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Abstract: Underwater environments are extremely challenging to perform localization. Au-
tonomous Underwater Vehicles (AUV) are usually endowed with acoustic devices such as a
Mechanically Scanned Imaging Sonar (MSIS). This sensor scans the environment by emitting
ultrasonic pulses and it provides echo intensity profiles of the scanned area. Our goal is to
provide self-localization capabilities to an AUV endowed with a MSIS. To this end, this paper
proposes a scan matching strategy to estimate the robot motion. This strategy extracts range
information from the sensor data, deals with the large scan times and performs a probabilistic
data association. The proposal is tested with real data obtained during a trip in a marina
environment, and the results show the benefits of our proposal by comparing it to other well
known approaches.

Keywords: Underwater robot, localization, sonar, scan matching.

1. INTRODUCTION

First attempts to perform mobile robot localization by
matching successive range scans were inspired by the com-
puter vision community. A standard approach to image
registration is the Iterative Closest Point (ICP) (Besl and
McKay (1992)). The ICP concepts were introduced in the
mobile robot localization context by Lu and Milios (1997).
Due to the great success of this approach, many other
scan matching algorithms rely on the same basic structure,
defining the ICP-based family of algorithms. Examples of
this family are the Iterative Dual Correspondence (IDC),
also proposed by Lu and Milios, the probabilistic Iterative
Correspondence (pIC) by Montesano et al. (2005) or the
the Point to Line ICP (PLICP) presented by Censi (2008).

In general, scan matching algorithms require dense sets
of accurate range readings to obtain reliable motion es-
timates. That is why laser sensors are often used in the
context of terrestrial scan matching. However, underwater
scenarios pose important limitations to light based sensors
such as laser range finders. In consequence, Autonomous
Underwater Vehicles (AUV) are usually endowed with
acoustic sensors. One of these sensors is the Mechanically
Scanned Imaging Sonar (MSIS), which scans the environ-
ment by emitting ultrasonic pulses providing echo intensity
profiles of the scanned area.

When used to perform scan matching, a MSIS has two
important problems. Firstly, this sensor does not provide
range measurements but echo intensity profiles. Accord-
ingly, the sensor information has to be processed before
being used in the scan matching context. A simple yet ef-
fective method to perform such process has been described
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by Ribas et al. (2008). Secondly, the scan time of a MSIS
is not negligible. For example, in our particular configura-
tion, the sensor needs more than 13 seconds to gather a
360o scan. Accordingly, it can not be assumed that the
robot remains static while the scan is being obtained.
Some considerations regarding this issue using terrestrial
Polaroid sensors are provided in Burguera et al. (2008).
Moreover, a recent study by Hernández et al. (2009) shows
the feasibility of underwater scan matching using a MSIS.

Our goal is to provide self-localization capabilities to an
AUV. To this end, this paper proposes a framework to
perform scan matching in underwater environments using
a MSIS. This framework includes processes to deal with
the aforementioned problems of MSIS sensing. Also, a
probabilistic scan matching method previously tested on
terrestrial sonars, the sonar probabilistic Iterative Corre-
spondence (spIC) introduced by Burguera et al. (2008),
is used to perform the matching. Because of this, the
framework introduced in this paper will be referred to as
the underwater spIC (uspIC).

Section 2 overviews the underwater sonar scan matching
problem. The processes to obtain range measurements
from the echo intensity profiles and to deal with the large
scan times are presented in sections 3 and 4 respectively.
The probabilistic approach to perform scan matching is
stated in section 5. Section 6 describes the processes to
compute the corrected robot pose according to the scan
matching estimate. Finally, sections 7 and 8 show the
experimental results and conclude the paper.

2. PROBLEM STATEMENT AND NOTATION

Scan matching algorithms require two consecutively gath-
ered sets of range measurements called scans. Let Sref be
a set of measurements gathered at frame A, which is called
the reference scan. Let Scur be a set of measurements gath-



Fig. 1. Overview of the uspIC. The notation is explained
throughout the paper.

ered at frame B, which is called the current scan. The aim
of scan matching is to compute the relative displacement
and rotation xA

B of B with respect to A so that the overlap
between Sref and Scur is maximized.

