
A Multi-robot Auction Method to Allocate
Tasks with Deadlines ⋆

José Guerrero, Gabriel Oliver

Universitat de les Illes Balears,
Mathematics and Computer Science Department, Palma de Mallorca,

Spain, e-mail:{jose.guerrero, goliver}@uib.es

Abstract: Task allocation is one of the main problems in multi-robot systems, very especially
when the robots form coalitions and the tasks to execute have to be carried out before a deadline.
In general, the time required by a coalition to finish a task can be very difficult to find because it
depends, among other factors, on the physical interference. This paper presents an extension of
our previous auction method using a new concept called two round auction. In this framework
the robots learn the interference and therefore, the coalition’s utility, from their past experience
using an on-line support vector regression method (SVR). We will show how the performance
of the system can be improved if the interference impact is included in the model, and how the
second round auction increases the total utility. This method has been tested using transport
like tasks.

Keywords: multi-robot, cooperation, interference, auction, learning

1. INTRODUCTION

Multi-robot systems can provide several advantages over
single-robot systems: robustness, flexibility and efficiency
among others. To benefit from these potential aspects,
several problems have to be solved. Among all these
problems, we focus on task allocation issues, that is,
selecting the best robot or robots to execute a task. Some
tasks require that two or more robots cooperate to execute
them creating coalitions. In this case, we have to calculate
the utility of the coalition. Moreover, when the tasks must
be executed before a deadline we also need to know how
much time will the coalition need to finish the task. As
it happens in a lot of real environments, like in a rescue
scenario, when a task can not be executed before its
deadline, the utility decreases following a time function.

A lot of research has been done to solve the task allocation
and coalition formation problems but they are still open
problems. One of the most used and well studied task allo-
cation solutions are auction methods Gerkey and Mataric
(2002); Dias and Stentz (2003). Only a few auction strate-
gies, like Vig (2006), allow to allocate several robots to
the same task, but these methods don’t take into account
the interference effect. E. Jones proposed in Jones (2009)
a set of auction based methods to assign tasks to robots
with intra-path constraints, that is, when the actions of a
robot affect the planning of others robots. Anyhow, these
systems don’t take into account the physical interference
between agents.

As it has been demonstrated in different studies Lerman
and Galstyan (2002); Rosenfeld et al. (2005), the physical
interference has an important impact on the system per-
formance. This effect has a dramatic impact when dead-

⋆ This work has been partially supported by project DPI2008-06548-
C03-02 and FEDER funding.

lines are given, because the interference modifies the time
needed by the coalition to finish the task, and therefore
the coalition utility. Here, we extend our previous auction
method Guerrero and Oliver (2007) using a new concept
called two round auctions. This new concept helps us to
calculate the appropriate number of robots in a coalition
to meet the task’s deadline. We also use in this work for
the first time an on-line support vector regression method
(SVR) Ma et al. (2003) to predict the coalition’s utility and
therefore the time needed to execute a task. This learn-
ing method has been used by other authors Jones et al.
(2006) within an auction process, but in a very different
framework. As far as we know, this is the first time that
an auction method models the utility of a robots coalition
when they have to maximize whatever time utility function
associated to a task. Moreover, The the method can also
determine the coalition size.

Finally, another problem that this paper analyzes is how
does the monitoring of the task progress affects the system
performance. The monitoring process can be a complex
task which requires sophisticated sensorial and communi-
cation resources. As it will be seen, if the SVR models cor-
rectly the interference, then we can predict the execution
time and, therefore, the monitoring process is not needed.

The rest of this paper is organized as follows: section
2 presents a formal definition of the problem to solve;
section 3 explains the two round auction task allocation
algorithm; section 4 explains the SVR technique that has
been used; section 5 presents how to use SVR to model
the physical interference effect; section 6 shows the results
of the experiments and, finally, section 7 explains some
conclusions and the future work of our research.



Fig. 1. Examples of utility functions

2. PROBLEM STATEMENT

In this section, we will formalize the task allocation prob-
lem previously sketched and we will explain the main
problems that it presents.

