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Abstract. Nowadays, the surveillance and inspection of un-
derwater installations, such as power and telecommunication
cables and pipelines, is carried out by operators that, being
on the surface, drive a remotely operated vehicle (ROV) with
cameras mounted over it. This is a tedious and high time-
consuming task, easily prone to errors mainly because of
loss of attention or fatigue of the human operator. Besides,
the complexity of the task is increased by the lack of qual-
ity of typical seabed images, which are mainly characterised
by blurring, non-uniform illumination, lack of contrast and
instability in the vehicle motion. In this study, the develop-
ment of a vision system guiding an autonomous underwater
vehicle (AUV) able to detect and track automatically an un-
derwater power cable laid on the seabed is the main concern.
The vision system that is proposed tracks the cable with an
average success rate above 90%. The system has been tested
using sequences coming from a video tape obtained in sev-
eral tracking sessions of various real cables with a ROV
driven from the surface. These cables were installed several
years ago, so that the images do not present highly con-
trasted cables over a sandy seabed; on the contrary, these
cables are partially covered in algae or sand, and are sur-
rounded by other algae and rocks, thus making the sequences
highly realistic.

Key words: Features detection and tracking – Image se-
quences – Autonomous underwater vehicles – Pipeline in-
spection

1 Introduction

The feasibility of an underwater installation consisting of
either cables, for power or telecommunication, or pipelines,
for gas or petrol, can only be guaranteed by means of an ade-
quate inspection programme. This programme has to provide
the company with prompt information about potential haz-
ardous situations or damages caused by the mobility of the
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seabed, corrosion, or human activities like marine traffic or
fishing. Nowadays, those tasks of vigilance and inspection
are carried out using video cameras attached to remotely
operated vehicles (ROVs) controlled from the surface by
trained operators. Obviously, this is a tedious task, requiring
from the operator a long time of concentration in front of a
console, which makes the task highly prone to errors mainly
due to loss of attention and fatigue. Furthermore, undersea
images possess some peculiar characteristics which increase
the complexity of the operation: blurring, low contrast, non-
uniform illumination and lack of stability due to the motion
of the vehicle, just to cite some of them. Therefore, au-
tomating any part of the inspection process can constitute
an important improvement in the maintenance of such in-
stallations, not only regarding errors, but also as far as time
and monetary costs are concerned.

The special visual features that artificial objects have
allow distinguishing them in natural scenarios such as the
seabed, even in very noisy images. This fact makes feasible
the automatic guidance of an autonomous underwater ve-
hicle (AUV) for maintenance/inspection tasks by means of
visual feedback. Following this strategy, a first approach to
the problem of detecting and tracking an underwater power
cable by analysing the image sequence coming from a video
camera attached to an AUV was described in [11].

In this paper, an improved and optimised version is pro-
posed. In this new approach, the initial position and orien-
tation of the cable is computed using the first images of the
sequence. Once the system has been initialised, the orien-
tation and location computed is used to predict a region of
interest (ROI) in the next image, in which the presence of
the cable is highly probable in the sense of the Kalman filter.
If there is strong evidence of the cable in the ROI defined
in the next image, then its new orientation and position is
updated and the system proceeds with the following image;
otherwise, a suitable recovery mechanism is activated. In or-
der to achieve the required real-time performance to guide
the AUV, some optimisations have been incorporated into
the general method of detection and tracking. Those optimi-
sations have allowed the vision system to process images at
video rate.
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The system has been tested using sequences coming from
a video tape obtained in several tracking sessions of various
real cables with a ROV driven from the surface. These cables
were installed several years ago, so that the images do not
present highly contrasted cables over a sandy seabed; on the
contrary, these cables are partially covered in algae or sand,
and are surrounded by other algae and rocks, making thus
the sequences highly realistic.

The rest of the paper consists of the following sections:
Sect. 2 revises previous work on the subject; Sect. 3 describes
the working scenario; a general overview of the proposed
method is presented in Sect. 4, while Sects. 5, 6, 7 and 8
give the details; the configuration of the system as for the
parameters involved is described in Sect. 9; results are given
in Sect. 10; and, finally, Sect. 11 presents some conclusions
and future work.