The measurements in Sref and Scur can be represented
in different ways, depending on the specific scan matching
implementation. The proposal of this paper is to represent
the measurements in both scans as normal distributions,
similarly to spIC. The details regarding this issue are
provided in section 4. Also, in this paper the scan matching
estimate is represented by a multivariate normal distribu-
tion xA

B = N(x̂A
B , PA

B ).

2.1 Scan Matching with a MSIS

The experiments conducted in this paper have been per-
formed using the sensor data gathered by the Ictineu AUV.
This AUV was designed and developed at the University
of Girona (see Ribas et al. (2008) for more details). Among
other sensors, the AUV is endowed with a Doppler Velocity
Log (DVL) which measures the velocities of the unit with
respect to bottom and water, a Motion Reference Unit
(MRU) that provides absolute attitude data by means of
compass and inclinometers, and a MSIS.

The MSIS obtains 360o scans of the environment by
rotating a sonar beam through 200 angular steps in about
13.8 seconds. At each angular position, a set of 500
values, named bins, is obtained representing a 50 m long
echo intensity profile with a resolution of 10cm. Each of
these sets of 500 bins will be referred to as beam. By
accumulating this information, an acoustic image of the
environment can be obtained.

As stated previously, different problems arise when using
a MSIS to perform scan matching. In order to solve them
several processes are necessary. Our proposal is summa-
rized in Figure 1. First, range information is extracted
from each MSIS measurement by means of the beam seg-
mentation. Also, DVL and MRU readings are fused by
means of an Extended Kalman Filter (EKF) to obtain dead
reckoning estimates, as described by Ribas et al. (2008).
Both the obtained range information and the dead reck-
oning estimates are stored in two buffers, called readings
history and transformations history respectively. When
the MSIS has obtained a 360o view of the environment, the
information in these buffers is used by the scan building
to compensate the robot motion and build a scan. When
two consecutive scans have been built in this way, the scan
matching is executed. One specific scan matching method
is proposed in this paper, though other algorithms can be
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Fig. 2. (a) An example of the threshold selection process.
(b) Beam segmentation example in a range vs. angle
representation. The grayscale image represents the
MSIS beams. The red dots depict the obtained range
information selecting the maximum intensity bin. (c)
The approach presented in this paper.

easily included in the uspIC framework. Finally, the pose
correction and the pose extraction processes are in charge
of improving the transformations history according to the
matching estimate and to continuously provide robot pose
information. The rest of the paper is devoted to describe
the abovementioned processes.

3. BEAM SEGMENTATION

Our goal is to obtain range scans instead of the beams
as they are provided by the MSIS. Accordingly, the beam
segmentation is in charge of computing the distance from
the sensor to the largest obstacle in the beam. Although in
some cases, this distance corresponds to the bin with the
largest intensity value, in some other, very frequent, cases
it does not as it will be shown later. To deal with these
situations, the following procedure is proposed. When
the MSIS provides a new beam, the beam segmentation
process obtains the corresponding range measurement by
means of the following three steps:

Thresholding : An echo intensity threshold is dynami-
cally selected as follows. Firstly, the histogram of echo in-
tensities corresponding to the beam under analysis is com-
puted and smoothed. Afterwards, the threshold is located
at the largest echo intensity value that locally minimizes
the smoothed histogram. In this way, the threshold sepa-
rates two clearly defined areas in the echo intensity space.
Finally, those bins whose intensity is below the threshold
are discarded. Figure 2-a exemplifies the thresholding step.

Erosion : The remaining bins are eroded. That means
that those bins that, after the thresholding, do not have
another bin in their immediate neighborhood, are re-
moved. The purpose of this step is to remove spurious
bins.
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Fig. 3. (a) 95% confidence ellipses corresponding to one
MSIS scan. (b) The scan building coordinate frames.

Selection : At this point, it is usual that a single cluster
of bins remains. The bin with the largest echo intensity
value is selected, and the distance corresponding to this
bin represents the range value for the beam under analysis.
Let the point corresponding to this range be named the
range reading.

