
ESCOLA POLITÈCNICA SUPERIOR

ESCOLA POLITÈCNICA SUPERIOR

UNIVERSITAT DE LES ILLES BALEARS

PROJECTE DE FINAL DE CARRERA

Estudi :

Enginyeria Informàtica

Títol:

Construction of a Hardware Prototype of
ReCANcentrate and Implementation of a
Media Management Driver for the Nodes

of the Prototype

 Alumne: David Gessner

Directors : Julián Proenza Arenas
Manuel Alejandro Barranco González

Data: Novembre de 2010

Fem constar que el projecte de final de carrera titulat Construction
of a hardware prototype of ReCANcentrate and implementation of
a media management driver for the nodes of the prototype ha es-
tat realitzat, sota la direcció de Julián Proenza Arenas i Manuel
Alejandro Barranco González, per David Gessner. Aixı́ mateix
declaram que el projecte està finalitzat i preparat per la seva pre-
sentació pública.

Palma, novembre de 2010

Signat: David Gessner
Projectista

Signat: Julián Proenza Arenas
Co-director del projecte final de carrera

Signat: Manuel Alejandro Barranco González
Co-director del projecte final de carrera

Resum

El protocol Controller Area Network (CAN) és amplament utilitzat en sistemes de control dis-
tribuı̈ts. Però a pesar del seu ús extens, hi ha una controvèrsia sobre lo adequat que és CAN per
sistemes que requereixen un grau de fiabilitat elevat. Aquesta controvèrsia es deguda principal-
ment a una sèrie de limitacions de fiabilitat que té CAN, causades principalment per la topologia
en bus que empra. Per superar aquestes limitacions, previ al projecte s’havien dissenyat dues
topologies en estrella per CAN. La primera, CANcentrate, és una topologia en estrella simple
amb un element central denominat concentrador (hub) que proporciona mecanismes per mil-
lorar la contenció d’errors. La segona, ReCANcentrate, és una topologia en estrella replicada,
amb dos concentradors, que proporciona tolerància a fallades a més de proporcionar contenció
d’errors.

Aquest projecte consisteix en la implementació d’un nou prototip de ReCANcentrate. Aquest
nou prototip està basat en un prototip anterior que consistia en mostrar la viabilitat de imple-
mentar amb components comercials (commercial off-the-shelf) els concentradors de ReCAN-
centrate, aixı́ com mostrar que els mecanismes de contenció d’errors i tolerància a fallades dels
concentradors funcionen correctament. El nou prototip en canvi té com a objectiu mostrar la
viabilitat i la capacitat de tolerància a fallades dels nodes. Concretament, l’objectiu d’aquest
projecte és la construcció del hardware d’un nou prototip, que consisteix en dos concentradors
i tres nodes; la implementació d’un programa que faci de driver per als nodes del prototip; i
la verificació, mitjançant experiments, de que els nodes poden tolerar tota una sèrie de fallades
introduı̈des mitjançant injecció de fallades.

iii

Contents

1. Introduction 1
1.1. Background and motivation . 1
1.2. Goal of the project . 3
1.3. Tasks realized . 3
1.4. Tasks not realized . 5
1.5. Overview of the remaining chapters . 5

I. Foundations and previous work 7

2. Introduction to reliability, fault tolerance, and related concepts 9
2.1. Basics . 9
2.2. Reliability and dependability . 10
2.3. Fault tolerance . 12
2.4. Implementation of fault-tolerant systems . 13

3. Controller Area Network (CAN) 15
3.1. CAN Physical Layer . 15
3.2. CAN Data Link Layer . 18

3.2.1. Frame format . 18
3.2.2. Bit-wise arbitration mechanism . 21
3.2.3. Frame encoding . 21
3.2.4. Error-signaling mechanism . 22
3.2.5. Error containment . 24
3.2.6. Overload-signaling . 24

3.3. CAN bit rate . 26
3.3.1. Synchronization . 27

3.4. Reliability limitations of CAN . 31
3.4.1. Limited error containment . 31
3.4.2. Limited support for fault tolerance . 32
3.4.3. Limited data consistency . 33

4. CANcentrate 37
4.1. Fault model for CAN and CANcentrate . 37
4.2. CANcentrate’s architecture . 38

v

Contents

5. ReCANcentrate 43
5.1. Fault model for ReCANcentrate . 43
5.2. ReCANcentrate hub architecture . 44
5.3. ReCANcentrate nodes . 46

5.3.1. Media management in the absence of faults 47
5.3.2. Media management in the presence of faults 48
5.3.3. Driver architecture . 49
5.3.4. Hardware requirements of the driver 51

5.4. Previous ReCANcentrate prototype . 51
5.4.1. Brief introduction to FPGAs . 52
5.4.2. Hub implementation . 52
5.4.3. Node implementation . 53
5.4.4. Electronic circuits . 55

II. Project specific tasks 59

6. Final design of the media management driver for the ReCANcentrate nodes 61
6.1. Media management routines . 61

6.1.1. The tx routine . 62
6.1.2. The rx routine . 63
6.1.3. The qua routine . 65

6.2. The tx request routine . 67
6.3. Example executions . 68

6.3.1. Fault-free reception . 68
6.3.2. Fault-free transmission . 70
6.3.3. Example involving all four routines 71

6.4. Fault-tolerance capacities of the media management driver 73
6.4.1. Tolerance of the inconsistent message omission scenario identified by

Rufino, Verı́ssimo, Arroz, Almeida, and Rodrigues 73
6.4.2. Tolerance of the inconsistent message omission scenario identified by

Proenza and Miro-Julia . 76

7. New ReCANcentrate hardware prototype 81
7.1. The wirewrap prototyping technique . 81
7.2. Implementation of the ReCANcentrate hubs 82
7.3. Implementation of the ReCANcentrate nodes 85
7.4. Testing the hardware of the prototype . 88

7.4.1. Verification of the electronic circuits 88
7.4.2. Testing the node cores . 88
7.4.3. Testing the node cores together with their I/O modules 89
7.4.4. Testing the hardware of the hubs . 90

vi

Contents

8. Implementation of the driver 93
8.1. Development environment . 93
8.2. Methodology . 94
8.3. Overview of the driver source code . 96

8.3.1. Implementation of assertions . 96
8.3.2. Abstract Data Types . 97
8.3.3. The CAN event tracker and the media management routines 102

8.4. Implementation of a simple API to interface with the driver 104

9. Testing the driver on the hardware prototype 107
9.1. Fault tolerance tests . 107

9.1.1. Implementation of fault injection . 107
9.1.2. Test programs . 110
9.1.3. Test strategy . 111
9.1.4. Stuck-at-recessive downlink . 113
9.1.5. Stuck-at-recessive uplink . 116
9.1.6. Stuck-at-dominant downlink . 118
9.1.7. Stuck-at-dominant uplink . 120
9.1.8. Tests that inject controller crashes . 120

9.2. Performance tests . 121
9.2.1. Methods to establish the worst-case execution time (WCET) 122
9.2.2. Performance measurement rationale 123
9.2.3. Estimated worst-case scenario in terms of performance 125
9.2.4. Performance measurement of the estimated worst-case scenario 127

10.Conclusions 133
10.1. Summary . 133
10.2. Future work . 133
10.3. Personal opinion . 135
10.4. Publications . 137

A. Initial design of the media management driver for ReCANcentrate 141

B. Source code for the preliminary tests 145
B.1. Header files used by the preliminary tests . 145

B.1.1. can aux.h . 145
B.1.2. device config.h . 146
B.1.3. dspicdem.h . 147
B.1.4. portd.h . 147

B.2. Loopback test . 147
B.2.1. canh loopback.c . 147
B.2.2. canh loopbk int.c . 151

B.3. Single node test . 156
B.3.1. one node.c . 156

vii

Contents

B.4. Simple AND-coupling module test . 160
B.4.1. couplerModule.vhd . 160
B.4.2. couplerModule.ucf . 161
B.4.3. msg.h . 161
B.4.4. receiver.c . 162
B.4.5. transmitter.c . 163

C. Driver source code 167
C.1. assert.c . 167
C.2. assert.h . 168
C.3. can controller.c . 169
C.4. can controller.h . 185
C.5. can frame.c . 190
C.6. can frame.h . 192
C.7. common.h . 193
C.8. device config.h . 193
C.9. interrupts.c . 194
C.10. interrupts.h . 198
C.11. led.c . 200
C.12. led.h . 201
C.13. quaroutine.c . 201
C.14. rxroutine.c . 204
C.15. rxroutine.h . 210
C.16. tracker.c . 210
C.17. txroutine.c . 214
C.18. tx timer.c . 217
C.19. tx timer.h . 218

D. API source code 221
D.1. recancentrate.c . 221
D.2. recancentrate.h . 225

E. ReCanCentrate hub user constraints file 227
E.1. cancentrate.ucf . 227

F. Source code for fault injection 231
F.1. Files to inject controller crashes . 231

F.1.1. crash controller.h . 231
F.1.2. crash controller.c . 231

F.2. Fault-injection modules . 232
F.2.1. downlinkFaultInjectionModule.vhd 232
F.2.2. uplinkFaultInjectionModule.vhd . 236
F.2.3. ReCanCentrate.vhd . 240

viii

Contents

G. Source code for the fault-tolerance tests 253
G.1. transmitter 3led counter.c . 253
G.2. transmitter blinking led.c . 254
G.3. receiver.c . 255

H. Source code for the performance tests 259
H.1. 8byte transmitter.c . 259
H.2. 0byte transmitter.c . 260

I. Source code for the profiler 261
I.1. profiler.c . 261
I.2. profiler.h . 263

J. Stimulus files for the MPLAB SIM simulator 265
J.1. c1omission c2rxb1.sbs . 265
J.2. c1rxb0 c2rxb0 c1ewarn.sbs . 266
J.3. c1rxb0 c2rxb1.sbs . 267
J.4. c1txb0 c2omission.sbs . 268
J.5. c1txb0 c2rxb1.sbs . 269

ix

List of Figures

1.1. Architecture of ReCANcentrate for three nodes and two hubs 2

2.1. The dependability tree. 11
2.2. Fault tolerance techniques. 12

3.1. The ISO/OSI seven layer reference model . 16
3.2. CAN bus level . 17
3.3. CAN bus level with EMI . 17
3.4. Connecting a CAN controller to a CAN bus through a CAN transceiver 18
3.5. CAN standard data frame format . 19
3.6. CAN standard remote frame format . 20
3.7. CAN arbitration example. 22
3.8. Example of CAN’s error-signaling mechanism. 23
3.9. Example of CAN’s overload-signaling mechanism 25
3.10. Bit time segments. 26
3.11. Possible phase errors of an edge in CAN. 29
3.12. Resynchronization of a positive phase error in CAN. 30
3.13. Resynchronization of a negative phase error in CAN. 31
3.14. Sample faults in a CAN bus. 32
3.15. CAN’s last bit rule. 34
3.16. Inconsistent message duplication scenario discussed by Rufino et al. [1998] and

Proenza and Miro-Julia [2000]. 35
3.17. Inconsistent message omission scenario identified by Rufino et al. [1998]. . . . 36
3.18. Inconsistent message omission scenario identified by Proenza and Miro-Julia

[2000]. 36

4.1. CANcentrate’s architecture for four nodes . 39
4.2. CANcentrate node architecture . 40
4.3. Internal structure of a CANcentrate hub . 41

5.1. Example of a network partition fault . 44
5.2. ReCANcentrate’s architecture . 44
5.3. Internal structure of a ReCANcentrate hub . 45
5.4. ReCANcentrate node architecture . 47
5.5. Basic driver structure. 50
5.6. Internal structure of a field-programmable gate array (FPGA) 53

xi

List of Figures

5.7. ReCANcentrate node architecture using an approach inspired by Rufino, Verı́ssimo,
and Arroz [1999]. 54

5.8. Electronic circuit for a port of the I/O module of a hub or node. 56
5.9. Electronic circuit to attach an external oscillator. 57

6.1. Final design of the tx routine. 62
6.2. Final design of the rx routine. 64
6.3. Final design of the qua routine. 66
6.4. Final design of the tx request routine. 67
6.5. Example execution of the reception of a data frame. 68
6.6. Example execution of the transmission of a frame. 70
6.7. Example execution involving a tx request, a rx routine, a tx routine, and a qua

routine. 71
6.8. Management of the inconsistent message omission scenario identified by Rufino

et al. in ReCANcentrate (case 1) . 74
6.9. Management of the inconsistent message omission scenario identified by Rufino

et al. in ReCANcentrate (case 2) . 76
6.10. Case where the inconsistent message omission scenario identified by Proenza

and Miro-Julia is avoided in ReCANcentrate. 77
6.11. Case where the inconsistent message omission scenario identified by Proenza

and Miro-Julia is not avoided in ReCANcentrate. 78

7.1. Pin with a wire connected to it through wirewrapping 81
7.2. Manual wirewrapping tool and wirewrapping wire 82
7.3. Implementation of a ReCANcentrate hub, showing its main building blocks . . 83
7.4. Clock sources in a dsPICDEM prototyping board. 87
7.5. Implementation of a ReCANcentrate node, showing its main building blocks . . 87
7.6. Connecting the two CAN controllers of a single ReCANcentrate node to each

other. 89
7.7. Connecting two ReCANcentrate nodes through a signal coupler. 91

9.1. Downlink-fault-injection module. 108
9.2. Uplink-fault-injection module. 109
9.3. Estimated worst-case scenario in terms of performance. 125
9.4. Estimated worst-case scenario in terms of performance (with profiler overhead)

compiled with assertions. 129
9.5. Estimated worst-case scenario in terms of performance (with profiler overhead)

compiled without assertions. 131

10.1. Proposed improvement for the tx routine. 136

A.1. Initial design of the rx routine. 141
A.2. Initial design of the tx routine. 142
A.3. Initial design of the tx request routine. 143
A.4. Initial design of the tx timeout routine. 143

xii

List of Figures

A.5. Initial design of the qua routine. 144

xiii

List of Tables

3.1. Resulting value on a CAN bus with three nodes for all possible combinations of
dominant (‘d’) and recessive (‘r’) bits contributed by the nodes. 19

9.1. Stuck-at recessive downlink-fault-injection tests 114
9.2. Stuck-at-recessive uplink-fault-injection tests 117
9.3. Stuck-at dominant downlink-fault-injection tests 119
9.4. Stuck-at-dominant uplink-fault-injection tests 121
9.5. Measured execution time for the media management routines (compiled with

assertions) involved in the estimated WCET scenario. 128
9.6. Measured execution time for the media management routines (compiled without

assertions) involved in the estimated WCET scenario. 130

xv

1. Introduction

1.1. Background and motivation

The Controller Area Network (CAN) protocol was designed for control applications inside au-
tomobiles, but nowadays it is used in many other applications as well. For instance, CAN is now
used as a fieldbus, that is, to interconnect field devices such as sensors and actuators in a sys-
tem such as a manufacturing plant; it is used as a communication protocol inside many vehicles
which are not automobiles, such as trains, ships, and aircraft; and it is used in many machines,
such as medical equipment, household appliances, elevators, and escalators [Voss, 2005]. But
despite being widely used, according to Barranco, Proenza, Rodrı́guez-Navas, and Almeida
[2005b], there is a controversy about how suitable CAN is for applications which have very de-
manding reliability requirements. To completely understand why there is this controversy, one
must understand what the reliability limitations of CAN are. We describe these limitations in
Chapter 3, Section 3.4.

