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Abstract

Although the use of star topologies to improve depend-
ability in field-buses is gaining in importance, as in TTP/C
and FlexRay, a mature technology such as the Controller
Area Network (CAN) remained essentially a bus-only net-
work. Thus, we proposed a CAN-compliant replicated
star topology called ReCANcentrate, which has advanced
error-containment and fault-tolerance mechanisms. Its two
hubs are coupled with each other and create a single logi-
cal broadcast domain that allowed us to propose, in a pre-
vious work, a strategy for each node to easily manage the
replicated star by means of a software driver that abstracts
away the details of the replication. This paper describes
the main functionalities of this driver, as well as the first
tests we have conducted, on a real ReCANcentrate proto-
type, to verify the correctness and the performance of the
driver in the absence and in the presence of faults.

1 Introduction

The use of star topologies as the underlying topology
of field-bus communication subsystems has been a mat-
ter of main concern, given the stars potential dependability
benefits. This can be clearly seen in recent protocols such
as TTP/C [1] and FlexRay [2]. However, the Controller
Area Network [3] (CAN) protocol, which is one of the
most mature field-bus technologies, remained essentially
a bus-only network. Thus, in order to benefit from stars
and, in particular, from their better error-containment and
fault-tolerance capabilities, we proposed a CAN-compliant
replicated star topology called ReCANcentrate [4], whose
significant reliability benefits have been quantitatively cor-
roborated recently [5].

The basic architecture of ReCANcentrate is depicted in
Figure 1. It includes two hubs with nodes connected to
each of them by dedicated links containing each an uplink
and a downlink. Both hubs are also interconnected by at
least two interlinks, each containing two independent sub-
links, one for each direction. Each hub has mechanisms
to contain errors originated at nodes, links, interlinks, or
hubs [4]. ReCANcentrate also has mechanisms to tolerate
faults occurring at one of the hubs, at links/interlinks, and
at the nodes’ communication controllers.

To achieve fault tolerance, each ReCANcentrate star is
used as a CAN channel that transmits a replica of the same
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Figure 1. ReCANcentrate architecture

data in parallel. However, due to CAN’s error-signaling
and arbitration mechanisms, a bit error in one channel is
enough for its traffic to evolve different than in the other
replica. Thus, it is not easy for a node to detect when
frames received at different instants of time, each through
a different channel, are copies of the same frame (dupli-
cates); or when a frame received from one channel is omit-
ted from the other (omissions). Moreover, since channels
are independent, the network can become partitioned if
faults prevent nodes from communicating through differ-
ent replicas [4]. To overcome these problems, the hubs ex-
change their traffic through the interlinks and couple with
each other [4], thereby synchronizing both channels at bit
level and forcing both hubs to quasi-simultaneously trans-
mit the same value, bit by bit, through their downlinks.
Note that, thanks to the coupling between the hubs, all
nodes can communicate with each other regardless the hub
or hubs each node is able to communicate through.

The above mentioned features allowed us to define a
strategy for each node to easily manage transmissions and
receptions, and to treat faults occurring in the stars [6].
Moreover, in a previous work [7] we presented the on-
going development of a software driver that executes on
each ReCANcentrate node and that implements this man-
agement. The current paper completes previous work by
describing the main routines that constitute this driver, as
well as by explaining the results of the first tests we have
conducted, on a real ReCANcentrate prototype, in order to
verify the correctness and the performance of the driver in
the absence and in the presence of faults.

2 Media management basics

The physical layer of CAN implements a wired-AND
function of every node contribution, thereby providing the
dominant/recessive transmissionproperty [3], which en-
sures that a dominant bit, ‘0’, prevails over a recessive bit,
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‘1’. Additionally, the CAN bit synchronization guarantees
the in-bit responseproperty, thanks to which nodes quasi-
simultaneously observe every single bit on the channel.

The ReCANcentrate hubs perform a special AND-
coupling within a fraction of the bit time, thereby creat-
ing a single logical broadcast domain that keeps the two
referred CAN properties; thus, both hubs behave like one,
transmitting the same value bit by bit in their downlinks.
In order to connect to the replicated star the node relies on
the architecture depicted in Figure 1. It is constituted by
commercial-off-the-shelf (COTS) components only: one
microcontroller and two CAN controllers, each connected
to a separate hub, using one transceiver for the uplink and
another one for the downlink.

