A first design for CANsistant: a mechanism to prevent inconsistent omissions in
CAN in the presence of multiple errors

Julian Proenza and Ernesto Sigg
Dept. de Matematiques i Informatica, Universitat de les Illes Balears, Palma de Mallorca, SPAIN
julian.proenza@uib.es and ernesto.sigg @ gmail.com

Abstract

Despite the significant advantages of the Controller Area
Network (CAN) there is an extended belief that CAN is not
suitable for critical applications, mainly because of several
dependability limitations. One of them is its limited data con-
sistency. Several solutions to this problem have been pre-
viously proposed but they are not able to efficiently ensure
consistent broadcasts in the presence of multiple channel er-
rors. This paper introduces a circuit called CANsistant, that
detects all scenarios potentially leading to the inconsistent
omission of a frame in the presence of up to 4 channel errors
and, if necessary, retransmits the affected frame.

1. Introduction

The Controller Area Network (CAN) [3] protocol is a
fieldbus communication protocol that was first devised for in-
vehicle control applications and that has been widely adopted
in many other areas within the distributed embedded control
systems field. CAN is nowadays a mature technology whose
tremendous success has been mainly caused by its error con-
trol features, low latency, network wide bus access priority
and real-time response. In addition, CAN’s widespread use
has caused the price of its components to drop to some levels
where other protocols cannot compete.

Despite these significant advantages, there is an extended
belief that CAN is not suitable for critical applications,
mainly because of the following dependability limitations
[6]: (1) Limited data consistency; (2) Limited error contain-
ment; (3) Limited support for fault tolerance and (4) Lack
of clock synchronization. Nevertheless, several researchers
state that CAN will be able to support safety-critical appli-
cations if these limitations are overcome with the proper
enhancements [6]. This possibility is very appealing for
many application domains, since CAN components are much
cheaper than those of the natural competitors of CAN in
highly dependable systems, e.g., FlexRay or TTA, and be-
cause the use of CAN permits to take advantage of the know-
how and expertise that engineering teams have gained in us-
ing this technology during the last decades.

The recently started CANbids (CAN-Based Infrastructure
for Dependable Systems) project purports to design, imple-

ment and validate a CAN-based infrastructure for supporting
the execution of highly-dependable distributed control appli-
cations. CANbids will use as building blocks various mech-
anisms and enhancements intended to overcome the afore-
mentioned CAN dependability limitations.

This paper focuses on how CANbids overcomes CAN’s
limited data consistency. In fact, the CAN specification [3]
claims that it presents data consistency. This means that in a
CAN network it is guaranteed that a frame is either simul-
taneously accepted by all nodes or by none. Besides the
existence of the error passive state [9] in which this prop-
erty does not hold, Rufino et al. identified [9] some specific
scenarios, with all nodes in the error active state, in which
some nodes receive a frame and some others do not, which is
called an inconsistent message omission. The same authors
proposed a set of protocols to be executed on top of CAN
to solve the problem [9]. It is important to say that all these
protocols require the transmission of at least an additional
frame for each frame that would have been transmitted in the
network, even if this frame was consistently transmitted.

Afterwards, Livani [5] presented his SHAdow REtrans-
mitter (SHARE): a mechanism to be included in the network
as a regular node and that is able to detect the bit pattern that
according to Rufino et al. indicates that a frame-level incon-
sistency is possible, and retransmit the potentially inconsis-
tently received frame. This had the significant advantage of
only requiring the transmission of extra frames in case an
inconsistency was possible.

In a later analysis, new scenarios of inconsistent commu-
nication were identified in which both CAN, the proposed
higher-layer protocols and SHARE fail [7]. Those scenarios
are characterized by the presence of multiple bits affected by
errors in the channel.

In order to achieve the advantages of the SHARE ap-
proach this paper presents a mechanism that is capable of
performing the function of SHARE even in the presence of
multiple errors in the channel. Said mechanism is called
CANGsistant (CAN Assistant for Consistency).

2. Related Work

In order to illustrate the scenarios of Rufino et al. let us
consider the case in Fig. 1. A disturbance corrupts the last

(©2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi:10.1109/ETFA.2009.5347236

EOF -/
Tx A r‘ r‘ r‘ overload flag ‘

Receivers (Y) gets the frame once

Rx /[r]r]d[d[d][d][d]d]d]
Y set obliged to accept
Tx Ar|r‘r‘
Rx /[r[r[d]d]d]d]d]d]d]
detects the error and schedules retransmission
™ /r]r]
Rx /| r[@]d]d[d]d][d][d]d]