To overcome CAN’s reliability limitations, several researches have worked on improvements
of CAN. Among them are the already cited Julián Proenza, Guillermo Rodrı́guez-Navas, and
Manuel Barranco. All three are members of the Systems, Robotics and Vision (SRV) group of
the Departament de Matemàtiques i Informàtica of the University of the Balearic Islands (UIB).
Their stated goal is to make CAN suitable for applications with very demanding reliability re-
quirements, while taking advantage of its main features: very low cost, good real-time perfor-
mance, and already good reliability [Proenza, 2009]. So far, together with other researchers, they
have already designed, built as a prototype, and tested several improvements [Barranco, Proenza,
Rodrı́guez-Navas, and Almeida, 2006b; Proenza, 2007], including ReCANcentrate [Barranco,
Proenza, and Almeida, 2006a], the architecture for which we built the new prototype described
in this report.

Before we explain why we built this new prototype if one had already been built, let us briefly
describe what ReCANcentrate is. The basic idea behind the ReCANcentrate architecture is to
use a replicated active star topology instead of CAN’s original bus topology [Barranco et al.,
2005a]. Star topology means that each node is connected to a central element through its own
link. This central element is called a hub in ReCANcentrate. Replicated means that there is
not just one hub, which would be a single point of failure, but multiple hubs. In Figure 1.1 we
can see a depiction of the ReCANcentrate architecture for the case of three nodes and two hubs.
Each node is connected to each of the hubs by a separate link. Moreover, the hubs themselves are
interconnected through interlinks, and this is done redundantly. This provides full redundancy
with no single points of failure in the communication medium. Finally, active means that a
hub converts the electrical signals it receives from the nodes and the other hub to logical values
(0s and 1s) and couples these values on a logical level before transmitting the result back to
the nodes (a passive star, in contrast, merely couples the incoming signals on the electrical level,

1

Chapter 1. Introduction

Hub 1

Hub 2

Node 1

Node 2

Node 3

Figure 1.1.: Architecture of ReCANcentrate for three nodes and two hubs. Each node is connected
to each of the hubs through a separate link and the hubs themselves are interconnected through in-
terlinks. The result is the elimination of all single points of failure in the communication medium.
(Based on a figure by Barranco et al. [2005a].)

which has some problems such as coupling losses). Chapter 5 describes ReCANcentrate in more
detail.

Given this brief overview of ReCANcentrate, we can now point out why we built a new proto-
type and why its predecessor was not sufficient. The goal of the predecessor was to demonstrate
the feasibility of the ReCANcentrate hubs. For this, Barranco et al. used what we call simpli-
fied nodes. What do we mean by simplified nodes? Since in ReCANcentrate the hubs couple
each others traffic and broadcast the result back to the nodes, each node receives the same traffic
twice, once from each hub. Moreover, in principle, a node can transmit its messages through
either hub. Because of this, it is necessary to provide the nodes with adequate media manage-
ment, that is, the nodes must implement adequate mechanisms to transmit and receive through
the replicated star while tolerating faults. This can be achieved using several approaches. The
one used in the predecessor prototype is a particularly easy one to implement (the approach is
described in Section 5.4.3). Unfortunately, however, this approach does not have all the fault
tolerance mechanisms specifically designed for ReCANcentrate. It has therefore some limita-
tions in its media management (which are also described in Section 5.4.3). It is because of these
limitations that we call the nodes used by Barranco et al. simplified nodes. Despite these lim-
itations, the simplified nodes were adequate for the previous prototype. This is so because the
focus was on testing the hubs: the nodes’ main function was simply to exercise the hubs while
the hubs’ fault tolerance was tested. Nevertheless, it remained to be demonstrated that ReCAN-
centrate also works properly with nodes that implement all of the fault tolerance mechanisms
designed for ReCANcentrate and which, contrary to the simplified nodes, take full advantage
of the replicated media. The difference then between the previous prototype and the one we
have implemented is that our prototype did not use simplified nodes. Moreover, as the hubs had
already been thoroughly tested in the previous prototype, in our prototype the focus has been on
the testing of the nodes.

As a starting point for the new prototype we had information about the previous one [Barranco
et al., 2006a], a design of the architecture of the nodes, and an initial design of several routines
to be implemented as the nodes’ driver [Barranco, Proenza, and Almeida, 2007, 2008].

2

1.2. Goal of the project

1.2. Goal of the project

The goal of our project was to build and test a new prototype of ReCANcentrate, a replicated
star topology for the Controller Area Network (CAN) protocol. More precisely, the goal was to
build the hardware for the prototype, which is comprised of two ReCANcentrate hubs and three
ReCANcentrate nodes; to write a software driver for the ReCANcentrate nodes; and to thor-
oughly test the nodes under fault-free conditions as well as when faults are injected. Although
our prototype was not the first prototype of ReCANcentrate—as already indicated, it was the
successor of a previous one by Barranco et al. [2006a]—it was the first prototype to implement
nodes which have all the fault tolerance mechanisms designed for ReCANcentrate.

1.3. Tasks realized

This section outlines the tasks realized in our project. Together with the next section, this should
give a clear overview of which tasks should be attributed to this project and which should not.

Study of relevant documentation
To build our prototype we had to understand how ReCANcentrate works. This requires a series
of concepts from the fault tolerance field and a clear understanding of CAN. Moreover, it is very
useful to comprehend ReCANcentrate’s precursor, CANcentrate, before studying ReCANcen-
trate itself. As a result, there was a non-negligible amount of literature which had to be studied
before starting with the implementation of the prototype. This literature is referenced throughout
this report and is listed in the bibliography at the end of this document.

Viability study
To implement the prototype we had to choose some hardware components from which to built
it. For the hubs and their input and output (I/O) modules, which are used to connect the hubs to
the nodes and to each other, the choice was clear. We used the same components that were used
in the previous prototype [Barranco et al., 2006a]. We knew these components were adequate
for the hubs and, moreover, they allowed us to reuse the VHDL description that had already
been written for the hubs (VHDL is a hardware description language used to configure FPGAs,
see Section 5.4.2 for more details). For the nodes, on the other hand, the choice was not so
clear. Each node is basically composed of a microcontroller and an I/O module used to connect
each node to the two hubs. The I/O module could remain the same as in the previous prototype,
but the microcontroller used for the nodes had to satisfy different requirements. Therefore we
had to choose a new microcontroller for the nodes (we chose the dsPIC30F6014A from Mi-
crochip) and carry out a viability study, which can be found in Section 7.3, to assess if this new
microcontroller would satisfy the new requirements.

Building the hardware prototype
Once we had chosen the hardware components to use, the next task was building the prototype.
For this, we used the wirewrap prototyping technique. This technique is described in Chapter 7
along with the task of building the prototype.

3

Chapter 1. Introduction

Enabling a third port on the ReCANcentrate hubs
Manuel Barranco provided the VHDL source code that was used in the previous prototype for the
ReCANcentrate hubs. This code only implemented ports for two nodes, but the new prototype
had three nodes; therefore an additional port had to be implemented in the code.

Helping to improve the design of the driver
For the nodes to correctly manage the replicated media, they had to execute a software driver
specifically designed for this purpose. Barranco et al. [2007, 2008] have published a few papers
that sketch out the main routines of such a driver. Moreover, Manuel Barranco provided an ini-
tial design of these routines in form of several flowcharts (shown in Appendix A), and our job
was to take them as the specification for a driver customized for the nodes’ microcontrollers.
Nevertheless, when we studied these flowcharts, we noticed a few things which could be im-
proved. Thus, together with Manuel Barranco, we improved the initial design. The improved
design is described in Chapter 6.

Getting to know the development environment
Each hub of our prototype was implemented on a Field-Programmable Gate Array (FPGA), and
the nodes were implemented with dsPIC30F6014A microcontrollers from Microchip. We had
to familiarize ourselves with the development environments used to program these two kinds of
devices.

Implementation of the driver
Writing the driver for the ReCANcentrate nodes consisted in taking the improved design of the
routines and implementing the routines for the dsPIC30F6014A microcontroller. In addition,
we also implemented support code to abstract away the hardware details of the microcontroller.
This task is described in Chapter 8.

Implementation of a simple API for the driver
In order to write programs for the ReCANcentrate nodes of our prototype, we needed some way
to interface with the driver. We therefore wrote a simple application programming interface
(API) that allows a user to initialize the nodes and to send and receive CAN messages. We kept
the API very simple as it would only be used by us to write test programs and was not intended
to be used by a larger programming audience. The API is described in Section 8.4.

Adding a fault-injection module to the ReCANcentrate hubs
In order to test the fault tolerance of the nodes we had to inject faults into the prototype. To ac-
complish this, the easiest solution was to add a fault-injection module to the hubs. This required
no hardware changes because the fault-injection module could be completely implemented in
VHDL The specification and implementation of the fault-injection module is described in Sec-
tion 9.1.1.

Testing the driver
As the development of the prototype progressed we carried out successive tests. The first tests
focused on assessing whether the prototype’s hardware had been built correctly or not. Later
tests, which focused on the driver for the nodes, were executed on a dsPIC30F6014A microcon-
troller simulator. Finally, the last tests were executed on the physical ReCANcentrate prototype.

4

1.4. Tasks not realized

In these final tests the nodes were using the driver and the FPGAs of the hubs were loaded with
the ReCANcentrate hub configuration, which was generated from a slightly modified version
of the VHDL code that Manuel Barranco provided. These last tests have been carried out both
under fault-free conditions as well as when faults were injected. More information about the
tests is given in Section 7.4 and in Chapter 9.

1.4. Tasks not realized

In this section we list a number of tasks that are related to the project but which should not
erroneously be attributed to it. Note that this list might not be complete.

• The design of the CANcentrate architecture.

• The design of the ReCANcentrate architecture.

• The implementation in VHDL of the coupler and fault-treatment modules of a ReCAN-
centrate hub.

• The design of the electronic circuits of Section 5.4.4, which are used to attach external
oscillators to the hubs’ FPGAs and to implement the links and interlinks.

• The testing of the coupler and fault-treatment modules of a ReCANcentrate hub with
“simplified” nodes.

• The formal verification of the driver’s routines by means of a model checker.

• The initial design of the driver’s routines.

1.5. Overview of the remaining chapters

The remaining chapters have been divided into two parts. Part I gives the necessary foundations
needed in order to understand the tasks carried out in this project and describes previous work
on which the project is based. Part II describes the tasks which are specific to the project, that
is, it describes the tasks we carried out.

Part I contains the following chapters. First, Chapter 2 introduces reliability, fault tolerance,
and other related concepts that are relevant to this project. Chapter 3 describes the Controller
Area Network (CAN) protocol and its limitations. Chapter 4 presents CANcentrate, explains its
fault model and discusses the architecture of the hub and the nodes of a CANcentrate network.
Chapter 5 describes ReCANcentrate: it introduces the fault model used for ReCANcentrate, de-
scribes the architecture of the hubs and the nodes of a ReCANcentrate network, details the media
management strategy used by the nodes (in the absence and presence of faults), describes the
architecture and hardware requirements of the node media management driver, and summarizes
the previous ReCANcentrate prototype. Moreover, when the previous prototype is described,
the chapter also gives a very brief introduction to Field Programmable Gate Arrays (FPGAs).

5

Chapter 1. Introduction

Part II begins with Chapter 6, which describes the final design of the media management
routines of the driver and also includes a few example executions of the media management
routines. Part II continues with Chapter 7, which describes the wirewrap prototyping technique,
the construction of the new ReCANcentrate hardware prototype, and a series of preliminary
tests to assess the correct functioning of the hardware. Chapter 8 contains an explanation of the
driver implementation: it briefly introduces the toolchain used during development, details the
development methodology used, and summarizes the abstract data types used to implement the
driver. Chapter 9 is a description of the tests we executed on the prototype’s hardware to de-
termine whether the driver had been implemented correctly and to determine whether the nodes
running the driver are capable of tolerating faults. Finally, Chapter 10 gives the conclusions we
have reached after finishing the project and includes a personal opinion about the project.