2 Previous work

In the literature about cable inspection, two main sensing de-
vices can be distinguished: the magnetometer and the sonar
(see [4, 7, 8], among others). The former detects the vari-
ations in the earth magnetic field induced by electrical and
telecommunication cables, even when they are buried. Us-
ing this device, however, requires isolating those parts of
the vehicle that generate additional magnetic fields so as
not to disturb the measurements of the magnetometer. The
other main sensing device, the multibeam sonar system, is
mainly used in exhaustive searching missions and to de-
tect free-spans. In those cases, the main problem consists
in keeping the vehicle stabilized to improve the signal-to-
noise ratio. Other systems that have also been used in cable
and pipelines inspection include seismic bottom profilers [4],
which combined with magnetometers allow getting a cross
section of the upper bottom sediments, and PIGS [18], ve-
hicles of small dimensions that are introduced inside the
pipeline and use the present flow to move along.

In general, all these strategies need AUVs larger and
more powerful than is required by the mission because of
the size of the sensing devices and the consequent extra
batteries [5]. By using CCD cameras, however, this problem
is considerably reduced, both in cost and in AUV size. In
fact, in recent years several research groups have shown the
suitability of vision systems either for both navigation and
mission tasks (see [10, 16, 19, 20], among others).

With regard to visual cable and pipeline tracking and
inspection, several systems have been proposed so far. Mat-
sumoto and Ito [9] developed a vision system able to fol-
low electrical cables in underwater environments by using
edge detectors, the Hough transform and some higher-level
processing related to the line-like appearance of the cables.
Hallset [5] presented another system able to follow pipelines
also using edge detectors and the Hough transform, as well
as a map of the pipeline network. At the University of An-
cona a system oriented towards helping human operators
in the inspection of gas and oil pipelines was also imple-
mented [21]. In this case, the system detected the pipes and
some other accessories attached to them using statistical in-
formation obtained from selected areas of the image related
to the position of the cable. More recently, Balasuriya et al.

proposed a system based on predicting a ROI in the image
and applying the Hough transform to an edge map produced
by a LoG operator [1]. An improved version using a rough
2D model of the cable appears in [2].

3 Working scenario

Just installed cables and pipelines present clearly defined
features like shape and colour, which a computer vision al-
gorithm could easily exploit to discriminate them from the
surrounding environment. However, as the installation gets
older, those features are modified so that more complex al-
gorithms have to be developed. On the one hand, the mud
and the sand tend to cover part of the cable, and the marine
flora tends to grow on top and in the neighbourhood of it.
As a result, not only does the background lack uniformity,
but the apparent contours of the cable also appear broken.
On the other hand, corrosion and other chemical reactions
characteristic of the material give rise to random changes in
colour. By way of example, Fig. 1 shows some pictures of
cables installed several years ago.

Other features typical of underwater scenes also appear
in Fig. 1b,d. Because ambient light decreases rapidly as a
function of depth, the vehicle has to bring its own light
source, i.e. spotlights. Due to the high directionality of these
devices, the images usually present great differences in illu-
mination, as shown in Fig. 1b. Additionally, the absorption
and dispersion the light suffers along its propagation in the
oceanic medium gives rise to blurred and low-contrast im-
ages, as shown in Fig. 1d. Finally, the fluctuations in the
motion of the AUV produce changes in the orientation and
position of the cable in the image, which have to be taken
into account.

4 High-level description of the system

As it has been pointed out before, artificial objects present
several features that distinguish them from the rest of ob-
jects present in a natural environment. In the case of the
cable, given its rigidity and shape, strong alignments can
be expected near its sides. This is the base strategy that the
proposed system exploits to find the cable in the sequence
of images.

In order to obtain the cable parameters, a segmentation
step is executed. Given the contours of the resultant regions,
alignments of contour pixels in a preferred orientation are
determined. If among those alignments there is strong ev-
idence of the location of the cable (two alignments with a
great number of pixels lined up going from bottom to top of
the image with a high degree of parallelism, even without
removing the perspective effect), then the cable is consid-
ered to have been located and its parameters are computed.
Otherwise, the image is discarded and the next one in the
sequence is analysed.

