that can be detected on
each port contribution takes into account the behavior of a given port after an error has
been detected on this port or on any other port during data frames, remote frames or
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interframe spaces in which no error has been detected so far.
Note that an error affecting a port can be not only detected by the BFC Manager

corresponding to that port on its contribution, but also can provoke aCAN detectable
error in the resultant frame. We define aCAN detectable erroras either, an error
that a CAN node is able to detect by means of any of the error-detection mechanisms
specified in the CAN protocol, or an error that can be detected by the hub by adapting
these error detection mechanisms. For the shake of simplicity, we will assume that
when generally talking about the detection of errors in the resultant frame, we are
actually referring to the detection ofCAN detectable errors.

An error affecting a given port will be detected by its corresponding BFC Manager
by means of the error detection mechanisms explained before in Sections 5.1 and 5.2.
In contrast, an error affecting theresultant framewill be detected by the RxCAN
module adapting the error detection mechanisms the CAN protocol already specifies
as will be seen later on.

The type of contribution that a BFC Manager expects after an error is detected
during data frames, remote frames or interframe spaces in which no error has been
detected so far depends on where the error was detected: in the port contribution,
regardless it is also detected in theresultant frameor not; or in theresultant frame,
only.

In the case of a BFC Manager detecting an error in its corresponding contribution
(regardless the error is also detected in theresultant frameor not), it will assume that
the error is provoked by one of two possible reasons. On the one hand, note that a
node that locally detects an error (i.e. that detects alocal error) will signal it by means
of an active error flag. This error flag will provoke an error in the port contribution.
Thus, the first reason why a BFC Manager will detect an error in its contribution is its
corresponding node signaling a local error. On the other hand, a bit-flipping fault in
a node or in a link will generate a bit-flipping stream that will provoke errors in the
port contribution. So, the second reason of a BFC Manager detecting an error in its
contribution is a bit-flipping fault located in its corresponding port. The type of error
detection mechanisms that the BFC Manager includes in order to check the contribution
of its corresponding port after detecting an error take into account these two possible
reasons for an error to appear on its port.

In contrast, the BFC Manager expects a different type of contribution if it does not
detect an error in the contribution of its corresponding port, but an error on theresul-
tant frame. Obviously, CAN nodes implement the error detection mechanisms of the
CAN protocol for detecting errors in theresultant frame. Thus, when a BFC Manager
detects an error in theresultant frameit will assume that its corresponding node has
also detected it. In this situation, the BFC Manager will expect its corresponding node
to signal the error by means of an active error flag.

As said above, the BFC Manager does not adapt all the error detection mecha-
nisms of the CAN protocol for detecting errors in theresultant frame. Notice that as
explained in Section 3.3, the RxCAN Module implements a subset of the error detec-
tion mechanisms of the CAN protocol in order to keep the synchronization at frame
level. Specifically, the RxCAN Module implements the following CAN error detec-
tion mechanisms:stuff rule check, frame check, and15 bit cyclic redundancy check.
When the RxCAN Module detects any of these errors in theresultant frame, it in-
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forms the different BFC Managers about the error by indicating (by means of the set of
signalsC) in the next bit that the current state of theresultant frametakes into account
the transmission of an active error flag (remember that in Section 3.3 it is explained that
the RxCAN Module orders the Error Flag Generator to transmit an active error flag
when detecting an error)). Therefore, in order to detect errors in theresultant frame
each BFC Manager does not need to adapt the error detection mechanisms of the CAN
protocol that the RxCAN Module already implements, but the rest of them as will be
explained later in 5.5.

Deeper explanations about the error detection mechanisms the BFC Manager in-
cludes for checking the correctness of the contribution of its corresponding port in both
cases after detecting an error in its corresponding contribution and after detecting an
error in theresultant framecan be found next in Sections 5.4 and 5.5.

5.4 Error detection after an error condition on the contribution of
a port is detected

In Section 5.3 it has been explained that the expected contribution of a port after an
error is detected during a data frame, a remote frame or the interframe space in which
no error has been detected so far depends on whether the error is detected in the contri-
bution of the port, or the error is not detected in the contribution of the port but on the
resultant frame. This section is devoted to explaining the error detection mechanisms
that the BFC Manager uses in order to evaluate the contribution of its corresponding
port after it has detected an error on it.

Each BFC Manager observes its corresponding contribution and uses the error de-
tection mechanisms described in Sections 5.1 and 5.2 in order to detect whether each
bit is erroneous according to the current state of theresultant frame. As said before,
an error in a given port contribution that is detected by means of these error detection
mechanisms can appear due to two different reasons. First, the BFC Manager detects
an error if the corresponding node detected a local error and is signaling it. Second,
a bit-flipping fault can also provoke an error in the port contribution. Thus, the er-
ror detection mechanisms used by the BFC Manager to check the contribution of its
corresponding port after detecting an error on it take into account these two cases.

The specific contribution the BFC Manager expects in these two cases depends on
multiple factors such as the value of the bit, issued through the port which causes the
error, the role played by the node corresponding to the port when the error is detected,
etc. Next, the different error detection mechanisms the BFC Manager uses for checking
the contribution in these cases are explained.

First, lets figure the case of an error occurring during a data frame, a remote frame
or a interframe space in which no error has been detected so far.

If the erroneous bit is dominant, then the corresponding BFC Manager assumes
that its node has detected a local error and is signaling it. The BFC Manager will
check that the node correctly signals the error by means of an active error flag followed
by a cooperatively error delimiter (see Section 3.3 for a further explanation of the
signaling of errors). First, the BFC Manager will check that the node sends a correct
active error flag constituted by 6 consecutive dominant bits. Notice that since the BFC
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Manager assumes that the node is signaling a local error, the BFC manager considers
that the dominant bit that provoked the error and all the preceding consecutive dominant
bits are part of the active error flag. When the active error flag is finished, the BFC
Manager will check that the node sends recessive bits until all nodes have finished
transmitting the cooperative error delimiter. In what concerns the signals involved in
this checking, the BFC Manager observes its corresponding port contribution,Bi, in
order to check that the node sends the expected dominant and recessive bits during
the error signaling. Moreover, the BFC Manager will observe which is the field being
transmitted by means of the vectorframeFieldincluded inC for detecting when the
cooperative error delimiter is finished (after the error delimiter, the field indicated by
the current state of theresultant frameis idle).

In contrast, if the bit that provokes the error during a data frame, a remote frame or
a interframe space in which no error has been detected so far is recessive, the expected
contribution depends on the role played by its corresponding node just before the error
is detected.

If the node is acting as a transmitter, the unique error that it can provoke when
transmitting a recessive bit is a stuff error. In this case, the expected contribution will
also depend on the value of the resultant bit at the coupled signal,B0, when the trans-
mitter sends the incorrect recessive bit (it is possible that a receiver node incorrectly
sends a dominant bit which coincides with the recessive bit sent by the transmitter).
If the resultant bit is recessive, the BFC Manager of the transmitter expects its corre-
sponding node to detect the stuff error and to signal it by means of an active error flag,
followed by a cooperative error delimiter. Otherwise, the BFC Manager will not expect
its corresponding node to signal an error, but continuing with the current transmission.
This is because the erroneous recessive bit will be considered as a bit-flipping bit which
cannot be detected by any node since it is masked by a dominant bit. In the case that
the BFC Manager corresponding to the transmitter assumes that its corresponding node
has to detect the stuff error, the BFC Manager will check that the transmitter send an
active error flag constituted by 6 consecutive dominant bits and that, afterwards, the
transmitter will cooperatively transmit an error delimiter constituted by recessive bits.
With regard to the signals used by the BFC Manager, beside observing the coupled
signal,B0, it observes the contribution of its corresponding node,Bi, and the vector
frameFieldincluded inC. The BFC Manager will observe the signalBi for taking into
account which is the value of the bit issued through its port and will observe the vector
frameFieldincluded inC to detect when the error delimiter is finished.

If the node that sends the incorrect recessive bit was acting as a receiver just before
the error is detected, it only can be the case of a receiver node not sending a dominant
bit in the ACK slot of a frame that has passed the CRC checking performed by the
Rx CAN Module (see Section 5.2 for further details about the error detection on the
contribution of a receiver in the ACK slot). Remember that the CAN protocol specifies
that a receiver node does not send a dominant bit in the ACK slot if it has detected
a CRC error. In such a case, the receiver must start to signal the error in the first bit
of the EOF field. Therefore, when the BFC Manager related to a receiver detects that
its corresponding node incorrectly does not acknowledge a correct frame (a frame that
has passed the CRC checking performed by the RxCAN Module), the BFC Manager
will assume that the receiver node had a local error that leaded it to incorrectly perform
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the CRC checking. Thus, the BFC Manager will expect the node to start sending an
active error flag in the first bit of the EOF field and to cooperatively transmit an error
delimiter afterwards.

Nevertheless, as said in Section 5.2, the detection of an ACK omission is not con-
sidered as a bit-flipping error, because it is used to detect stuck-at-recessive faults.
Hence, if a node does not start to transmit an error flag at the first bit of the EOF filed
after it has omitted the ACK, it will not be considered as a bit-flipping error. In contrast,
if the node effectively starts to send the error flag, the previous ACK omission will be
considered as a bit-flipping error and not as a sight of an stuck-at-recessive fault.

Regarding the signals involved in this error detection, as in the previous case, the
BFC Manager observes the contribution of its port,Bi, and the vectorframeFieldin-
cluded inC to check that the error signaling is correct. In addition, the BFC Manager
also uses the signalCRCPassedto know if the frame has passed the CRC checking per-
formed by the RxCAN Module, as well as the vectorframeFieldfor detecting when
the EOF field starts.