At the end of this report, from page 141 onwards, a series of appendices to this report can
be found. They contain the initial design of the media management routines of the driver, the
source code files that implement the driver, and the source code files that we used for our test
scenarios.

Finally, the bibliography referenced throughout this report and an index can be found on the
last few pages of this report.

6

Part I.

Foundations and previous work

2. Introduction to reliability, fault
tolerance, and related concepts

In order to understand the work presented in this report, a basic knowledge of reliability, fault
tolerance, and related concepts is necessary. The aim of this chapter is to give this knowledge.
Unless otherwise stated, the terminology we adopted is the one presented by Avižienis, Laprie,
Randell, and Landwehr [2004].

2.1. Basics

Computing and communication systems—simply referred to as systems from here onwards—
have what is called a function, which Avižienis et al. define as “what the system is intended to
do” [Avižienis et al., 2004].

What a system does to implement its function can be described by a sequence of states. Of
these states the part that is perceivable from outside the system is called the system’s external
state. The remaining part is called the system’s internal state. The union of external state and
internal state is the system’s total state. The service delivered by a system is a sequence of its
external states.

A system delivers a correct service when it implements its function, that is, when the system
actually does what it is intended to do. A service failure, or simply failure, “occurs when the
delivered service deviates from correct service” [Avižienis et al., 2004], that is, when the system
stops doing what it is intended to do. If a system has more than one function and only a subset
of these functions suffers a failure, the system is said to be in a degraded mode; moreover, it is
said that the system has suffered a partial failure.

The service failure modes, or simply failure modes, are the different ways in which a failure
can manifest; examples are the incorrect computation of results, delivering a result too late, giv-
ing different results to different user systems although they expect the same result (user systems
are systems that receive a service from another system), and a crash failure, which occurs when
a system permanently stops delivering its service.

An error is “the part of a system’s total state that may lead to a failure”. “An error is detected
if its presence is indicated by an error message or error signal”; whereas an error is latent if
it is “present but not detected”. A fault is “the adjudged or hypothesized cause of an error”
[Avižienis et al., 2004]. Note that there exists a causal relationship between faults, errors, and
failures: a fault may generate an error, and an error may generate a failure. If a fault actually
does generate an error, then it is active; otherwise, it is dormant (dormant is also referred to as
passive by many other authors).

There are many criteria that can be used to classify faults. One criteria we want to highlight is
persistence: faults can either be permanent faults, their “presence is assumed to be continuous

9

Chapter 2. Introduction to reliability, fault tolerance, and related concepts

in time”; or transient faults, their “presence is bounded in time” [Avižienis et al., 2004].
A system is comprised of other systems put together to interact; each of these other systems

is called a component. Errors can propagate within a component, and they can propagate from
one component to another. When an error is propagated to the point where the system’s service
is delivered, a failure of the system occurs.

A system may have some critical components where a fault may directly lead to an overall
failure of the whole system—without having to propagate to several other components first.
These components are commonly known as single points of failure.

Avižienis et al. give several examples illustrating some of the concepts so far introduced in
this chapter. Perhaps the following one will help to clarify these concepts:

A short circuit occurring in an integrated circuit is a failure (with respect to the
function of the circuit); the consequence (connection stuck at a Boolean value, mod-
ification of the circuit function, etc.) is a fault that will remain dormant as long as
it is not activated. Upon activation (invoking the faulty component and uncovering
the fault by an appropriate input pattern), the fault becomes active and produces an
error, which is likely to propagate and create other errors. If and when the prop-
agated error(s) affect(s) the delivered service (in information content and/or in the
timing of delivery), a failure occurs.

2.2. Reliability and dependability

Reliability is defined as “continuity of correct service”. Reliability is therefore a property of a
system related to its correct service. Apart from reliability, there are other properties of a system
related to its correct service. These other properties are usually taken together in the broader
concept of dependability—which includes reliability.

Avižienis et al. give two definitions for dependability: an original one and an alternate. The
original definition states that dependability is “the ability to deliver service that can justifiably
be trusted”. We argue that this definition is circular because trust is defined as “accepted depen-
dence” and dependence of a system A on a system B is defined as “the extent to which system
A’s dependability is (or would be) affected by that of System B”; that is, dependability is defined
in terms of trust, trust is defined in terms of dependence, and dependence is defined in terms of
dependability, the original concept for which we sought a definition. Therefore we prefer the
alternate definition: dependability is “the ability of a system to avoid service failures that are
more frequent or more severe than is acceptable”.

The properties of a system related to its correct service that we referred to at the beginning of
this section are known as attributes of dependability. These attributes are the following:

Availability: “readiness for correct service”.

Reliability: “continuity of correct service”.

Safety: “absence of catastrophic consequences on the user(s) and the environment”.

Integrity: “absence of improper system alterations”.

10

2.2. Reliability and dependability

Maintainability: “ability to undergo modifications and repairs”.

Note that the relationship between reliability and dependability is that reliability is an attribute
of dependability.

Apart from attributes, there are two other notions related to dependability. The first is threats
to dependability, which were introduced in the previous section, and which are faults, errors,
and failures. The second is the notion of means to dependability, which are the following:

Fault prevention: defined as “means to prevent the occurrence or introduction of faults”. It
refers to the attempt of avoiding the introduction of faults in the first place and therefore
applies to the development phase of a system.

Fault tolerance: defined as “means to avoid service failures in the presence of faults”. This is
the mean on which we focus in this report. It is treated in more detail in the next section.

Fault removal: defined as “means to reduce the number and severity of faults”. It applies to the
development phase and to maintenance actions, and it consists in uncovering faults and
removing them.

Fault forecasting: defined as “means to estimate the present number, the future incidence, and
the likely consequences of faults”.

Figure 2.1 shows a summary of the fundamental concepts related to dependability and their
relationships (it is based on Avižienis et al.’s dependability and security tree, with the difference
that it does not show the attributes that are related exclusively to security).

Dependability

Means

Fault Forecasting
Fault Removal
Fault Tolerance
Fault Prevention

Threats
Failures
Errors
Faults

Attributes

Maintainability
Integrity
Safety
Reliability
Availability

Figure 2.1.: The dependability tree. It summarizes the relationships between the fundamental
concepts related to dependability. The concepts shown in italics are the ones our project, and
ReCANcentrate in general, is mostly concerned with. (The figure is based on the dependability
and security tree by Avižienis et al. [2004].)

11

Chapter 2. Introduction to reliability, fault tolerance, and related concepts

2.3. Fault tolerance

As mentioned in the previous section, the goal of fault tolerance is to avoid failures even when
faults are present. This is achieved through error detection and system recovery (the latter is
also referred to as error recovery by some authors). Figure 2.2 gives an overview of the tasks
involved in fault tolerance.

Fault tolerance

System recovery

Fault handling

Reinitialization

Reconfiguration
Isolation

Diagnosis

Error handling
Compensation
Rollforward
Rollback

Error detection
Preemptive detection

Concurrent detection

Figure 2.2.: Fault tolerance techniques.

Error detection is the identification of an error’s presence. It can be divided into two classes:

Concurrent error detection, which “takes place during normal service delivery”.

Preemptive error detection, which “takes place while normal service delivery is suspended” and
which “checks the system for latent errors and dormant faults”.

System recovery is the transformation of “a system state that contains one or more errors
and (possibly) faults into a state without detected errors and without faults that can be activated
again” [Avižienis et al., 2004]. System recovery consists of error handling and fault handling:

Error handling: “eliminates errors from the system state” [Avižienis et al., 2004]. It is also
referred to as error processing by other authors. There are three possibilities to carry out
error handling:

Rollback: consists in bringing the system back to a previously saved state (rollback is also
known by other authors as backward recovery.)

Rollforward: consists in replacing the erroneous state not with a previously saved state but
with a new state (rollforward is also known by other authors as forward recovery.)

Compensation: consists in having enough redundancy in the erroneous state to allow error
masking, that is, to conceal the error so that a correct service can still be provided.
Note that as more errors are compensated less redundancy remains available—this
is known as redundancy attrition [Proenza, 2007].

12

2.4. Implementation of fault-tolerant systems

Fault handling: “prevents faults from being activated again” [Avižienis et al., 2004]. (Fault
handling is also referred to as fault treatment by other authors.) Fault handling involves
four steps:

Diagnosis: consists in the identification and recording of the location and type of faults
that have caused the errors from which we want to recover.

Isolation: consists in the “physical or logical exclusion of the faulty components” so that
they no longer participate in service delivery, that is, it makes the identified faults
dormant [Avižienis et al., 2004]. (Authors that use the term passive for dormant also
often refer to fault isolation as fault passivation.) Isolation provides error contain-
ment: it prevents errors from propagating from faulty components to other compo-
nents [Johnson, 1989].

Reconfiguration: consists in discarding faulty components and using spare components
instead, or, if no spare components are available, it consists in reassigning the tasks
of the faulty components to non-faulty components.

Reinitialization: consists in checking, updating, and recording the new configuration that
resulted from a reconfiguration and in updating system tables and records.

2.4. Implementation of fault-tolerant systems

When designing a fault-tolerant system we have to make assumptions about the different failure
modes of the system’s components. These assumptions are often referred to as the fault model
of a system [Johnson, 1989]. The fault model may also consider the duration of faults: we
may assume that faults are permanent or that they are transient. A permanent fault “remains
in existence indefinitely if no corrective action is taken”; whereas a transient fault “can appear
and disappear within a very short period of time” [Johnson, 1989]. Given a fault model, the
fault-tolerance mechanisms of a system are designed so that they are capable of handling the
faults considered in the system’s fault model.

It is important that the assumptions made in the fault model are realistic, that is, that the
system’s real failure modes are not too different from the assumed failure modes; otherwise, the
system may fail in ways that the implemented fault-tolerance mechanisms are not prepared to
handle, resulting in a failure of the whole system. This leads us to the notion of fault assumption
coverage: a measure of how much the fault assumptions differ from the faults that really occur.
A higher fault assumption coverage means that the difference between the assumed faults and
the real faults is smaller; whereas a smaller fault assumption coverage means that the difference
between real and assumed faults is bigger.

To maximize the fault assumption coverage we could include in our fault model all possible
failure modes and types of faults. This, however, would lead to a complex and costly system. It is
therefore generally more practical to restrict the failure modes and types of faults included in the
fault model. Nevertheless, the fault model should not be restricted too much because that would
lead to a fault assumption coverage that is too low to be acceptable, that is, the fault-tolerance
mechanisms implemented based on the fault model would not handle most of the faults that do
occur [Proenza, 2007].

13

Chapter 2. Introduction to reliability, fault tolerance, and related concepts

Fortunately, when designing a fault-tolerant system, we can not only increase the fault as-
sumption coverage by making the fault model broader, but we can also increase the fault as-
sumption coverage by restricting the failure modes of the system. This is done through mech-
anisms introduced when designing the system that force faulty components to fail in a specific
way [Proenza, 2007]. For instance, a specific fault-tolerance mechanism may force a component
to not output any result when the result would be wrong; in that case our fault model would not
have to include incorrect computations by that component, and the fact that it is not included
would not reduce the fault assumption coverage.

14

3. Controller Area Network (CAN)

Controller Area Network, more commonly known by its acronym CAN, is a serial bus originally
developed by the Robert Bosch GmbH in the 1980s for automotive applications.

From the 1970s onwards the automotive industry began to include more and more electronics
in their automobiles, such as “ABS braking, active suspension, electronic transmissions, auto-
mated lighting, air-conditioning, security, and central locking” [Catsoulis, 2005]. These systems
often need to exchange information and therefore some means for their interconnection had to
be provided. It quickly became very clear that direct point-to-point connections between these
systems would no longer be a viable solution: the more components are added, the more direct
point-to-point connections are needed, leading to a fast increase in complexity and amount of
cabling needed. This increases the cost and weight of the automobile while decreasing its relia-
bility and ease of maintenance. Therefore, some other solution had to be found, and the obvious
solution was a low-cost digital network [Catsoulis, 2005].

The particular network that was widely adopted by the automotive industry is CAN, which, as
we said, had been specifically designed to satisfy the requirements of automotive applications.
These requirements are low cost, real-time response, and the need to function in the electromag-
netically harsh and noisy environment found inside an automobile. Because these requirements
can not only be found in automotive applications, CAN has spread to many other applications
where electromagnetic robustness, real-time, or simply a very inexpensive, not too data inten-
sive, communication system is needed. These applications include factory, home, and building
automation; in-vehicle communication in almost any type of vehicle; and the communication
inside almost any type of machinery. This widespread use has caused CAN’s price to drop to
such a low level that, wherever it is applicable, no other protocol can compete.

For CAN only the last two layers of the ISO/OSI reference model are specified (see Fig-
ure 3.1). The Data Link Layer was specified in 1991 when Bosch published the CAN 2.0 speci-
fication [Bosch GmbH, 1991]; whereas the Physical Layer was not specified until later, in 1993,
when ISO standardized both the Physical Layer and the Data Link Layer in the ISO 11898
standard. Nowadays, both layers are commonly implemented in silicon, either as a stand-alone
CAN controller or as an integrated part of a microcontroller [Voss, 2005]—although the Physical
Layer is also often implemented in a separate transceiver.