Once the cable has been detected in the image, its loca-
tion and orientation in the next one are predicted by means
of a Kalman filter. In this way, the number of pixels to be
processed can be reduced to a small ROI in the image. This
fact lowers the probability that the system errs.
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a b c d

Fig. 1. Different appearances of the cable

When tracking the cable, some anomalous situations can
occur, which make the system take special actions. On the
one hand, if the predicted ROI is too narrow, so as not to
include the whole cable, enough evidence of its location in
the ROI might not be found. On the other hand, if there
exists a great difference between the predicted parameters
of the cable and the measured ones, then something could
have gone wrong, either the prediction or the analysis of the
ROI.

In any event, when any of those cases arises, it is con-
sidered as a transient failure in the analysis of the ROI, the
image is discarded and no new parameters of the cable are
computed. If this situation continues along too many im-
ages, then it is attributed to a failure in the prediction of the
ROI. In such a case, the ROI is widened to the whole image,
and the Kalman filter is reset. In other words, in front of a
persistent error, the system will no longer make use of the
knowledge acquired from the last processed images.

Figure 2 summarizes the way the system behaves in
the different possible situations. In the flow diagram,Non-
ValidIMG represents a counter of unsuccessful detections,
which is reset whenever a successful detection has been
achieved.

To finish this section, it must be said that the proposed
system, as it is now, does not take into account the fact that
the cable can be hidden under the sand, or the case when
lighting is not enough due to the presence of murky water.
Accordingly, if any of those situations happen for a long
time, and the cable cannot be seen along the corresponding
subsequence, the system can fail. This is because a minimal
evidence of the presence of the cable in the image is re-
quired, and when this requirement is not met the system can
consider that lack of evidence as a permanent failure and
continuous resets can take place. Given the rigidity of the
cable and assuming the situation does not happen for a long
time, this problem can be overcome by using the prediction
of the location and orientation of the cable as its location
and orientation in the next frame.

5 Discussion about the segmentation strategy

In the oceanic medium, the appearance of artificial objects
changes greatly due to several factors: bad illumination con-
ditions, non-regular growing of flora, presence of mud and
sand on top and around those objects, changes in colour
due to chemical effects like corrosion, etc. This implies the
segmentation algorithm should not depend, in particular, on
any previous knowledge about a colour-like characteristic,
but should try to look for regions in the image as dissimilar
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Fig. 2. Flow diagram of the system

as possible amongst them in a non-supervised way. This is
the main reason why the method applied in the proposed
approach consists in a non-supervised clustering algorithm
working over the{gray level, gradient modulus} space. A
previous version of this method was suggested by Panda and
Rosenfeld [14] to segment FLIR (forward-looking infra red)
images, in which region contours were not clearly defined.

Transforming the image into the{gray level, gradient
modulus} space consists in building a bidimensional his-
togram where one horizontal axis corresponds to gray level,
the other horizontal axis corresponds to a digital approxi-
mation of the modulus of gray-level gradient, and for every
combination (gray level, gradient modulus) the vertical axis
is the number of pixels in the image having that gray level
and that gradient modulus.

In the case of several objects with different gray levels,
the ideal histogram should look like Fig. 3a. In effect, if the
camera is located rather far from the scene, the interior of
any object in the image has gradient near zero, so that pix-
els in the interior zones would be located in the lower part
of the histogram, with regard to gradient. If, for instance,
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Fig. 3. a Ideal bidimensional histogram;b bidimensional histogram of a real image (Fig. 1a)
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Fig. 4. Comparison between the unidimensional and the bidimensional histogram of a real image (Fig. 1d)

the scene consisted of two objects and the background, with
different identifying gray levels, the lower zone of the his-
togram would present, thus, three clusters corresponding to
the interiors of those objects in the image and the back-
ground. Border pixels between such objects, however, would
be located in zones of higher gradient joining the previous
clusters in the fingers-like fashion shown in Fig. 3a. By way
of example, Fig. 3b presents the histogram corresponding to
the real image appearing in Fig. 1a.