Until this point the error detection mechanisms the BFC Manager uses for check-
ing the contribution of its related port after detecting an error in this port during data
frames, remote frames or interframe spaces in which no error has been detected so far
have been described. Moreover, it has been also explained that the type of expected
contribution depends on the value of the bit which provoked the error, as well as on the
role of the node connected to the port.

Notice that in all these cases the BFC Manager expects its port to correctly signal
the particular error situation. Hence, one may wonder what are the error detection
mechanisms performed by the BFC Manager for dealing with bit-flipping streams that
do not match with such expected error signallings, i.e. what are the mechanisms for
evaluating a corrupted error signaling.

A possible solution to deal with bit-flipping streams would be to check bit by bit
during an error signaling if the contribution is correct and, in case of detecting an
erroneous bit, to pretend to know which is the expected contribution after observing
this erroneous bit. Unfortunately, due to the random content of a bit-flipping stream,
the BFC Manager cannot be sure of the type of contribution it has to expect when
detecting a bit-flipping bit. Thus, if during a bit-flipping situation, the BFC Manager
pretends to know which is the expected contribution after observing each bit-flipping
bit, it will unfairly detect erroneous contributions during all the bit-flipping stream.
Therefore, in order to not unfairly detect these errors, the BFC Manager will not be
strict when checking the correctness of an error signaling.

Specifically, the BFC Manager will check the contribution as follows. When the
BFC Manager detects an erroneous bit in the contribution of its port during a data
frame, a remote frame or an interframe space in which no error has been detected so far,
it will expect the node to signal an error as explained before in this section. However,
during the supposed error signaling, the BFC Manager may detect an incorrect bit. This
incorrect bit can be either a recessive bit detected before the active error flag should be
considered finished, or a dominant bit when it is supposed that the node is participating
in the transmission of the error delimiter.

In the case of detecting an erroneous recessive bit during the supposed active error
flag, the BFC Manager will assume that the node has started to send again correct
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bits according to the current state of theresultant frame. If the current state of the
resultant frameindicates that no error is being signaled (theresultant frameis still
considering the transmission of a data frame, a remote frame or an interframe space
in which no error has been detected so far), then the BFC Manager assumes that the
previous dominant bits were a bit-flipping sequence of consecutive dominant bits not
provoked by the node, but by its uplink. Thus, the BFC Manager will consider that its
node is not signaling an error and that the following bits sent by that node will be correct
according to the current state of theresultant frame. Otherwise, if the current state of
the resultant frameindicates that an error signaling is currently being transmitted, the
BFC Manager assumes that its corresponding node is already transmitting recessive
bits for building the error delimiter and that the error flag was to short due to extra
errors during its signaling.

For example, imagine a receiver node that starts to send erroneous dominant bits
during the data field of a frame. Its corresponding BFC Manager will consider that it
is signaling a local error. However, the BFC Manager receives a recessive bit before
the supposed active error flag is finished. In such situation, if the current state of the
resultant frameindicates that the actual field being transmitted is still the data field,
the BFC Manager will assume that the receiver node is also considering that field and
that it will send correct recessive bits. In contrast, if the current state of theresultant
frameindicates that an error is being signaled, then the BFC Manager will assume that
the receiver node has finished its own active error flag and that it is participating in the
transmission of the error delimiter, although extra errors have lead the BFC Manager
to observe a too short error flag.

In contrast, the error detection holds as follows when the BFC Manager detects an
erroneous dominant bit when it supposed that its node was participating in the error
delimiter. First, if the dominant bit is detected when the BFC Manager has already
observed any recessive bit of the supposed error delimiter in its contribution, then it
can assume two different things depending on the current state of theresultant frame.
In the case the current state of theresultant frameduring the previous bit indicated
that and error delimiter was being transmitted, and at the current bit it indicates that
an error has been detected in theresultant frame, then the BFC Manager assumes that
the dominant bit issued by its node is correct because it is signaling aCAN detectable
error. Otherwise, the BFC Manager considers that the node detected an extra local
error during its participation in the error delimiter and that it is signaling it by means
of a new active error flag. In such situation, the BFC Manager will check that the new
error signaling is correct by means of the error detection mechanisms already explained
in this section (it will check that the node transmits an active error flag followed by a
cooperatively error delimiter).

Second, if the BFC Manager detects an erroneous dominant bit in the very first
bit of the supposed error delimiter (just in the bit following the previously supposed
active error flag), then the BFC Manager assumes that the node detected an extra local
error during the transmission of its own active error flag, and that it is transmitting
an overlapped or a consecutive error flag. In this case, as before, the BFC Manager
will check the correctness of the new error signaling, but allowing an active error flag
constituted by 1 up to 6 consecutive dominant bits. This is because the extra local error
could happen in any of the bits that constituted the previous active error flag.
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Finally, it is important to note that all the error detection mechanisms explained
above are applied after detecting an erroneous bit in a port contribution, except in
the contribution of a port corresponding to a transmitter node after detecting a CRC
error. Remember, that the CRC sequence is calculated based on many of the bits that
constitute the frame, then the contribution of the transmitter cannot be considered as
incorrect in the moment in which a CRC error is detected (the error can be in any of
the bits from which the CRC is calculated) and thus its BFC Manager cannot assume
that the transmitter will imminently signal an error. Moreover, since a transmitter node
does not performs a CRC checking, its BFC Manager will not expect an error signaling
when detecting a CRC Error.

Furthermore, notice that although the hub always considers the transmitter node
as the responsible of a CRC error, the CRC checking is performed by the RxCAN
Module based on theresultant frame(see Section 5.1). Thus, the CRC error can be
considered as an error that is detected in theresultant frameand, therefore, the er-
ror detection mechanisms for evaluating the expected contribution of each port after
detecting it are discussed later on in Section 5.5.

5.5 Error detection after an error condition in the resultant frame
is detected

In Section 5.4 the different types of contributions a BFC Manager expects from its
corresponding port after detecting an error on it during data frames, remote frames or
interframe spaces in which no error has been detected so far are explained. However as
said in Section 5.3, an erroneous contribution may provoke an error (aCAN detectable
error) in theresultant frame. The current section is devoted to explaining how the
BFC Manager detects errors in theresultant frame, as well as how it checks the correct
contribution of its port after such kind of errors are detected.

The BFC Manager adapts a subset of the error detection mechanisms of the CAN
protocol for detecting errors in theresultant frame. Specifically, the error detection
mechanisms that adapts are:monitoringandacknowledge check. The rest of the CAN
error detection mechanisms are performed by the RxCAN Module, which informs
each BFC Manager about the detection of an error by means of some signals included
in C. There error detection mechanisms are:stuff rule check, frame checkand15 bit
cyclic redundancy check.

Next, each one of the different error detection mechanisms the BFC Manager im-
plements for checking the contribution of its corresponding port after detecting an error
in theresultant frame, as well as the signals involved in each case are explained. Note
that the adaptation of themonitoringand theacknowledge checkmechanisms carried
out by the BFC Manager are also next described when explaining theBit error signal-
ing checkand theACK error signaling checkrespectively.

(1) Stuff/format error signaling check. The CAN protocol specifies that whenever
a node detects a stuff or a format error, it must start to signal the error in the next bit.
Therefore, as soon as the RxCAN Module detects a stuff error or a format error in the
resultant frame, each BFC Manager that is not already checking its port’s contribution
after detecting an error in it, will check that its corresponding port starts signaling the
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stuff error or the format error in the next bit. The signals involved in this case are
used as follows. Once the RxCAN Module detects a stuff or a format error in the
resultant frame, it will indicate (by means of the vectorframeField) at the next bit that
the state of theresultant frameis accounting the transmission of an active error flag
(remember again that the RxCAN Module orders the Error Flag Generator to transmit
an active error flag when detecting an error, see Section 3.3). Notice that if all nodes
are synchronized with each other at frame level, they must detect a global error at the
same time and they have to start signaling it at the same bit. Therefore, when the BFC
Manager observes by means of the vectorframeFieldthat the transmission of an active
error flag has been started in theresultant frame, it checks by means ofBi that its
corresponding node has also started sending an active error flag.

(2) Bit error signaling check. As explained above in Section 3.3, a CAN node
detects a bit error whenever it sends a dominant bit, but observes a recessive bit. Fur-
thermore, a CAN transmitter node also detects an error when it transmits a recessive
bit and observes a dominant bit during a data or a remote frame (except at theACK slot
field and during the arbitration phase, see Section 3.3). A node that detects a bit error
must signal it in the bit after the error is detected.

Nevertheless, to be able to check that a node correctly signals a bit error, the hub
needs to detect when this node should detect it. Note that, a given node can detect a bit
error due to different situations (a electromagnetic interference that locally affects the
vision the node has about the channel, a synchronization problem due to clock drift that
provokes the node to perform an error when sampling, etc). However, the hub cannot
detect all the situations that may provoke a bit error because it only has knowledge
about the bits that receives and sends through the links.

Fortunately, since the hub independently observes the contribution of each port,
it can use the following mechanism in order to detect one situation in which a node
should detect a bit error. The hub will assume that a bit error should be detected by
a node if the bit issued by the node is incorrectly changed by the bit issued from any
other node. This is actually the only mechanism that the hub can include to adapt the
monitoringmechanism of CAN.

However this adaptation has one more restriction: when a given node sends a dom-
inant bit, the hub cannot detect if such node may detect a bit error. This is because a
dominant bit sent by a node cannot be changed by the bit issued by any other node.
Thus, the hub can only detect that a node may detect a bit error when the node sends a
recessive bit.