X set rejects the frame

error flag ‘

Transmitter fails before retransmission

error flag ‘ r ‘

Receivers (X) does not get the frame

Figure 1. Inconsistency scenarios in CAN [9]

but one bit of the End Of Frame field (EOF) received by the
set of nodes called X through their Rx input. Therefore in-
stead of a recessive value, they see a dominant one in this
bit. In the next bit, these receivers start the transmission of
an error flag (i.e. six consecutive dominant bits) through their
Tx output. The dominant first bit of this error flag is seen by
the nodes belonging to set Y and by the transmitter (through
their Rx input) as an error in the last bit of their EOF, thus
they will start the transmission of their own error flags in the
next bit. The nodes belonging to X will reject the frame,
the nodes belonging to Y will accept the frame following
the CAN’s last bit rule and the transmitter will schedule the
frame retransmission. If the transmitter suffers a hardware
failure that prevents it from completing the retransmission,
the nodes belonging to Y receive the frame whereas those
of X will never do it, i.e. an inconsistent message omission
(IMO) occurs.

As indicated above, SHARE [5] is an effective mecha-
nism designed to detect this scenario and autonomously re-
transmit the affected frame, in order to provide a backup for
the original transmitter.

2.1. SHARE description

A SHARE is a dedicated node that has to be added to the
CAN network. This node preventively stores each frame that
is transmitted through the CAN bus. If a specific pattern is
detected at the end of a frame, SHARE immediately tries
to retransmit it. This retransmission is a regular one, in the
sense that it abides by the CAN’s arbitration mechanism. In
contrast, if the pattern is not detected, SHARE simply dis-
cards the stored frame and restarts for the next frame.

The specific pattern that SHARE detects is a sequence of
6 consecutive dominant bits starting at the last bit of the EOF
[5], which is characteristic of the scenario described above
(Fig. 1). In case the pattern is detected, the retransmission
performed by SHARE covers the potential crash of the orig-
inal transmitter. In case this transmitter does not crash, its
own retransmission would take place bit-by-bit synchronized
with the retransmission by SHARE. According to SHARE’s

description, this simultaneous transmission should not cause
any error since both nodes would send for each bit exactly
the same value. However this is a controversial statement.
Given that in CAN only receivers adapt the duration of the bit
time to the edges caused by the transmitter, having two trans-
mitters that will naturally drift apart could make receivers to
detect errors in the bit stream by the end of the frame.

2.2. Scenarios with multiple channel errors

Another scenario that was later described in [7] happens if
the transmitter can not see the error flag in the last bit of EOF
due to an additional disturbance in that bit. In this case, the
transmitter does not even try to retransmit the frame and the
same IMO takes place. Note that this scenario has a higher
probability of occurrence than the one described in Fig. 1, as
estimated in [7]. Indeed an additional channel error is much
more likely to occur than the crash of the transmitter.

Unfortunately SHARE’s design did not take into account
the possibility of having additional bits affected by errors.
Note that if SHARE had the same view of the channel as
the transmitter in the scenario that has been just discussed,
then it will neither have considered that a retransmission was
required. This is the origin of our goal of designing a mech-
anism that is able to detect IMOs even in the presence of
multiple channel errors, but there are more reasons for it.

Although SHARE was designed for systems using CAN
in its original way of operation, there is an increasing inter-
est in disabling the automatic retransmission of frames upon
error occurrence. This single-shot transmission mode is nat-
ural in TDMA and FTDMA-like systems [1], or in real-time
ones that purport to prevent the jitter caused by retransmis-
sions, such as CANbids. In these kinds of systems, since
they are usually intended for critical applications, it is also
important to be able to detect inconsistencies. Thus, they
could make good use of a mechanism that provided the IMO-
detection functionality offered by SHARE. Moreover, dis-
abling the automatic retransmission dramatically increases
the probability of IMOs as calculated in [8], since it is not
necessary that the transmitter crashes to suffer an IMO. Fur-
thermore, it is also important to be able to detect IMOs in
the presence of multiple channel errors, since this situation
(i.e. IMO together with multiple errors) is also more likely to
happen than in a normal CAN network.

3. CANsistant operation description

Among the two basic functions of CANsistant, which are
potential IMO detection and frame retransmission, we are
going to focus on the first one, since it is the one that has to
take into account the possibility of multiple channel errors.

The first aspect to be determined is in the presence of how
many channel errors is CANsistant going to be able to prop-
erly detect all possible scenarios leading to an IMO, without

raising too frequent and avoidable false alarms. This funda-
mental parameter will be denoted as m. In order to deter-
mine its value it is necessary to take into account that in the
absence of errors, after the EOF field, three recessive bits are
transmitted which are called intermission. After these bits,
the bus is idle and a new frame may start in any bit with a
first dominant value called Start Of Frame (SOF), followed
by a series of bits that are the new frame’s identifier [3].

