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Abstract plink & Sublink

Although the use of star topologies to improve depend- Interlink

ability in field-buses is gaining in importance, as in TTP/C Transceiver
and FlexRay, a mature technology such as the Controller - / CAN

’ - Link +controller
Area Network (CAN) remained essentially a bus-only net- e
work. Thus, we proposed a CAN-compliant replicated %:' %:' %:' %:' %:' %:' Node|:||_l|:| DD " . Micro
star topology called ReCANcentrate, which has advanced— " controller
error-containment and fault-tolerance mechanisms. Its tw Figure 1. ReCANcentrate architecture

hubs are coupled with each other and create a single logi-

cal broadcast domain that allowed us to propose, in a predata in parallel. However, due to CAN's error-signaling
vious work, a strategy for each node to easily manage thand arbitration mechanisms, a bit error in one channel is
replicated star by means of a software driver that abstractgnough for its traffic to evolve different than in the other
away the details of the replication. This paper describegeplica. Thus, it is not easy for a node to detect when
the main functionalities of this driver, as well as the firstframes received at different instants of time, each through
tests we have conducted, on a real ReCANcentrate proté- different channel, are copies of the same frame (dupli-
type, to verify the correctness and the performance of theates); or when a frame received from one channel is omit-
driver in the absence and in the presence of faults. ted from the other (omissions). Moreover, since channels
are independent, the network can become partitioned if
faults prevent nodes from communicating through differ-
ent replicas [4]. To overcome these problems, the hubs ex-

The use of star topologies as the underlying topologghange their traffic through the interlinks and couple with
of field-bus communication subsystems has been a ma@ach other [4], thereby synchronizing both channels at bit
ter of main concern, given the stars potential dependagbilitlevel and forcing both hubs to quasi-simultaneously trans-
benefits. This can be clearly seen in recent protocols sudhit the same value, bit by bit, through their downlinks.
as TTP/C [1] and FlexRay [2]. However, the ControllerNote that, thanks to the coupling between the hubs, all
Area Network [3] (CAN) protocol, which is one of the nodes can communicate with each other regardless the hub

most mature field-bus technologies, remained essential§ hubs each node is able to communicate through.
a bus-only network. Thus, in order to benefit from stars The above mentioned features allowed us to define a
and, in particular, from their better error-containmend an strategy for each node to easily manage transmissions and
fault-tolerance capabilities, we proposed a CAN-complianreceptions, and to treat faults occurring in the stars [6].
replicated star topology called ReCANcentrate [4], whosé/loreover, in a previous work [7] we presented the on-
significant reliability benefits have been quantitativedy-c ~ 9oing development of a software driver that executes on
roborated recently [5]. each ReCANcentrate node and that implements this man-
The basic architecture of ReCANcentrate is depicted irgement. The current paper completes previous work by
Figure 1. It includes two hubs with nodes connected tagiescribing the main routines that constitute this driver, a
each of them by dedicated links containing each an uplinkvell as by explaining the results of the first tests we have
and a downlink. Both hubs are also interconnected by gtonducted, on a real ReCANcentrate prototype, in order to
least two interlinks, each containing two independent subverify the correctness and the performance of the driver in
links, one for each direction. Each hub has mechanismi&e absence and in the presence of faults.
to contain errors originated at nodes, links, interlinks, o
hubs [4]. ReCANCcentrate also has mechanisms to tolerafe
faults occurring at one of the hubs, at links/interlinksdan ~ The physical layer of CAN implements a wired-AND
at the nodes’ communication controllers. function of every node contribution, thereby providing the
To achieve fault tolerance, each ReCANcentrate star idominant/recessive transmissigmoperty [3], which en-
used as a CAN channel that transmits a replica of the sanseires that a dominant bit, ‘0’, prevails over a recessive bit