The results of selecting the maximum intensity bin and
those of applying the method proposed in this paper are
exemplified in Figures 2-b and 2-c respectively. It is clear
that our approach is able to obtain a much more accurate
range scan than a simple maximum intensity selection.

4. SCAN BUILDING

The MSIS data cannot be treated as a synchronous snap-
shot of the world. Instead, the sonar data is actually ac-
quired whilst the AUV is moving. Thus, the robot motions
during the sonar data acquisition have to be taken into
account in order to correct the induced distortion. The
scan building epitomizes this idea.

4.1 Modeling the Range Readings

The range readings provided by the beam segmentation
constitute the range information used to build the scans.
Our proposal is to model each measurement in a scan by a
normal distribution. In that way, the scans not only hold
information about the place where an obstacle has been
detected but also about the uncertainty in this detection.

Let rt = N(r̂t, σ
2
t ) denote a measurement obtained at time

t in form of random Gaussian variable (RGV). Let this
measurement be represented with respect to a coordinate
frame centered on the MSIS and having the x axis aligned
with the beam acoustic axis at time t. In this case, the
mean vector has the form r̂t = [ρt, 0]T , where ρt denotes
the range reading provided by the beam segmentation at
time t. The covariance matrix σ2

t is as follows:

σ2
t =

[

σ2
xx 0
0 σ2

yy

]

, (1)

where σxx models the range uncertainty and σyy =
ρt

2
tan(α

2
) models the angular uncertainty of α degrees.

The range uncertainty σxx has to be obtained experimen-
tally, as it depends on factors such as the sensor and beam
segmentation characteristics. The angular uncertainty α is
tightly related to the beam’s opening, and can be obtained
from the MSIS specification. Figure 3-a shows an example
of the readings in one MSIS scan modeled as normal
distributions by showing their 95% confidence ellipses.

Let zt represent the measurement rt with respect to the
robot coordinate frame. It is straightforward to obtain zt

from rt and the MSIS beam angle at time t. For the sake
of simplicity, henceforth the zt will be referred to as the
sonar readings.

4.2 The scan building process

The sonar readings have to be stored in the so called
readings history so that they can be easily accessed by
the scan building process. The readings history at time t
contains the most recent N sonar readings gathered until
time t. It is defined as follows:

RHt = {zt−N+1, ..., zt−2, zt−1, zt} (2)

The value of N has to be decided so that RHt can store two
consecutive full 360o scans. In our particular configuration
a full MSIS scan is composed of 200 beams. Thus, N is set
to 400.

Let x̄t denote the robot motion from time step t − 1 to
time step t. This robot motion is modeled as a RGV and
is provided by the dead reckoning EKF. Similarly to the
readings history, let the transformations history be defined
as a history of the most recent N robot motions. That is,

THt = {x̄t−N+1, ..., x̄t−2, x̄t−1, x̄t} (3)

As the AUV is moving while acquiring the scan, each
reading in RHt may have been obtained at a different
robot pose. The goal of the scan building process is to
represent each reading in one scan with respect to a
common coordinate frame.

Let us denote by zi,j the measurement zi ∈ RHt repre-
sented with respect to the robot pose at time j, where
t − N + 1 ≤ i ≤ t and t − N + 1 ≤ j ≤ t, being t the
current time step. zi,j can be computed as follows:

zi,j =

{

zi i = j
x̄j+1 ⊕ x̄j+2 ⊕ ... ⊕ x̄i ⊕ zi j < i
(⊖x̄j) ⊕ (⊖x̄j−1) ⊕ ... ⊕ (⊖x̄i+1) ⊕ zi i < j

(4)

where the operators ⊕ and ⊖ denote the compounding
and inversion operations commonly used in the context
stochastic mapping.

The robot motions involved in the Equation 4 are those
in THt. Hence, by means of this equation, each reading in
RHt can be represented with respect to any coordinate
frame referenced in THt while taking into account the
robot motion. Next, it has to be decided which coordinate
frame choose to build a scan. The chosen coordinate
frame corresponds to the central position of the trajectory
followed by the robot when collecting the readings involved
in the scan.