Our starting point for the determination of m is the sce-
nario described in Fig. 1. Let us assume that while the re-
ceivers belonging to X detect the first dominant value in the
last but one bit of EOF, CANsistant does not see that value
because it is not affected by this first error. Moreover let us
assume that CANsistant suffers a series of consecutive m — 1
errors that prevent it from seing the first m — 1 dominant bits
of the error flag transmitted by the nodes belonging to X.
The question is then for what value of m — 1 it would be im-
possible for CANsistant to tell whether the first dominant bit
it detects could correspond to one of the bits of an error flag
or to the normal operation of the protocol in the absence of
errors. This second possibility is exactly what happens when
m—1 = 4. In that case the first dominant bit of the error flag
that would be detected by CANsistant would appear in the
position that in complete absence of errors would have been
occupied by the first bit of the next frame, i.e. SOF, which
has a dominant value as indicated above. Thus, for m = 5,
each time a new frame with an identifier with several consec-
utive dominant values in its most significant bits starts right
after the three bits of intermission, a false IMO alarm will be
raised. Since this happens in the absence of errors, we con-
clude that it would significantly and unnecessarily increase
the number of false alarms and we establish as our goal to
detect all IMOs for m = 4.

3.1. Other CANsistant parameters

As illustrated by the analysis above, designing CANsis-
tant to be able to detect inconsistencies even in the presence
of multiple channel errors opens room for deciding that an
IMO could have happen even if the first dominant value is
detected some bits after the last bit of EOF. Indeed the view
that CANsistant has of the channel has the same possibilities
of being affected by errors as the view of any other node of
the network. But not only the detection of the first dominant
bit can be affected, multiple errors can also alter the detection
of the dominant bits that are supposed to come after the first
one. We have reduced the problem of dealing with the effects
of multiple errors to determining the following parameters:

(1) First Dominant Detection Window (FDDW): This
window corresponds to the group of bits of any frame where
CANGistant has to find the first dominant bit in order to con-
sider that an inconsistency may have happened. If CANGsis-
tant does not detect any dominant bit inside the FDDW, it
will deem that an IMO is not possible for this frame.

(2) Number of Dominant bits (ND): This is the number
of dominant bits that CANsistant has to find after having de-
tected a first dominant bit in the FDDW, in order to signal a
potential IMO and schedule the retransmission.

(3) Additional Dominant Detection Window (ADDW):
This window corresponds to the group of bits starting with
the next bit after the first dominant value detected within the
FDDW. If and only if CANsistant finds ND additional domi-
nant bits in the ADDW, it signals a potential IMO and sched-
ules the retransmission of the affected frame.

In order to determine the position of both windows and
the value of ND we propose to start by establishing the posi-
tion of the FDDW. This can be done using the same kind of
reasoning that was used to determine the maximum number
of errors in whose presence CANsistant is able to detect all
possible IMOs. Obviously the first bit of the FDDW is the
last bit of EOF since, in the presence of only one channel er-
ror, the first dominant value must be detected in this place by
any node (including CANsistant), in case the only scenario
that may cause an IMO with a single channel error (depicted
in Fig. 1) had happened. On the other hand, the last bit of the
FDDW is the last bit of intermission since, in the presence of
the additional m — 1 = 3 errors that are possible, the actual
reception of the first dominant by the nodes (or at least by
CANsistant) could be delayed at most until this bit.

Considering again the scenario represented in Fig. 1 it is
also possible to determine the value of ND. In case CAN-
sistant was the only one suffering additional errors during
the transmission of these two overlapped error flags, and in
case it suffered the maximum number of remaining errors
(m —1 = 3) in the very first dominant bits of said flags, then
it would have detected the first dominant value in the last bit
of intermission and, due to the fact that it has already suf-
fered the maximum number of errors, it would see the next
3 bits as dominant. We conclude that the value of ND would
be 3. On the one hand, considering ND = 4 would cause the
scenario just described to be not recognized as an IMO. And
on the other hand, considering ND = 2 would cause many
scenarios to be mistaken as IMOs since for an IMO to take
place at least 7 dominant values have to be transmitted and,
according to our fault assumptions, at most 3 of them can
be affected by additional errors, therefore any node must be
able to see at least 4 of them.

Finally, the ADDW by definition starts in the next bit after
the first dominant that is detected. The determination of the
last bit of this window requires additional considerations. Al-
though the basic scenario causing an IMO is the one shown
in Fig. 1 and in this scenario the last bit of the ADDW should
be the third one after intermission (the last one represented in
Fig. 1), it is true that additional errors could prevent all nodes
from seeing the first bits of the error flag transmitted by the
receivers belonging to the X set. This would cause a delay
in the transmission of the error flag by the receivers of the Y

set and by the transmitter. However it is clear that as soon as
no error is detected, the next bit will have a dominant value.
Thus, we can see the sequence to be detected as a minimum
of 7 dominant bits that at most can be interrupted by 3 erro-
neous recessive bits. This implies that actually placing the
last bit of the ADDW in the bit proposed (the third one after
intermission) guarantees that CANsistant would be able to
detect ND = 3 dominant bits within the ADDW whenever
an IMO had happened. Extending this window to include
later bits would simply increase the number of false alarms.