In this chapter we summarize those aspects of the CAN Physical and Data Link Layers which
are more relevant to our project. Details not relevant to the project are omitted.

3.1. CAN Physical Layer

There are several specifications for the CAN Physical Layer, but we will only overview the CAN
Physical Layer according to the ISO 11898-2 specification, which is the one implemented by the

15

Chapter 3. Controller Area Network (CAN)

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 3.1.: The ISO/OSI seven layer reference model. For CAN only the Data Link Layer and the
Physical Layer are specified.

PCA82C250 CAN transceivers [Philips Semiconductors, 1997] that we used in our prototype.
(We used these transceivers because they had already been used successfully in the previous
prototype by Barranco et al. [2006a].)

In compliance with the ISO 11898-2 specification, the physical CAN bus uses a differential
voltage between two wires, known as CANH and CANL. That is, the voltage on the CAN bus
that determines the value on the bus is

Vdiff = VCANH − VCANL

where VCANH is the voltage on the CANH wire and VCANL is the voltage on the CANL wire. As
illustrated in Figure 3.2, there are two possible bus levels: either VCANH = VCANL = 2.5 Volts,
and consequently Vdiff = 0 V; or VCANH = 3.5 V and VCANL = 1.5 V, and consequently
Vdiff = 2 V [Voss, 2005].

The main advantage of a differential voltage for the bus level is that it provides very good
resistance to electromagnetic interferences (EMI): if an EMI affects the CAN bus, then both of
its wires will be affected almost equally, and, as a consequence, the value of the bus level Vdiff

will remain almost unchanged [Voss, 2005]. An example of this behavior is shown in Figure 3.3.
If the CAN controller used to connect a microcontroller to a CAN bus does not implement the

Physical Layer (as it is the case of the CAN controllers we used in our prototype), then a sep-
arate CAN transceiver is needed. During reception, the CAN transceiver adapts the differential
voltage from the bus to logic level signals that the CAN controller can understand. Similarly,
during a transmission, the CAN transceiver adapts the logic level signals from the CAN con-
troller to the differential voltage expected on the bus. Figure 3.4 shows how a CAN controller
is connected to a CAN bus by using a transceiver (Txrx) in-between. The figure also shows two
resistors of 120 Ohm at each end of the bus; these are known as terminating resistors and are
used in order to prevent signal reflections.

One of the most characteristic features of CAN is that it physically implements what is known
as a wired-AND function. As indicated above, the bus can take one of two differential voltage

16

3.1. CAN Physical Layer

B
us

L
ev

el
(V

ol
ts

)

t0

1

2

3

4

VCANH = VCANL = 2.5V

Vdiff = 0V

VCANH = 3.5V

VCANL = 1.5V

Vdiff = 2V

Figure 3.2.: CAN bus level. (Based on a figure by Voss [2005].)

B
us

L
ev

el
(V

ol
ts

)

t0

1

2

3

4

Vdiff ≈ 2V

VCANH

Vdiff = 2V

VCANL

Figure 3.3.: CAN bus level with EMI. The figure shows how an electromagnetic interference (EMI)
is likely to affect both the CANH and the CANL wire almost equally. As a consequence the
differential voltage between the two wires remains almost unchanged.

levels: Vdiff = 2 V or Vdiff = 0 V. The first is known as a dominant bit value and the second
is known as a recessive bit value. That is, when a node transmits a dominant bit it creates a
voltage difference across the CANH and CANL wires. On the other hand, when a node transmits
a recessive bit it does not apply a voltage difference between the CANH and CANL wires.
Thus, in the absence of faults, the only way to have a recessive bit value on the bus is when no
node applies a voltage difference between the CANH and CANL wires. However, again, in the
absence of faults, whenever at least one node applies a voltage difference between the wires, then
there will be a dominant bit value on the bus. The effect on the bus is therefore that dominant
bits override recessive bits. An example of this behaviour for three nodes is shown in Table 3.1,
which, for all possible combinations of dominant (‘d’) and recessive (‘r’) bits contributed by the
nodes, displays the resulting value on the bus. If we now think of a dominant bit as a logical 0
and of a recessive bit as a logical 1, then we will recognize this table as a truth table of the logical

17

Chapter 3. Controller Area Network (CAN)

CANL

CANH

120Ω 120Ω

Txrx
CANH CANL

CAN Controller

Tx Rx

Figure 3.4.: Connecting a CAN controller to a CAN bus through a CAN transceiver (Txrx).

AND operation, where the bit values contributed by the nodes are the terms and the value on the
bus is the result of the operation. Because of this, it is said that CAN implements a wired-AND
function.

3.2. CAN Data Link Layer

The CAN Data Link Layer can be divided into two sublayers: an Object Layer and a Transfer
Layer. Together they provide all the functions of the Data Link Layer defined by the ISO/OSI
reference model [Bosch GmbH, 1991].

The Object Layer includes such functions as determining which enqueued message is to be
transmitted, which messages received by the Transfer Layer are to be used, and the provision of
an interface for the Application Layer. These functions are not detailed in the CAN specification
[Bosch GmbH, 1991] and depend on the particular CAN controller.

The Transfer Layer, on the other hand, is completely described in the CAN specification and
is the one we overview in this section. It describes the frame format, message arbitration, frame
encoding, error signaling, error containment, and bit timing used in CAN.

3.2.1. Frame format

The CAN specification defines four types of frames: data frames, remote frames, error frames,
and overload frames. This section covers data frames and remote frames. Error frames and
overload frames are covered later in this chapter.

Data frames are used to transmit data; remote frames are used to request data. A node sends a
data frame when it has data to communicate or when it has been prompted, via a remote frame,
to send data. The two frame types are shown in figures 3.5 and 3.6. They can be distinguished
from one another by the Remote Transmission Request (RTR) bit: in data frames this bit is
dominant and in remote frames it is recessive. Besides, data frames have a data field whereas

18

3.2. CAN Data Link Layer

Contributions

Node 1 Node 2 Node 3 Value on bus

d d d d
d d r d
d r d d
d r r d
r d d d
r d r d
r r d d
r r r r

Table 3.1.: Resulting value on a CAN bus with three nodes for all possible combinations of domi-
nant (‘d’) and recessive (‘r’) bits contributed by the nodes.

SOF Identifier RTR IDE R0 DLC Data CRC del.
ACK
slot

del. EOF

Arbitration field Control field Data field CRC field ACK field

1 bit 11 bits 1 bit 1 bit 1 bit 4 bits 0..8 bytes 15 bits 1 bit 1 bit 1 bit 7 bits

Figure 3.5.: CAN standard data frame format. From left to right, a standard data frame comprises
the following: a dominant start of frame bit; an arbitration field, which includes a message iden-
tifier and a dominant remote transmission request bit; a control field, which includes a dominant
identifier extension bit, a dominant reserved bit, and the data length code; a data field; a CRC
field, which includes a cyclic redundancy code and a recessive delimiter bit; an acknowledgement
field, which includes an acknowledgement slot and recessive acknowledgement delimiter bit; and
an end of frame field.

remote frames do not. The remaining fields are identical.
Data and remote frames both begin with a Start Of Frame (SOF) bit: a dominant bit that

marks the beginning of a new frame. It can easily be recognized on the bus as it contrasts with
the recessive bits of an idle bus and with the recessive bits found at the end of each frame (all
frames finish with recessive bits). Nodes listening on the bus will synchronize themselves with
the node that transmits an SOF. If more than one node transmits an SOF within the same bit
time—the amount of time it takes to transmit one bit—then a contention takes place. To resolve
this contention, and to decide which node will become the next transmitter, the arbitration field
is used.

The arbitration field includes the identifier and the previously mentioned RTR bit. CAN’s
bit-wise arbitration mechanism, explained in Section 3.2.2, makes sure that after the arbitration
field only one node remains as the transmitter. Contrary to many other protocols, the identifier is
not the address of a node; instead it is a value that identifies the data transmitted in the message.
Receiving nodes can, based on the identifier, decide whether to forward or not the frame to the

19

Chapter 3. Controller Area Network (CAN)

SOF Identifier RTR IDE R0 DLC CRC del.
ACK
slot

del. EOF

Arbitration field Control field CRC field ACK field

1 bit 11 bits 1 bit 1 bit 1 bit 4 bits 15 bits 1 bit 1 bit 1 bit 7 bits

Figure 3.6.: CAN standard remote frame format. From left to right, a standard remote frame
comprises the following: a dominant start of frame bit; an arbitration field, which includes a
message identifier and a recessive remote transmission request bit; a control field, which includes
a dominant identifier extension bit, a dominant reserved bit, and the data length code; a CRC field,
which includes a cyclic redundancy code and a recessive CRC delimiter bit; an acknowledgement
field, which includes an acknowledgement slot and a recessive acknowledgement delimiter bit;
and an end of frame field.

application. For instance, in a given CAN network a particular identifier might identify frames
that carry data of a particular sensor; if a receiving node is interested in that sensor’s data, it will
forward the received frame to the application; otherwise, it will discard the frame.

The arbitration field is followed by the control field. It includes the IDentifier Extension (IDE)
bit, a dominant reserved bit called R0, and the Data Length Code (DLC).

The IDE bit is used to distinguish between frames with standard frame format and frames
with extended frame format (the frames in figures 3.5 and 3.6 are both in standard frame format).
The two formats differ in the length of their identifiers: standard frames use 11-bit identifiers,
whereas extended frames use 29-bit identifiers. In standard frames the IDE bit is dominant,
indicating that no further identifier bits follow; in extended frames the IDE bit is recessive,
indicating that further identifier bits do follow. There are further differences, but we will not
describe extended frames any further as our project only deals with standard frames1.

In data frames the DLC indicates the number of bytes included in the data field; whereas in
remote frames it indicates the number of data bytes requested. The DLC has 4 bits, nevertheless,
its value ranges only from 0 to 8—not up to 24 = 16, as one might expect. The length of the
data field is therefore at most 8 bytes.

In data frames the control field is followed by the data field, which in turn is followed by the
CRC field. In remote frames the control field is directly followed by the CRC field, with no data
field in between. The CRC field is composed of a 15-bit Cyclic Redundancy Code (CRC) and a
single recessive bit called CRC delimiter. The former is used for error detection and the latter
delimits the CRC field from the next field.

The next field is the ACK field, which is composed of an ACK slot and an ACK delimiter. The
ACK slot is a single bit that is transmitted with a recessive value by the transmitter. Receiving
nodes that get a correct result when checking the CRC override the transmitter’s recessive ACK
slot with a dominant bit, thereby indicating to the transmitter that at least one node received

1As described in Section 5.3.4, the driver for the ReCANcentrate nodes must have processed the reception or
transmission of a frame before the next frame is received. Shorter frames give less time for this than longer
frames, thus, the shorter standard frames are the worst-case frame format. To demonstrate the feasibility of
ReCANcentrate, the goal of our project, it is therefore enough to demonstrate that our prototype works with
standard frames.

20

3.2. CAN Data Link Layer

the frame without CRC errors. The other component of the ACK field, the ACK delimiter, is
a recessive bit that, together with the CRC delimiter, surrounds the ACK slot with recessive
values.

Finally, data and remote frames are terminated by an End Of Frame (EOF), which consists
of 7 recessive bits.

All data frames and remote frames are separated from preceding frames by an interframe
space—error frames and overload frames (see sections 3.2.4 and 3.2.6), on the other hand, are
not preceded by an interframe space. The interframe space starts with 3 recessive bits, known
as intermission, and continues with the recessive bits of an idle bus. It is therefore of variable
length, with the length depending on how long the bus remains idle and depending on whether
an overload is signaled or not (overload signaling is covered in Section 3.2.6).

3.2.2. Bit-wise arbitration mechanism

As mentioned in the previous section, when more than one node starts the transmission of a
frame in the same bit time, a contention takes place. To resolve this contention and decide
which node is allowed to send its frame, CAN’s bit-wise arbitration mechanism is used.

This mechanism works as follows. Each transmitting node monitors the actual bits on the bus
while it transmits its arbitration field. As soon as a transmitting node detects a dominant bit on
the bus while it is transmitting a recessive bit, the node looses the arbitration. A node that has
lost the arbitration then backs off, becomes a receiving node, and retries its transmission when
the bus becomes idle again. Because in CAN all nodes must use different identifiers, the result
is that after the arbitration field only a single transmitter is left; all other nodes will have become
receiving nodes. Note that because a recessive bit corresponds to a logical 1 and a dominant
bit corresponds to a logical 0, the node that wins the arbitration is the one that transmitted the
identifier with the lowest value. Moreover, note that since a remote frame has a recessive RTR
bit and a data frame has a dominant RTR bit, data frames have a higher priority than remote
frames.

Figure 3.7 shows an example of how the arbitration mechanism works. Nodes 1, 2, and 3 have
each a frame to transmit in the same bit-time, typically because they were all waiting for the bus
to be idle in order to transmit. Therefore, all three issue a start of frame nearly simultaneously.
Node 4 has no frame to transmit and therefore remains in receiving mode, which implies that
its contribution to the bus are recessive bits. At each bit-time the value seen on the bus is the
logical-AND of the nodes’ bits at that bit-time. After having issued a start of frame (SOF) each
transmitting node sends its identifier until it detects that, despite having sent a recessive value to
the bus, it gets a dominant value from it. From then on the node becomes a receiving node until
the bus is idle again. This happens to Node 1 at bit-time 4 and to Node 3 at bit-time 7. After the
arbitration field Node 2 is the only transmitter and, although not shown in the figure, it transmits
the remaining fields of its frame.