1 Introduction

M edia management basics
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‘1’. Additionally, the CAN bit synchronization guarantees  To tolerate a fault, it is necessary that a node that can-
thein-bit responseproperty, thanks to which nodes quasi- not communicate through a given hub as a consequence
simultaneously observe every single bit on the channel. of that fault continues to communicate through the other
The ReCANcentrate hubs perform a special AND-hub. As explained in [6], a hode that cannot communicate
coupling within a fraction of the bit time, thereby creat- through a given hub will observe rotification omission
ing a single logical broadcast domain that keeps the twdiscrepancyomission discrepancy for short): wherde-
referred CAN properties; thus, both hubs behave like ondivery eventoccurs, the node observes that the controller
transmitting the same value bit by bit in their downlinks.connected to that hub fails to notify that event. Thus, in
In order to connect to the replicated star the node relies oprinciple, the node can tolerate a fault by simply accept-
the architecture depicted in Figure 1. It is constituted bying as valid the transmission/reception notified by the con-
commercial-off-the-shelf (COTS) components only: onetroller that has no problems. Note that if the controllet tha
microcontroller and two CAN controllers, each connectecbmits notifications is th@on-txcontroller, the node does
to a separate hub, using one transceiver for the uplink anabt need to diagnose it as faulty. However, if the controller

another one for the downlink. that omits is thex controller, the node must eventually di-
_ agnose it as faulty and rule it out for communicating; other-
2.1 Management in the absence of faults wise, the node will not be able to transmit anymore. Thus,

According to our media management strategy, the nodghe node initiates &ransmission time(tx timen when it
transmits towards one of the hubs only, while receivingequests a transmission: if the timer expires beforexthe
from both hubs at the same time. One controller,riba-  controller notifies of a successful transmission, the node
transmission controlle(non-tx controlle}, is only used to  rules it out and uses the other controller to transmit/recei
receive frames—which may have been transmitted by it&dditionally, to enhance the node’s fault diagnosis capa-
own node or by other nodes. The other controller, theilities, we propose to rule out a CAN controller whenever
transmission controlle(tx controller), is used by the node its Transmission Error CountgfTEC) or itsReception Er-
to transmit frames in addition to receiving frames. ror Counter(REC) [3] reaches a given threshold—this pre-

When a frame is successfully exchanged through theents controllers from going into thegror-passive statgn
network, i.e. when aelivery evenbccurs, each node ex- which they could inconsistently exchange frames [3].
pects that its two controllers quasi-simultaneously yotif  Finally, there are some situations in which an omission
of that event. Thus, in the absence of faults, the node mamtiscrepancy can be caused by a media fault that does not
ages transmissions and receptions as follows. First, if thgrevent all controllers from communicating, but that leads
node successfully transmits a frame, thecontrollerand  them to inconsistently exchange a frame. On the one hand,
the non-tx controllemotify of the transmission and recep- this may happen in the presence of any of the error sce-
tion of this frame respectively; thus, the node only needsarios affecting the last-but-one bit of a frame that have
to accept the notification of the transmission as valid angeen identified for CAN [8]. On the other hand, a stuck-at-
release the reception buffer of then-tx controller Sec-  recessive fault may provoke an inconsistency if it prevents
ond, if the node receives a frame sent from another node, controller from monitoring the traffic, or if it affects its
it is notified of this reception by its two CAN controllers. uplink and prevents it from aborting an on-going frame.
When this happens, the node must merely consume tifor instance, if a downlink is stuck-at-recessive durirg th
frame received at one of the controllers and, then, releagsroadcast of a whole frame, the controller connected to that
the reception buffers of both controllers. downlink will not receive it. The media management we
propose takes into account the scenarios of [8] to some

ReCANCcentrate’s fault model includes faults at nodeseXtent’. as Well‘as incqnsistencies pro_voked_ by stuck-at-
links, interlinks, or a hub that manifest themselves,recesswe faults; assumlngthataframe_ls nptmconslytent

. . - ... _exchanged more thanaxinconconsecutive times.
from a channel point of view, as stuck-at or bit-flipping
streams [4]. Additionally, itincludes CAN controllerfasl 3 Driver architecture
that manifest as arashfrom a node’s point of view, i.e.
faults that lead a CAN controller to notify nothing to its ~ We designed the media management to be implemented
node. The only fault assumption is that hubs remain couas a driver that abstracts away the details of the node ar-
pled with each other using at least one non-faulty interlinkchitecture and the media replication. Figure 2 depicts the

Channel errors generated by a fault block the communibasic structure of the driver. It shows the peripherals the
cation in both stars as long as the hubs do not isolate it bgriver requires: two CAN controllersS$SAN 1andCAN 2
disabling the appropriate hub ports [7]. Once isolated, ifn Figure 2, and a timer to be used as thdéimer. Addi-
the fault affects a link or a CAN controller, it only prevents tional hardware requirements are the the ability to geperat
the corresponding node from communicating through thénterrupts through software, interrupts that can be nested
corresponding hub; however, if the fault affects a hub, iinterrupt generation when a controller's TEC/REC reaches
can lead to no node being able to communicate througa threshold, and configurable priorities for the interrupts
that hub. Interlink faults do not prevent any node from At the top part of the structure we can see the interface
communicating, as long as they do not affect all interlinksthe driver provides to the application, i.e. tthéver inter-