2.1 Management in the absence of faults
According to our media management strategy, the node

transmits towards one of the hubs only, while receiving
from both hubs at the same time. One controller, thenon-
transmission controller(non-tx controller), is only used to
receive frames—which may have been transmitted by its
own node or by other nodes. The other controller, the
transmission controller(tx controller), is used by the node
to transmit frames in addition to receiving frames.

When a frame is successfully exchanged through the
network, i.e. when adelivery eventoccurs, each node ex-
pects that its two controllers quasi-simultaneously notify
of that event. Thus, in the absence of faults, the node man-
ages transmissions and receptions as follows. First, if the
node successfully transmits a frame, thetx controllerand
thenon-tx controllernotify of the transmission and recep-
tion of this frame respectively; thus, the node only needs
to accept the notification of the transmission as valid and
release the reception buffer of thenon-tx controller. Sec-
ond, if the node receives a frame sent from another node,
it is notified of this reception by its two CAN controllers.
When this happens, the node must merely consume the
frame received at one of the controllers and, then, release
the reception buffers of both controllers.

2.2 Management in the presence of faults
ReCANcentrate’s fault model includes faults at nodes,

links, interlinks, or a hub that manifest themselves,
from a channel point of view, as stuck-at or bit-flipping
streams [4]. Additionally, it includes CAN controller faults
that manifest as acrash from a node’s point of view, i.e.
faults that lead a CAN controller to notify nothing to its
node. The only fault assumption is that hubs remain cou-
pled with each other using at least one non-faulty interlink.

Channel errors generated by a fault block the communi-
cation in both stars as long as the hubs do not isolate it by
disabling the appropriate hub ports [7]. Once isolated, if
the fault affects a link or a CAN controller, it only prevents
the corresponding node from communicating through the
corresponding hub; however, if the fault affects a hub, it
can lead to no node being able to communicate through
that hub. Interlink faults do not prevent any node from
communicating, as long as they do not affect all interlinks.

To tolerate a fault, it is necessary that a node that can-
not communicate through a given hub as a consequence
of that fault continues to communicate through the other
hub. As explained in [6], a node that cannot communicate
through a given hub will observe anotification omission
discrepancy(omission discrepancy for short): when ade-
livery eventoccurs, the node observes that the controller
connected to that hub fails to notify that event. Thus, in
principle, the node can tolerate a fault by simply accept-
ing as valid the transmission/reception notified by the con-
troller that has no problems. Note that if the controller that
omits notifications is thenon-txcontroller, the node does
not need to diagnose it as faulty. However, if the controller
that omits is thetx controller, the node must eventually di-
agnose it as faulty and rule it out for communicating; other-
wise, the node will not be able to transmit anymore. Thus,
the node initiates atransmission timer(tx timer) when it
requests a transmission: if the timer expires before thetx
controller notifies of a successful transmission, the node
rules it out and uses the other controller to transmit/receive.
Additionally, to enhance the node’s fault diagnosis capa-
bilities, we propose to rule out a CAN controller whenever
its Transmission Error Counter(TEC) or itsReception Er-
ror Counter(REC) [3] reaches a given threshold—this pre-
vents controllers from going into theerror-passive state, in
which they could inconsistently exchange frames [3].

Finally, there are some situations in which an omission
discrepancy can be caused by a media fault that does not
prevent all controllers from communicating, but that leads
them to inconsistently exchange a frame. On the one hand,
this may happen in the presence of any of the error sce-
narios affecting the last-but-one bit of a frame that have
been identified for CAN [8]. On the other hand, a stuck-at-
recessive fault may provoke an inconsistency if it prevents
a controller from monitoring the traffic, or if it affects its
uplink and prevents it from aborting an on-going frame.
For instance, if a downlink is stuck-at-recessive during the
broadcast of a whole frame, the controller connected to that
downlink will not receive it. The media management we
propose takes into account the scenarios of [8] to some
extent, as well as inconsistencies provoked by stuck-at-
recessive faults; assuming that a frame is not inconsistently
exchanged more thanmaxInconconsecutive times.

3 Driver architecture

We designed the media management to be implemented
as a driver that abstracts away the details of the node ar-
chitecture and the media replication. Figure 2 depicts the
basic structure of the driver. It shows the peripherals the
driver requires: two CAN controllers,CAN 1andCAN 2
in Figure 2, and a timer to be used as thetx timer. Addi-
tional hardware requirements are the the ability to generate
interrupts through software, interrupts that can be nested,
interrupt generation when a controller’s TEC/REC reaches
a threshold, and configurable priorities for the interrupts.