3.2.3. Frame encoding

CAN uses a Non Return to Zero (NRZ) bit coding. That means that the value of a bit is deter-
mined by the voltage level on the bus, which is kept constant for the duration of the bit, instead

21

Chapter 3. Controller Area Network (CAN)

Id10 Id9 Id8 Id7 Id6 Id5 Id4 Id3 Id2 Id1 Id0

0 1 2 3 4 5 6 7 8 9 10 11 12

Node 1 Receiving mode

Node 2

Node 3 Receiving mode

Node 4 Receiving mode

Bus

Identifier RTR

Arbitration field

SOF

Figure 3.7.: CAN arbitration example.

of being determined by voltage changes. As a consequence, a sequence of equal bits does not
cause a voltage change on the bus. Voltage changes, however, are used by receiving nodes to
synchronize themselves with the leading transmitter—the node that has won the arbitration and
is transmitting its frame. So, to ensure correct synchronization, CAN additionally employs bit
stuffing: for every sequence of five consecutive bits with the same value, an additional bit, called
stuff bit, is inserted. In data or remote frames bit stuffing is applied to all the bits from the start
of frame up to—and including—the CRC sequence. It is not applied to the CRC delimiter, the
ACK field, the end of frame, or the intermission. Also, bit stuffing is not applied to error frames
and overload frames.

3.2.4. Error-signaling mechanism

According to the CAN specification [Bosch GmbH, 1991], there are five different types of errors
that can be detected by the CAN nodes:

Bit errors: These are errors where a transmitting node detects that the bit on the bus differs from
the bit it has sent. Note, however, that there are two exceptions: during the arbitration
phase it is not considered a bit error when a dominant bit is detected on the bus while a
recessive bit is transmitted, and it is neither considered a bit error when a recessive ACK
slot is overridden by a dominant bit.

Stuff errors: These are errors where the bit stuffing is violated; that is, whenever a sixth consec-
utive bit with the same polarity is detected within the fields were bit stuffing is applied,
then a stuff error occurs.

22

3.2. CAN Data Link Layer

CRC errors: The CRC sequence included in data and remote frames is calculated by the trans-
mitter. When a node receives a data or remote frame it also calculates a CRC sequence. If
its CRC sequence does not match the CRC sequence received from the transmitter, then a
CRC error has occurred.

Form errors: These are errors where the frame format is violated. Examples include a dominant
bit during the CRC delimiter or the ACK delimiter, and a dominant bit during any bit of
the EOF.

Acknowledgement errors: These happen whenever a transmitter detects that its ACK slot has
not been overridden by a dominant bit, that is, when the transmitter does not detect an
acknowledgement of its frame.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Node 1 Error flag

Node 3 Error flag

Node 2 Error flag

Node 4 Error flag

Bus

Superposition of error flags Error delimiter Intermission

Error frame

Figure 3.8.: Example of CAN’s error-signaling mechanism.

Next we describe the error-signaling mechanism while referencing Figure 3.8, which shows
an example of how the mechanism works.

When a CAN node detects an error (Node 1 in bit 0) it responds with an error flag: a sequence
of six consecutive dominant bits starting from the next bit (Node 1, bits 1–6). Because an error
flag violates the bit stuffing rule, it is ensured that with the sixth dominant bit of the error flag, at
the latest, all nodes will have detected an error (nodes 2–4, bit 6). We therefore say that the error
is globalized. The result is that the initial error flag triggers the transmission of subsequent error
flags from all active nodes that did not detect the initial error (nodes 2–4, bit 7). A node that has
sent its error flag (Node 1) must wait for all other error flags to be finished. So, to detect when
all nodes have sent their error flags, a node keeps transmitting recessive bits after its error flag
(Node 1, bits 7–12) until it monitors a recessive bit on the bus (bit 13). This only happens once
all nodes have transmitted their error flags and have started the transmission of their sequence of
recessive bits (bit 13). Once the recessive bit is detected on the bus, the nodes start to transmit 7
more recessive bits (nodes 1–4, bits 13–20).

23

Chapter 3. Controller Area Network (CAN)

The result seen on the bus after the initial error is a sequence of between 6 and 12 dominant
bits—constituted by the superposition of the nodes’ error flags—followed by a sequence of 8
recessive bits. The sequence of 8 recessive bits is known as the error delimiter and, together
with the superposition of the error flags, constitutes an error frame. The error frame is then
followed by 3 intermission bits, after which the erroneous frame can be retransmitted or a new
frame can be transmitted.

3.2.5. Error containment

Without additional mechanisms, the error-signaling described in the previous section could
lead a faulty node that keeps detecting local errors—that is, errors only seen by that node—
to permanently block any further communication. This would happen because the faulty node
would globalize each local error. To avoid this situation, the CAN specification specifies an
error-containment mechanism (referred to as fault confinement in the CAN specification [Bosch
GmbH, 1991]) based on two error counters for each node: a Transmission Error Counter (TEC)
and a Reception Error Counter (REC).

A node’s TEC increases every time the node detects an error while it is transmitting a frame;
a node’s REC, on the other hand, increases every time the node detects an error while it is
receiving a frame. When either of the two error counters equals or exceeds the threshold of
128, the node changes from its normal state, known as the error-active state, to the so-called
error-passive state. The difference between the two states lies in the error flag described in the
previous section. A node in the error-active state sends error flags as described previously, that
is, consisting of 6 consecutive dominant bits. A node in the error-passive state, in contrast, sends
error flags consisting of 6 consecutive recessive bits. The former error flag is more precisely
called an active error flag, whereas the latter is called a passive error flag. Note that passive
error flags solve the problem of a single receiving node blocking all communication because of
permanent local errors. The reason is the following: although the node will continue to transmit
error flags, it will no longer be able to interrupt the transmitter because the recessive bits of a
passive error flag cannot override any of the bits of the frame being transmitted. Yet, passive
error flags transmitted by the transmitter itself are still able to globalize any errors.

If errors persist and the TEC equals or exceeds a second threshold, of value 256, then the node
enters the bus-off state. In this state a node does not participate in the CAN communication in
any way.

To not unfairly penalize a node that has detected sporadic local errors over a long period of
time, the TEC and REC counters are not only incremented when errors are detected, but are also
decremented when a transmission or reception is successful. This also allows an error passive
node to become error active again when the corresponding TEC and REC become less than
128 again. However, when a node becomes bus-off, it cannot recover by decrementing error
counters; in that case a recovery can only be accomplished by user request [Voss, 2005].

3.2.6. Overload-signaling

At times a receiving node may need an additional delay before the next frame is transmitted.
For this purpose, CAN specifies an overload-signaling mechanism which makes use of the 3

24

3.2. CAN Data Link Layer

intermission bits at the beginning of an interframe space. If a node needs an extra delay, it starts
the transmission of an overload flag at the first bit of the intermission. The overload flag is, just
like an active error flag, a sequence of 6 consecutive dominant bits. When an overload flag is
transmitted, the other nodes detect a dominant bit during the intermission and, according to the
CAN specification, must react by transmitting an overload flag themselves. Therefore, overload
flags are always triggered by the detection of a dominant bit during the intermission, that is, by
a form error during intermission.

The remainder of the overload signaling mechanism is equivalent to the error signaling mech-
anism: a node that has transmitted an overload flag keeps transmitting recessive bits until it
monitors a recessive bit on the bus; at this point all nodes have finished the transmission of their
overload flags, and they proceed by transmitting 7 additional recessive bits, totaling 8 recessive
bits. The result seen on the bus is an overload frame, which is constituted of the superposi-
tion of the overload flags and the 8 recessive bits transmitted cooperatively by the nodes—the 8
recessive bits being known as the overload delimiter.

The overload delimiter is followed again by 3 intermission bits. If a node needs to delay
the next frame even more, it can transmit a second overload frame at the first bit of the second
intermission. After a second overload frame, however, no further overload frames are allowed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node 1 Overload flag

Node 2 Overload flag

Node 3 Overload flag

Node 4 Overload flag

Bus

Superposition of
overload flags

Overload delimiter Intermission

Overload frame

Figure 3.9.: Example of CAN’s overload-signaling mechanism. Although not labeled as such in
the figure, bits 0, 1, and 2 are the intermission bits following a previous frame. Node 1 overrides
the first intermission bit (bit 0) by transmitting an overload flag. This causes a form error in the
intermission, which is usually comprised of 3 recessive bits, and causes the other nodes to also
transmit overload flags, starting at the second bit of the intermission (bit 1). When all nodes have
sent their overload flags, they proceed by transmitting together the overload delimiter. Afterwards,
a second intermission follows.

Figure 3.9 shows an example of the overload-signaling mechanism. Although not shown,
immediately before bit 0 it is assumed that a frame has been transmitted; bit 0 is therefore the
first intermission bit. Node 1 requires more time to process the frame that it has just received and,

25

Chapter 3. Controller Area Network (CAN)

thus, it initiates an overload frame by transmitting an overload flag in the first intermission bit
(bit 0). This causes nodes 2-4 to detect a form error during the first intermission bit, whereupon
they respond by transmitting their own overload flag (bit 1). After all nodes have transmitted
their overload flags (bit 7), they transmit the overload delimiter together (bits 7-14), which is then
followed by 3 intermission bits (bits 15-17). The result is that Node 1 has more time to process
the received frame. Without the overload frame a new frame could have started its transmission
in bit 3, that is, after what would have been the intermission without overload signaling. Thanks
to the overload signaling, however, the next frame is not transmitted until after bit 17, that is,
until after the intermission that follows the overload frame.

3.3. CAN bit rate

All nodes connected to the same CAN bus must transmit and receive at the same nominal bit rate.
The nominal bit rate is defined as “the number of bits per second transmitted in the absence of
resynchronization by an ideal transmitter” [Bosch GmbH, 1991]. Resynchronization is covered
in the next section. The nominal bit time is the inverse of the nominal bit rate, that is,

Nominal Bit Time =
1

Nominal Bit Rate

“The nominal bit time can be thought of as being divided into separate non-overlapping time
segments” [Bosch GmbH, 1991]. Figure 3.10 shows the segments that comprise the nominal bit
time. These time segments are the following:

Segments

Time Quanta 0 1 2 3 4 5 6 7 8

SYNC PROP SEG1 SEG2

Sample point

Nominal Bit Time

Figure 3.10.: Bit time segments.

Synchronization segment. “This part of the bit time is used to synchronize the various nodes on
the bus. An edge [of the bus signal] is expected to lie within this segment” [Bosch GmbH,
1991].

Propagation segment. “This part of the bit time is used to compensate for the physical delay
times within the network” [Bosch GmbH, 1991].

Phase segment 1 and phase segment 2. The phase segments “are used to compensate for edge
phase errors [and] can be lengthened or shortened by resynchronization” [Bosch GmbH,
1991]. Resynchronization and edge phase errors are described in Section 3.3.1.

26

3.3. CAN bit rate

The time segments are comprised of integer units of time called time quanta, which are fixed
units of time derived from the oscillator period. Specifically, a minimum time quantum length
is directly derived from the oscillator period and the final time quantum length is obtained by
multiplying the minimum time quantum length by a programmable prescaler [Bosch GmbH,
1991], which is “an electronic counting circuit used to reduce a high frequency electrical signal
to a lower frequency by integer division” [Wikipedia, 2009] (the prescaler used in CAN to con-
figure the time quantum length is often known as a baud-rate prescaler or a bit-rate prescaler).
In mathematical notation, the time quantum length is obtained as follows [Bosch GmbH, 1991]:

TQ = BRP · TQmin

where TQ is the time quantum length, BRP is the value of the prescaler, and TQmin is the
minimum time quantum length. From the specification [Bosch GmbH, 1991] it is not clear
how the minimum time quantum length is derived from the oscillator period and not all CAN
controllers calculate the time quantum length as stated above. For instance, the CAN controller
that we used in our prototype calculates the time quantum length as follows [Microchip, 2006b,
Section 26]:

TQ =
2 · (BRP + 1)

FCAN
where FCAN is the frequency derived from the oscillator.

The synchronization segment is always one time quantum long; whereas for the propagation
segment and the phase segments the length in time quanta is programmable. Depending on how
many time quanta the propagation segment and the phase segments have been programmed to
contain, the nominal bit time will contain more or less time quanta. For instance, in Figure 3.10
the propagation segment has been programmed to contain 2 time quanta, phase segment 1 has
been programmed to contain 3 time quanta, and phase segment 2 has been programmed to con-
tain 2 time quanta; thus, if the single time quantum of the synchronization segment is included,
the nominal bit time in the figure totals 8. Multiplying the number of time quanta contained
within the nominal bit time by the time quantum length gives us a value, measured in time units,
for the nominal bit time. Continuing with the example, imagine that the time quantum length is
125 ns; this means that the nominal bit time is 8 · 125 ns = 1µs. The inverse of this nominal
bit time is the configured bit rate. In the example this gives us a bit rate of 1bit

1µs = 1 megabits
per second. Moreover, together the time segments specify when the bus signal is sampled by
fixing the sample point (also shown in Figure 3.10), which is “the point of time at which the bus
level is read and interpreted” [Bosch GmbH, 1991]. The sample point is always located between
phase segment 1 and phase segment 2.