In clear images like Fig. 1a, the histogram shows clearly
separated clusters. Obviously, the more separated those group-
ings are, the better are the resultant regions of the segmen-
tation step. The fact that the clusters appear more or less
separated depends not only on the image and the level of
noise, but also on the gradient operator. For instance, the
histogram shown in Fig. 3b was obtained using the Sobel
operator.

Figure 4 compares a gray level histogram and the corre-
sponding bidimensional histogram for image in Fig. 1d. As it
can be seen in the figure, the gray level histogram is mostly
unimodal, so that traditional thresholding algorithms [13]
would not even be able to distinguish two classes. At the
bidimensional histogram, however, at least two clusters can
be clearly distinguished.

Once the histogram has been built, a grouping process
is applied over its non-null cells in order to determine the
aforementioned clusters. Among the different grouping al-
gorithms that can be found in the literature, two of them
have been tested: the minimal-spanning tree algorithm, as a
hierarchical method, and the K-means algorithm, as a par-
titional method [6]. In the former, the two nearest classes
are joined at every iteration, and the process stops when the
desired number of final classes is reached; in the end, a hi-

erarchy of levels or dendogram is obtained. In the latter, an
initial partition is established by defining K class-centroids
over the working space and the existing classes are joined
to the nearest centre; the centroids are computed again and
a new iteration is executed, until convergence is reached.
As for the distance function selected, experimental results
on several of them (see [3] for a thorough discussion) have
shown that the best results are obtained using the Euclidean
distance.

To finish this section, Fig. 5 shows segmentations gener-
ated by both clustering methods for all the images in Fig. 1.
In both cases, the number of final classes,kf , has been fixed
to three. Furthermore, in the case of the K-means algorithm,
the required first partition is obtained by defining as initial
centroids the smallest, the median and the largest gray level,
with gradient zero in all cases. This election stems from the
fact that no information about the gray level of the expected
objects can be used due to the discussed peculiarities of un-
derwater images.

With regard to Fig. 5, it is important to note that, although
in some segmentations there is not a single region wholly
matching the cable, the contours derived from both methods
give a clear idea where it is in the image. The hierarchical
method, however, seems to produce better segmentations, at
a similar total frame processing time. Probably this is due to
the quasi random selection of initial centroids in the K-means
segmentation version. Since this behaviour has also been
observed when processing image sequences, better results
are expected from the hierarchical method. This is the reason
why the latter has been finally selected.
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a b c d

Fig. 5. Segmentation in three classes for all the images in Fig. 1 (top row shows minimal-spanning tree results, andlower row shows K-means results)
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Fig. 6. Flow diagram of the cable detection step

6 Computation of the cable parameters

Once the image has been segmented, the system proceeds
to locate the cable, executing the tasks enumerated in Fig. 6.
This step is carried out from the contours of the segmented
image, by looking for lines that can belong or be near the
sides of the cable. In this context, a line is defined as a set of
connected contour pixels not including branches. Moreover,
as it is perfectly reasonable to expect the cable to cross the
image from bottom to top – this is just a matter of naviga-
tion control – some tasks of the detection step will use this
assumption for filtering purposes to reduce the probability
of erroneous detection. Note that this assumption implies the
cable should appear vertical or near-vertical in the image.

Lines are obtained by scanning the segmented image
from bottom to top. The direction of scanning is impor-
tant as the lower part of the image tends to be clearer than
the upper part when the camera is not oriented towards the
seabed, due to the properties of light propagation undersea
(e.g. Fig. 1b). Once a contour pixel (i, j) has been found, ad-
jacent pixels are selected according to the preference matrix
shown in equation (1).



3 1 2
5 (i, j) 4
0 0 0


 (1)

The numbers indicate preference, where the lower the num-
ber, the higher the preference, except for zero, which rep-
resents a forbidden selection. Therefore, lines in vertical di-
rections are favoured against horizontal or curving lines, ac-
cording to the above-mentioned assumption. When, for a
given contour pixel, there is no adjacent pixel in the pre-
ferred orientations, the process of tracking the line finishes

and a new one starts by resuming the scanning of the image
from the point it was left.