The BFC Manager corresponding to the transmitter includes this mechanism in or-
der to detect when its corresponding node should detect a bit error. If the BFC Manager
corresponding to the transmitter detects that its node sends a recessive bit and that, at
the same time, any other port sends a not allowed dominant bit, it will check that in the
next bit the transmitter node starts signaling an error. Notice that, in contrast, the BFC
Manager corresponding to a receiver does not performs such error detection. This is
because a CAN receiver that observes a dominant bit when it has issued a recessive bit
does not detect a bit error.

In what concerns the signals involved in this error detection mechanism, the BFC
Manager corresponding to the transmitter observes the contribution of its port,Bi, the
vectorframeFieldincluded inC and the coupled signal,B0. The BFC Manager cor-
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responding to the transmitter will use the signalframeFieldand the CAN format rules
to know when the transmitter and the receivers are allowed to send dominant bits and
recessive bits. When the transmitter is allowed to send dominant and recessive bits, but
the receiver is only allowed to send dominant bits, the BFC Manager corresponding
to the transmitter compares the port contribution of the transmitter with the coupled
signal. In such situation if a recessive bit is issued through the port of the hub corre-
sponding to the transmitter node and the coupled signal has a dominant value, then the
BFC Manager corresponding to the transmitter assumes that a receiver is sending an
incorrect dominant bit which should trigger a bit error detection at the transmitter (it
is enough a dominant bit issued from one port to force a dominant bit at the coupled
signal).

Once the BFC Manager considers that its node should detect a bit error, it observes
the contribution of its corresponding port,Bi, in order to check that the node starts to
signal an active error flag in the next bit.

(3) CRC error signaling check. The CAN protocol specifies that whenever a re-
ceiver node detects a CRC error, it must start to signal such error in the first bit of
the End of framefield (EOF). Therefore, when theresultant framedoes not pass the
CRC checking performed by the RxCAN Module, each BFC Manager correspond-
ing to a receiver expect its node to start sending an active error flag in such bit of the
EOF. For checking the CRC error signaling, each BFC Manager corresponding to a
receiver observes the signalCRCPassedto know if theresultant framehas passed the
CRC checking; and the vectorframeFieldfor knowing when the EOF begins. When
the BFC Manager corresponding to a receiver detects that the frame has not passed the
CRC checking, it will observe the vectorframeFieldand the contribution of its port,
Bi, in order to check that its corresponding node starts sending an active error flag in
the first bit of the EOF field.

(4) ACK error signaling check. The CAN protocol specifies that whenever a trans-
mitter detects an ACK error, it must start to signal such error in the bit following the
ACK slot. Therefore, when no receiver sends a dominant bit at theACK slot, the BFC
Manager corresponding to the transmitter expects the transmitter to detect an ACK
error and, therefore, to start to send an active error flag in the next bit.

In order to adapt theacknowledge checkmechanism for detecting the ACK error,
the BFC Manager corresponding to the transmitter first observes the vectorframeField
for detecting when the ACK slot is being broadcast. In addition, the BFC Manager also
has to observe the coupled signal,B0, for detecting whether the ACK slot has a dom-
inant bit or a recessive bit (all the contributions must be recessive to force a recessive
value at the coupled signal). If the BFC Manager corresponding to the transmitter de-
tects a recessive bit inB0 during the ACK slot, it assumes that an ACK error occurred.

When the BFC Manager corresponding to the transmitter detects an ACK error, it
will observe its port contribution,Bi, to check that the transmitter starts sending an
active error flag in the next bit.

All these error detection mechanism are used to check if the corresponding node
starts to signal errors adequately. But, in addition, the BFC Manager checks the cor-
rectness of such error signaling. Specifically, the BFC Manager will check that the
node sends an active error flag constituted by 6 consecutive dominant bits, followed by
a cooperative error delimiter constituted by recessive bits.
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Note that if the BFC Manager detects an erroneous bit in its contribution which
violates this format of the error signaling, it will assume that its node detected an extra
local error. Therefore, in this situation, the BFC Manager will check the contribution
of its corresponding port by means of the error detection mechanism described before
in Section 5.4 for detecting errors during a bit-flipping stream.

However, it is also possible that an error occurs in theresultant frameduring the
error signaling itself. In particular, this will occur when during the error delimiter a
dominant bit is observed at the coupled signal as a consequence of an incorrect dom-
inant bit issued by any port. In such situation, each BFC Manager, corresponding to
a port not responsible of the new error situation, will expect the corresponding node
to start to signal an error again (an active error flag followed by a cooperative error
delimiter).

5.6 Error detection after detecting overload conditions

The fourth type of expected contribution identified in Section 5 corresponds to the
behavior of a node after detecting an overload condition. Remember that there are
two kinds of overload conditions [2]. On the one hand, an overload frame is sent by
a receiver node that needs an extra delay before a new frame can be transmitted on
the bus. Specifically, this overload frame is calledLLC-requested overload frameand
a receiver node can start sending it only in the first bit of the intermission field. On
the other hand, the CAN protocol specifies a second type of overload condition. Any
receiver node detecting a dominant bit either in the last bit of the EOF field or in any bit
of the intermission field, as well as the transmitter node detecting a dominant bit in any
bit of the intermission field react sending a so calledreactive overload frame. Actually,
reactive overload framesare the mechanism for globalizing an overload condition.

The format of an overload frame is the same as the format of an active error
frame [2]. It is constituted by an overload flag of 6 consecutive dominant bits followed
by a cooperative overload delimiter of at least 8 consecutive recessive bits.

The transmission of an overload flag provokes the globalization of the overload
condition by forcing the transmission ofreactive overload frames. Whereas the coop-
erative error delimiter is used for synchronizing all nodes at the end of the overload
condition. Notice that, even in the case of some nodes globalizing an overload condi-
tion while other nodes are globalizing an error condition (e.g. a dominant bit at the last
bit of the EOF will provoke the transmitter and the receivers to signal an error and an
overload respectively), all them will be synchronized at the end of the error (and the
overload) signaling. This is because an overload flag and an active error flag have the
same format and for both types of frames (overload and active error frames) the nodes
cooperatively transmit a delimiter.

In what concerns the behavior of the BFC Manager during overload conditions, first
notice that it can detect an overload condition in two different contexts: an overload
triggered by the contribution of its corresponding port; or an overload not triggered by
its port, but by any other port.

On the one hand, if the BFC Manager detects that its corresponding port issues a
dominant bit in the first bit of the intermission field, it will assume its node have started
to signal an overload condition. For being able to detect such overload situation, a BFC
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Manager observes the vectorframeField, included in the set of signalsC, in order to
know when the current bit is the first bit of the intermission field. In addition, the BFC
Manager observes its corresponding port contribution,Bi, to detect if the port issues a
dominant bit that triggers the overload condition.

On the other hand, the BFC Manager detects an overload condition not triggered by
its port contribution, but by any other port in two different situations. First, if its port
corresponds to a receiver node, the BFC Manager will detect an overload condition
when observing, in theresultant frame, a dominant bit at the last bit of the EOF field
or during the intermission field. Second, if the corresponding node is acting as a trans-
mitter, the BFC Manager will detect an overload condition if a dominant bit is sent by
other port during the intermission field. In the case the BFC Manager corresponding to
the transmitter detects a dominant bit sent by other port in the last bit of the EOF field,
it will not expect its node to signal an overload condition in the next bit, but an error
condition.

Regarding the signals involved in the detection of an overload condition in the con-
tribution of any other port, the BFC Manager observes the vectorframeFieldincluded
in C. When the RxCAN Module detects a dominant bit in theresultant frameat the
last bit of the EOF or during the intermission field, it indicates in the next bit, by means
of theframeField, that an overload condition is being signaled.

The second issue regarding the behavior of the BFC Manager during an overload
condition is the way in which it checks the contribution of its corresponding port during
it. Upon the detection of an overload condition, the BFC Manager will expect that its
port issues an overload frame with the correct format. For checking this, it will use the
same error detection mechanisms it includes for checking its port contribution when
signaling an active error frame. See Section 5.4 for a detailed explanation of these
mechanisms.

6 Considerations on the mechanisms for diagnosing bit-
flipping faults

The error detection mechanisms the hub includes for diagnosing bit-flipping faults were
presented in Section 4.4 and were thoroughly discussed later in Section 5.

The current section is aimed at discussing some aspects related to these fault-
diagnosis mechanisms. First, Section 6.1 presents some considerations about the com-
plexity of the design of these mechanisms. Second, remember that in Section 4.4,
the advantages of these mechanisms for diagnosing bit-flipping faults over the typ-
ical CAN fault-diagnosis mechanisms (based on the TEC/REC) where only briefly
outlined. Thus, Section 6.2 deeply explains these advantages. Finally, Section 6.3 dis-
cusses some drawbacks of these mechanisms, as well as possible solutions to overcome
them.
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6.1 Evaluation of the complexity of the mechanisms for diagnosing
bit-flipping faults

The complexity of the circuitry included in a device is an important aspect that has to
be taken into account when devising dependable systems. Specifically, the probability
of failure of a device decreases with its complexity. As said before, in CANcentrate
the hub is the most critical element concerning dependability since it is the single point
of failure of the communication system. Thus, the fault-diagnosis mechanisms the hub
includes were devised in order to reduce as much as possible their complexity in terms
of circuitry.

As described before, the mechanisms for diagnosing bit-flipping faults are mainly
included in each BFC Manager, which independently operates over a given port. Each
BFC Manager basically observes its port contribution,Bi, the coupled signalB0, the
set of signalsC from Rx CAN and uses its acknowledge about the CAN protocol to
check if its contribution is correct according with the current state of theresultant
frame.