3.3.1. Synchronization

In general the nodes in a CAN bus all have their own oscillators. Over time, these oscillators
will deviate from each other, that is, although in theory they may all have the same frequency,
in reality they have slightly different frequencies and after some time some nodes will have
counted more clock ticks than others. Because the length of a time quantum is derived from
these oscillators, this means that the length of the time quanta at different nodes will slightly

27

Chapter 3. Controller Area Network (CAN)

differ. This may cause problems after some time because the length of the time quanta ultimately
determines where the sample point is located for each bit at each node. In the worst case, some
nodes may actually sample a previous bit or a subsequent bit instead of the current bit. Moreover,
even if the nodes do sample the correct bit, if the sample point is too close to a falling edge or
a raising edge of the bus signal, the signal may not be stable yet and the value sampled may be
wrong. It is therefore necessary for all nodes to sample the bus at the correct instant of time.
This means that the nodes need to synchronize themselves with the currently transmitting node,
that is, with the leading transmitter.

There are two mechanisms that the nodes use for synchronization: hard synchronization and
resynchronization.

Hard synchronization only occurs during the recessive to dominant edge of a start of frame
(SOF). During a hard synchronization the nodes restart their bit time counters—which keep track
of how many bits have passed since the last SOF—thus forcing the recessive to dominant edge
of the SOF to lie within the first synchronization segment. This ensures that all nodes initially
sample the bus at the correct instant of time.

Resynchronization may be needed after the initial hard synchronization to resynchronize the
receiving nodes with the leading transmitter. Specifically, resynchronization is necessary when
a receiving node detects that the edge of the received signal falls outside of the synchronization
segment. In that case, resynchronization is performed by the nodes by either lengthening phase
segment 1 or by shortening phase segment 2. The upper bound for how much the phase segments
may be lengthened or shortened is given by a parameter known as the resynchronization jump
width (SJW), whose value ranges between 1 time quantum, and the minimum of 4 time quanta
and the length of phase segment 1, that is, SJW ∈ [1,min(4,SEG1)]. Whether phase segment
1 is lengthened or phase segment 2 is shortened is determined by the phase error of an edge,
which gives the position of the edge relative to the synchronization segment measured in time
quanta. The phase error, e, of an edge can have three possible signs [Bosch GmbH, 1991]:

• e = 0 if the edge lies within the synchronization segment.

• e > 0 if the edge lies before the sample point of the current bit, but after the synchroniza-
tion segment of the same bit.

• e < 0 if the edge lies after the sample point of the previous bit, but before the synchro-
nization segment of the current bit.

Figure 3.11 shows an example for each of these cases. In Figure 3.11 (a) the phase error is
zero and the falling edge falls within the synchronization segment. In Figure 3.11 (b) the phase
error is positive; that is, the falling edge arrives later than expected. Finally, in Figure 3.11 (c)
the phase error is negative; that is, the falling edge arrives sooner than expected.

28

3.3. CAN bit rate

Bus signal

Segments SEG2 SYNC PROP SEG1 SYNCSEG2

Sample Point

des

e = 0

(a)

Bus signal

Segments SEG2 SYNC PROP SEG1 SYNCSEG2

Sample Point

des

e > 0

(b)

Bus signal

Segments SEG2 SYNC PROP SEG1 SYNCSEG2

Sample Point

des

e < 0

(c)

Figure 3.11.: Possible phase errors of an edge in CAN. (a) shows a zero phase error (e = 0); (b)
shows a positive phase error (e > 0); (c) shows a negative phase error (e < 0).

29

Chapter 3. Controller Area Network (CAN)

Bus signal

Segments SEG2 SYNC PROP SEG1 SYNCSEG2

Sample Point

des

e > 0

(a)

Bus signal

Segments SEG2 SYNC PROP SEG1 SEG2

Sample Point

des

e > 0

(b)

Figure 3.12.: Resynchronization of a positive phase error in CAN. (a) shows a positive phase
error without a resynchronization correction; (b) shows a positive phase error corrected by the
resynchronization mechanism by lengthening phase segment 1.

Resynchronization is only necessary when the phase error is positive or negative. When
the phase error is zero, the node is already synchronized with the leading transmitter and no
resynchronization is necessary. The goal of resynchronization is to make all nodes sample the
bus at the same distance from their edges. In other words, to ensure that all nodes have the same
edge-sample point distance (labeled des in the figures).

When the phase error is positive, the resynchronization mechanism lengthens phase segment
1. This in turn lengthens the edge sample point distance, thus placing the sample point closer
to its correct position for the next bit. Figure 3.12 illustrates this: with positive phase error
and no resynchronization the sample point falls too close to the edge (Figure 3.12 (a)); with
resynchronization, which lengthens phase segment 1 (Figure 3.12 (b)), the sample point is moved
further away from the edge, resulting in an edge sample point distance (des) which is almost the
same as when no phase error occurs.

On the other hand, when the phase error is negative, the resynchronization mechanism short-
ens phase segment 2. This corrects the sample point’s position for the next bit. This is illustrated
in Figure 3.13.

30

3.4. Reliability limitations of CAN

Bus signal

Segments SEG2 SYNC PROP SEG1 SEG2

Sample Point

des

e < 0

(a)

Bus signal

Segments SEG2 SYNC PROP SEG1 SYNCSEG2

Sample Point

des

e < 0

(b)

Figure 3.13.: Resynchronization of a negative phase error in CAN. (a) shows a negative phase
error without a resynchronization correction; (b) shows a negative phase error corrected by the
resynchronization mechanism by shortening phase segment 2 and thus adjusting the sample point
position for the next bit.

3.4. Reliability limitations of CAN

As we said previously, CAN is nowadays used for many applications. But despite being widely
used, many authors do not consider it suitable for applications which have very demanding relia-
bility requirements. This is due to several limitations that reduce CAN’s reliability. Specifically,
Pimentel, Proenza, Almeida, Rodı́guez-Navas, Barranco, and Ferreira [2008] indicate the fol-
lowing three limitations related to CAN’s reliability:

• CAN has limited error containment.

• CAN has limited support for fault tolerance.

• CAN has limited data consistency.

In the next three sections we describe each of these limitations.

3.4.1. Limited error containment

Error containment refers to the capability of a system to restrict the propagation of errors from
one subsystem to another. As explained in Section 3.2.5, CAN already has built-in mechanisms

31

Chapter 3. Controller Area Network (CAN)

that are used to contain errors at the nodes. These built-in mechanisms are based on the TEC
and REC, which are used to switch the state of a CAN controller between error active and error
passive and, further, between error passive and bus-off. Unfortunately “the built-in mechanisms
are relatively slow to act, depending on the frequency and type of errors” [Pimentel et al., 2008].
Even worse, because of CAN’s bus topology, there are many errors which cannot be contained
at a single node with CAN’s built-in mechanisms [Barranco, Proenza, Rodrı́guez-Navas, and
Almeida, 2004].

Node 1 Node 2 Node 3 Node 4

A C

B

Figure 3.14.: Sample faults in a CAN bus.

As an example, consider Figure 3.14, which shows three points (A, B, and C) where an error
might not be contained to a single node. The most obvious point is B, where a partition could
prevent the communication between nodes 1 and 2, and nodes 3 and 4. But an error at point
A or C might also not be contained to a single node. Point A represents the interface between
node 1 and the bus. An error that may occur there and that would not be contained by CAN’s
built-in mechanisms is, for example, a stuck-at-dominant output of the transceiver of node 1.
Such an error would affect the whole bus: any frame sent by any node would be overridden by
the constant dominant bits. Similarly point C could affect the whole bus. It represents the stub
that connects node 4 to the bus. If, for instance, a physical disruption occurs there, the stub
may start to act as an antenna. In that case the resulting bit flipping stream would also affect the
whole bus, and CAN’s built-in mechanisms could not do anything to contain it.

In general, in a CAN bus an error that cannot be contained can happen on any point of the
communication medium. This is so because each node’s medium access circuitry, each node’s
stub to the bus, the bus’s main trunk, and, overall, all components attached to the medium, all
have direct electrical connections to each other. Furthermore, it is not only errors on the medium
that may not be contained, but also errors at the nodes themselves. For instance, a faulty node
might repeatedly send without any delay messages with maximum priority; this would lead to
a monopolization of the communication medium by a single node and would prevent all other
nodes from sending frames.

CAN’s error containment is therefore too limited for systems that require high reliability.

3.4.2. Limited support for fault tolerance

As described in Chapter 2, fault tolerance techniques allow a system to deliver a correct service
even in the presence of faults, and this is accomplished through error detection and system
recovery (refer back to Figure 2.2 on page 12). Error detection is provided on the channel level
by CAN through the nodes’ capability of detecting bit, stuff, CRC, form, and ACK errors. The
specific type of error detection that CAN provides is concurrent error detection, that is, it detects

32

3.4. Reliability limitations of CAN

errors during normal service delivery. Moreover, CAN provides system recovery on the channel
level through the retransmission of frames. However, these mechanisms can only deal with
faults at the channel level and cannot deal with any faults occurring at higher levels, such as
faults at CAN controllers and microcontrollers. Moreover, CAN does not have any mechanisms
designed to facilitate the addition of redundancy required for fault tolerance above the channel
level.

3.4.3. Limited data consistency

CAN has some specific protocol characteristics which may lead to data inconsistencies, that
is, to scenarios where not all nodes agree whether a frame should be accepted or not. This
can lead to inconsistent message omissions or to inconsistent message duplicates. Inconsistent
message omissions are scenarios where some nodes receive a specific message while others do
not; whereas inconsistent message duplicates are scenarios where a given message is received by
some nodes twice while it is received only once by other nodes [Pimentel et al., 2008]. Because
data inconsistencies may impede the nodes to reach a consensus, they can prevent the correct
service of a distributed system comprised of these nodes; hence, data inconsistencies can make
the system unreliable.

There are several ways in which data inconsistencies can arise in CAN. One way is for a
receiving node to be in the error-passive state and to be the only one to detect an error in the
received frame. Because it has detected an error in the frame, the error-passive node will not
accept that frame. If the node were in the error-active state, it would send an active error flag
and thereby force the retransmission of the frame; after the retransmission, all nodes would
have accepted the frame. However, because it is in the error-passive state, the node will not be
able to force the retransmission of the frame and will therefore be the only one that will not
have received a copy of the frame. The result is an inconsistent message omission [Proenza and
Miro-Julia, 2000].

Other reasons why data inconsistencies can occur in CAN are due to a special behavior of
CAN in the last bits of a frame. So, before we can explain the other data inconsistency scenarios,
we must first explain this behavior of CAN.

The special behavior of CAN in the last bits of a frame is illustrated in Figure 3.15. Fig-
ure 3.15 (a) shows what would happen if a set of receivers, labeled X, detect an error in the last
bit of a frame and there was no special rule for the last bit of a frame. They would reject the
received frame and start to signal an error flag during the first intermission bit. This, however,
would be interpreted by the transmitter and by other receiving nodes that had not detected an
error, labeled Y in the figure, as an overload flag. Thus, these other receivers would accept the
frame and the transmitter would not carry out a retransmission of the frame. This would lead
to a situation where the nodes labeled X would not have accepted the frame while the nodes
labeled Y would have accepted it. In other words, an inconsistent message omission would have
occurred. To avoid this, CAN has a special rule when an error is detected by a receiver in the
last bit of a frame. This rule is illustrated in Figure 3.15 (b). When a set of receivers, labeled
X in the figure, detects an error in the last bit of an EOF, they must simply accept the received
frame. Thanks to this rule, all receivers do accept the frame and there is no longer an inconsistent
message omission.

33

Chapter 3. Controller Area Network (CAN)

Overload flag

Overload flag

Error flag

Receivers (Y)

Transmitter

Receivers (X)

EOF Intermission

Accepts frame

Does not retransmit frame

Rejects frame

(a)

Overload flag

Overload flag

Overload flag

Receivers (Y)

Transmitter

Receivers (X)

EOF Intermission

Accepts frame

Does not retransmit frame

Accepts frame

(b)

Figure 3.15.: CAN’s last bit rule. (a) shows what would happen without the last bit rule in CAN.
(b) shows the last bit rule in CAN: to ensure that the receivers labeled X do get a copy of the
frame, CAN’s last bit rule states that if a receiver detects an error in the last bit of a frame, it must
accept the frame.

34

3.4. Reliability limitations of CAN

Unfortunately, the attempt to solve inconsistent message omissions with the special behavior
in the last bit of a frame introduces new data inconsistency scenarios.

Overload flag

Error flag

Error flag

Receivers (Y)

Transmitter

Receivers (X)

EOF Intermission

Gets two copies of the frame

Retransmits frame

Gets one copy of the frame

Figure 3.16.: Inconsistent message duplication scenario discussed by Rufino et al. [1998] and
Proenza and Miro-Julia [2000].

First, consider what would happen if a set of receivers detect an error in the next-to-last bit
of a frame while another set of receivers and the transmitter do not detect such an error. This
is illustrated in Figure 3.16. The set of receivers labeled X are the ones that detect the error in
the next-to-last bit; whereas the set of receivers labeled Y are the ones that do not detect the
error. The set of receivers X respond to the error they detect by transmitting an error flag, whose
transmission starts during the last bit of the EOF. This means that the set of receivers Y and
the transmitter detect the first dominant bit of the error flag during the last bit of the EOF. The
transmitter responds to this dominant bit by transmitting its own error flag and by carrying out
a retransmission. For the set of receivers Y, however, the special rule for the last bit of a frame
applies; thus, they accept the frame and transmit an overload flag. This means that the Y set will
have accepted the first transmission of the frame while the X set will not have accepted it and,
after the transmitter’s retransmission, the Y set will have accepted two copies of the frame while
the X set will have accepted only one. The result is an inconsistent message duplication [Proenza
and Miro-Julia, 2000; Rufino et al., 1998]. Fortunately, inconsistent message duplications are
not as bad as inconsistent message omissions because they can be dealt with by following a
set of recommendations, such as avoiding the transmission of frames that toggle the state of
the receivers or that convey information that is relative to the data received in other frames
[Zeltwanger, 1998, as cited by Proenza and Miro-Julia 2000].