At the top part of the structure we can see the interface
the driver provides to the application, i.e. thedriver inter-
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Figure 2. Basic driver structure

face. It includes a set of primitives that abstract away the
existence of two CAN controllers and that allow the appli-
cation to communicate through the replicated channel.

Below the interface, we can find the driver’strans-
mission buffer(tx buffer) andreception buffer(rx buffer).
When the application requests to transmit a frame, the
driver not only writes that frame to the hardware transmis-
sion buffer of thetx controller, but it stores a copy of that
frame in the driver’stx buffer. The driver needs this copy
for different management operations, e.g. if the driver di-
agnoses thetx controller as faulty before that controller
successfully transmits the requested frame, the driver au-
tomatically transfers a copy of that frame to the surviving
controller. Regarding therx buffer, it is a buffer that ac-
commodates the last frame received through ReCANcen-
trate. When the driver accepts a frame reception, it im-
mediately copies the frame from the hardware reception
buffer of one of the controllers to the driver’s rx buffer and
releases the hardware reception buffers of both controllers.

The major part of the driver functionality is located in
themanagement routines: thetransmission routine(tx rou-
tine), thereception routine(rx routine), and thequarantine
routine(qua routine). Each one of them is an interrupt ser-
vice routine (ISR) that handles a given CAN controller or
timer notification. Thetx routine and therx routine are
executed when any of the two CAN controllers notifies of
a transmission and a reception respectively. Thequa rou-
tine is executed when the TEC/REC of any of the two CAN
controllers reaches a specific threshold or when thetx timer
expires. To simplify the routines we considered that they
cannot be nested, which requires that all of them have the
same execution priority.

However, none of these ISRs is directly triggered when
a notification occurs. Instead, what a notification triggers
is another ISR calledCAN event tracker. This ISR has
the maximum execution priority so that it can preempt any
management routine. When a notification occurs, the CAN
event tracker annotates that it has occurred and, then, trig-
gers the execution of the appropriate management routine
by generating an interrupt. The triggered management rou-
tines will be pending until the CAN event tracker and any
previously preempted management routine end. If both a
qua routine and a rx routine for the same controller are
pending, the implementation must ensure that the qua rou-
tine is executed last because, as will be explained in the
next section, the qua routine deactivates the controller and
the rx routine would otherwise access the receive buffer of
an deactivated controller.
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Figure 3. Tx routine

TheCAN event trackercan be seen as a dispatcher that
decides which routine must handle each notification. But
its most important functionality is to annotate what notifi-
cations occur (and thus what routines it has triggered). For
that, it uses a boolean variable for each type of notifica-
tion, which we calltracking variables. They are needed to
handle eachdelivery event, as explained later.

4 Management routines

4.1 Tx and Rx routines
When adelivery eventoccurs, it is expected that each

CAN controller notifies about a transmission or reception
by triggering, respectively, an execution of thetx routine
or rx routine for each notification. If this happens, one of
the routines will execute before the other, but both must
collaborate to handle the event. In contrast, if only one
routine is triggered because a CAN controller omits due to
a fault, that routine must handle the event alone.

Next we briefly explain the actions carried out by the tx
routine, which is depicted in Figure 3. First, the tx routine
resets the tracking variable that indicates that it has been
triggered by the corresponding controller (tTxEv[ctrl]). It
also resets the tx timer associated with the transmitted
frame. Then, since a frame transmitted by the tx controller
should be received by the non-tx controller, the routine
checks if the rx routine was triggered first and has vali-
dated the correspondence between the frame transmitted
and received. For this purpose, it consults the driver vari-
abledFrAlMag. If its value is true, it means that the rx
routine has already managed the transmission notification
and, thus, the tx routine simply needs to reset this variable
to false. If dFrAlMag is false, the routine waitsK units
of time to give enough time to the non-tx controller to no-
tify the reception of the transmitted frame. Afterwards, it
consults the tracking variabletRxEvto elucidate if this no-
tification has occurred. If so, the routine setsdFrAlMag to
true to inform the rx routine that it has validated the corre-
spondence between the notifications, so that the rx routine
does not have to check it again. Then, it resets the driver
variabledTxOmi, whose role will be explained later on.
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Finally, it indicates to the application that the frame has
been successfully transmitted (dTxSucc = true) and resets
the driver variabledTxPend, which indicated that the frame
was pending to be transmitted.