The task allocation is defined as follows: We want to
allocate a set of tasks to a set of robots. Each task ti has
a workload (taskWorkLoadi) that represents the amount
of work required to finish the task. For example, if the
robots must transport an object, this value will be the
weight of that object, if the robots must clean a surface,
the workload will be the area to clean. Moreover, each task
has associated a utility, and a deadline time DLi. DLi is
the time instant before which the task must be finished. If
the execution time of a task exceeds its deadline, its utility
decreases following a certain function, called Ui. Figure
1 (a), show an example of a hard deadline environment,
where the utility function drops to zero if the task cannot
be executed on time. On the other hand, 1 (b) shows
a situation where the task always has a positive utility,
whatever the execution time is. Therefore, the goal of the
system will be maximize the sum of utilities of the tasks
regardless of which function is used, that is, it maximizes
the following equation:∑

1≤i≤M

Ui(ti) (1)

where M is the number of tasks and ti the time required
to finish the task i. As it can be seen, equation 1 doesn’t
maximize the number of finished task but the total utility.
Besides, each robot (ri) has an individual work capacity
(workCapacityi) that represents the amount of work that
the robot can process per time unit. The tasks can be
executed by a group of robots, when they form a coalition.
Thus, we have to know if the group of robots can fulfil the
deadline, and therefore the utility that these robots will
generate at the end of the task. To that end, we need
to calculate the work capacity of the group as a whole
(groupCapacity), that is, the amount of work that the
group can perform per time unit. In general, it is not true
that the work capacity of the group is the sum of the work
capacity of each single robot. Thus, the real value of the
group capacity is:

groupCapacity = idealCapacity − I (2)

Where idealCapacity is the model of the group capac-
ity without interference and I is the interference factor.
Although this is a simple model, it’s very efficient, as
it will be shown later. The idealCapacity can be easily
represented when the individual capabilities of the robots

are known. As it has been explained before, the sum of the
individual utilities of each robot is often used. Usually,
these utilities are independent of the interference factor
and therefore they can be added. On the other hand, I is
not easy to calculate because it depends on some dynamic
factors like the number of robots or the geometry of the
environment.

3. TASK ALLOCATION

The task allocation mechanisms, including the groups’
formation, membership policy and task assignment is de-
scribed in the following paragraphs. This new mechanism
extends and improves our previous work Guerrero and
Oliver (2007) to take into account whatever utility func-
tion is used. To achieve this goal, the two round auction
method, is executed. The two round auction algorithm
splits a classical auction process into two steps: ”Auction
for a Task” and ”Auction for a Robot”.

3.1 Auction for a Task

During the first auction round a classical auction method
has been modified to select which robots, and very spe-
cially, how many of them are needed to execute a task.
Here, in an initial stage, each robot is looking for a task.
When a robot finds a new task, it will try to lead it. There
is only one leader for each task. The details about how a
robot can be promoted to leader, can be found in Guerrero
and Oliver (2004). If a robot is promoted to leader, it will
create, if necessary, a work group; that is, a set of robots
that will cooperate to execute a specific task. In that case,
the leader must decide which the optimum group size is
and what robots will be part of it. To take this decision, the
leader uses an auction like mechanism. During this process
the leader will be the auctioneer and the other robots will
bid using their work capacity. Thus, this value is the utility
function of the auction method or the price that the robots
want to pay to participate in the task. The leader selects
the robots with the highest work capacity using a greedy
algorithm, until it detects that the group is able to reach
its deadline, that is, until this condition is verified:

DLg =
taskWorkLoad

groupCapacity
≤ DLi (3)

where DL is the deadline of the task i. As it can be seen,
DLg is the expected time required to finish the task. Thus,
the expected utility of the task can be calculated using the
utility function and the expected time. The leader doesn’t
include any selected robot in its group until it receives the
confirmation from these robots. This confirmation will be
produced during the auction for a robot round, that will
be explained in the next section. Besides, the leader will
collaborate on carrying out the task with the other robots
of the group. The complexity of the auctioneer algorithm
is O(log(n)) for sorting the received bids plus O(n) for
selecting the best robots, where n is the number of bids.
The bidder only have to calculate its bid value, thus its
algorithm complexity is O(1).

3.2 Auction for a Robot

Whether the deadline has been fulfilled or not, after the
auction for a task round, the leader starts the ”auction



for a robot” process, thus multiple auction processes are
performed in parallel. To get the selected robots, the
leader will bid for them sending the expected utility of
the task. Thus, now the leader becomes the bidder and
the selected robots are the auctioneers. When a robot
receives a bid from a leader, it waits a fixed amount of
time for more bids from other leaders. After this time,
the robot selects to become a member of the coalitions
with the greatest bid and sends a confirmation message to
the corresponding leader. On the one hand, if the leader
doesn’t receive any answer from a robot after a time or
receives a rejected message, then it removes it from the
list of selected robots. On the other hand, a robot is
definitely added to the group, when the leader receives a
confirmation message from it. Followig the same reasoning
used in the auction for a task stage, now the complexity
of the bidder algorithm is O(log(n)) for sorting the ”bids”
recieved from the autioneer, plus O(n) for selecting the
best group. The autioneer only have to recieve the message
from the bidder, and therefore its complexity is O(1).