Next, consider the scenario that Rufino et al. [1998] have identified. The scenario is illustrated
in Figure 3.17. The situation is essentially the same as in the scenario of Figure 3.16, with the
key difference that the transmitter is not able to carry out a retransmission of the frame because
it suffers a failure shortly after the first transmission of the frame. This leads to a situation in
which the set of receivers X will not have received any copy of the frame, whereas the set of
receivers Y will have received a copy. In other words, this scenario leads to an inconsistent
message omission.

Finally, another data inconsistency scenario is the one that Proenza and Miro-Julia [2000]
have identified. This scenario is illustrated in Figure 3.18. As in the scenarios of figures 3.16
and 3.17, an error is detected in the next-to-last bit of the EOF by a set of receivers labeled X.

35

Chapter 3. Controller Area Network (CAN)

Overload flag

Error flag

Error flag

Receivers (Y)

Transmitter

Receivers (X)

EOF Intermission

Gets one copy of the frame

Fails before retransmission

Gets no copy of the frame

Figure 3.17.: Inconsistent message omission scenario identified by Rufino et al. [1998].

Overload flag

Overload flag

Error flag

Receivers (Y)

Transmitter

Receivers (X)

EOF Intermission

Gets one copy of the frame

Does not retransmit frame

Gets no copy of the frame

Figure 3.18.: Inconsistent message omission scenario identified by Proenza and Miro-Julia [2000].

These receivers then start the transmission of an error flag in the next bit so that the first bit of
the error flag coincides with the last bit of the EOF. This causes another set of receivers, labeled
Y, to detect a dominant bit in the last bit of the EOF. Following CAN’s rule for the last bit, these
other receivers accept the transmitted frame and transmit an overload flag. The transmitter, on
the other hand, does not detect the dominant bit in the last bit of the EOF because of a second
disturbance of the medium that only affects this node. Instead, the first dominant bit belonging to
an error flag that the transmitter detects coincides with the first intermission bit. This means that
the transmitter interprets that dominant bit as the start of an overload flag and, thus, transmits
its own overload flag without carrying out any retransmission afterwards. The end result is an
inconsistent message omission: the set of receivers X gets no copy of the frame while the set of
receivers Y gets one copy.

36

4. CANcentrate

This chapter introduces CANcentrate, an active star topology to improve the error containment
in CAN networks. It is the precursor of ReCANcentrate and has been designed and implemented
as a prototype by Barranco et al. [2006b]. Because ReCANcentrate builds upon CANcentrate,
it is very useful to understand CANcentrate first. The purpose of this chapter is to provide this
understanding.

4.1. Fault model for CAN and CANcentrate

As we said in Chapter 2, when designing a fault-tolerant system, one has to make a few assump-
tions about the possible failure modes, that is, the different ways in which failures can manifest.
This is known as a fault model. Barranco [2010] classified the faults that can occur in a CAN
network into two main categories.

The first category are syntactic faults, that is, “faults that generate errors that corrupt the bit
values that are broadcast through the medium”. These faults can further be classified into two
subcategories:

Stuck-at faults: these occur “whenever a given node or a component of the medium is damaged
and issues a constant bit value” [Barranco, 2010]. If the constant bit value is dominant,
the fault is more precisely called a stuck-at-dominant fault, and if the constant bit value is
recessive, it is called more precisely a stuck-at-recessive fault. Note that because of CAN’s
wired-AND, a stuck-at-recessive node cannot disturb the whole network—recessive bits
issued by that node cannot override bits from other nodes. However, if a stuck-at-recessive
fault affects the communication medium itself, because of a short-circuit of the medium
for instance, then the stuck-at-recessive fault does affect the whole network. Stuck-at-
dominant faults, on the other hand, affect the whole network wherever they happen—
again, because of the wired-AND, which leads dominant bits to override any recessive
bits.

Bit-flipping faults: these occur whenever a node or a component issues random bits or randomly
changes the values of a passing bit stream. They may be caused, for instance, by a bad
welding.

The second category are semantic faults. These include, for instance, faults that lead a node
to transmit frames too early or too late, which Barranco claims is a typical problem of commu-
nication systems. Barranco highlights two types of semantic faults:

Babbling-idiot faults: these occur “whenever a node sends messages that are erroneous in the
time domain” [Barranco, 2008], thereby preventing other nodes from transmitting their

37

Chapter 4. CANcentrate

frames. An example has already been mentioned in the previous chapter (Section 3.4.1): a
node that monopolizes the communication medium and starves other nodes by repeatedly
transmitting a high priority message without delay. Note that what constitutes a babbling-
idiot fault is application dependent. For instance, a long stream of high priority messages
from a single node may not constitute a babbling-idiot fault, but be appropriate for a
particular application.

Network partition faults: these occur “whenever the network is broken into several subnetworks,
which are called network partitions” [Barranco, 2010]. A network partition fault prevents
nodes on different resulting network partitions to communicate with each other.

The CAN protocol can only deal with syntactic faults [Barranco, 2010]. This, together with
the reliability limitations of CAN (described in the previous chapter), motivated the design of
CANcentrate.

The fault model for CANcentrate includes both syntactic and semantic faults. However, be-
cause the work of Barranco [2010] focuses on application independent solutions, the treatment
of semantic faults that require information specific to the application is currently not consid-
ered for CANcentrate. Thus, the only semantic faults that CANcentrate deals with are network
partitions.

In summary, the CANcentrate fault model includes stuck-at, network partition, and bit-flipping
faults. Moreover, because CANcentrate has no replicated hubs, it also assumes that the hub can-
not fail.

4.2. CANcentrate’s architecture

CANcentrate’s basic architecture is depicted in Figure 4.1. It includes a single hub that imple-
ments fault-tolerance techniques and to which each node is connected by a downlink and an
uplink. A downlink is used by a node to receive the signals sent by other nodes through the hub
or to receive the signals sent by the hub itself; an uplink is used by a node to transmit signals
through the hub to other nodes. Note that since each node has its own dedicated link to the hub
and the hub is assumed to never fail, there is no way that a network partition fault can occur.

Each downlink and uplink is comprised of both a CANH and a CANL wire. The differential
voltage between these CANH and CANL wires cannot directly be used by the internal compo-
nents of the nodes or of the hub (we assume that the CAN controllers used by the nodes do not
implement the Physical CAN layer). Transceivers are therefore needed to convert the differential
voltage to logic levels usable by the internal components. Specifically, a transceiver is needed
at each end of each uplink and downlink. That means that each node has two CAN transceivers,
one for the uplink and one for the downlink, and that each port of the hub, where the up- and
downlink of a node are plugged in, also has two transceivers.

The physical setup of a node is shown in Figure 4.2. The node’s microcontroller is connected
to a CAN controller (labeled CAN). The CAN controller in turn is connected to the two CAN
transceivers (labeled Txrx): the CAN controller’s transmission pin (Tx) is connected to the
transmit data input (TxD) pin of the uplink’s transceiver, and the CAN controller’s receive pin
(Rx) is connected to the receive data output (RxD) pin of the downlink’s transceiver. The receive

38

4.2. CANcentrate’s architecture

HubNode i Node j

Node k

Node l

Downlink Uplink

Figure 4.1.: CANcentrate’s architecture for four nodes. Each node is connected to the central hub
by means of a link comprised of a downlink and an uplink. (The figure is based on a figure by
Barranco et al. [2006b].)

pin (RxD) of the uplink’s transceiver and the transmit pin (TxD) of the downlink’s transceiver
are left unconnected (Barranco et al. [2006b] connect a logical 1 value to the transmit (TxD)
pin of the downlink’s transceiver to force a recessive value on the downlink, however, this is
unnecessary—at least with the PCA82C250 transceivers we used in our prototype—because the
transceivers do output recessive values by default [Philips Semiconductors, 1996]).

Figure 4.3 shows the internal structure of a CANcentrate hub. At the hub’s end of each
uplink and downlink is the hub’s Input/Output Module. As shown in the lower half of the figure,
the Input/Output Module is made up of a series of transceivers: for each uplink and for each
downlink there is a transceiver (Tr) in the hub’s Input/Output Module. The connection of these
transceivers is analogous to how a node’s transceivers are connected: receiving transceivers are
connected to the rest of the hub by their receive data output pins, and transmitting receivers are
connected to the rest of the hub by their transmit data input pins. The remaining transmit pins in
receiving transceivers are connected to a logical 1 (although they may be left unconnected as in
a node’s downlink transceiver), and the remaining receive pins in transmitting transceivers are
left unconnected.

The wired-AND functionality of a CAN bus is performed at the hub’s Coupler Module, which
is shown in the upper left corner of Figure 4.3. This module couples the signals from the uplink
transceivers of the Input/Output Module (B1, B2, . . . , Bn) in an internal AND gate, that is, it
couples the signals that originate at the nodes. The output of the AND gate (B0) is then broadcast
to the nodes through the downlink transceivers of the Input/Output module. The frame that
results from the coupling is called the resultant frame.

Figure 4.3 also shows several OR gates in the coupler module. Specifically, there is an OR gate
between each uplink transceiver and the AND gate. A signal coming from an uplink transceiver

39

Chapter 4. CANcentrate

Microcontroller CAN

Txrx

Txrx

Tx TxD

RxD

Rx RxD

TxD

CANH

CANL

CANH

CANL

Uplink

Downlink

Figure 4.2.: CANcentrate node architecture. (The figure is based on a figure by Barranco et al.
[2006b].)

therefore first enters a corresponding OR gate before it can reach the AND gate. The purpose
of these OR gates is to allow the isolation of faulty uplinks. This is accomplished through
the second input to each OR gate, which originates at an enabling/disabling unit of the Fault-
Treatment Module. As long as this second input is a logical 0, the signal from the corresponding
uplink reaches the AND gate without having its logical value altered: if the uplink signal is a
logical 1, it is still a 1 after being ORed with the 0 of the enabling/disabling unit; analogously,
if the uplink signal is a logical 0, it is still a 0 after being ORed with the enabling/disabling
unit’s 0. However, if the corresponding enabling/disabling unit outputs a logical 1, then the
corresponding uplink’s signal is forced to become a logical 1 before entering the AND gate. The
enabling/disabling units can therefore force the signals from specific nodes to become a constant
sequence of 1’s—which are equivalent to recessive values. A node whose contribution is forced
to be recessive values is effectively isolated: it cannot send any signals to the other nodes, and
the forced sequence of 1’s is equivalent to the non-existence of the node. So, all that is needed
to isolate a node’s erroneous signal is that the corresponding enabling/disabling unit outputs a 1.

But how does an enabling/disabling unit know whether the signals coming from its corre-
sponding uplink are erroneous and should therefore be isolated? For this we have to look at the
whole hub. First, notice that the hub can discriminate between the contribution of each node
because each node’s contribution arrives at the hub by its own separate uplink. Next, consider
that whether a particular bit value sent by a node is erroneous or not depends on what that node
was expected to transmit: if a node transmits a dominant bit when a recessive bit is expected, the
bit is erroneous; similarly, if a node transmits a recessive bit when a dominant bit is expected,
the bit is also erroneous. Obviously, one cannot always know what bit value each node should
transmit at each given instant—for instance, generally one cannot predict what the leading trans-
mitter should send in its data field. Nevertheless, in many instances one can predict the correct
contribution of a node. A few examples are the following:

• While there is a leading transmitter, no other node should send dominant bits, except
during the ACK slot.

• Receiving nodes should send a dominant bit during the ACK slot.

40

4.2. CANcentrate’s architecture

Figure 4.3.: Internal structure of a CANcentrate hub. (Reprinted from a technical report by Bar-
ranco [2008] with his permission.)

• When a stuff error occurs in the resultant frame, all nodes should send an error flag.

• When a CRC error occurs, all receiving nodes should send an error flag.

In order for the hub to predict a node’s correct contribution in such instances, it needs to know
what Barranco et al. [2006b] call the current state of the resultant frame. This current state of
the resultant frame “represents what all nodes are supposed to have received from the hub until
this moment” and, therefore, “permits to identify which is the meaning of the bit of the resultant
frame that is currently being broadcasted to all ports, as well as to forecast which should be the
proper contribution of each node for the following bit” [Barranco et al., 2006b].

To maintain the current state of the resultant frame, the hub needs to be synchronized at
the bit level with the nodes; otherwise it would not know when to sample the nodes’ signals
to determine their current bit value. For this, the hub uses the Physical Layer Module, which
is shown in Figure 4.3 and which is part of the Fault-Treatment Module (we think the name
Physical Layer Module is poorly chosen because it deals with bit timing and synchronization,
which according to the CAN specification [Bosch GmbH, 1991] are part of the Data Link Layer
and not part of the Physical Layer).

Moreover, to maintain the current state of the resultant frame, the hub also needs to know
which part of a frame, that is, which frame field, is currently being transmitted. Barranco

41

Chapter 4. CANcentrate

et al. [2006b] call this frame-level synchronization. Frame-level synchronization is done by
the Rx CAN Module, which is part of the Fault-Treatment Module, by observing the coupled
signal B0. As a result of this synchronization, the Rx CAN Module generates a set of signals,
labeled C in Figure 4.3, which, together with the coupled signal B0, describes the current state
of the resultant frame. The enabling/disabling units then use this description of the current state
of the resultant frame to determine whether their corresponding uplink has suffered an error. If it
has, a series of error counters inside the corresponding enabling/disabling unit are incremented
accordingly. If these counters reach a given threshold, the corresponding uplink is diagnosed as
faulty and isolated.