2.2 Management in the presence of faults
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Figure 2. Basic driver structure
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. L l— dTxSucc = true l— dFrAlMag = true [ot::;(;\:” _
face It includes a set of primitives that abstract away the dTxPend = false [*| dTxOmi =0 ue?
existence of two CAN controllers and that allow the appli- £ Yes
cation to communicate through the replicated channel. dTxOmi++,

. . . | [cTxReq[dTxCtrl] = true, dTxOmi =
Below the interface, we can find the drivertsans- dTxPend[dTxCtrl] = true, maxincon?
mission buffeltx buffel) andreception buffer(rx buffer). dTxTena[dTxCtrl] = true

When the application requests to transmit a frame, the
driver not only writes that frame to the hardware transmis-

sion buffer of thetx controller, but it stores a copy of that The CAN event trackecan be seen as a dispatcher that
frame in the driver'sx buffer The driver needs this copy gecides which routine must handle each notification. But
for different management operations, e.g. if the driver dijts most important functionality is to annotate what notifi-
agnoses théx controller as faulty before that controller cations occur (and thus what routines it has triggered). For
successfully transmits the requested frame, the driver aYhat, it uses a boolean variable for each type of notifica-
tomatically transfers a copy of that frame to the survivingtion, which we callracking variables They are needed to

controller. Regarding thex buffer, it is a buffer that ac-  pandle eacldelivery eventas explained later.
commodates the last frame received through ReCANcen-

trate. When the driver accepts a frame reception, it im4 M anagement routines
mediately copies the frame from the hardware reception
buffer of one of the controllers to the driver’s rx bufferand4.1 Tx and Rx routines
releases the hardware reception buffers of both conteoller  When adelivery evenbccurs, it is expected that each
The major part of the driver functionality is located in CAN controller notifies about a transmission or reception
themanagement routineghetransmission routinétx rou- by triggering, respectively, an execution of theroutine
tine), thereception routingrx routine), and thequarantine  or rx routine for each notification. If this happens, one of
routine (qua routing. Each one of them is an interrupt ser- the routines will execute before the other, but both must
vice routine (ISR) that handles a given CAN controller orcollaborate to handle the event. In contrast, if only one
timer notification. Theix routine and therx routine are  routine is triggered because a CAN controller omits due to
executed when any of the two CAN controllers notifies ofa fault, that routine must handle the event alone.
a transmission and a reception respectively. dba rou- Next we briefly explain the actions carried out by the tx
tineis executed when the TEC/REC of any of the two CANroutine, which is depicted in Figure 3. First, the tx routine
controllers reaches a specific threshold or whertiiener  resets the tracking variable that indicates that it has been
expires. To simplify the routines we considered that theytriggered by the corresponding controll€FXEv[ctrl]). It
cannot be nested, which requires that all of them have theiso resets the tx timer associated with the transmitted
same execution priority. frame. Then, since a frame transmitted by the tx controller
However, none of these ISRs is directly triggered whershould be received by the non-tx controller, the routine
a notification occurs. Instead, what a notification triggershecks if the rx routine was triggered first and has vali-
is another ISR calle€CAN event tracker This ISR has dated the correspondence between the frame transmitted
the maximum execution priority so that it can preempt anyand received. For this purpose, it consults the driver vari-
management routine. When a notification occurs, the CANble dFrAlMag. If its value is true, it means that the rx
event tracker annotates that it has occurred and, then, trigoutine has already managed the transmission notification
gers the execution of the appropriate management routirend, thus, the tx routine simply needs to reset this variable
by generating an interrupt. The triggered management roue false. IfdFrAlMag is false, the routine wait& units
tines will be pending until the CAN event tracker and anyof time to give enough time to the non-tx controller to no-
previously preempted management routine end. If both #fy the reception of the transmitted frame. Afterwards, it
gua routine and a rx routine for the same controller areonsults the tracking variabtBxEvto elucidate if this no-
pending, the implementation must ensure that the qua rotification has occurred. If so, the routine sdEgAlMagto
tine is executed last because, as will be explained in thiue to inform the rx routine that it has validated the corre-
next section, the qua routine deactivates the controllér arspondence between the notifications, so that the rx routine
the rx routine would otherwise access the receive buffer ofloes not have to check it again. Then, it resets the driver
an deactivated controller. variabledTxOmj whose role will be explained later on.