If during the task execution the leader detects that the
deadline (DLg) can not be fulfilled, it starts a new two
auction process to get new robots. From now on, we will
consider the robot utility and the group utility synony-
mous of robot’s work capacity and work capacity of the
group, respectively.

4. SUPPORT VECTOR REGRESSION

This section describes the process to predict or to learn the
value of the interference using support vector regression
(SVR) C.Chang and Lin (2001). The goal of this method
is to find a function, f(x), as flat as possible that fits a
given set of training data (xi, yi), i = 1..l where xi ∈ Rn

represents the input data of f(x) and yi ∈ R are the
results. From this data, the function f(x) is:

f(x) =
∑

1≤i≤l

(αi − α∗
i )K(x, xi) + b (4)

where αi, α
∗
i are the lagrange multipliers, K(x, xi) is a

kernel function and b is the bias. During our experiments
the radial basis function, shown in equation 5, is used as
kernel:

K(x, xi) = e−γ∥x−xi∥2

(5)

where γ is a parameter of this kernel.

As it is shown in subsection 5.2, the xi vectors represent
the coalition characteristics including both coalition robot
and environment features. From this point forward, we
will call to xi the coalition vectors. The SVR learning can
be off-line (batch) or on-line, both strategies have been
implemented in our system, as it will be explained during
the following subsections.

4.1 Batch Support Vector Regression

During off-line or batch SVR, all the samples of the
training set are known before the execution and the set can
be trained at once. The model created with these samples
will be used during all the execution. To implement the
batch support vector regression we have used the libsvm

library developed by National Taiwan University C.Chang
and Lin (2001). This library creates a model file from a
given set of training data. We use the ε − SV R method
and a radial basis function as the kernel function.

E. Jones in Jones et al. (2006) also applies the libsvm
library to allocate tasks in the Robocup Rescue Simulation
League but in that case, only a single robot can be
assigned to the same task. Moreover, Jones’ method only
tries to find the individual utility function for each agent
taking into account the expected incoming tasks and their
deadline.

4.2 On-line Support Vector Regression

In an on-line SVR learning, new data can be added or
removed during the execution of the task. Each time
that a new sample (xi, yi) is added, the SVR is trained
again using this new data. J. Ma et al proposed in Ma
et al. (2003) an accurate on-line SVR method, where each
time that a new data is added or removed, the SVR
function’s lagrange multipliers are modified to ensure that
the full system verifies the Karush-Kuhn-Tucker (KKT)
conditions. Thus, if the KKT conditions are verified, we
can ensure that the error of the SVR function is at a
minimum. In our system, we have used the implementation
of Ma’s method done by J. Parrella in Parrella (2007).
The experiments show that this method is faster than the
libsvm when the samples arrive one by one.

In our online-SVR method, each time a task is finished,
the leader gets the difference between the ”real” execution
time and the execution time calculated only with the
idealCapacity of equation 2. The interference value I can
be calculated from this difference, using the coalition and
environment characteristics as the new training vector.
This vector will be sent to the other robots, creating a
global SVR model. The complexity of this algorithm is, in
the worst case, O(v3)∗O(kernel), where v is the number of
support vectors and kernel is the time needed to calculate
the kernel value. In our SVR implementation v is always
lower or equal to 100.

5. PHYSICAL INTERFERENCE IN TRANSPORT
TASKS

In this section we will study how to model the physical
interference using SVR in a specific transport like task.
This task is described as follows: some randomly placed
robots must locate objects, randomly placed too, and carry
them to a common delivery point. Each object to gather
has a weight and each robot has a load capacity. This
weight is the taskWorkLoad of equation 3. The robot
load capacity is the amount of weight that it can carry
at once. Thus, if a robot cannot carry the entire object at
once, it takes a part of it, goes to the delivery point and
comes back to the object for more bits. Of course, this is
a very simple environment but it allows us to isolate the
interference effect from other factors that can appear in
more complex tasks.

In the next subsections we will describe how to get the in-
dividual utility for each robot and how the idealCapacity
of equation 2 is calculated.