In contrast, if after waitingK units of time, the rx
routine has not been triggered, the tx routine detects an
omission discrepancy(Section 2.2). When this happens, it
checks if the number of omissions detected so far is equal
to the maximum number of consecutive inconsistencies:
maxIncon. If so, the tx routine assumes that this incon-
sistency is due to a permanent stuck-at-recessive fault that
prevents the non-tx controller from communicating. Thus,
it simply indicates to the application that the frame has
been successfully transmitted. Otherwise, it increases the
omission counterdTxOmiand requests again the transmis-
sion of the frame through the tx controller (dTxCtrl). Note
that this re-transmission strategy leads the node to gener-
ate duplicated frames in case the omission discrepancy was
actually due to a permanent stuck-at-recessive fault.

The rx routine is similar to the tx routine (see Figure 4).
One of the first actions it carries out is to check the driver
variabledFrAlMag. If it is true, it means that the frame
whose reception has launched the rx routine has been al-
ready managed by the tx/rx routine triggered by the other
controller; thus, the rx routine merely resets this variable
and releases the receive buffer of its corresponding con-
troller. Otherwise, the rx routine knows that it is the one
that is executing first, thus it waitsK units of time (to give
the other controller time to notify) and reads the frame re-
ceived at the receive buffer of its corresponding controller.
Then, the rx routine checks whether or not the other con-
troller has triggered a tx routine. If affirmative, it means
that the frame the rx routine is managing is actually a frame
transmitted by the other controller. In that case, the rx
routine setsdFrAlMag to true to inform the tx routine—
which will be executed next—that it already managed the
transmission notification. Next, the rx routine resets the
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driver variabledTxOmi, indicates to the application that
the frame has been successfully transmitted, and resets the
driver variabledTxPend. In case the other controller has
not triggered a tx routine when the rx routine has already
waitedK units of time, the rx routine still needs to eluci-
date if it is managing a frame transmitted by that other con-
troller. This is so because the other controller could omit
the transmission notification due to a fault, e.g. it could
crash before triggering the tx routine; or a CAN inconsis-
tency scenario could lead it to believe that it did not suc-
cessfully broadcast the frame. In order to make sure that
it is not managing a frame transmitted by the other con-
troller, the rx routine checks if the driver variabledTxPend
is true and if the frame placed at the tx buffer of the driver
(dFrTxRq) is equal to the frame it has read from its cor-
responding controller (cRxBuff[ctrl]). If so, the rx routine
assumes that an omission discrepancy occurred and, thus,
increases the omission counterdTxOmi. Note that in case
the omission is due to a permanent fault, e.g. the tx con-
troller has crashed, then the tx timer will eventually expire
and the qua routine will carry out the actions needed to tol-
erate the fault (see Section 4.2). Finally, in case the rx rou-
tine is not managing a frame transmitted by the other con-
troller, it checks if that other controller has also received
the frame and has triggered the corresponding rx routine.
For this purpose, the rx routine consults the appropriate
tracking variable (tRxEv[otherCtrl]). If it is true, it sets the
driver variabledFrAlMag to true to indicate to the other
rx routine that it has already managed the reception of the
frame. In any case, at the end, the rx routine copies the re-
ceived frame to the driver’s reception buffer (dRxBuff) and
releases its controller’s reception buffer.

4.2 Qua routine
When a TEC/REC of a controller reaches a given

threshold, it triggers the qua routine in order to diagnose
the controller as faulty. Similarly, when the tx timer ex-
pires, the qua routine is also triggered in order to rule out
the tx controller for communicating, as this expiration im-
plies that this controller has crashed (see Section 2.2).