The first characteristic of the fault-diagnosis mechanisms that allows reducing the
circuitry complexity is the way in which the BFC Manager gets the current state of the
resultant frame. As stated before in Section 5, the BFC Manager does not calculate
this current state by observing the resultant coupled signal,B0. Instead, the RxCAN
Module is aimed at calculating bit by bit this current state by observing the coupled
signal. Then, the RxCAN Module provides the different BFC Managers with a set
of signals,C, that, together withB0, describes this state. Hence, since the logic for
calculating the current state of theresultant frameis implemented once in the hub (in
the RxCAN Module), the cost in terms of circuitry is less than it would be if all BFC
Manager had to implement it.

This way of reducing the circuitry is even more important if one takes into account
that the calculation of the current state includes the detection of several types of errors
in the resultant frame: stuff rule check, frame check, and15 bit cyclic redundancy
check. Between them, the most important reduction is achieved in the checking of the
CRC sequence, since the BFC Managers do not need to include the logic for calculating
the CRC sequence, which is expensive in terms of circuitry.

The second characteristic of the fault-diagnosis mechanisms that makes possible
reducing the amount of circuitry needed for implementing the fault-diagnosis mecha-
nisms is that, as explained in Section 5, each BFC Manager does not monitor the activ-
ity of the other BFC Managers. The major benefits of this are that it actually reduces
the number of needed interconnections inside the hub and the complexity of the state
machines included in each BFC Manager. Moreover, this also makes the hub design
more flexible and extensible for further improvements. For instance, to add new ports
and their respective Enabling/Disabling units will not require to change the circuitry of
the existing modules and units within the Fault-Treatment Module.

6.2 Advantages of the mechanisms for diagnosing bit-flipping faults

As explained in Section 4.4, the hub cannot rely on the fault-confinement mechanisms
(based on the TEC/REC) that CAN nodes include for dealing with bit-flipping faults.
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The deficiencies of the fault-confinement mechanisms based on the TEC/REC were
also outlined there: first, faulty nodes may stop performing fault-confinement opera-
tions, second, a bit-flipping fault located in a medium bothers all nodes so that none of
them can isolate the fault, and third, the bus imposes a mixed vision of all nodes’ con-
tributions, thus, reducing the accuracy of the fault-diagnosis mechanisms. In contrast,
the hub we have devised does not present such deficiencies. These section is devoted
to explaining in detail how the hub overcomes the deficiencies of the fault-confinement
mechanisms based on the TEC/REC.

First, notice that the contribution from all nodes have to pass through the hub,
which operates independently from them. Therefore, the fault-containment capacities
of the hub do not depend on the correct fault-containment operations performed by the
nodes. Hence, isolation of faulty port is guaranteed even if nodes stop performing fault
containment operations.

Second, the deficiencies of the mechanisms based on the TEC/REC regarding the
impossibility of dealing with faulty media is overcame in CANcentrate since each
link is dedicated and, together with its corresponding node, constitutes a single fault-
containment region that the hub can treat.

Third, the hub is also able to improve the deficiency of a CAN bus in what concerns
the accuracy of the fault-diagnosis mechanisms implemented by typical CAN nodes.
In order to understand how the hub does it, it is important to remember how a fault (a
faulty node) is diagnosed in CAN [2]. Any CAN node uses the TEC and the REC to
basically increase them when the node considers itself as the responsible of an error
condition. As explained in Section 4.4, when either the TEC or the REC reach a given
threshold, the node enters theerror passive statewhich actually reduces the impact of
the node on the communication [2]. A second threshold is used if the error passive state
is not enough. If the node reaches this second threshold, it enters thebus-off stateand
it is not involved in bus activities. This last situation corresponds to a node diagnosing
itself as being faulty.

More particularly, a CAN node decides that it is the responsible of an error condi-
tion and thus increases its TEC or its REC when it detects aprimary error [2]. A node
detects a primary error when it monitors a dominant bit after its own error flag. That is
because a node that detects this dominant bit can assume that it was one of the nodes
that firstly detected an error and started to signal it, thus provoking the other nodes to
detect an error and to perform an error signaling too. In other words, a node detecting a
primary error means that the node did not detect an error as a consequence of the error
signaling from other node, but due to either a local error or an error that could affect
more than one node in the network.

Notice that the detection of the primary error is the basis of the mechanisms that any
CAN node uses in order to diagnose itself as being faulty. Unfortunately, the detection
of a primary error is performed on theresultant frame. The limited vision about the
contribution of each node, imposed by the coupling on the bus, forces each CAN node
to make assumptions about the contributions of the other nodes. Thus, the detection of
a primary error cannot be performed when the error occurs, but only some bits later.
Specifically, when the node can extract enough information from theresultant framein
order to evaluate the behavior of the other nodes. This delay for evaluating the behavior
of other nodes may lead a CAN node to incorrectly detect a primary error if extra errors
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occur during the transmission of the error flag.
One possible case in which this can occur arises when a node that started to signal

an error situation as a consequence of a local error detects an additional local error
during its own active error flag. In this situation the node immediately starts the trans-
mission of an additional active error flag, leading the other nodes to incorrectly detect
a primary error. Other example of an incorrect detection of the primary error occurs
when a node that detects a local error does not monitor a dominant bit after its own
active error flag due to an extra local error. In this case the node, which actually should
have been detected a dominant bit belonging to the error flags of other nodes, will not
detect a primary error.

Due to the inaccurate strategy for detecting the CAN node that is responsible for
an error condition, the fault-diagnosis mechanisms specified in CAN are inaccurate
too. In contrast, the hub improves the detection of guilty nodes because it has an
independent vision of each node contribution. On the one hand, each BFC Manager is
able to detect that its port is the responsible of an error condition, without making any
kind of assumption on the contribution of any other port. On the other hand, each BFC
Manager detects that its port is guilty of an error condition at the instant of time it issues
an incorrect contribution. Therefore, a guilty node is detected regardless of whether
any other node (or itself) detects extra errors or not. See Section 5 for a thorough
explanation of the error-detection mechanisms the BFC Manager implements.

Finally, it is worth noting that the hub also improves the fault-diagnosis mecha-
nisms of CAN by means of a higher capability of error detection. In CAN the error
detection is only performed on theresultant frame. In contrast, as said in Section 5.3,
the hub can detect errors in two different levels: on theresultant frameas well as on
the contribution of each port. This, allows the hub to improve the capabilities of error
detection of CAN by means of two different ways.

First, the fact that the hub adapts some error-detection mechanisms, already speci-
fied in CAN, to detect errors at ports makes the hub able to improve the error-detection
capabilities of CAN. Note that since in a CAN bus all the contributions are coupled, an
incorrect bit issued by a given node may bemaskedby the bit issued by any other node
in a way that the erroneous bit cannot be detected at theresultant frame. For instance,
if a receiver node sends a not-allowed dominant bit in a specific frame field, but this
bit coincides with an allowed dominant bit sent by the transmitter, then it would be
impossible to detect such erroneous situation in theresultant frame. In contrast, the
hub monitors each node contribution separately and then, an erroneous bit sent by a
port cannot bemaskedby a bit issued from other port.

Other possible scenario in which an erroneous bit ismaskedin a CAN bus was
described in Section 5.2. There, a receiver CAN node does not acknowledge a correct
frame sending a recessive bit in the ACK slot. In this scenario the transmitter CAN
node is not able to detect such ACK omission in theresultant framebecause the reces-
sive bit sent by the incorrect receiver node is overwritten by the dominant bits issued
from other nodes. In contrast, in the same situation, the BFC Manager corresponding
to the receiver node that incorrectly does not acknowledge the frame can detect the
ACK omission in its corresponding port contribution.

The second way in which the hub improves the error detection capabilities of CAN
consists in the use of new error-detection mechanisms that are not specified in the CAN
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protocol. These new error-detection mechanisms are mainly related to the detection of
errors in each port contribution after an error condition or an overload condition is
detected in any port contribution or in theresultant frame. See Sections 5.3, 5.4, 5.5
and 5.6 for an explanation of these new error-detection mechanisms.

6.3 Drawbacks of the mechanisms for diagnosing bit-flipping faults
and their solution

In Section 6.2 the advantages of the fault-diagnosis mechanisms the hub includes
over the fault-diagnosis mechanisms specified in the CAN protocol for detecting bit-
flipping faults have been explained. However, the fault-diagnosis mechanisms of the
hub present a problem that must be faced.

As explained in Section 5, the mechanisms for detecting errors provoked by bit-
flipping faults are included in the BFC Managers. Each BFC Manager basically checks
that the contribution of its port is correct according with the current state of theresultant
frame. Thus, this error-detection mechanisms are based on the assumption that the hub
and the nodes are synchronized with each other at frame level, so that they have a
consistent view of the current state of theresultant frame.

When due to an error a node loses the synchronization at frame level, the hub will
detect, sooner or later, an error in theresultant frame. In this case, as explained in
Section 3.3, the hub will globalize this error in order to force all the nodes to be re-
synchronized at frame level at the end of the active error frame.

However, it is worth noting that during all the time that elapses between a node
gets de-synchronized at frame level and the instant of time in which this node is re-
synchronized at the end of the active error frame, the contribution of this de-synchronized
node may not match with the current state of theresultant frame. Thus, it is possible
that although only one error leads a node to lose the synchronization, the hub detects
many errors in its contribution, believing that the node is bit-flipping, until this node is
re-synchronized again.

This means that, in some circumstances, the hub unfairly detects errors in a node
contribution, thus decreasing the accuracy of the error detection. Since the accuracy of
the error detection is a key issue that influences the accuracy of the fault diagnosis, it
is mandatory to reduce the possibilities of the hub performing unfair error detections.
Although the number of scenarios that can lead the hub to perform unfair error detec-
tions is huge, we could be able to identify three kind of these scenarios. Next, this kind
of scenarios, as well as the solutions for dealing with them are explained.