5.1 Individual Utility Function

We will now describe how to find the individual utility
or the individual work capacity of each single robot.
The transport task explained earlier will be used as an
example. The work capacity of a robot is the amount
of object’s weight that this robot can transport to the
delivery point per time unit. Under ideal conditions, that
is, assuming an open environment without any obstacle
or robot between the object and the delivery point, the
robot’s work capacity is easy to calculate. Thus this
capacity is:

workCapacityi =
CiVi

2(CiVi + d)
(6)

where Ci is robot’s load capacity, Vi its maximum velocity
and d is the distance between the object and the delivery
point. In Guerrero and Oliver (2007) the reader can
find details about how to get these values. Thus, the
idealCapacity of equation 2 will be equal to the sum the
workCapacityi of each member of the group.

5.2 Interference Effect: off-line and on-line SVR

In this section we will analyze how to create the off-
line SVR model to learn the physical interference between
robots, that is the I value of equation 2. To analyze the
interference effect we have executed a task where several
robots must transport parts of a single object and the total
weight transported by the robots after 40.000 time units is
calculated. All the robots have the same load capacity (2
weight units) and the same velocity (3 distance units/time
unit) and therefore, they all have the same work capacity.
Moreover, the environment doesn’t have any obstacle but
the robots, the object and the delivery point. Eight dif-
ferent distances between the object and the delivery point
have been tested and the number of robots varied from
1 to 8. All these experiments have been executed using
a multi-robot simulator called RoboCoT. RoboCoT is a
realistic simulator developed by the authors at our univer-
sity. The details of this results can be found in Guerrero
and Oliver (2007). Knowing the idealCapacity we can
calculate the value of interference I for each situation.
This value only takes into account the interference between
robots of the same working group. All this information is
now included in the training data of the SVR method.
The coalitions vectors (xi values) will include 2 features:
the idealCapacity value, calculated using equation 6, and
the number of robots of the group. The calculated values
of I are used as the expected results of f(x) (yi). A total
of 80 training data pairs (xi, yi) has been used. All the
information is used by the libsvm library to create the
model of the system.

During the on-line SVR learning process, the robots start
the execution with the training set used during the off-
line SVR. When a new task is finished, its leader adds
the information of this task to the set of current samples
and executes the on-line SVR algorithm Ma et al. (2003).
The number of SVR’s samples is increased through the
execution and, therefore, the time needed by the online
SVR is greater. To avoid an excessive number of samples
its has been limited to 120. The experiments show that

this number is a good tradeoff between execution time and
system performance.

Whatever method is used, on-line or off-line SVR, the
leader selects the best robots (robots with the highest
bids) until equation 3 is verified or until no other robot
can increase the group capacity. During the execution
of a task the leader can periodically receive information
about the remaining weight of the object (taskWorkLoad)
to be transported. If available, the leader of the task
uses this information to make a guess about the actual
taskWorkLoad.

5.3 The Monitoring Process

During the execution of a task the leader can periodically
receive information about the remaining weight of the
object (taskWorkLoad) to be transported. If available, the
leader of the task uses this information to make a guess
about the actual taskWorkLoad using a simple linear
equation:

WL(t) = WL(tm)− groupCapacity ∗ (t− tm) (7)

where tm is the time when the leader receives informa-
tion about the task progress and WL(t) is the expected
taskWorkLoad at instant t.

During a continual monitoring task progress execution,
the leader knows in each moment the exact value of
the taskWorkLoad, and therefore, it can start another
auction process if inequality 3 is not verified. In a non-
monitoring task process execution, the leader only knows
the taskWorkLoad at the beginning of the task, and then
it uses equation 7 to predict the taskWorkLoad, with a
unique constant WL(tm) during the whole process.

6. TASK ALLOCATION EXPERIMENTS

In this section we will show the results of several experi-
ments carried out to study the impact on the system per-
formance of: the two round auction process, the physical
interference model, the monitoring process and the on-line
SVR learning. During all the experiments, the simulator
RoboCoT has been used. The robots must execute the
transport task explained in the section 5. The main objec-
tive is to maximize the equation 1. All the objects must
be transported even if they are over their deadline and
their utility have become zero. The time to deadline starts
when the object appears in the environment. To simplify
the analysis, the robots know the situation of each object
in the environment.

6.1 Two rounds auction experiments

In this subsection we will explain the experiments carried
out to show how two rounds auction methods can improve
the system performance.given by equation 1. Six different
kind of experiments have been carried out:

• Monitoring and interference (M I): the continual
monitoring strategy is used together with our inter-
ference model.