The diagram of this routine is depicted in Figure 5. Ini-



tially the routine sets the controller diagnosed as faulty
to non-active(for this purpose it sets the driver’s vari-
abledAct[ctrl] to false) and resets it. Then, it elucidates
whether or not the controller is the tx controller. If not, the
routine merely finishes; otherwise, it has to perform a set
of actions needed to start using the surviving controller as
the new tx controller. If this is the case, the routine first
disables the tx timer: this prevents the timer from unneces-
sarily expiring in case the qua routine is triggered because
the tx controller encountered too many errors and the timer
was still running. Afterwards, the qua routine checks if the
other controller is non-faulty, i.e. if the other controller is
active(dAct[otherCtrl] = true). If not, the routine indicates
to the application that there is no controller left to commu-
nicate (dNoAvCtrl is set to true) and finishes. Otherwise,
the routine marks the other controller as the tx controller
(dTxCtrl = otherCtrl). Then, the routine has to elucidate
whether or not a frame’s transmission is pending because,
in that case, it could be necessary to request the transmis-
sion of that frame through the new tx controller. Specifi-
cally, the qua routine requests this transmission if the driver
variable that indicates that there is a pending transmission
(dTxPend) is true and the tracker variable that indicates that
a tx routine has been triggered (tTxEv) is false. Note that
the qua routine does not request the transmission if the tx
routine has been triggered. This is because the TEC/REC
of the old tx controller may have reached the predefined
threshold just after completing a transmission and, thus, to
retransmit would generate a duplicate.

4.3 Example of execution
Figure 6 depicts an example scenario which involves the

execution of some of the above-mentioned routines. The
beginning of the chronogram represents the end of an 8-
byte-data frame sent by another node.CAN 1andCAN 2
refer respectively to the tx controller and the non-tx con-
troller of a receiving node. The frame is observed at the
CAN 1 and CAN 2 downlinks of that node. The CAN 1
uplink has been isolated by the corresponding hub due to
prior errors (not shown). When the frame ends, each CAN
controller triggers a CAN interrupt (represented by an up-
ward arrow), which is captured by the corresponding CAN
event tracker ISR. Additionally, the chronogram shows that
the CAN 1 controller triggers a second CAN interrupt af-
ter its REC reaches a predefined threshold, known as error
warning, due to an erroneous bit in its downlink during the
third bit of the intermission period.

However, note that in the chronogram the CAN event
tracker ISRs cannot execute immediately after their con-
trollers notify a CAN event. This is so because these noti-
fications take place just after the driver disables the micro’s
interrupts as a consequence of the execution of a transmis-
sion request primitive (tx req) called by the application—
this primitive needs to disable the interrupts to ensure mu-
tual exclusion when accessing driver variables such as the
tx buffer. Once tx req finishes, the tracker ISRs execute:
they discern what caused the CAN interrupt (a reception in

case of CAN 2, and both a reception and an error warning
in case of CAN 1), they annotate (by means of the track-
ing variables) that the discerned interrupts occurred, and
they trigger, by means of software interrupts (represented
as downward arrows), the corresponding management rou-
tines. The one that executes first is the rx routine of the
tx controller (CAN 1): it basically reads the rx buffer of
CAN 1, informs the application that a new frame has been
received, and releases the receive buffer. This routine also
knows, thanks to the appropriate tracker variable, that the
rx routine for CAN 2 will execute next. Thus, when finish-
ing, it setsdFrAlMag to true to inform the other rx routine
that the reception was already managed. Then, when the
rx routine of CAN 2 executes, it merely resetsdFrAlMag,
releases the rx buffer of CAN 2, and finishes.

Finally, the qua routine for CAN 1 executes. It deacti-
vates CAN 1 and marks CAN 2 as the new tx controller.
Since the application previously requested a transmission
(see beginning of the chronogram) and the old tx controller
failed after completing it, the qua routine also requests the
pending transmission through the new tx controller.

5 Prototype and tests

We built a ReCANcentrate prototype provided with two
hubs, two interlinks, and three nodes. Each hub is imple-
mented using the VHSIC Hardware Description Language
(VHDL) and synthesized in a Xilinx Spartan-3 XC3S1000
FPGA—except its hardware interface, which is built using
COTS transceivers. One UTP ethernet cable and a pair of
RJ45 connectors are used to implement each link/interlink,
which includes an uplink and an independent downlink (or
two independent sublinks). Each uplink, downlink, and
sublink uses two-wire differential lines.

We implemented the media management driver for the
dsPIC30F6014A [9]. Each node consists of two different
boards attached to each other. The first one is a printed
board called dsPICDEMTMthat MicrochipTMprovides for
evaluation purposes. It includes the dsPIC30F6014A mi-
crocontroller, which has two CAN controllers and which
also provides the appropriate interrupt sources and allows
to configure the priorities and the preemption policy of the
ISRs as we need (Section 3). The dsPICDEMTMboard also
includes a row of 4 LEDs the micro can use for debug-
ging purposes. The second board is calledstarLinkand we
designed it specifically for ReCANcentrate; it basically in-
cludes COTS transceivers to connect the dsPIC30F6014A’s
CAN controllers to the replicated star.