A straight segment fitting task follows next. This process
can be seen as a low-pass filter to remove noise due to
both the redefinition of the cable contours caused by the
proliferation of flora on top of and by the cable, and due
to the processes of image acquisition and segmentation. An
eigenvector-based method has been used in the fitting [3].
As the fitting error can become large in some cases, a control
procedure is executed after each fitting. It is as follows:

• For each pointpi belonging to a lineL, its orthogonal
distance to the fitted straight segmentS, d(pi, S) ≥ 0 is
computed.

• If d(pj , S) = max{d(pi, S)|pi ∈ L} ≥ ke, thenL is split
into two at the point of greatest local maximum error that
is not an end of the line. In this way, the pathological
case of always splitting the line at its ends is avoided,
as it is shown in Fig. 7.

The resultant set of straight segments is filtered accord-
ing to their orientation in the image. As it is supposed
this orientation is vertical or near-vertical, all the segments
whose orientation do not belong to a suitable angular interval
ko ± ∆ = 90◦ ± ∆ are rejected. Once the system has been
initialised, the intervalko ± ∆ is adapted to the previous
orientation found for the cable.

Subsequently, a co-linearity analysis is applied to the set
of straight segments obtained in order to join the segments
that can be considered as originally belonging to the same
straight contour. As an example of the analysis performed,
consider the set of segments that have passed the orientation
filtering process (see Fig. 8). For each straight line segment
Si under analysis, a new straight lineLSi is calculated using
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Fig. 7. Splitting of a lineL during the straight segment fitting process.1,
2, 3 and 4 are all local maxima ofd(pi, S), and1 and 4 are the ends of
the line too.L is split by the greatest local maximum that is not an end,2,
and the process is repeated forL1 andL2

again the eigenvector straight line fitting method. This time,
the points used in the fitting,{pj}i, are those contour points
corresponding to the straight segments that completely fall
within a strip-shaped region whose width isω and that is
aligned withSi. ω is the tolerated co-linearity error.

The last task of the detection step consists in choosing a
pair of long, straight segments that are likely to correspond
to the sides of the cable. The main requirements for such
pairs are a certain minimum length for each segment, a high
degree of parallelism and a certain separation between each
segment. Therefore, for every possible pair of long, straight
segments, the above requirements are checked and, in the
cases where they are met, a score equal to the sum of their
lengths is assigned to the pair. The pair with the highest score
is selected and used to obtain the parameters of the cable.
If there does not exist any pair satisfying the requirements,
it is considered that there is not enough evidence for the
presence of the cable in the image.

By way of example of the whole process of detection
of the cable, Figs. 9 and 10 show the respective intermedi-
ate and final results for images Fig. 1b,d. The values of the
main parameters have been fixed to: straight line fitting error
ke = 2, orientation acceptedko ± ∆ = 90◦ ± 30, co-linearity
error ω = 5, minimum length for each pair of long, straight
segments to be considered for selection equal to the average
length of all the long, straight segments. More final results
for images of higher complexity can be found in Fig. 11.

7 Tracking strategy

The cable-tracking strategy is based on the hypothesis that
the cable parameters are not going to change too much from
one image to the next. Therefore, once the cable has been
detected in the image sequence, the computed position and
orientation are used to predict the new parameters in the next
image. This prediction allows introducing a further checking
point in the sense of comparing predicted parameters with
computed parameters, reducing, at the same time, the image
area where to look for the cable and, thus, increasing the
probability of success. This area is the above-mentioned re-
gion of interest (ROI). As it has been said before, in case
the system is not able to find enough evidence of the cable
in the ROI, the recovery mechanism previously described is
activated.
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Fig. 8. Co-linearity analysis

To predict the cable parameters, the system makes use
of a linear Kalman filter for every side of the cable. The
reason why the linear version of the filter was chosen is
because there were no data available about the dynamics
or the motion of the vehicle carrying the camera, so that,
as the simplest option, the linear variant was tested, giving
fairly acceptable results. However, as soon as a vehicle is
available for the mission of tracking the cable, the filter will
be adapted to it to improve its performance. The state vector
X for each side contains its positionx and its orientationα
with regard to the horizontal axis of the image. Equation (2)
expresses the filter models for the left and right sides. In
both sets of equations,v represents the process noise andw
corresponds to the measurement noise.