Figure 3. Tx routine
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driver variabledTxOmj indicates to the application that
the frame has been successfully transmitted, and resets the
driver variabledTxPend In case the other controller has
not triggered a tx routine when the rx routine has already

Finally, it indicates to the application that the frame haswaltedK units of time, the rx routine still needs to eluci-

been successfully transmittedTxSucc = trupand resets date if it is managing a frame transmitted by that other con-

the driver variabl@TxPendwhich indicated that the frame troller. Th|§ 'S. S0 beqe_lusg the other controller COL.JId omit

. . the transmission notification due to a fault, e.g. it could

was pending to be transmitted. crash before triggering the tx routine; or a CAN inconsis-
In contrast, if after waiting/ units of time, the rx ggering '

routine has not been triggered, the tx routine detects atr(]ency scenario could lead it to believe that it did not suc-

I : ) . ..cessfully broadcast the frame. In order to make sure that
omission discrepandiSection 2.2). When this happens, it .. . :
. L . it is not managing a frame transmitted by the other con-
checks if the number of omissions detected so far is equ . : . :
) S . ~_troller, the rx routine checks if the driver variald@&xPend
to the maximum number of consecutive inconsistencies; ; .
) L 15 true and if the frame placed at the tx buffer of the driver
maxIncon If so, the tx routine assumes that this incon-

. . . dFrTxRQ is equal to the frame it has read from its cor-
sistency is due to a permanent stuck-at-recessive failt th ) .
g responding controllecRxBuff[ctrl]). If so, the rx routine
prevents the non-tx controller from communicating. Thus

o . L assumes that an omission discrepancy occurred and, thus,
it simply indicates to the application that the frame has o , ;

. L Increases the omission countErxOmi Note that in case
been successfully transmitted. Otherwise, it increases t

e ) . . r1he omission is due to a permanent fault, e.g. the tx con-
omission counted TxOmiand requests again the transmis- . ) .
troller has crashed, then the tx timer will eventually egpir

sion of the frame through the tx controllaTxCtrl). Note . . .
: . and the qua routine will carry out the actions needed to tol-
that this re-transmission strategy leads the node to gener-

: . . . erate the fault (see Section 4.2). Finally, in case the rx rou
ate duplicated frames in case the omission discrepancy wgs - . :
. INe is not managing a frame transmitted by the other con-
actually due to a permanent stuck-at-recessive fault.

. . roller, it checks if th her controller h Iso recdiv
The rx routine is similar to the tx routine (see Figure 4).'[0 er, it checks if that other controller has also receive

One of the first actions it carries out is to check the driver'::hoer ftﬁrsnelin?)srlsstgég?frrii tti?fe c(::c())rrzgjﬁ(s)r;gggrx rrgurtilgtee.
variabledFrAlMag. If it is true, it means that the frame purpose, pprop

whose reception has launched the rx routine has been aH_ackmg variabletRxEvlotherCtrl). If itis true, it sets the

i . river variabledFrAIMag to true to indicate to the other
ready managed by the tx/rx routine triggered by the other . : .
i . d . rx routine that it has already managed the reception of the
controller; thus, the rx routine merely resets this vagabl

. . . frame. In any case, at the end, the rx routine copies the re-

and releases the receive buffer of its corresponding corn-_. L .
. . i ceived frame to the driver’s reception buffeiRxBuff and

troller. Otherwise, the rx routine knows that it is the one . , ;

. L . . : : : releases its controller’s reception buffer.

that is executing first, thus it waits units of time (to give

the other controller time to notify) and reads the frame re- ]

ceived at the receive buffer of its corresponding controlle 42 Quaroutine

Then, the rx routine checks whether or not the other con- When a TEC/REC of a controller reaches a given

troller has triggered a tx routine. If affirmative, it meansthreshold, it triggers the qua routine in order to diagnose

that the frame the rx routine is managing is actually a framéhe controller as faulty. Similarly, when the tx timer ex-

transmitted by the other controller. In that case, the rypires, the qua routine is also triggered in order to rule out

routine setsdFrAlMag to true to inform the tx routine— the tx controller for communicating, as this expiration im-

which will be executed next—that it already managed theplies that this controller has crashed (see Section 2.2).