During the development our focus was on making the
source code modular, readable, and easy to modify, while
following a defensive programming[10] approach by in-
sertingassertionsthroughout the code, i.e. code that ac-
tively checks whether specific assumptions hold at a given
point of a program. Despite increasing the node’s over-
head, this approach allowed us to easily debug the code as
well as to verify the correctness of the driver’s functions.

The objective of this driver is to demonstrate the feasi-
bility of the media management we propose for ReCAN-
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Figure 6. Example scenario that involves the driver’s routines

centrate; thus, the driver interface (Section 3) implements
only a set of basic initialization and communication prim-
itives, e.g. a primitive to initialize the driver, a primi-
tive to request a transmission, and a primitive to read re-
ceived data. There is also a primitive to tell the application
that communication is no longer possible because all con-
trollers are faulty.

Concerning the management routines, the requirement
that the qua routine is executed after a pending rx routine
(Section 3) is accomplished by assigning to the qua rou-
tine a lower second order priority, which is used to disam-
biguate which interrupt among several pending interrupts
with the same priority is served first. Additionally, we ob-
served that both CAN controllers quasi-simultaneously no-
tify about each delivery event and, thus, we set the tx/rx
routines’ parameterK (Section 4.1) to0.

The basis for all our tests were 3 programs, i.e. the3Bit-
Counter, theBlinker, and theReceiver, which ran simulta-
neously, each one on a different node. The channel uti-
lization was maximized, i.e. the separation between each
pair of consecutive frames was the minimum intermission
period (3 bits). The bit rate was of921.25Kbps, instead
of CAN’s maximum 1 Mbps [3], due to the oscillators we
used for the hubs and nodes. The 3BitCounter executes
an infinite loop that increases a 3-bit counter, displays the
counter’s value on the 3 “least significant” LEDs of the
dsPICDEM board, and transmits it in the 3 least significant
bits of the payload of a 1-byte-data frame (all other bits of
the payload are set to zero). The Blinker executes an in-
finite loop where it increases a 1-bit counter, displays the
counter’s value in themost-significant LEDof its dsPIC-
DEM board, and transmits it in the fourth most significant
bit of the payload of a 1-byte-data frame (the rest of the
payload is set to zero). The Receiver continuously receives
any frame transmitted, and displays on its 4 LEDs the bi-
nary value received in the 4 least significant bits of the last
frame’s payload; thus its 3 least significant LEDs count in
binary, whereas its most significant LED blinks.

To inject faults at uplinks and downlinks, we imple-
mented, in VHDL, a fault injector for each hub. With it

we can inject permanent stuck-at faults at a precise instant
of time during a frame broadcast and during bus-idle.

5.1 Fault-tolerance tests
We tested our ReCANcentrate nodes under scenarios

where a single permanent stuck-at-recessive or stuck-at-
dominant fault is injected into a single downlink or up-
link. Tests involving various bit-flipping patterns, con-
troller crashes, multiple faults, or inconsistency scenarios
are postponed for future work.

Although there are four injection points (two downlinks
and two uplinks) and two types of faults, there are more
than 2 · 4 = 8 relevant fault injection tests. Note that
the role of the affected controller (transmitter/receiver) and
the timing of when exactly a permanent fault is injected
is relevant. A stuck-at-recessive affecting a downlink will
corrupt an on-going frame only if it is injected between
the Start Of Frame and the ACK Delimiter of that frame;
otherwise, the affected controller will not detect any error
and will not globalize it. Similarly, a stuck-at-recessiveat
the uplink of a controller that is transmitting will not cor-
rupt the on-going frame if it does not affect any dominant
bits previous to the ACK delimiter. Moreover, a stuck-at-
recessive affecting a downlink/uplink will not be noticed
by the affected controller as long as that controller does
not attempt a transmission or, when the uplink is stuck-at-
recessive and thus it cannot transmit ACKs, as long as it
observes that another controller sends the ACK bit.

Taking into account the controller’s role and the time
of injection, we set up20 fault-injection tests, each exe-
cuted at least10 times, which gave us confidence of the
fault-tolerance capabilities of our driver. However, note
that these tests do not cover all possible fault scenarios, i.e.
all possible combinations of faults and actions carried out
to tolerate them. To cover all of them we plan to use model
checking techniques [11].