• No Monitoring and interference (NM I): in these ex-
periments our interference effect is used, but without
monitoring.



• Monitoring and no interference (M NI): the continual
monitoring strategy is used but without the interfer-
ence method. That is, the expected execution time is
calculated using only the ideal capacity.

• No Monitoring and no interference (NM NI): neither
continual monitoring or our interference model are
used.

• Single round auction (SR): in this strategy the leader
only uses the ”auction for a task” method. Then,
the robots select the first agreement message received
from any leader.

• Greedy selection: all the leaders try to create a
working group as great as possible without taking into
account the deadline value or the task characteristics.
Thus, this strategy is like a SR auction but now the
leader sends an agreement message to all the bidders.

Both Greedy and SR methods only use the auction to
robot round, and M I, NM I, M NI, NM NI implement
the two rounds method. During the experiments we used
10 robots and 3 objects to gather. All the tasks have a
weight equal to 40 weight units. Robots must transport 400
objects and the total time needed to transport each one of
these objects is calculated. Despite having only 3 objects
in the environment, when an object is fully transported
to the delivery point, it immediately appears another one
in a random place. All the tasks have a deadline equal
to 900 time units, but its maximum utility value can
change. Finally, two utility functions have been used: a
hard deadline and the following soft deadline function:

Ui =

Umax if t < DLi

Umax
0.07DLi

(ti −DLi) + 0.07DLi
otherwise

(8)

where Umax is the maximum utility of the task, DLi is the
deadline of this task and ti is the time required to finish.

In all theses cases we have used the off-line SVR strategy.
The off-line SVR model only considers the intra-group
interference, that is, the physical interference between
members of the same group. The interference, produced
between members of different groups, has not been in-
cluded. The analysis of the results shows that the inter
group interference in this specific environment increases
about 8% the modelled one. Thus, during the experiments
carried out to get the results of the following figures, the
interference obtained from the model has been increased
this percentage. This overhead percentage has been calcu-
lated from the difference between the simulations results
and the expected time of equation 2.

Figure 2 shows the total utility when the soft deadline
function is used. This utility has been calculated using
the equation 1. As it can be seen, the M I and NM I
strategies present very similar results, therefore, it can
be stated that our interference model correctly predicts
the evolution of a task without any monitoring process.
Moreover, in both cases the total utility has been increased
about 40% with regard to the greedy method. In addition,
this figure shows the impact of the interference on the
system. Thus, the results of the methods that don’t use
the interference model (M NI and NM NI) and the results
of the greedy system are very similar. Finally, the utility
produced by the robots that use the single round auction

Greedy M_I NM_I M_NI NM_NI SR
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Strategy

Ut
ilit

y

Fig. 2. Total utility with the soft deadline function.

Greedy M_I NM_I M_NI NM_NI SR
0

0.5

1

1.5

2

2.5

3
x 10

4

Startegy

Fig. 3. Total utility with the hard deadline function.

strategy is also very similar to the greedy experiments
results. Therefore, the ”Auction for a robot” round clearly
increases the system performance.

The results of the experiments with the hard deadline
function are shown in figure 3. The NM I presents the
best results, increasing about 43% the total utility of the
system when compared to the greedy strategy. Moreover,
the non-monitoring strategy outperforms the monitoring
methods.

Figure 2 also shows that the SR method only increases
around 5% the total system’s utility compared to the
greedy strategy. To analyze this situation in more detail, a
second set of experiments has been executed. During these
experiments the robots carry out the transport mission
during 30.000 time units and the soft utility function
has been used. The objects are homogeneous, that is, all
of them have the same utility value and function. After
30.000 time units, we get the time required to transport
each object and the number of objects gathered. The
figures 4 and 5 show the time needed to finish each task
using the greedy and the single round strategies. The bar
with a label 0.6 represents the percentage of tasks whose
execution time exceeds 60% of the deadline. Comparing
figures 4 and 5 it is remarkable that in the SR experiments
the percentage of tasks highly exceeding the deadline
has been significantly reduced. For example, during the
experiments with the greedy strategy about 17% of tasks
need more than 60% of the deadline time to finish, but
during the SR experiments this percentage is zero.

6.2 On-line SVR experiments

In this subsection we will analyze the impact of the
on-line learning on the total utility generated by the
system. During these experiments 7 homogeneous robots



0.6 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6
0

5

10

15

20

25

Deadline fulfilment

%
 O

bj
ec

ts

Fig. 4. Time required to finish the tasks during greedy
robot selection.