transmission notification. Next, the rx routine resets the The diagram of this routine is depicted in Figure 5. Ini-

Figure 4. Rx routine



tially the routine sets the controller diagnosed as faultycase of CAN 2, and both a reception and an error warning
to non-active(for this purpose it sets the driver’s vari- in case of CAN 1), they annotate (by means of the track-
abledAct[ctrl] to false) and resets it. Then, it elucidatesing variables) that the discerned interrupts occurred, and
whether or not the controller is the tx controller. If noteth they trigger, by means of software interrupts (represented
routine merely finishes; otherwise, it has to perform a seas downward arrows), the corresponding management rou-
of actions needed to start using the surviving controller aines. The one that executes first is the rx routine of the
the new tx controller. If this is the case, the routine firsttx controller (CAN 1): it basically reads the rx buffer of
disables the tx timer: this prevents the timer from unneces=AN 1, informs the application that a new frame has been
sarily expiring in case the qua routine is triggered becauseeceived, and releases the receive buffer. This routiree als
the tx controller encountered too many errors and the timetnows, thanks to the appropriate tracker variable, that the
was still running. Afterwards, the qua routine checks if therx routine for CAN 2 will execute next. Thus, when finish-
other controller is non-faulty, i.e. if the other contrelle  ing, it setsdFrAlIMagto true to inform the other rx routine
active(dAct[otherCtrl] = true). If not, the routine indicates that the reception was already managed. Then, when the
to the application that there is no controller left to commu-x routine of CAN 2 executes, it merely reseliSrAlMag,
nicate (INoAvCitrlis set to true) and finishes. Otherwise, releases the rx buffer of CAN 2, and finishes.

the routine marks the other controller as the tx controller Finally, the qua routine for CAN 1 executes. It deacti-
(dTxCtrl = otherCtrl). Then, the routine has to elucidate vates CAN 1 and marks CAN 2 as the new tx controller.
whether or not a frame’s transmission is pending becaus&ince the application previously requested a transmission
in that case, it could be necessary to request the transmi&ee beginning of the chronogram) and the old tx controller
sion of that frame through the new tx controller. Specifi-failed after completing it, the qua routine also requests th
cally, the qua routine requests this transmission if theedri  pending transmission through the new tx controller.
variable that indicates that there is a pending transmissio

(dTxPenilis true and the tracker variable that indicates thab ~ Prototype and tests

a tx routine has been triggerefi XE\) is false. Note that
the qua routine does not request the transmission if the
routine has been triggered. This is because the TEC/RE
of the old tx controller may have reached the predefine
threshold just after completing a transmission and, thus, t
retransmit would generate a duplicate.

We built a ReCANcentrate prototype provided with two
ubs, two interlinks, and three nodes. Each hub is imple-
ented using the VHSIC Hardware Description Language

HDL) and synthesized in a Xilinx Spartan-3 XC3S1000
FPGA—except its hardware interface, which is built using
COTS transceivers. One UTP ethernet cable and a pair of
RJ45 connectors are used to implement each link/interlink,
4.3 Example of execution which includes an uplink and an independent downlink (or

Figure 6 depicts an example scenario which involves théwo independent sublinks). Each uplink, downlink, and
execution of some of the above-mentioned routines. Thsublink uses two-wire differential lines.
beginning of the chronogram represents the end of an 8- We implemented the media management driver for the
byte-data frame sent by another no@AN 1andCAN 2 dsPIC30F6014A [9]. Each node consists of two different
refer respectively to the tx controller and the non-tx conboards attached to each other. The first one is a printed
troller of a receiving node. The frame is observed at thévoard called dsPICDEWthat MicrochigMprovides for
CAN 1 and CAN 2 downlinks of that node. The CAN 1 evaluation purposes. It includes the dsPIC30F6014A mi-
uplink has been isolated by the corresponding hub due terocontroller, which has two CAN controllers and which
prior errors (not shown). When the frame ends, each CAMiso provides the appropriate interrupt sources and allows
controller triggers a CAN interrupt (represented by an up+o configure the priorities and the preemption policy of the
ward arrow), which is captured by the corresponding CANSRs as we need (Section 3). The dsPICDEdoard also
event tracker ISR. Additionally, the chronogram shows thaincludes a row of 4 LEDs the micro can use for debug-
the CAN 1 controller triggers a second CAN interrupt af-ging purposes. The second board is cadimdLinkand we
ter its REC reaches a predefined threshold, known as errdesigned it specifically for ReCANcentrate; it basically in
warning, due to an erroneous bit in its downlink during thecludes COTS transceivers to connect the dsPIC30F6014A's
third bit of the intermission period. CAN controllers to the replicated star.