XL = (αL, xL)
XL(t + 1) = XL(t) + vL(t)
ZL(t + 1) = XL(t) + wL(t)

XR = (αR, xR)
XR(t + 1) = XR(t) + vR(t)
ZR(t + 1) = XR(t) + wR(t)

(2)

To compute the process noisesvR and vL, several real se-
quences were manually analysed and the differences between
consecutive frames in the cable positions and orientations
were computed. At the end of this procedure, an estimation
of the covariance matrix of both noises was available. As for
the measurement noiseswR andwL, the system was faced
against noisy synthetic sequences and the deviations between
the real orientations and positions of the cable and the mea-
sured ones were determined. The corresponding covariance
matrixes were finally obtained from those deviations.

Finally, the ROI for the next image is computed as it is
indicated in Eq. (3), where ˆrL andr̂R represent the predicted
straight sides of the cable, andkL andkR are tolerance fac-
tors included in the ROI. Best results have been obtained by
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a b c d

Fig. 9. Intermediate and final results for image Fig. 1b:a segmented image;b contour image;c straight segments after the orientation filter;d detected sides
of the cable

a b c d

Fig. 10. Intermediate and final results for image Fig. 1d: (a) segmented image; (b) contour image;c straight segments after the orientation filter; (d) detected
sides of the cable

computing them as twice the difference between the com-
puted and the predicted position of each side.

ROI(t + 1) = [r̂L(t + 1)− kL(t + 1), r̂R(t + 1) +kR(t + 1)](3)

8 Optimisations of the proposed method

The proposed method of detection and tracking the cable in
a sequence of images is highly time consuming. In order to
achieve a real-time performance, some optimizations have
been applied to the algorithm. They are detailed as follows:

• First, among the several gradient operators proposed in
the computer vision literature – e.g. forward differences,
centred finite differences, Roberts, Sobel, Prewitt, and
Canny (see [15, 17] for a discussion on the subject) –
the one which has given the best results, both as a dig-
ital approximation to the real gradient of a gray-level
image and regarding computation time, has been the So-
bel operator. As it is an operator involving weights that
are power of 2, it can be programmed in a very efficient
way using integer computations, which meaningfully ac-
celerates the execution.

• Second, as the clustering stage is, in the worst case, an
O(n3) process, wheren is the number of initial classes
to group, diminishingn as much as possible dramati-
cally contributes to reducing the computation time. Af-
ter some experimental work, two optimisation strategies
have been introduced: (1) reduce the resolution of the
histogram by a factorkh; and (2) reduce the classes to
group to a subset consisting of thekc most meaningful
ones, the ones representing the highest number of pixels.
The best results have been obtained forkh = 8 and select-
ing thekc = 20 classes representing the largest number of
pixels. On the one hand, this means that the limits of the
gray-level axis of the histogram are 0 and256

8 − 1 = 31,

Fig. 11. Final results for two images of high complexity. Both pictures
show the detected sides of the cable

as well as the gradient axis; on the other hand, once
the kc most meaningful classes have been grouped into
the kf = 3 final classes, the remaining classes have to
be added a posteriori to the nearest final class to com-
plete the segmentation. The experiments performed have
shown that both optimisations imply a great reduction in
the computation time without degrading significantly the
results of the segmentation.

• Third, during the detection step, the execution time of
every task is a processO(n) or O(n3), wheren is the
number of lines or the number of straight segments. As
most of them are unlikely to correspond to the cable con-
tours, and the ones belonging to the latter are expected
to have higher lengths, a filtering process is applied to
the sets of lines and straight segments so that only theks

longest ones survive to the next task. Best results have
been obtained forks = 100.