The first kind of scenarios regarding unfair error detections are those concerning
situations in which the hub detects an error and globalizes it. As explained before, the
re-synchronization of a previously de-synchronized node can only be ensured at the
end of the active error frame. Thus, the BFC Manager of the de-synchronized node
cannot forecast which will be the contribution of this node during the error signaling.

Fortunately, the mechanisms already included in each BFC Manager are devised
to be less strict when checking the contribution of its node during an error signaling,
than during situations in which no error has been detected so far. These mechanisms,
explained in Section 5.4, take into account that a supposed active error frame issued
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through a port can actually be a bit-flipping stream or a corrupted active error frame.
Thus, such mechanisms are suitable for reducing the number of unfair error detections
during scenarios concerning an error signaling.

The second type of scenarios that may lead the hub to perform unfair error detec-
tions is related to the error-detection mechanisms, explained in Section 5.5, for detect-
ing a transmitter node erroneously not signaling a bit error. See Section 3.3 for a further
explanation of the bit error. As described in Section 5.5, when the BFC Manager cor-
responding to the transmitter observes that the bit issued through its port is recessive
and, at the same time, the bit at the coupled signal is dominant, it assumes that the
transmitter node should detect a bit error (remember that the resultant signal the hub
broadcast it the logical AND of every node contribution).

If this incorrect dominant bit, which should lead the transmitter to detect a bit error,
does not provoke an error in theresultant framedetectable by the error-detection mech-
anisms of a receiver CAN node (stuff error, format error, CRC error) and, additionally,
the transmitter does not detect the error, neither the hub nor the nodes will signal an
error. Thus, the transmission of the frame will continue.

In such situation, the transmitter should get de-synchronized at frame level unless
it actually wanted to send a dominant bit, but due to errors, a recessive bit reached
its corresponding hub port. If the transmitter gets de-synchronized, its corresponding
BFC Manager will detect later on astuff error, a format error or a CRC error in its
contribution. Therefore, the BFC Manager will detect two errors in its contribution.
The first error is detected when the transmitter does not signal the bit error. Whereas
the second error is detected when the transmitter violates the stuff rule, any format rule
or the CRC sent by the transmitter is checked as incorrect.

This detection of two error is unfair since the transmitter node only behaved incor-
rectly when it did not detect the bit error, but not when it provoked an error later on. A
possible solution for avoiding this unfairly detection would be to not detect an error in
the transmitter contribution when it does not signal a bit error. This solution is feasible
since, in almost all cases, the BFC Manager of a transmitter node that does not signal a
bit error will detect a stuff error, a format error or a CRC error later on. Nevertheless,
this solution also implies that the BFC Manager of the transmitter will not detect an
error in the case, explained above, in which the transmitter does not signal the bit error,
but also does not provoke any error later.

Although to detect an error in the transmitter contribution when it incorrectly does
not signal a bit error will usually lead to unfairly detect an extra error in its contribu-
tion, it has been decided to not avoid it. This is because it can be considered that this
kind of scenarios in which a transmitter does not detect a bit error are very unlikely.
Moreover, since to diagnose a port as being permanently faulty should require to de-
tect many errors (see Section 7 later for a discussion about this issue), the unfair but
unlikely detection of one extra error should not lead to an erroneous fault diagnosis.
Moreover, if we keep the error detection of a transmitter not signaling a bit error, even
the exceptional scenario in which the transmitter will not provoke an error later can be
detected. This actually increases the error detection capabilities of the hub.

Finally, the last kind of scenarios in which the hub can perform unfair error de-
tections is related to the arbitration phase. During the arbitration phase, each En-
abling/Disabling Unit monitors its port contribution in order to decide if its port be-
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comes a receiver or stays as a transmitter. An Enabling/Disabling Unit assumes that its
corresponding port becomes a receiver if it issues a recessive bit and, at the same time,
other port issues a dominant bit (the Enabling/Disabling unit detects such dominant bit
at the coupled signal). However, since the bits sent and received by the nodes can be
corrupted, it is possible that after the arbitration phase more than one node considers
that it has won the arbitration and has became the transmitter. Moreover, since each
BFC Manager independently monitors its port and the couple signal, it is possible that
more than one BFC Manager assumes that its corresponding node has won the arbi-
tration (regardless its node has considered itself as becoming transmitter or not). Any
situation in which either more than one node considers itself as the transmitter or more
than one BFC Manager considers its node as the transmitter, will be referred as an
arbitration misunderstandinghereafter.

It is worth noting that anarbitration misunderstandingcan happen even if only one
error occurred during the arbitration phase. For instance, it is enough that during the
arbitration phase a transmitter does not monitor a dominant bit that would lead it to
become a receiver and that, thereafter, its identifier coincides with the identifier of the
node that wins the arbitration.

Upon anarbitration misunderstanding, the BFC Manager should consider the con-
tribution of its corresponding node as being bit-flipping, if this node is assuming itself
as playing a role (transmitter or receiver) different from the role the BFC Manager as-
sumes the node is playing. This is because the BFC Manager will expect a different
kind of contribution depending on whether it considers its node as a transmitter or as
a receiver. Therefore, even if thearbitration misunderstandingwas provoked by only
one error during the arbitration, a BFC Manager can unfairly detect many errors in its
contribution.

The number of unfair error detections after anarbitration misunderstandinghas
happened depends on the amount of time any node or the hub needs to detect an error
in theresultant frameand starts signaling, thus forcing a re-synchronization. An error
in theresultant framecan be detected in several ways. The hub and the receiver nodes
will detect an error if theresultant frameviolates the stuff rule, any format rule or if
the CRC of theresultant frameis incorrect. On the other side, a transmitter will detect
an error if theresultant frameviolates the stuff rule, any format rule or, in addition, if it
observes a collision (if it detects a bit error provoked by the dominant bit of any other
transmitter).

In the general case it is expected that after anarbitration misunderstanding, any
transmitter observes a collision soon. However, a transmitter can observe a collision
only if it sends a recessive bit and, at the same time, any other transmitter sends a dom-
inant bit. Thus, if the transmitters send the same data and take into account the same
stuff bits, the observation of a collision will only occur after a considerable amount of
time. Specifically, the collision should occur, at least, during the transmission of the
CRC field. Because it is very unlikely that different frames have the same CRC.

It has been explained that one error during the arbitration phase is enough to pro-
voke anarbitration misunderstanding. Thus, it can be considered that the probability
of occurrence of anarbitration misunderstandingis not negligible. Therefore, although
anarbitration misunderstandingrarely will lead to the detection of a high number of
unfair error detections, it has been decided to include mechanisms within the hub to
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deal with this problem
One possible solution for reducing the impact of thearbitration misunderstand-

ing is to decrease the amount of time the hub needs to re-synchronize after a de-
synchronization has occurred. Specifically, the hub can force an error globalization
(by means of an active error flag) not only when the RxCAN Module detects an error
in the resultant frame, but also when any BFC Manager detects an error. This would
effectively abort the frame and re-synchronize the nodes sooner, stopping the unfair
detection of errors provoked by thearbitration misunderstanding. However, this solu-
tion negatively affects the performance of the network since it will abort frames that
would not be aborted in a CAN bus (since an error in a port contribution may not cause
an error in theresultant frame).

An alternative solution has been adopted for our hub: to restrict the number of times
that the BFC Manager increases the BFC during a data or a remote frame. This is done
by means of aBit-Flipping Detection Counter(BFDC) and aBit-Flipping Detection
Threshold(BFDT). See Section 4.4 for an explanation about the BFC and the other
elements included in each Enabling/Disabling Unit concerning the detection of bit-
flipping errors.

At the beginning of each data or remote frame, the BFC Manager resets the BFDC,
but increases it each time that it increases the BFC during such frame. Whenever
the value of the BFDC exceeds the BFDT, the BFC Manager orders the Error Flag
Generator Module to globalize an error. This globalization will abort the frame and
will lead the nodes to re-synchronize because the error flag sent by the hub will force all
nodes to send their active error flags. All BFC Managers (including the BFC Manager
of the port whose BFDC exceeded its BFDT) continue using its BFC without any
restriction during the error signaling in order to check if the node respects the active
error flag format (see Section 5.4 for an explanation of the error detection during the
error signaling).

However, as in the previous solution in which the hub forces the globalization of
any error detected by any BFC Manager, to use this alternative solution based on the
BFDC and the BFDT will abort frames that would not be aborted in a standard CAN
system. This can occur if a bit-flipping source only generates dominant bits that coin-
cide with correct dominant bits sent by the other node during a data or a remote frame.
In such situation no error will be detected in theresultant frame, but in one of the ports
of the hub. Thus, to force an error globalization whenever the BFDT of this port is
exceeded will abort frames that would not be aborted in a standard CAN system.

Fortunately, it can be considered that such situations do not imply a considerable
loss of performance. First of all, the probability of a bit-flipping source not provoking
an error in theresultant framedetectable by the hub or the nodes during more than
one frame, but in contrast leading the BFDC to exceed the BFDT must be taken as
negligible. This is because it can be considered that, in average, a CAN node should
send the same number of dominant bits and recessive bits during a data or a remote
frame. Thus, during a data or a remote frame, the probability that a dominant bit
generated by a bit-flipping source coincides with a dominant bit send by the transmitter
(thus not provoking an error in theresultant frame) is of 0.5. Based on this probability,
the probability thatN dominant bits generated by a bit-flipping source only coincide
with dominant bits during a data or a remote frame can be calculated as0.5N . A bit-
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flipping source should provoke several error detections inside one frame in order to
lead the BFDC to exceed the BFDT. This means that, during a data or a remote frame,
N should be high enough to provoke the BFDT to be exceeded. Which actually implies
that the probability of theseN bits not provoking an error in theresultant frameis very
low.