However, note that in the chronogram the CAN event During the development our focus was on making the
tracker ISRs cannot execute immediately after their consource code modular, readable, and easy to modify, while
trollers notify a CAN event. This is so because these notifollowing a defensive programminf0] approach by in-
fications take place just after the driver disables the nscro sertingassertionsthroughout the code, i.e. code that ac-
interrupts as a consequence of the execution of a transmitively checks whether specific assumptions hold at a given
sion request primitivetk reg) called by the application— point of a program. Despite increasing the node’s over-
this primitive needs to disable the interrupts to ensure muhead, this approach allowed us to easily debug the code as
tual exclusion when accessing driver variables such as theell as to verify the correctness of the driver’s functions.
tx buffer. Once tx req finishes, the tracker ISRs execute: The objective of this driver is to demonstrate the feasi-
they discern what caused the CAN interrupt (a reception itility of the media management we propose for ReCAN-
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Figure 6. Example scenario that involves the driver’s routines

centrate; thus, the driver interface (Section 3) implementwe can inject permanent stuck-at faults at a precise instant
only a set of basic initialization and communication prim-of time during a frame broadcast and during bus-idle.
itives, e.g. a primitive to initialize the driver, a primi-

tive to request a transmission, and a primitive to read re>1 Fault-tolerancetests

ceived data. There is also a primitive to tell the applicatio ~ We tested our ReCANcentrate nodes under scenarios
that communication is no longer possible because all cowhere a single permanent stuck-at-recessive or stuck-at-
trollers are faulty. dominant fault is injected into a single downlink or up-

. , . Iipk. Tests involving various bit-flipping patterns, con-
Concerning the management routines, the requiremern ; . . .
troller crashes, multiple faults, or inconsistency scersar

that the qua routine is executed after a pending rx routine
d b 9 are postponed for future work.

(_Sectlon 3)is accompllshed_ by assigning to the qua rou- Although there are four injection points (two downlinks
tine a lower second order priority, which is used to disam-

. L o and two uplinks) and two types of faults, there are more
biguate which interrupt among several pending mterruptfh o
. S : o an2 - 4 = 8 relevant fault injection tests. Note that

with the same priority is served first. Additionally, we ob- ; .
o the role of the affected controller (transmitter/recejaard
served that both CAN controllers quasi-simultaneouslyno; ~ "~ S
. . the timing of when exactly a permanent fault is injected
tify about each delivery event and, thus, we set the tx/rx . : : :
L : Is relevant. A stuck-at-recessive affecting a downlink wil
routines’ parametek” (Section 4.1) ta@). ; o
i ) ) corrupt an on-going frame only if it is injected between
The basis for all our tests were 3 programs, i.e3B&  the Start Of Frame and the ACK Delimiter of that frame;
Counter theBlinker, and theReceiverwhich ran simulta-  gtherwise, the affected controller will not detect any erro
neously, each one on a different node. The channel utiynq will not globalize it. Similarly, a stuck-at-recessate
lization was maximized, i.e. the separation between eacihe yplink of a controller that is transmitting will not cor-
pair of consecutive fra_mes was the minimum intermissionypt the on-going frame if it does not affect any dominant
period (,3 bits). The bit rate was 621.25Kbps, instead  pjts previous to the ACK delimiter. Moreover, a stuck-at-
of CAN's maximum 1 Mbps [3], due to the oscillators we recessive affecting a downlink/uplink will not be noticed
used for the hubs and nodes. The 3BitCounter executgy; the affected controller as long as that controller does
an infinite loop that increases a 37b|t_c_;ounter, displays thg ot attempt a transmission or, when the uplink is stuck-at-
counter's value on the 3 “least significant” LEDS of the jacessive and thus it cannot transmit ACKs, as long as it
dsPICDEM board, and transmits it in the 3 least significangpserves that another controller sends the ACK bit.
bits of the payload of a 1-byte-data frame (all other bits of  Taking into account the controller’s role and the time
the payload are set to zero). The Blinker executes an insf injection, we set up0 fault-injection tests, each exe-
finite loop where it increases a 1-bit counter, displays th@yted at least0 times, which gave us confidence of the
counter's value in thenost-significant LEDof its dsPIC- 5 jt-tolerance capabilities of our driver. However, note
DEM board, and transmits it in the fourth most significanty 5t these tests do not cover all possible fault scenars, i
bit of the payload of a 1-byte-data frame (the rest of they| possible combinations of faults and actions carried out
payload is set to zero). The Receiver continuously receivgg) iglerate them. To cover all of them we plan to use model
any frame transmitted, and displays on its 4 LEDs the bichecking techniques [11].
nary value received in the 4 least significant bits of the last |, a1l our tests the system behaved as expected and
frame’s payload; thus its 3 least significant LEDs count ingts were tolerated: each fault never noticeably distdrb
binary, whereas its most significant LED blinks. the applications executed at the nodes, i.e. the 3BitCounte
To inject faults at uplinks and downlinks, we imple- the Blinker, and the Receiver. These tests are summarized
mented, in VHDL, a fault injector for each hub. With it in Tables 1 and 2. For instance, test 7 of Table 1 corre-