• Finally, the prediction of a ROI for every image in the
sequence gives rise to an important reduction in the ex-
ecution time, as it means processing up to 20% of the
original number of pixels of any image, including the
tolerance area added by means ofkL andkR in Eq. (3).
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Fig. 12. Results for an excerpt of sequence 1. In theleft image, the ROI appears superimposed together with the reconstructed sides of the cable (the
black lines correspond to the predicted sides). In theright image, the white line represents the axis of the cable and thus a possible command to the AUV
controller

9 System configuration

As it has been seen throughout the paper, a relatively high
number of parameters determine the behaviour of the system
when processing either a single image or a sequence. How-
ever, it has not been excessively difficult to select a stable set
of values for which the system behaves correctly across the
different scenarios. A more detailed discussion about how to
set them up can be found in the following, although some
examples of values of some of these parameters have already
been given to illustrate the results of related tasks. By way
of summary, Table 1 puts them together.

The values chosen come from experimental observations
of the behaviour of the system against different test images
and sequences considered as representing the whole range
of complexity. By way of example, at the low-complexity
end we can find images like in Fig. 1a,b (i.e. cables over a
sandy seabed), while those in Fig. 1c,d and, even more, the
images in Fig. 11 belong to the high-complexity end (i.e.
cables over rocks and algae, and/or a high degree of cable
occlusion).

Parameterskh, kc and ks are related with the optimi-
sations introduced in the system to attain real-time perfor-
mance, and they have already been discussed in Sect. 8.
Therefore, the values selected correspond to the ones for
which a higher reduction in the execution time were achieved
without degrading the results of the corresponding stage (i.e.

the quality of the segmentation in the case ofkh andkc, and
the quality of the detection in the case ofks).

kL andkR are also related with the reduction in the time
of execution: the lowerkL andkR are, the better. However,
very low values forkL andkR also reduce the probability
of locating the cable within the ROI. As has been stated in
Sect. 7, a value of twice the difference between the predicted
side of the cable ( ˆxL and x̂R) and the detected one (xL and
xR) is enough.

As for kf , in some images it is better to stop the clus-
tering when two classes are reached (say for a cable over a
sandy seabed), but, in more complex images, a classification
in two classes gives rise to very few contours. Consequently,
poor detections of the cable are given. However,kf = 3 is
adequate whatever the image complexity.

Finally, ke andω depend on the amount of redefinition
of the sides of the cable due to the proliferation of seaweed
and algae on top of it and near its base. That is to say, the
older the installation, the higher these values must be.

10 Tracking results

To test the system, both synthetic and real sequences have
been used. The experiments performed with the former have
shown the robustness of the proposed detection and track-
ing method against noise, while experimental work with the
latter have permitted testing the system with highly realistic
and complex situations. However, due to lack of space, only
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Fig. 13. Results for excerpts of sequences 2 (upper row left), 3 (upper row right), 4 (lower row left) and 5 (lower row right)
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Table 1. System parameters

Stage Symbol Meaning Typical value

Segmentation

kh Histogram resolution reduction 8

kc Most important classes to be grouped 20

kf Number of final classes 3

Detection

ke Fitting error 2 image units

ω Co-linearity error 5 image units

ks Limit in the number of segments and straight lines 100

Tracking
kL ROI left-side tolerance factor 2× |x̂L − xL| image units

kR ROI right-side tolerance factor 2× |x̂R − xR| image units

Table 2. Image sequence results

Sequence Length (frames) Frame rate achieved Wrong detections Success rate

1 248 35.71 f/s or 28 ms/f 21 92%

2 499 30.30 f/s or 33 ms/f 20 96%

3 409 25.64 f/s or 39 ms/f 69 83%

4 172 28.57 f/s or 35 ms/f 2 99%

5 129 28.57 f/s or 35 ms/f 3 98%

Average 1457 29.75 f/s or 33.6 ms/f 115 92%

results for real sequences will be shown in the following.
For a detailed description of the experiments with synthetic
sequences, the reader is referred to [12].

As for the real sequences, they come from several ROV
sessions recorded on video tape. During those sessions, a
ROV was manually guided by an operator on the surface.
This fact means the output of the vision system has not
been used to correct the vehicle’s course, whereby there are
sudden changes in direction and altitude due to the com-
mands sent by the operator. Certainly, the movement would
be softer and of less magnitude if the vehicle was controlled
in an automatic way, which would also ease the task of lo-
cating the cable in the sequence.