Furthermore, it can be considered that the solution based on the BFDC and the
BFDT may, in some cases, improve the performance. Consider the case in which,
during a data or a remote frame, a source of bit-flipping bits will generate an error
in the resultant framesooner or later. Note that if the bit-flipping bits are masked by
the contribution of the transmitter node, in the worst case, the bit-flipping bits may
only provoke an error next to the end of the frame. Therefore, to use the BFDC and the
BFDT to abort the frame earlier will save bandwidth and will improve the performance.

Finally, there is a third reason why the adoption of the solution based on the BFDC
and the BFDT does not implies a loss of performance. Note that the hub will finally
isolate any bit-flipping port, thus, a possible loss of performance provoked by the use
of this solution must be taken as temporary.

7 Considerations on the configuration of the BFC Man-
ager Module

In Section 4.4 it has been explained that for diagnosing ports as being bit-flipping
faulty, the hub includes for each of them aBit-flipping Counter Manager Module(BFC
Manager Module). Each BFC Manager independently operates on its port and in-
creases or decreases its correspondingBit-flipping Counter(BFC) in order to take into
account the correctness of the contribution of its port. The BFC Manager diagnoses
its port as permanently faulty when the value of the BFC exceeds a givenBit-flipping
Threshold(BFT).

Additionally, in Section 6.3 it has been explained that each BFC Manager restricts
the number of times it increases its corresponding BFC in each data or remote frame
in order to reduce the impact of unfair error detections in its port contribution. For this
purposes, the BFC Manager uses a dedicatedBit-Flipping Detection Counter(BFDC)
and a dedicatedBit-Flipping Detection Threshold(BFDT).

The present section is aimed at discussing what should be the specific values for
increasing and decreasing the counters, as well as the specific values of configuring the
thresholds involved in the diagnosing of bit-flipping faults, i.e. thepenalization policy.

The BFT and the number of units that the BFC has to be increased or decreased
can depend on how restrictive the application is. For instance, a very high depend-
able application may claim for specific issues that enhance the dependability of the
communication system. Concretely, as explained in Section 4.1, it is important to not
allow a node to be in the error-passive state in order to reduce the probability of data
inconsistency. The fault-diagnosis mechanisms of the hub consider the behavior that
characterizes the error-passive nodes as incorrect (i.e. passive error flags are considered
as erroneous contributions) and then, such nodes are eventually isolated. However, it
may be also necessary to apply a tightpenalization policyin order to minimize as much
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as possible the probability of any node entering in the error-passive state.
We consider that a first good approach is to adopt apenalization policybased on

the standard CAN [2], but introducing slightly modifications in order to be more strict.
Such policy presents the following rules.

• When the BFC Manager detects an error in its corresponding contribution, it
increases its BFC in 8 units. This corresponds with the value a CAN node must
increase the TEC or the REC when detecting a primary error in a CAN bus.
As explained in Section 6.2, BFC Managers improve the accuracy of detecting
which nodes are the responsible for an error situation and, in addition, they can
detect when nodes issue incorrect bits that cannot be detected in a CAN bus.
Thus, although the BFC Managers use the same values used in CAN to increase
the error counters of guilty nodes, the BFC Managers are stricter.

• When the BFC Manager detects in its corresponding contribution an error related
to the format of the active error frame, it will not increase its BFC in 8 units as
it was just said, but in 16 units. This is because extra errors during an error
signaling are a good indication of a bit-flipping behavior. See Section 5.4 for a
detailed explanation about the mechanisms for detecting errors during an error
signaling.

• When the state of theresultant framereaches the idle field (i.e. no transmission
is on the channel) after a frame transmission ends, all the BFC are decreased in
1 unit. Notice that, this asymmetric approach of increments and decrements is
intended to require high reliability of the nodes and links. Moreover, note that
the idle field always follows the transmission of an active error frame. Thus,
since almost any error detected by a BFC Manager implies the globalization of
this error later by means of an active error frame, this asymmetric approach is
needed to effectively take into account the errors.

• The bit-flipping threshold can be set to 128 units. Which corresponds to the
threshold specified in the CAN protocol to lead a node to enter in theerror pas-
sivestate. Note that in the case the accuracy of the error detection performed by
the BFC Manager was the same as the accuracy of the error detection of a CAN
node, this threshold should lead a BFC Manager to disable the contribution of
its node when it enters the error passive state. However, since the error detection
performed by the BFC Manager is more accurate than the one performed by a
CAN node, it is even less likely that a CAN node enters in the error passive state
before its corresponding BFC Manager disables its contribution.

Even when this policy is more exacting than the policy specified in CAN, it is
important to note that the hub cannot ensure that a node never enters in the error-
passive state by simply adopting a stricterpenalization policy. It should be necessary
to do a further analysis in order to find a proper policy that ensures the hub isolates any
node before entering in the error-passive state. Fortunately, an additional solution may
be used without addressing this further and complex analysis. This solution is based
on the fact that it is possible to force a CAN node to enter in the error-active state after
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a reset action. Thus, it is possible to avoid a node to enter into the error-passive state
by building the software so that it resets a node whenever it enters into such state. Note
that to restart the operation of a faulty node in this way does not negatively affect the
communication. This is because the hub will eventually isolate the port corresponding
to a faulty node, as well as the hub will keep isolated the port of this node as long as it
generates errors.

Finally, with regard to the BFDC and the BFDT it is necessary to choose values
that does not imply a loss of performance, compared with a standard CAN system,
when applying the solution proposed in 6.3. This solution consists of aborting any data
or remote frame when any BFDC exceeds its corresponding BFDT. Note that in that
section it was also explained that it should be considered that the loss of performance
when applying this solution is negligible. However, this assessment assumes that the
value of the BFDT is not exceeded until several errors are detected in its corresponding
port during a data or a remote frame.

Thus, we propose to increase the BFDC in 1 unit and to set the BFDT to 5 units.
This choice is feasible since the probability of 5 erroneous bits not provoking the abor-
tion of a data or a remote frame in CAN is around0.55 = 0.06. Furthermore, note that
the standard CAN ensures that a data frame or a remote frame is aborted if the number
of errors during the frame are less or equal to 5. Therefore, if the BFDT is set to 5
units and the BFDC in increased in 1 unit, any BFC Manager will force the abortion
of a frame only when the error detection mechanisms of CAN are not able to do it.
Actually, this implies that the performance will note be negatively affected.

8 Reintegration policy

In Section 4.1 it was explained that each Enabling/Disabling Unit has a Threshold Con-
trol Module that isolates its port contribution an resets all the event counters and their
managers when detects that any of the event counters exceeds its specific threshold.

However, in order to increase the tolerance to transient errors, the hub implements
an automatic reintegration policy of disabled ports. Basically, the reintegration mech-
anisms consists on re-enabling the contribution of any port and to allow the operation
of all its corresponding managers again, after a given period ofinactivity is observed
at the port. The state machine that describes this reintegration policy is depicted in
Figure 6.

A port is set to theidle state whenever the hub is initialized or a stuck-at-recessive
failure is detected. In such state, the contribution of the port is enabled. Note that a
port diagnosed as being stuck-at-recessive enters into theidle state and its contribution
is not isolated. This is because it does not generate errors that propagate to other ports

As soon as the hub receives ameaningfulcontribution from a port, e.g. an ACK
signaling, an error flag transmission or a dominant bit contribution during the arbitra-
tion, the corresponding Threshold Control Module sets that port to theactivestate. The
single difference between theidle andactivestates is that the second one indicates that
the node is regularly participating in the communication process.

Whenever the stuck-at-dominant or the bit-flipping thresholds are exceeded, the
Threshold Control Module sets the port to thedisabledstate. This actually implies that
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Figure 6: Reincorporation policy schema

the contribution of the port is disabled, as well as the different event counters and their
respective managers are reset.

Once a port is in that state, the corresponding Threshold Control Module waits to
observe a constant recessive contribution during 128 CAN bus free occurrences, i.e.
128 occurrences of 11 consecutive recessive bits [2]. This coincides with the number
of consecutive recessive bits that a CAN node in the bus-off state must observe before
being able to re-enter in the active error state. After detecting this period ofinactivity,
the port will be set again to theidle state, the contribution of the port will be re-enabled
and the even counters and their manager will be operational.

The reintegration policy allows an autonomous performance of the hub because it
is able to return to normal operation by itself.

9 Considerations on the cable length

The length of the cabling is an important factor in a distributed embedded system. In
CAN, due to the synchronization at the bit level among all nodes, there is an inverse
relationship between the bit rate and the maximum bus length. In CANcentrate, these
relationship is preserved as the bit level synchronization of CAN is maintained. How-
ever, since the signals travel to the hub and then in parallel in all links back to the nodes,
the maximum length applies only to every pair of links. This feature may represent a
substantial increase in the capacity to interconnect nodes when compared with the bus
topology. Consider a system withN nodes separated in space. The total length of the
bus that interconnects such nodes isLb (see Figure 7b). On the other hand, consider all
nodes interconnected by means of a hub with linki having lengthLi (see Figure 7a).
Despite depending on the nodes placement, for the general case,Lb >> Li + Lj ,∀i,j

(see Figure 7). This is a major benefit of the star topology. On the other hand, also
for the general case,Lb <

∑
i(Li) meaning that the total length of the cabling system

is longer in the star topology. Nevertheless, the superior connectivity of the star may
allow using higher bit rates than with a bus due to the stronger limitation on the bus
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length.
In what concerns the length of each star link, the bit level synchronization imposes

a limitation on the sum of the lengths of every pair, as stated above. Let this limitation
beLmaxs, the star diameter. In order to have the lengths of all links independent of
each other, the previous constraint implies that∀iLi < Lmaxs/2.