In all our tests the system behaved as expected and
faults were tolerated: each fault never noticeably disturbed
the applications executed at the nodes, i.e. the 3BitCounter,
the Blinker, and the Receiver. These tests are summarized
in Tables 1 and 2. For instance, test 7 of Table 1 corre-



Table 1. Stuck-at recessive fault injection tests
Node Where When Observed consequences and fault-toleranceactions

1 Receiver tx ctrl downlink EOF no global error; tx ctrl not quarantined (sees medium as idle); receptions continue at
non-tx ctrl

2 Receiver non-tx ctrl downlink EOF no global error; non-tx ctrl not quarantined (sees medium as idle); receptions continue at
tx ctrl

3 Receiver tx ctrl downlink data field temporarily global error; hub isolates tx ctrl uplink; tx ctrl is quarantined; non-tx ctrl
becomes new tx ctrl; receptions continue at new tx ctrl

4 Receiver non-tx ctrl downlink data field temporarily global error; hub isolates non-tx ctrl uplink; non-tx ctrl is quarantined;
receptions continue at tx ctrl

5 / 6 Blinker tx ctrl downlink EOF /
data field

temporarily global error; hub isolates tx ctrl uplink; tx ctrl is quarantined; non-tx ctrl
becomes new tx ctrl; if a frame was pending in old tx ctrl, qua routine instructs its
transmission through the new tx ctrl

7 Blinker non-tx ctrl downlink EOF no global error; non-tx ctrl not quarantined (sees medium as idle);maxIncon
retransmissions through tx ctrl

8 Blinker non-tx ctrl downlink data field temporarily globalerror; hub isolates non-tx ctrl uplink; non-tx ctrl is quarantined;
transmissions continue at tx ctrl

9 Receiver tx ctrl uplink arbitrary no global error; tx ctrl is not quarantined (no bit error during ACK because tx ctrl
receives non-tx ctrl’s ACK); both controllers continue to receive

10 Receiver non-tx ctrl uplink arbitrary no global error; non-tx ctrl is not quarantined (no bit error during ACK becausenon-tx
ctrl receives tx ctrl’s ACK); both controllers continue to receive

11 Blinker tx ctrl uplink arbitrary no global error; tx ctrl is quarantined; non-tx ctrl becomes new tx ctrl; if a frame was
pending in old tx ctrl, qua routine instructs its transmission through the new tx ctrl

12 Blinker non-tx ctrl uplink arbitrary no global error; non-tx ctrl is not quarantined (no bit error during ACK because non-tx
ctrl receives ACK from another node); receptions continue at non-tx ctrl

sponds to the injection of a permanent stuck-at-recessive
fault in the downlink of the non-tx controller of the Blinker
node during the EOF of a frame. This fault does not gen-
erate any channel error, but each time the tx controller of
this node completes a frame transmission, its driver ob-
serves that the non-tx controller omits the reception of that
frame. Thus, as long as the non-tx controller remains ac-
tive, each frame transmission requested by the Blinker is
retransmittedmaxIncontimes by its tx controller and, only
then, the driver notifies the Blinker about the successful
transmission. Another interesting test is the one speci-
fied in row 19 of Table 2, in which a permanent stuck-at-
dominant is injected in an arbitrary instant of time in the
uplink of the tx controller of the Blinker. This always pro-
voked a global error in the channel blocking any commu-
nication until the hub isolates the Blinker’s tx controller.
Then, all other controllers start communicating normally
and, at a certain point in time, the driver diagnoses the tx
controller of Blinker as faulty. This triggers Blinker’s qua
routine, which declares the non-tx controller as the new tx
controller and, if necessary, requests through the new tx
controller the transmission of the frame pending at the old
tx controller.

5.2 Performance tests

The driver performance is an issue of main concern
since it must handle each delivery event and reset the re-
spective tracking variables before a new delivery event oc-
curs; otherwise, a management routine corresponding to a
new delivery event could incorrectly cooperate with rou-
tines that are handling a previous one.

On the one hand, note that before a routine consults the
tracking variable that indicates if the other routine is also
going to be executed, it must wait enough time to allow the

other routine to be triggered. We think that this time should
be very short, of the order of a fraction of the bit time.