Table 1. Stuck-at recessive fault injection tests

Node Where When Observed consequences and fault-tolezatioas
1 Receiver tx ctrl downlink EOF no global error; tx ctrl notagantined (sees medium as idle); receptions continue at
non-tx ctrl
2 Receiver non-tx ctrl downlink  EOF no global error; non-t® oot quarantined (sees medium as idle); receptions coatat
tx ctrl
3 Receiver txctrl downlink data field temporarily global@trhub isolates tx ctrl uplink; tx ctrl is quarantined; nboetrl

becomes new tx ctrl; receptions continue at new tx ctrl

4  Receiver non-tx ctrl downlink  data field temporarily glbbaror; hub isolates non-tx ctrl uplink; non-tx ctrl is gaatined,;
receptions continue at tx ctrl

5/6  Blinker tx ctrl downlink EOF / temporarily global error; hub isolates tx ctrl uplink; txlds quarantined; non-tx ctrl
data field becomes new tx ctrl; if a frame was pending in old tx ctrl, qoatine instructs its

transmission through the new tx ctrl

7  Blinker non-tx ctrl downlink  EOF no global error; non-txlabot quarantined (sees medium as id@gaxincon
retransmissions through tx ctrl

8 Blinker non-tx ctrl downlink  data field  temporarily globatror; hub isolates non-tx ctrl uplink; non-tx ctrl is quatiaed;
transmissions continue at tx ctrl

9 Receiver txctrl uplink arbitrary ~ no global error; tx ctslmot quarantined (no bit error during ACK because tx ctrl
receives non-tx ctrl's ACK); both controllers continue &xeive
10 Receiver non-tx ctrl uplink arbitrary no global errormtx ctrl is not quarantined (no bit error during ACK becaunsa-tx
ctrl receives tx ctrl's ACK); both controllers continue ®ceive
11 Blinker tx ctrl uplink arbitrary  no global error; tx ctiquarantined; non-tx ctrl becomes new tx ctrl; if a frame was
pending in old tx ctrl, qua routine instructs its transmossihrough the new tx ctrl
12 Blinker non-tx ctrl uplink arbitrary ~ no global error; ndx ctrl is not quarantined (no bit error during ACK becausx

ctrl receives ACK from another node); receptions continueos-tx ctrl

sponds to the injection of a permanent stuck-at-recessivaher routine to be triggered. We think that this time should
fault in the downlink of the non-tx controller of the Blinker be very short, of the order of a fraction of the bit time.

node during the EOF of a frame. This fault does not gen- To validate the driver performance in absence of faults,
erate any channel error, but each time the tx controller ofve simultaneously ran the above-mentioned three test pro-
this node completes a frame transmission, its driver obgrams during sessions of more th&fours, maximizing
serves that the non-tx controller omits the reception of thathe channel utilization a21.25 Kbps. We corroborated,
frame. Thus, as long as the non-tx controller remains adsy means of the corresponding assertions in the code, that
tive, each frame transmission requested by the Blinker iall delivery events where timely managed. Moreover, all
retransmitteanaxincortimes by its tx controller and, only delivery events were also punctually processed in all fault
then, the driver notifies the Blinker about the successflinjection tests.