To deriveLmaxs, the maximum diameter of the star, we need to analyze the propa-
gation of the electrical signals from end-to-end. With respect to a bus topology, the star
presents an extra delay caused by the hub (additional transceivers and internal gates).
This delay is dominated by the former factor since the gate delays are negligible (order
of 1ns or less using modern technologies) when compared with the transceiver delay
(around 150ns for fast transceivers, including bus to reception pin and transmission pin
to bus [14]). For a given bit rateB, the bit time1/B has now to account for both
propagation effects as in a bus plus hub delay. For the former aspect, consider all the
parts that contribute to establish the bit time in CAN using the normal bus topology.
Let this betpb (notice thattpb = 1/B by definition). In a star, all these parts related to
propagation effects also have to be considered, takingtps. However, the bit time now
also includes the hub delayth, thustps = 1/B − th. Note that since a signal must
go through the hub two times (from the transmitting node to the receiving node and
viceversa),th includes twice the time a signal is delayed when crossing the hub in one
way.

Therefore, from the point of view of signal transmission, we can define a star equiv-
alent bus, with propagation effects takingtps and operating at a bit rateB′ so that

B′ =
1

tps
=

1
1/B − th

=
B

1−B ∗ th
> B

The previous equation shows that a star is, from an electrical signal transmission
point of view, equivalent to a bus operating at a higher bit rate. Moreover, the higher the
bit rate, the larger the difference. Therefore, the maximum diameter of the starLmaxs,
operating at bit rateB, is the maximum length of standard CAN operating at bit rate
B′. For example, given the 150ns figure of hub delay referred above, a star operating
at B = 1Mbit/s has a maximum diameter equal to the length of a bus operating at
1.18Mbit/s. On the other hand, ifB = 125Kbit/s then the maximum diameter of
the star equals the length of a bus operating at 127.4Kbit/s which implies a negligible
reduction in length. To calculate the effective bus length for these transmission rates
refer to [15]

10 CANcentrate prototype implementation

This section is aimed at describing the basics of the first prototype of CANcentrate.
The experimental platform that has been set up in order to test this prototype is also
discussed. Finally the main results of these tests are presented.
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10.1 Description of the prototype

The prototype is divided into several parts. Each of them corresponds to a given part
or parts of the CANcentrate architecture. The details of such architecture can be found
in Section 3. When building our prototype, we differentiated the following parts: the
Coupler and the Fault-Treatment modules (referred hereafter as theinternal part of
the hub), the Input/Output Module, the links, and the CAN nodes. Next, a general
description of the characteristics of each part implementation is given.

The internal part of the hub has been implemented using the VHSIC Hardware
Description Language (VHDL) and theXilinx Virtex XCV300-PQ240FPGA (Field
Programmable Gate Array), which is placed in the Xilinx prototype boardPQ240-100
Prototype Platform(HW-AFX-PQ240-100version).

A dedicated board has been used for implementing the Input/Output Module, fol-
lowing the wire-wrap technique. This board mainly contains four pairs of Philips
PCA82C250 high-speed CAN transceivers and four RJ45 jacks (one jack for each pair
of transceivers), so that up to four CAN nodes can be connected to the hub at the
same time. The pin CANL (LOW level CAN voltage input/output) and the pin CANH
(HIGH level CAN voltage input/output) of the transceiver are then connected to the
appropriate pins of the corresponding RJ45 jack. The interconnection between the In-
put/Output Module and the internal part of the hub is made by means of a flat cable,
which connects the specific reception and transmission pins of the CAN transceivers
with the corresponding pins of the Xilinx prototype board.

One UTP (Unshielded Twisted Pair) Category 5/5e/6 ethernet cable is used for im-
plementing each link, which is constituted by an uplink and an independent downlink
(as explained in Section 3.1). Both the uplink and the downlink use two-wire differen-
tial lines. The uplink uses the Transmit pair while the downlink uses the Receive pair
of the Ethernet cable. On the one hand, the CANH and the CANL wires of the uplink
are implemented with the Transmit+ and the Transmit- ethernet wires respectively. On
the other hand, the CANH and the CANL wires of the downlink are implemented
with the Receive+ and the Receive- ethernet wires respectively.

The CAN nodes have been implemented using off-the-self components. Each node
is constituted by two different boards that are attached to each other: aCANiveteboard
and astarLinkboard. The CANivete board is a previous development of the Univer-
sidade de Aveiro (UA) for standard CAN applications and implements a typical CAN
node. In contrast, the starLink board was specifically designed for this project. It in-
cludes all the additional components needed for modifying the CAN interface of the
CANivete in order to build the schema of double transceivers needed for connecting
each CAN node to the uplink and the downlink of CANcentrate (see Figure 3 and
Section 3.1 for a description of such schema).

On the one hand, the CANivete is based on a printed board where the components
are welded. Its main components are a Philips 82C592 micro-controller which inte-
grates a CAN controller; several sets of input/output pins that are connected to different
parts of the board for digital or analog I/O; an external EPROM memory of 64k (for
storing the program); two RS-232 drivers, one connected to the internal UART of the
micro-controller and another one connected to the I/O pins of the board; and a Philips
PCA82C250 high-speed CAN transceiver, which is connected to the CAN controller
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located within the 82C592 micro-controller.
On the other hand, the starLink is a wire-wrap board which contains a Philips

PCA82C250 high-speed CAN transceiver and a RJ45 jack. The transceiver located
within the CANivete is used for connecting the CAN node to the downlink, whereas
the transceiver located within the starLink board is used for the uplink. The trans-
mit data input pin of the transceiver of the CANivete (TxD pin of the PCA82C250) has
been left open, and the printed track of the printed board which connected such pin with
the CAN controller is now connected to the transmit data input pin of the transceiver
of the starLink. The pins CANL and CANH of both transceivers are then connected to
the appropriate pins of the RJ45 jack.

10.2 Experimental platform

The prototype of CANcentrate was extensively tested to check its correct operation
under error-free conditions and in the presence of faults, as well as to measure its per-
formance. To perform these tests, an experimental platform was built. Specifically, the
issues that were taken into account when devising this platform are the configuration
of the application that is executed at the CAN nodes, the configuration of the network
and the fault-injection mechanisms. Additionally, two requirements are imposed on
this experimental platform: to achieve the maximum network utilization with a given
bit rate, and to force an arbitration at the beginning of the transmission of each frame.

The first issue concerning the experimental platform is the configuration of the
application that the CAN nodes execute. All CAN nodes run the same application, but
with different sets of CAN identifiers. Thus, it is impossible that two nodes try to send
a frame with the same identifier at the same time (this is a general requirement for any
CAN application).

The application the nodes execute is constantly trying to send data frames with
different identifiers and different data lengths, in order to test different frames. In
addition, for fulfilling the requirement of achieving the maximum network utilization
with a given bit rate, the application follows two basic rules: it must trigger a new
transmission whenever it successfully transmits a frame and it must restart the CAN
controller whenever, due to errors, it reaches thebus-offstate (in such state, a CAN
controller is not involved in bus activities, see Section 3.3).

With regard to the second issue of the experimental platform, namely the configu-
ration of the network, it covers several aspects that are related to the nodes, to the links
and to the bit rate. Concerning the nodes, it is worth noting that at least three CANivete
nodes are needed for fulfilling the requirement of forcing arbitration to take place in
the transmission of each frame. This is because our CAN nodes are not able to perform
a new transmission just after finishing a previous one (they have a single transmission
buffer and, thus, an extra delay is needed for configuring and ordering a new transmis-
sion). Also note that, as stated before in Section 10.1, the Input/Output Module has
been built to allow the connection of four CAN nodes at the same time. However, one
of the ports of the hub is reserved for fault-injection purposes as will be explained later
in this section. Therefore, the network is configured with three non-faulty CAN nodes
plus a port for fault injection.
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Regarding the other aspects covered in the network configuration, the links and the
bit rate, several Ethernet cables of different lengths, as well as different bit rates have
been used in order to measure the performance of the network depending on the star
diameter and the bit rate. Nevertheless, due to implementation limitations on the clock
oscillators of the CAN nodes, the maximum bit rate that has been used for testing the
performance is 690kbit/sec.

Finally, the last issue related to the experimental platform is the set of fault-injection
mechanisms that are used to validate the fault-treatment capabilities of the hub. As
explained in Section 4, the hub is able to detect permanently faulty ports which present
stuck-at-recessive faults, as well as to diagnose and isolate permanently faulty ports
which present stuck-at-dominant or bit-flipping faults. Stuck-at-recessive faults can be
easily injected by disconnecting the link of an operational CAN node from the hub.
However, a more complex fault-injection mechanism is needed for stuck-at-dominant
and bit-flipping faults.

For injecting both stuck-at-dominant and bit-flipping faults, a special CAN node,
called faulty node, has been implemented. Such node is implemented with a stand-
alone starLink board that is connected to a signal generator device (see Section 10.1
for a detailed explanation of such board). Thefaulty nodeis connected as any other
node (by means of an Ethernet cable) to the port of the hub that is reserved for fault-
injection purposes. Note that since thefaulty nodeonly has one transceiver, which is
connected to the uplink within the cable, the downlink is left open at the end of the
faulty node.

The transmit data input pin of the transceiver of thefaulty nodeis connected to
the signal generator device. In this way, different bit stream patterns, consisting of a
periodic signal that alternates from the recessive to the dominant value with a given
frequency, can be transmitted to the hub. How to use thefaulty nodeto inject stuck-at-
dominant and bit-flipping faults is explained in the next section.