Five sequences of different complexity have been se-
lected from the mentioned video tape. Although they are
not very lengthy, due to the impossibility of finding long se-
quences in the recorded material, they cover the whole range
of complexity – steep gradients in illumination, low contrast
and blurring, objects overlapping the cable, instability in the
vehicle motion, etc. – as will be seen below. Table 2 lists im-
portant information about every sequence. The success rate
in the table refers to those images for which the ROI wholly
includes the cable and the system has been able to deter-
mine correctly its location. As for the execution times, they
do not include the acquisition time of the frame grabber,
as this time depends on the particular device used. Finally,
the column namedframe rate achieved gives an idea of the
mean execution time for every sequence, or, conversely, the
number of frames per second the system could sustain. All
the tests have been run on an 350 MHz AMD K6-2 machine
executing Windows NT v4.0, and the resolution of the im-
ages was half-NTSC (320× 240 pixels).

Figure 12 left shows results for an excerpt of sequence 1
with the ROI superimposed. The excerpt presented is inter-
esting in the sense that there is little evidence of the cable
in the image due to the large algae zone that surrounds it.
In fact, at the beginning of the excerpt, the system has some
problems to locate the cable inside the ROI, although it re-
covers quite well after two frames. Figure 12 right shows

results for another excerpt of sequence 1, in which the white
central line represents the computed axis of the cable, and
its parameters would be, after a proper coordinates trans-
formation, the sort of command the navigation controller of
the AUV would receive. As it can be observed, the sys-
tem always returns the cable axis within the cable region
of the image, so it can be said the position of the cable is
correctly detected every time. The orientation, however, is
mostly affected by the noise present in the image in the form
of algae surrounding the cable and thus breaking its original
contours. This excerpt also shows how the system is able to
tolerate some sudden movements of the vehicle: during the
first images, the pitch angle of the ROV allows the camera to
capture the algae zone that appears in the upper part of those
images; as the ROV moves forward, the operator orders it
to increase the pitch angle towards the seabed, which makes
the algae zone disappear; in the last images, however, the
same algae zone appears again as the pitch angle has been
reduced. During the whole process, however, the cable has
not been lost.

Likewise, Fig. 13 top left presents the same sort of re-
sults as Fig. 12 right but for an excerpt of sequence 2. It is
a sequence similar to sequence 1, but with a high degree of
gradient in the illumination, together with the fact that the
cable appears thicker in the image as the camera is closer to
the scene. Results for image sequences 2 and 3 can be seen,
respectively, in Figs. 13 top right and bottom left. Both se-
quences are far more complicated than sequences 1 and 2 due
to the high degree of overlapping over the cable and the lack
of contrast between cable and seabed. Furthermore, Fig. 13
bottom left shows how the system behaves with a nearly
hidden cable. Finally, Fig. 13 bottom right corresponds to
sequence 5. As it can be seen, the height of the vehicle
along the sequence changes, as in sequence 1, and a high
gradient in the illumination is again present.
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11 Conclusions and future work

A vision system for real-time, underwater cable tracking
has been presented. Using only visual information, the sys-
tem is able to locate and follow a cable in an image se-
quence, overcoming the typical difficulties of underwater
scenes: blurring, light attenuation, inhomogeneous lighting,
flora and fauna overlapping the object of interest, etc. Sev-
eral sequences coming from a video tape obtained in several
tracking sessions of various real cables with a ROV driven
from the surface have been used to test the system. These
cables were installed several years ago, so that the images
do not present highly contrasted cables over a sandy seabed;
on the contrary, these cables are partially covered in algae
or sand, and are surrounded by other algae and rocks, thus
making the sequences highly realistic. The mean success
rate that has been achieved is above 90% for a frame rate
of more than 25 frames/s.

This study is included in a more ambitious project in
which the inspection of underwater installations in connec-
tion with the presented tracking system is the main concern.
While in the tracking step, the defects and strange situa-
tions should be detected and stored for an off-line analysis
by an expert. Therefore, a means for locating the defect
once analysed should be provided, e.g. by fusion of GPS,
dead-reckoning and visual data. A more accurate position-
ing method would link the AUV via acoustic sensors to a
transmission buoy connected to GPS sources.
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