To validate the driver performance in absence of faults,
we simultaneously ran the above-mentioned three test pro-
grams during sessions of more than8 hours, maximizing
the channel utilization at921.25Kbps. We corroborated,
by means of the corresponding assertions in the code, that
all delivery events where timely managed. Moreover, all
delivery events were also punctually processed in all fault
injection tests.

Also, we measured the execution time of the driver for
the estimated worst-case scenario to check if it can be
timely managed. This scenario was introduced before in
Section 4.3. It happens when, just after an 8-byte-data
CAN frame finishes, the node needs to execute an 8-byte tx
req, the CAN 1 tracker, the CAN 2 tracker, the CAN 1 rx,
and the CAN 2 rx routine before the shortest CAN frame
(starting just after the minimum, 3-bit, intermission period)
is broadcast—the qua routine executed last can finish later.
The relevant execution times measured in this scenario for
the functions that must finish timely (shown in Figure 6)
are 178, 233, 252, 296, and 131 instruction cycles respec-
tively, totaling 1090 cycles. The shortest cycle is33.92ns,
so32 cycles can be executed at most per bit at 921.25Kbps.
This gives, in the worst case, where the shortest frame
(44 bits) follows, the driver(44 + 3) · 32 = 1504 instruc-
tion cycles to manage the reception, which is greater than
the 1090 cycles consumed by the functions that must finish
timely.

6 Conclusions and future work

In this paper we present the design, implementation and
a first experimental validation of a software driver that ex-
ecutes at each ReCANcentrate node and that allows CAN-



Table 2. Stuck-at dominant fault injection tests
Node Where When Observed consequences and fault-toleranceactions

13 Receiver tx ctrl downlink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl is quarantined; non-tx ctrl
becomes new tx ctrl; receptions continue at new tx ctrl

14 Receiver non-tx ctrl downlink arbitrary temporarily global error; hub isolates non-tx ctrl uplink; non-tx ctrl is quarantined;
receptions continue at tx ctrl

15 Blinker tx ctrl downlink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl is quarantined; non-tx ctrl
becomes new tx ctrl; if a frame was pending in old tx ctrl, qua routine instructs its
transmission through the new tx ctrl

16 Blinker non-tx ctrl downlink arbitrary temporarily global error; hub isolates non-tx ctrl uplink; non-tx ctrl is quarantined;
transmissions continue at tx ctrl

17 Receiver tx ctrl uplink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl is not quarantined (no bit error
during ACK because tx ctrl receives non-tx ctrl’s ACK); bothcontrollers continue to
receive

18 Receiver non-tx ctrl uplink arbitrary temporarily global error; hub isolates non-tx ctrl uplink; non-tx ctrl is not quarantined (no
bit error during ACK because non-tx ctrl receives tx ctrl’s ACK); both controllers continue
to receive

19 Blinker tx ctrl uplink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl is quarantined; non-tx ctrl
becomes new tx ctrl; if a frame was pending in old tx ctrl, qua routine instructs its
transmission through the new tx ctrl

20 Blinker non-tx ctrl uplink arbitrary temporarily globalerror; hub isolates non-tx ctrl uplink; non-tx ctrl is not quarantined (no
bit error during ACK because non-tx ctrl receives ACK from another node); receptions
continue at non-tx ctrl

based applications and protocols to transparently use this
star infrastructure. We explain the driver’s main manage-
ment routines, focusing on how they interact. Then, we
describe its first implementation on top of a real ReCAN-
centrate prototype. We experimentally corroborated the
driver’s correct operation in the absence and in the pres-
ence of faults we physically injected. However, we showed
that it is impossible to cover all fault scenarios by means of
exhaustive fault injection and, thus, we plan to use model
checking techniques to overcome this limitation. We also
observed that the driver timely performed in all the exper-
iments we carried out. Moreover, we estimated the worst-
case scenario in terms of performance and we experimen-
tally characterized its execution time, which indicated that
the driver—even though its code is not optimized—can
perform timely.

We plan to explore all possible execution scenarios to
ascertain a guaranteed upper bound of the worst-case ex-
ecution time and, then, to prove that the driver can per-
form at the maximum CAN bit rate; demonstrate, experi-
mentally and through model checking, that the driver can
deal not only with stuck-at, but also with bit-flipping faults
and CAN inconsistency scenarios; and add features to the
driver to reintegrate temporarily faulty CAN controllers.
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