10.3 Functional tests

As explained in Section 10.2, the correct operation of the prototype under error-free
conditions, as well as in the presence of faults was checked by means of several func-
tional tests. The aspects that have been tested under error-free conditions are the cor-
rectness of the:

• Operation of the different state machines that constitute the hub.

• Calculation of theresultant frameupon all node contributions.

• Correct synchronization at bit level and at frame level.

• Assignation of the roles of the nodes after the arbitration phase.

In contrast, the aspects that have been tested in the presence of faults are the correct
of the:

• Increase and decrease of the different error counters during different fault sce-
narios.
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• Detection of ports suffering stuck-at-recessive faults, as well as the isolation of
ports suffering stuck-at-dominant or bit-flipping faults.

• Reintegration of ports following the policy explained in Section 8.

All the issues indicated above were tested at two different levels: at the level of the
VHDL design of the hub and at the level of the physical network. However, the tools
that have been used at each of these two levels impose different limitations. Thus, the
different aspects listed above have been tested in different depths at the two levels.

The first level of testing, the functional testing of the VHDL design of the hub,
has been done by means of the simulation toolModelSim XE II 5.7g(provided by
Mentor Graphics Corporation). Several simulations were done in order to check all the
issues specified above and, in all cases, the operation of the hub was correct. Special
attention has been paid to check the correct operation of the different state machines
that constitute the hub, as well as their correct mutual interaction.

In what concerns the second level of testing, physical limitations in the layout of the
FPGA board discourage an exhaustive testing of all the state machines that constitute
the hub. In contrast, many more fault scenarios can be injected at physical level than at
simulation level.

For this physical level of testing different parts of the physical network have been
observed by means of a logical analyzer and a digital oscilloscope. In particular, the
ports of the hub were observed in order to know which is the contribution of each
node as well as the value of the coupled signal. Since the RxCAN Module and the
Enabling/Disabling units are key modules for synchronizing the hub at bit level and at
frame level, as well as for diagnosing and isolating faulty ports respectively, they have
also been observed.

For physically testing the correct operation of the network under error-free condi-
tions (like during the phase of the tests of the VHDL design), the correct calculation of
the coupled signal, the correct synchronization at bit and at frame level and the correct
assignment of the roles during the arbitration phase have been checked. With regard
to the physical testing of the fault-treatment mechanisms the hub implements, exten-
sive tests that include stuck-at-recessive, stuck-at-dominant, bit-flipping faults and the
reintegration policy have been performed.

Specifically, in order to physically testing the actions carried out by the hub in
the presence of stuck-at-recessive faults, the link of a previously operating node has
been mechanically disconnected. When the link is disconnected a transient bit-flipping
behavior is observed in its corresponding port. However, these erroneous bits are not
enough for leading the hub to isolate the port. In contrast the contribution of the port
quickly stabilizes to the recessive value and then, the hub indicates that the port is at
the idle state. Which actually means that the port is stuck-at-recessive (see Section 8).

For physically testing the operations the hub performs in the presence of stuck-
at-dominant faults, thefaulty nodedescribed in Section 10.2 was used to transmit a
periodic signal that keeps the dominant value during many frames. It was observed
that the hub correctly increases the DBC and isolates the corresponding port whenever
the configured Dominant Bit Threshold (DBT) is exceeded.

In what concerns the fault-diagnosis and fault-isolation operations the hub performs
in the presence of bit-flipping faults, two kinds of techniques for injecting them have
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been used. On the one hand, a bit stream, which has random values, was injected by
means of mechanically connecting/disconnecting a given link into its plug. On the
other hand, thefaulty nodewas used for injecting a bit stream that changes from the
recessive to the dominant value with different frequencies that do not match with the
bit rate the nodes use for communicating. Notice that in both cases, the beginning of
the bit-flipping injection was randomly chosen. Many tests were performed with both
techniques and in all situations the results were correct.

Finally, for the physical testing of the reintegration policy, the state (idle, active
or disabled) of a given port was observed in different situations (see Section 8 for an
explanation of the different states of the ports). After the system start-up the port was
in the idle state. When the node sent an ACK bit or when it tried to send a frame, the
port state changed to theactivestate. If the node was at theactivestate and its link
was disconnected from the hub, the port returned to theidle state. After the port was
isolated due to a stuck-at-dominant or a bit-flipping fault, a recessive value was forced
in this port by disconnecting its link or by compelling its node to send recessive bits.
In these cases, the hub re-enabled the contribution of the port, which agrees with the
expected behavior related to the reintegration policy.

10.4 Performance measurements

In what concerns the performance tests, some measurements have been made. The
values of the FPGA device utilization needed for implementing the hub prototype (with
4 ports) are: 758 out of 3072 slices, 278 out of 6144 Flip-flops, 1396 out of 6144 LUTs,
91 out of 170 IOBs, 4 out of 4 GLCKs.

The extra delay introduced by the internal part is 35 ns, whereas the average value
of the extra delay introduced by the entire hub is 155 ns. Notice that the value of the
extra delay introduced by all the hub is of the order of 1/6 of the bit time when operating
at the higher bit rate allowed in CAN [15] (1Mbit/sec).

In addition, the internal part of the hub has been also built with 16 ports. The values
of the FPGA device utilization in this case are: 2534 out of 3072 slices, 869 out of 6144
Flip-flops, 4662 out of 6144 LUTs, 91 out of 170 IOBs, 4 out of 4 GLCKs. It has been
observed that the extra delay introduced by the internal part of the hub does not visibly
depend on the number of ports it is provided with.

Finally, several Ethernet cables of different lengths, as well as different bit rates
have been used in order to measure the performance of the network depending on the
star diameter and the bit rate. As said before, due to implementation limitations, the
maximum bit rate that has been used is 625 kbit/sec. At this bit rate, the maximum
star diameter that was used without generating errors is 70 meters which implies a
negligible reduction in length when compared with a CAN bus operating at the same
bit rate (maximum length of approximately 85 meters) [15]. Moreover, remember that
in a star the maximum length applies only to every pair of links, thus the star increases
the capacity to interconnect nodes when compared with the bus topology (see Section 9
for a further explanation of this issue).

Notice that these last performance results imply that the hub of this prototype of
CANcentrate introduces a delay equivalent to have an extra cable length of 15 meters,
whereas this equivalence in the active star topologies available in [10] is around 30
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a) Typical cable configuration of a star topology 

b) Typical cable configuration of a bus topology  
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Figure 7: Comparison between the lengths of the cabling system in a star and in a bus

meters. Furthermore, the delay introduced by the hub could be reduced using not com-
mercial transceivers in the hub. In this way the current delay of the hub, 150 ns, could
be reduced until 20 or 30 ns, without losing compatibility with COTS components
when building nodes and links.

11 Future work

The star topology offers many possibilities to improve dependability and real-time ca-
pabilities of a CAN network. In fact, more fault detection mechanisms can be inte-
grated into a central privileged node, the hub, that may allow either further restricting
the failure semantics of CAN-based communication systems, as well as notifying and
isolating faulty regions. Moreover, the star topology in CAN imposes a cabling length
constraint on pairs of nodes, only, and thus more nodes and larger areas can be served
for a given transmission rate, or higher rates can be used for a given length constraint.
Given that the real-time properties of the CAN medium access control are strictly main-
tained, the proposed star topology for CAN can thus improve the real-time performance
of the network by means of a higher throughput.

In the short term we will consider some improvements over the simplex star so-
lution namely, the use of a single cable in each link to reduce the costs of the wiring
as well as the replication of the hub to eliminate the only single point of failure that
remains in the system.

A particular approach that will be considered in future work is the use of switched
strategies, which can be used to reduce the overhead introduced by damaged frames
and error signaling, as well as to segment the network and further increase the global
throughput.

53



12 Conclusions

Despite being widespread in distributed embedded systems, the use of CAN in safety-
critical applications has been a controversial topic. This is due to a few factors such
as the bus topology. In fact simplex bus topologies suffer from several impediments
to enforce error containment while replicated buses may exhibit common mode and
spatial proximity faults. On the other hand, star topologies may represent a positive
step due to the key role that the hub can perform to diagnose and passivate faults. In
fact, it allows reducing the number of components whose failure can cause a severe
failure of the communication system, to a unique single point of failure, i.e. the hub.

In this document we discuss the characteristics of bus and star topologies in what
concerns the ability to confine errors. We propose the design and the implementation
of a new active star topology, called CANcentrate, that is compatible with off-the-shelf
CAN controllers and that can be used with any CAN-based protocol (e.g. TTCAN [6],
FTT-CAN [16], Timely CAN [17], MajorCAN [13], etc).

We describe the architecture of the central device of CANcentrate, a hub, which
can be built using off-the-shelf FPGA technology. We discuss the fault-diagnosis and
passivation mechanisms of the hub and we explain their advantages over the fault-
diagnoses mechanism of CAN.

Moreover, we address the specific issue of link length, which, in CAN, is a partic-
ularly important topic due to the bit level synchronization and the resulting coupling
between bit rate and link length. We have shown that for a given bit rate a star may
have a diameter generally similar to the length of a bus except for higher bit rates, in
which case it is slightly lower. On the other hand, the star may cover a substantially
larger area than the bus or, for the same area, to use a higher bit rate.

Finally, we explain the implementation of a first prototype of CANcentrate. We
checked the correctness of the fault-treatment mechanisms of the hub prototype and we
evaluated the performance of CANcentrate. In particular, it has been observed that the
extra delay introduced by the hub does not depend on the number of ports. Moreover,
this extra delay implies a negligible reduction of length when compared with a CAN
bus operating at the same bit rate.

In general, the simplex star topology proposed in this document is a further step
towards improving both dependability and real-time performance of CAN networks.
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