0.6 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6
0

5

10

15

20

25

Deadline fulfilment

%
 O

bj
ec

ts

Fig. 5. Time required to finish the tasks during the single
round experiments.

Table 1. Total Utility of the on-line SVR ex-
periments

off-line SVR on-line SVR

Without errors 10802 11851

With errors 6290 10226

must transport 200 objects using the soft deadline utility
function. Two kinds of experiments have been carried out:

• Experiments without errors: in this case the robots
know without any error all their parameters: velocity,
distance to delivery point, etc. Moreover, the 8% of
inter-group interference overhead is not added to the
ideal capacity.

• Experiments with errors: in these experiments the
robots don’t know their maximum velocity. The real
maximum velocity of the robots is 3.0, but they
suppose it’s equal to 0,8. This wrong velocity is used
to get the ideal capacity of the system. Thus, we
can see what happens when there are errors in the
kinematic model of the robot.

Table 1 shows the total utility of the system with both
strategies, on-line and off-line SVR. As it can be seen,
when there are no errors in the system, the on-line SVR
algorithm only increases 9,7% the execution’s utility with
regards to the off-line strategy. By contrast, the on-line
method significantly increases the utility of the system,
62,5%, when there are errors in the model of the robot.
Thus, it can be stated that our system can model both,
physical and kinematic interference.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a new auction method to fulfil the
deadlines of a set of tasks using multi-robot coalitions. The
results show that our two round auction method increases
the total utility, both using hard and soft deadline utility
functions. Moreover, the SVR method used to predict the
expected utility of the coalition improves these results. Our
method has been tested with transport tasks using both
off-line and on-line SVR methods.

The work presented is in progress and has some challenging
aspects to add and to improve. We are working to use a
preemption auction method, that is a method that allows
the exchange of robots between working groups. We will
extend these experiments using real robots and other kind
of tasks, like exploration, cleaning, etc. Moreover, we will
study other on-line SVR sample substitution strategies.
For example, our first results show that the clustering
techniques proposed by W. Wang and Z. Xu in Wang and
Xu (2004) are not useful for on-line learning because they
require a lot of time.

REFERENCES

C.Chang and Lin, C. (2001). LIBSVM:
a library for support vector machines
(http://www.csie.ntu.edu.tw/ cjlin/libsvm).

Dias, M. and Stentz, A. (2003). Traderbots: A market-
based approach for resource, role, and task allocation
in multirobot coordination. Technical Report CMU-RI-
TR-03-19, Carnegie Mellon University.

Gerkey, B.P. and Mataric, M. (2002). Sold!: Auction meth-
ods for multi-robot coordination. IEEE Transactions on
robotics and Automation, Special Issue on Multi-robot
Systems, 18(5), 758–768.

Guerrero, J. and Oliver, G. (2004). Multi-robot task
allocation method for heterogeneous tasks with prior-
ities. In 7th. International Symposium on Distributed
Autonomous Robotic Systems. Tolouse (France).

Guerrero, J. and Oliver, G. (2007). Interference modeliza-
tion in multi-robot auction methods. In 6th IFAC Sym-
posium on Intelligent Autonomous Vehicles (IAV’07).

Jones, E., Dias, M., and Stentz, A. (2006). Learning-
enhanced market-based task allocation for disaster re-
sponse. Technical Report CMU-RI-TR-06-48, Carnegie
Mellon University.

Jones, E.G. (2009). Multi-Robot Coordination in Domains
with Intra-path Constraints. Ph.D. thesis, The Robotics
Institute Carnegie Mellon University.

Lerman, K. and Galstyan, A. (2002). Mathematical model
of foraging in a group of robots: Effect of interference.
Autonomous Robots, 13(2), 127–141.

Ma, J., Theiler, J., and Parkins, S. (2003). Accurate on-
line support vector regression. Jurnal Computation, 15,
2683–2703.

Parrella, J. (2007). Online Support Vector Regression.
Master thesis, University of Genoa, Italy.

Rosenfeld, A., Kaminka, G.A., and Kraus, S. (2005). A
study of scalability properties in robotic teams. In In,
27–51. Springer-Verlag.

Vig, L. (2006). Multi-Robot Coalition Formation. Phd
thesis, Gratuate School of Vanderbilt University.

Wang, W. and Xu, Z. (2004). A heuristic training for
support vector regression. Neurocomputing, 61, 259–275.