The central position has been chosen for two main reasons.
On the one hand, because of the similarity to the scans
generated by a laser range finder. On the other hand, in
order to reduce the maximum uncertainty of each reading
with respect to the reference frame. Thus, every time the
MSIS performs a 360o scan, Scur is built as follows:

Scur = {zi,tc
, ∀i, t −

N

2
< i ≤ t} (5)

where tc corresponds to the time step at which the robot
was at the central position of the trajectory followed while
the MSIS acquired the scan.
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Fig. 4. (a) Range data before and after the scan building.
(b) Acoustic image of one MSIS scan after the scan
building.

In order to build the reference scan, the measurements
that took part in the construction of Scur in the previous
scan matching execution are used. Therefore, the reference
scan has the following form:

Sref = {zi,tc2
, ∀i, t − N < i ≤ t −

N

2
} (6)

where tc2
corresponds to the time step in which the robot

was at the central position of the trajectory followed while
the MSIS acquired the scan data. Figure 3-b graphically
depicts the location of the coordinate frames and time
steps used during the scan building process.

Figure 4-a illustrates the result of the scan building by
the raw range data before and after the scan building.
Additionally, 4-b shows the acoustic image corresponding
to the corrected scan overlayed to a satellite view to show
the effects of the correction.

It is important to emphasize that, due to the pose cor-
rection, which is described later in this paper, the robot
motions stored in the transformations history may change.
In consequence, Sref has to be built at each scan matching
execution by means of Equation 6. In other words, Scur is
not directly used in the next scan matching execution as
Sref because of possible changes in the transformations
history between scan matching executions.

When the scan building has built Sref and Scur, the scan
matching process is ready to be launched.

5. THE SONAR PROBABILISTIC ITERATIVE
CORRESPONDENCE (SPIC)

The sonar scan matching process is in charge of finding
the displacement and rotation xA

B between the coordinate
frames A and B of the two scans, Sref and Scur, built
by the scan building. The sonar scan matching approach
adopted in this paper is the spIC, which follows the
same algorithmic structure that ICP. The main difference
between the ICP and the spIC is that the former uses
Euclidean distance whereas our proposal is based on the
Mahalanobis distance to take into account the statistical
information stored in the scans.

At the extent of the authors’ knowledge, there is only one
study prior to the spIC based on the use of such distance
to perform scan matching. It is the pIC, proposed by Mon-
tesano et al. (2005) and adapted to underwater sonar by
Hernández et al. (2009). However, the pIC approximates
each set of correspondences by a normal distribution. This

(a) (b)

Fig. 5. (a) The pose correction process. (b) The pose
extraction process. The term xW

R denotes the robot
pose.

approximation, as discussed by Burguera et al. (2008),
is problematic when used in the context of terrestrial
ultrasonic range finders. That is why this paper does not
perform such approximation by adopting the spIC. The
experimental results will show the benefits of this point
of view. The description of this algorithm is out of the
scope of this paper. A detailed description is available in
the paper by Burguera et al. (2008).

6. POSE CORRECTION AND POSE EXTRACTION

The scan matching provides the estimate xA
B of the dis-

placement and rotation between the two scan coordinate
frames, A and B. However, the scans have not been ob-
tained at these frames. Instead, the scan readings have
been obtained throughout a robot trajectory and the use
of A and B is only a convenient way to represent the MSIS
data. The goal of the pose correction is to correct the
aforementioned robot trajectory so that it fits to the scan
matching estimate.

A possible way to do this is to correct each motion estimate
in the transformations history according to its uncertainty.
This solution is the so called trajectory correction and
is described by Burguera et al. (2008). The pose correc-
tion discussed in this paper is a simplified version of the
trajectory correction that runs much faster at the cost
of producing slightly less smooth trajectories. Instead of
distributing the error correction through all the mentioned
transformations history items, the pose correction per-
forms one single change in the transformations history.
Figure 5-a illustrates this idea.