transmission. Another interesting test is the one speci- Also, we measured the execution time of the driver for
fied in row 19 of Table 2, in which a permanent stuck-at-the estimated worst-case scenario to check if it can be
dominant is injected in an arbitrary instant of time in thetimely managed. This scenario was introduced before in
uplink of the tx controller of the Blinker. This always pro- Section 4.3. It happens when, just after an 8-byte-data
voked a global error in the channel blocking any commu-CAN frame finishes, the node needs to execute an 8-byte tx
nication until the hub isolates the Blinker’s tx controller req, the CAN 1 tracker, the CAN 2 tracker, the CAN 1 rx,
Then, all other controllers start communicating normallyand the CAN 2 rx routine before the shortest CAN frame
and, at a certain point in time, the driver diagnoses the t{starting just after the minimum, 3-bit, intermission oef)
controller of Blinker as faulty. This triggers Blinker's gu is broadcast—the qua routine executed last can finish later.
routine, which declares the non-tx controller as the new tqhe relevant execution times measured in this scenario for
controller and, if necessary, requests through the new the functions that must finish timely (shown in Figure 6)
controller the transmission of the frame pending at the oldre 178, 233, 252, 296, and 131 instruction cycles respec-

tx controller. tively, totaling 1090 cycles. The shortest cycl@#92 ns,
s032 cycles can be executed at most per bitat 921.25 Kbps.
5.2 Performancetests This gives, in the worst case, where the shortest frame

The driver performance is an issue of main concerr(_44 bits) follows, the drive(44 + 3? 32 - 15(_)4 instruc-
since it must handle each delivery event and reset the rdon cycles to manage the reception, which is greater than

spective tracking variables before a new delivery event odN® 1090 cycles consumed by the functions that must finish

curs; otherwise, a management routine corresponding totgnely.
new delivery event_could mcprrectly cooperate with roU-6 conclusions and future work
tines that are handling a previous one.

On the one hand, note that before a routine consults the In this paper we present the design, implementation and
tracking variable that indicates if the other routine ials a first experimental validation of a software driver that ex-
going to be executed, it must wait enough time to allow theecutes at each ReCANcentrate node and that allows CAN-



Table 2. Stuck-at dominant fault injection tests

Node Where When Observed consequences and fault-toleaatioas

13 Receiver tx ctrl downlink arbitrary ~ temporarily globatar; hub isolates tx ctrl uplink; tx ctrl is quarantined; mix ctrl
becomes new tx ctrl; receptions continue at new tx ctrl

14 Receiver non-tx ctrl downlink  arbitrary ~ temporarily g error; hub isolates non-tx ctrl uplink; non-tx ctrl isagantined;
receptions continue at tx ctrl

15  Blinker tx ctrl downlink arbitrary  temporarily globalrer; hub isolates tx ctrl uplink; tx ctrl is quarantined; nbnctrl
becomes new tx ctrl; if a frame was pending in old tx ctrl, goatine instructs its
transmission through the new tx ctrl

16  Blinker non-tx ctrl downlink  arbitrary ~ temporarily glaberror; hub isolates non-tx ctrl uplink; non-tx ctrl is gaatined;
transmissions continue at tx ctrl

17 Receiver tx ctrl uplink arbitrary  temporarily global @rrhub isolates tx ctrl uplink; tx ctrl is not quarantined(bit error
during ACK because tx ctrl receives non-tx ctrl's ACK); batbntrollers continue to
receive

18 Receiver non-tx ctrl uplink arbitrary ~ temporarily gldlesror; hub isolates non-tx ctrl uplink; non-tx ctrl is natarantined (no
bit error during ACK because non-tx ctrl receives tx ctrl€K); both controllers continue
to receive

19  Blinker tx ctrl uplink arbitrary  temporarily global emchub isolates tx ctrl uplink; tx ctrl is quarantined; nonetrl
becomes new tx ctrl; if a frame was pending in old tx ctrl, goatine instructs its
transmission through the new tx ctrl

20  Blinker non-tx ctrl uplink arbitrary ~ temporarily globatror; hub isolates non-tx ctrl uplink; non-tx ctrl is notagantined (no

bit error during ACK because non-tx ctrl receives ACK fronotrer node); receptions
continue at non-tx ctrl
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