4. On-going work on CANsistant

Even though it may seem that the CANsistant’s IMO de-
tection, in the way it has been presented, requires no further
proof of correctness, in fact it does need it, due to the many
different scenarios that are possible when we consider any
distribution of the m erroneous bits and that each node can
see or not see each one of these bits and react accordingly.
In order to ensure that CANsistant is able to detect IMOs
caused by any possible scenario, we are currently perform-
ing a formal verification using model-checking techniques.
More specifically we have modelled a system with differ-
ent CAN nodes and a CANsistant device with the UPPAAL
[4] model-checker and we are using its verification engine
for checking the appropriate properties. Due to space limi-
tations we cannot provide further details on this verification,
however we can say that the models follow the modelling
patterns that were already used in [2] for the MajorCAN pro-
tocol. The results obtained so far show the correctness of the
design and that reducing by a single bit the value of ND or the
end bit of the ADDW or reducing the length of the FDDW
leaves room for IMOs that are not detected by CANsistant.
Obviously with the actual design CANsistant will generate
some false alarms but this is inherent to the inaccurate infor-
mation that can be obtained by simply sensing the value of
the bus in the presence of multiple errors. In any case the
priority is to be able to detect all possible IMOs rather than
not generating false alarms. Additional future work is to be
carried out in the quantification of the probability of false
alarms.

Besides the formal verification of this mechanism, we are
also implementing a prototype that will be added to the hub
of a network that presents a star topology and is called CAN-
centrate [6]. The CANsistant functionality is designed to be
applicable both in a regular CAN bus and in a CAN-based
star. The inclusion of the mechanism in the CANcentrate
hub is a first step towards the construction of a complete
CAN-based dependable architecture, which is the goal of the
CANDids project. In this architecture the automatic retrans-
mission of frames that characterizes the CAN protocol is to
be restricted in order to ensure higher levels of predictability.
Since these kinds of restrictions significatively increase the
chances of IMOs in a CAN-based system, it is necessary to

include mechanisms to at least detect the possibility of IMOs,
for the system to be able to later take the appropriate actions
that, in any case, will prevent the potential conflicts that a si-
multaneous transmission of the same frame by several nodes
could have caused.

5. Summary

We have presented a first design of a mechanism that can
be added to any CAN network to detect all possible inconsis-
tent message omissions in the presence of up to m erroneous
bits in the channel. We have determined that the maximum
value of m is 4 and we are currently model-checking our
design and developing a prototype to be included in a CAN-
based network that presents a star topology.

6. Acknowledgement

This work was supported in part by the Spanish Science
and Innovation Ministry with grant DPI2008-02195, and in
part by FEDER funding.

References

[1] L. Almeida, P. Pedreiras, and J. A. Fonseca. The FTT-CAN
protocol: Why and how. IEEE Transactions on Industrial Elec-
tronics, 49(2), December 2002.

[2] M. Bonet, G. Donaire, and J. Proenza. Modelling MajorCAN
with UPPAAL. In Proceedings of the 12th IEEE International
Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2007), Patras, Greece, September 2007.

[3] ISO. International Standard 11898 — Road Vehicles — In-
terchange of Digital Information — Controller Area Network
(CAN) for High-Speed Communication. 1993.

[4] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1—
2):134-152, Oct. 1997.

[5] M. Livani. SHARE: A transparent approach to fault-tolerant
broadcast in CAN. In Proceedings of the 6th International
CAN Conference, 1999.

[6] J. Pimentel, J. Proenza, L. Almeida, G. Rodriguez-Navas,
M. Barranco, and J. Ferreira. Dependable automotive CAN
networks. In N. Navet and FE. Simonot-Lion, editors, Automo-
tive Embedded Systems Handbook. CRC Press.

[7] J.Proenza and J. Miro-Julia. MajorCAN: A modification to the
Controller Area Network protocol to achieve Atomic Broad-
cast. In IEEE Int. Workshop on Group Communications and
Computations. INGCC. Taipei, Taiwan, 2000.

[8] G. Rodriguez-Navas and J. Proenza. Analyzing atomic broad-
cast in TTCAN networks. In Proceedings of the 5th IFAC In-
ternational Conference on Fieldbus Systems and their Applica-
tions(FeT03). Aveiro. Portugal, pages 153-156, 2003.

[9] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Ro-
drigues. Fault-tolerant broadcast in CAN. In Proceedings of
the IEEE 28th Int. Symp. Fault-Tolerant Computing. FTCS-28.
Munich (Germany), June 1998.