From this Figure, it is easy to see that the mean of x̄tc

should be corrected to the mean of x̄′
tc as follows:

x̄′

tc = ⊖(x̄tc2+1 ⊕ ... ⊕ x̄tc−1) ⊕ xA
B (7)

The covariance of the corrected transformations history
item, P ′

tc, is also needed. Unfortunately, the covariance of
x̄′

tc is not a good approximation because it accumulates
the uncertainties of ⊖(x̄tc2+1 ⊕ ... ⊕ x̄tc−1) and xA

B . To
ease notation, let xth = N(x̂th, Pth) be defined as x̄tc2+1⊕
...⊕ x̄tc−1. By performing some algebraic manipulation on
the ⊕ and ⊖ definitions, the covariance can be computed
as follows:

P ′

tc = J−1

2⊕
(PA

B − J1⊕PthJT
1⊕)(JT

2⊕)−1 (8)

where the terms J1⊕ and J2⊕ are the Jacobians matrices
of the composition, as defined in Tardós et al. (2002).

This equation can only be used if the eigenvalues of PA
B

are smaller than those of Pth. Otherwise, the resulting P ′
tc

will not be positive definite and, thus, not actually be a
covariance matrix. As a matter of fact, in these cases the



covariance P ′
tc does not even exist. A possible way to deal

with these situations is to leave the covariance unchanged
in the transformations history. The experimental results
suggest that the error introduced by this simplification is
negligible.

Contrarily to the pose correction, which is only executed
after the scan matching, the pose extraction operates
continuously and provides robot pose estimates from the
transformations history. This is accomplished by maintain-
ing an estimate xW

t of the first item in the transformations
history with respect to a fixed coordinate frame. This
estimate is updated every time an item from the trans-
formations history is discarded. Then, xW

t is compounded
with all the remaining items in the transformations history.
The current robot pose, xW

R , is obtained in this way, as
illustrated in Figure 5-b.

7. EXPERIMENTAL RESULTS

The experimental data used to validate the uspIC was
obtained by Ribas et al. (2008) in an abandoned ma-
rina situated near St. Pere Pescador in the Costa Brava
(Spain). The Ictineu AUV was teleoperated along a 600m
trajectory at an average speed of 0.2m/s. The trajectory
includes a small loop as well as a 200m long straight path.
The gathered data included measurements from the DVL,
the MRU and the MSIS. Additionally, a buoy with a GPS
was attached to the robot in order to obtain the ground
truth.

In order to evaluate the proposal in this paper, the uspIC
is compared to two approaches to scan matching using
a MSIS. On the one hand, the MSISpIC by Hernández
et al. (2009). This approach is based on the so called
scan grabbing, which is in charge of segmenting the MSIS
beams and collecting them to build scans, and the pIC
algorithm to perform the matching. On the other hand, the
Underwater Sonar ICP (usICP). This approach consists
on performing the same beam segmentation, scan building,
pose correction and pose extraction processes described in
this paper but using the ICP to perform the matching.

7.1 Quantitative Evaluation

The trajectories estimated by dead reckoning, usICP,
MSISpIC and uspIC have been compared to the ground
truth provided by the GPS. The comparison consists in
measuring, at each time step, the distance from the GPS
ground truth to the estimated robot pose according to each
of the mentioned methods. Figure 6-a compares usICP
and uspIC. The uspIC error is below the usICP one
during 69.53% of the time. Moreover, among the compared
methods, the uspIC is the only one that has provided
better results than dead reckoning during the 100% of the
time. Figure 6-b compares the uspIC and the MSISpIC
and shows that the uspIC provides better pose estimates
than MSISpIC during the 73.62% of the time. Moreover,
we have observed that usICP provides better estimates
than MSISpIC a 65.28% of the time. According to this,
the scan matching approach that provides better results
during the most part of the time is the uspIC, followed
by the usICP and the MSISpIC, in this order. Table 1
summarizes these results by showing the mean error, the
maximum error and the standard deviation of the error.
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Fig. 6. Quantitative evaluation, comparing dead reckon-
ing with (a) uspIC and usICP, and (b) uspIC and
MSISpIC.

Method/Error Mean Maximum Std. Dev.

Dead Reckoning 18.32m 49.03m 13.64

MSISpIC 6.19m 13.25m 2.26

usICP 6m 15.29m 4

uspIC 4.21m 10.47m 2.5

Table 1. Maximum, average and standard de-
viation of the error for the tested methods.

0 10 20 30 40 50
0

0.5

1

Error (m)

F
re

qu
en

cy Dead Reckoning

0 10 20 30 40 50
0

0.5

1

Error (m)

F
re

qu
en

cy MSISpIC

0 10 20 30 40 50
0

0.5

1

Error (m)

F
re

qu
en

cy

usICP

0 10 20 30 40 50
0

0.5

1

Error (m)

F
re

qu
en

cy uspIC

Fig. 7. Histogram of the error for dead reckoning,
MSISpIC, usICP and uspIC. The error frequency has
been normalized for clarity purposes.

Figure 7 shows the histograms of the localization error.
The histograms clearly reflect the aforementioned maxi-
mum error. Moreover, the histogram provides information
about how this error is distributed. For example, it is clear
that the dead reckoning error spreads over a large region
but the most part of it is concentrated between 0m and
20m of error. It is remarkable that the most part of the
usICP error is around the 3m, which is significantly below
the 6m of the MSISpIC. However, the usICP errors spread
over a larger area than MSISpIC, and that is why both
approaches have a similar average error. Finally, it is also
remarkable that the uspIC is not only the method with
the lowest maximum error, but also that the most part of
the error is concentrated around 2m.



(a) (b) (c)

Fig. 8. Trajectories corresponding to GPS, dead reckoning and (a) MSISpIC, (b) usICP and (c) uspIC.

7.2 Qualitative Evaluation

Figure 8 shows the trajectories obtained by MSISpIC,
usICP and uspIC and visually compares them to the
ones provided by dead reckoning and the GPS ground
truth. Moreover, the data is superimposed to a satellite
view of the area to provide a clear idea of the quality of
the obtained trajectories. The first thing to be noticed is
that the three methods produce a trajectory close to the
ground truth, especially when it is compared to the dead
reckoning data. Besides, there are some differences that
deserve special attention.

Firstly, the MSISpIC (Figure 8-a) has not been able to
solve the double wall effect on the left side of the image,
although the effect has been significantly reduced with
respect to dead reckoning. This effect appears when the
AUV returns to a previously visited area with a significant
pose error. Also, the data corresponding to the entrance to
the canal is misaligned, similarly to dead reckoning, where
two entrances to the canal seem to exist.

Secondly, the usICP (Figure 8-b) has, similarly to dead
reckoning and MSISpIC, the problem of perceiving a dou-
ble wall on the left side of the image. However, contrarily
to MSISpIC, the usICP has been able to align the data
corresponding to the canal entrance. Moreover, it can be
observed that the trajectory provided by usICP is slightly
shorter than the one provided by MSISpIC. This difference
is due to the canal shape. As the canal is almost straight,
it is very difficult for an scan matching algorithm to de-
termine the robot motion along the corridor direction.

Finally, the uspIC (Figure 8-c) is the algorithm that clearly
exhibits better results. First, the double wall effect does
not appear. Moreover, the canal entrance data is perfectly
aligned. Also, at the end of the experiment, the uspIC is
the approach whose pose estimate is the closest to the
ground truth. It can also be observed that the uspIC data
fits the satellite image better than the other methods,
especially on the water tank on the left.

8. CONCLUSION

This paper presents a novel approach to localize an un-
derwater mobile robot. The localization process, which
also relies on some proprioceptive sensors to perform dead
reckoning, is focused on the use of a MSIS. The approach
presented in this paper is the so called uspIC, which deals
with the MSIS problems.

The experimental results compare the uspIC to other
previously existing methods: the ICP and the MSISpIC,
which is an underwater scan matching method that utilizes
the pIC concepts. The obtained results show an important
improvement in the pose estimate with respect to the
other tested methods. Some graphical representations of
the obtained trajectories have also been provided for the
reader to visually compare them.
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