Finally, note that when errors are present, the hub can generally no longer know to what frame
field the currently transmitted bit belongs—just think of an error in the DLC field, which would
lead the hub to no longer know when the data field ends. Therefore, when the hub detects an
error, it globalizes the error by transmitting its own active error flag. This aborts the frame being
transmitted and forces a resynchronization between the nodes and the hub. The transmission
of an active error flag is the purpose of the error flag generator module, shown in the Fault-
Treatment Module of Figure 4.3.

42

5. ReCANcentrate

In the fault model for CANcentrate, Barranco [2010] assumed that the CANcentrate hub would
not fail. Of course in reality the hub may fail, leading to an overall failure of the system. Bar-
ranco et al. [2006b] acknowledged that this is an obvious drawback of CANcentrate, which,
however, can be faced by placing the hub in a well-protected area of the physical system, by in-
vesting in its quality, or—and this is where ReCANcentrate comes in—by adopting a replicated
star topology with more than one hub.

In this chapter we cover ReCANcentrate in more detail than in the introduction: we give
the fault model used by Barranco [2010] for ReCANcentrate, we revisit the ReCANcentrate
architecture in more detail, we summarize the internal structure of a ReCANcentrate hub, we
describe the architecture and media management of the ReCANcentrate nodes, and we describe
the first ReCANcentrate prototype, which Barranco et al. implemented before this project.

5.1. Fault model for ReCANcentrate

The fault model that Barranco [2010] defined for ReCANcentrate is very similar to the fault
model defined for CANcentrate (see Section 4.1). Like the fault model for CANcentrate, the
one for ReCANcentrate includes syntactic faults—that is, stuck-at and bit-flipping faults—and
network partition faults. However, there are some differences.

First, in the fault model for ReCANcentrate it is no longer assumed that a hub cannot suffer
a failure; instead, it is assumed that hubs can fail as long as at least one hub remains non-faulty.
Regarding the failure modes of the hubs, they are assumed to only suffer syntactic faults, that
is, faults that generate stuck-at or bit-flipping bits, and not semantic faults. This is reasonable
because, as will be clear later in this chapter, hubs cannot build or store frames.

Second, as opposed to CANcentrate’s simplex star topology, ReCANcentrate’s replicated star
topology does not inherently prevent network partition faults. In a replicated star topology nodes
are connected to more than one hub. If links between hubs and nodes fail, the resulting com-
bination of remaining non-faulty links may lead the nodes to no longer agree which nodes are
participating in the communication. For instance, consider Figure 5.1, where the link between
hub 1 and node B, and the link between hub 2 and node C have suffered a failure. Node A
can still communicate with both nodes B and C; whereas nodes B and C can only communicate
with node A, but cannot communicate with each other. The next section describes how network
partition faults are avoided.

Finally, the fault model for ReCANcentrate also includes the possibility of a CAN controller
crash. When this occurs, the CAN controller stops notifying its node about anything and is,
from the network’s point of view, stuck-at-recessive. Note that this possibility was not included
in the fault model for CANcentrate because there each node only has a single CAN controller. In

43

Chapter 5. ReCANcentrate

Hub 2

Hub 1

Node A

Node C

Node B

Figure 5.1.: Example of a network partition fault. (The figure is based on a figure by Barranco
[2010].)

contrast, as described in Section 5.3, in ReCANcentrate each node has a CAN controller for each
of its links. Thus, in ReCANcentrate it should be possible to tolerate the crash of one controller
per node.

In summary, ReCANcentrate has been designed to contain errors at links, hubs, and nodes
that manifest themselves as stuck-at or bit-flipping faults in the channel. Moreover, it has been
designed to tolerate up to one CAN controller crash per node and the fault of one link per node,
of one hub, and of all but one interlink.

5.2. ReCANcentrate hub architecture

Hub 2

Hub 1

Node A

Node C

Node B
Uplink

Downlink

In
te

rl
in

k

Su
bl

in
k

Su
bl

in
k

Figure 5.2.: ReCANcentrate’s architecture. (The figure is based on a figure by Barranco et al.
[2006a].)

Figure 5.2 shows ReCANcentrate’s basic architecture. Comparing it with the CANcentrate
architecture of the previous chapter, the notable difference is that there are now two hubs instead
of just one. Each node is connected to each of these two hubs by an uplink and a downlink. Like

44

5.2. ReCANcentrate hub architecture

in CANcentrate, an uplink carries the signals from a node to a hub, and a downlink carries the
signals in the other direction, from a hub to the node. The two hubs are connected to each other
by replicated links called interlinks, which are comprised each of two sublinks. One sublink
carries signals from one hub to the second hub, and the other sublink carries signals in the
opposite direction, from the second hub to the first hub. The signals that one hub transmits to
the other are the coupling of the signals it receives from its uplinks—just like in CANcentrate,
the coupling is done in an internal AND gate. For a given hub, this coupled signal is referred to
by Barranco et al. [2005a] as the contribution of that hub.

Figure 5.3.: Internal structure of a ReCANcentrate hub. (Reprinted from a paper by Barranco et al.
[2005a] with Barranco’s permission.)

Figure 5.3 shows the internal structure of a ReCANcentrate hub. The sublinks are each a
pair of CANH and CANL wires, just like the up- and downlinks; therefore the Input/Output
module of a ReCANcentrate hub not only includes a transceiver for each uplink and downlink,
but also includes a transceiver for each sublink (see the bottom half of Figure 5.3). A hub
couples the contribution it receives from the other hub through the incoming sublinks with its
own contribution in a second AND gate (ANDT in Figure 5.3). The result of this second AND-
coupling (BT) is what a ReCANcentrate hub broadcasts to its nodes using its downlinks. The
frame that results from this second AND-coupling is called the resultant frame [Barranco et al.,
2005a].

Because each of the hubs performs this second AND-coupling within a fraction of the CAN

45

Chapter 5. ReCANcentrate

bit time, they create a single logical broadcast domain, that is, both hubs transmit the exact same
value, bit by bit, through their downlinks. The coupling of both hubs’ contributions has the
following consequences [Barranco et al., 2005a]:

• Network partition faults are prevented: regardless of the hub or hubs a node is connected
to, it receives the same traffic as all the other nodes that are connected to at least one hub.

• A node can communicate as long as one of its two uplinks and one of its two downlinks
is non-faulty, even if it transmits through the uplink to one hub and receives through the
downlink from the other hub (note that this is only true in principle, but that the current
design of the ReCANcentrate nodes, described in Section 5.3, requires both an uplink and
a downlink of the same link to be non-faulty to allow a node to communicate).

• In replicated communication systems a common difficulty is detecting when frames re-
ceived at different replicas of the channel are actually copies of the same frame. It is also
a common difficulty to detect when a given frame has been received on one channel, but
omitted on another. In ReCANcentrate this is easily solved because of the coupling of
both hubs’ contributions: for nodes connected to both hubs “duplicated frames are always
expected in each reception, whereas an omission can be easily detected by checking, at
the reception of each frame, that two copies of the same frame are effectively received
from both stars” [Barranco et al., 2005a]. This is covered in more detail in Section 5.3.

Regarding fault isolation, just like a CANcentrate hub, a ReCANcentrate hub uses enabling/
disabling units together with OR gates to isolate faulty uplinks. The same strategy is also used
to isolate faulty sublinks—or a faulty hub, which will manifest itself as faulty sublinks from the
isolating hub’s point of view. That is, a ReCANcentrate hub has additional hub enabling/dis-
abling units and additional OR gates for the incoming sublinks. The additional OR gates are
placed between the transceivers of the incoming sublinks and the second AND gate (ANDT)
(see Figure 5.3). Similar to the enabling/disabling units, the hub enabling/disabling units decide
whether to isolate their sublinks based on the signals they receive from the sublink’s transceivers
(B’00 and B’01 in Figure 5.3), based on the resultant frame (BT), and based on the set of signals
(C) they receive from the Rx CAN module.

The Rx CAN module of a ReCANcentrate hub has the same function as the Rx CAN module
of a CANcentrate hub: it monitors the coupled signal that is broadcasted to the nodes (BT in the
case of ReCANcentrate); maintains frame level synchronization, that is, it identifies to what part
of a frame each transmitted bit belongs; and it generates a set of signals (C), which, together
with the coupled signal (BT), describes the current state of the resultant frame.

5.3. ReCANcentrate nodes

With respect to the nodes in CANcentrate, the nodes in ReCANcentrate have to be modified
in order to be connected to two hubs and to properly manage the replicated media provided
by the hubs. Figure 5.4 shows the architecture of a ReCANcentrate node. It is constituted
by commercial-off-the-shelf (COTS) components only: a ReCANcentrate node has one micro-
controller, two CAN controllers, and four transceivers. Each of these two CAN controllers is

46

5.3. ReCANcentrate nodes

connected to a different hub through its own pair of transceivers: one of the transceivers is used
to translate the differential voltage from a downlink to a logical value a CAN controller can un-
derstand, and the other is used to translate the logical value of a CAN controller to a differential
voltage on the uplink.

Microcontroller

CAN 1

Txrx Txrx

Tx Rx

CAN 2

Txrx Txrx

Tx Rx

Uplink Downlink Uplink Downlink

Link to Hub 1 Link to Hub 2

Figure 5.4.: ReCANcentrate node architecture. Each CAN controller (CAN 1 and CAN 2) is con-
nected to only one hub, and this is done by means of two transceivers (Txrx) per CAN controller,
one for the uplink and one for the downlink.

Next we describe the media management strategy used by the nodes, that is, how the nodes
transmit and receive through the replicated star while tolerating faults.

5.3.1. Media management in the absence of faults

ReCANcentrate nodes use both controllers to receive frames, but only one of the controllers to
transmit frames. The controller that is both used to transmit and receive frames is called the
transmission controller, whereas the controller that is only used to receive frames is called the
non-transmission controller.

As we said in Section 5.2, the hubs couple their contributions and create a single logical
broadcast domain. Therefore, when a frame is successfully exchanged through the network,
that is, when a delivery event occurs, each node expects that its two CAN controllers nearly
simultaneously notify of that event. The nodes’ media management strategy takes advantage of
this fact. In the absence of faults, a node manages transmissions and receptions as follows. First,
if the node successfully transmits a frame, the transmission controller notifies the transmission of
this frame and the non-transmission controller notifies the reception of this frame; in that case,
all the node needs to do is accept the notification of the transmission as valid and release the
reception buffer of the non-transmission controller to empty it for the next delivery event, that
is, for the next frame exchange. Second, if the node receives a frame sent from another node,
it is notified of this reception by its two CAN controllers. When this happens, both controllers

47

Chapter 5. ReCANcentrate

will contain the same frame due to ReCANcentrate’s single broadcast domain. Therefore, when
both controllers notify a reception, the node’s microcontroller loads the frame from either CAN
controller and, subsequently, releases the reception buffers of both controllers so that they are
empty for the next delivery event.

5.3.2. Media management in the presence of faults

The starting point for what faults a node must deal with is the ReCANcentrate fault model. As
we said in Section 5.1, it includes controller crashes as well as network partition faults, syntactic
faults (i.e. bit-flipping or stuck-at), and hub faults. Nodes must deal with syntactic and hub
faults—both of which manifest, from a node’s point of view, as syntactic faults in an uplink or
downlink. Moreover, they must deal with controller crashes. Nodes, however, do not have to
deal with network partition faults because these are inherently solved in ReCANcentrate due to
the hub coupling. Finally, the nodes have also been designed to avoid the inconsistent message
omission scenario identified by Rufino et al. and, in some situations, to avoid the inconsistent
message omission scenario identified by Proenza and Miro-Julia (see Section 6.4).

If a fault occurs in the communication channel, it generates errors that block the communica-
tion for all nodes. This is so because since ReCANcentrate enforces a single broadcast domain,
the error is globalized and all CAN controllers signal error frames as long as the fault continues
to generate errors. If the fault is temporary, the communication is reestablished as soon as the
fault becomes inactive; otherwise, it is reestablished as soon as the fault is isolated at the corre-
sponding hub ports. Once isolated, if the fault affects a link or a CAN controller, it only prevents
the corresponding node from communicating through the corresponding hub; however, if the
fault affects a hub, it can prevent the communication through that hub for all nodes. Interlink
faults do not prevent any node from communicating, as long as they do not affect all interlinks.

To tolerate a fault, a node that fails to communicate through a given hub as a consequence of
that fault must continue to communicate through the other hub. A node that fails to communicate
through a given hub will observe what Barranco et al. [2008] have called a notification omission
discrepancy (omission discrepancy for short): when a delivery event occurs, the node observes
that the controller connected to that hub fails to notify that event. Thus, in principle, the node
can tolerate a fault by simply accepting as valid the transmission or reception notified by the
correct controller, that is, the one that has no problems to communicate (note that the fault
model does not include so-called byzantine failures [Lamport, Shostak, and Pease, 1982]; thus
it is assumed that there are no failure modes where a controller forges notifications, that is,
generates notifications incorrectly; therefore, the controller that notifies is assumed to be the
correct one).

If the controller that omits notifications is the non-transmission controller, the node does not
even need to diagnose it as faulty—the other controller, the transmission controller, will be able
to continue to receive and to transmit frames and the fact that the non-transmission controller
omits notifications does not prevent the node from communicating. However, if the controller
that omits is the transmission controller, the node must eventually diagnose it as faulty and
discard it; otherwise, the node will not be able to transmit anymore. To overcome this problem,
the node initiates a transmission timer (tx timer) when it requests a transmission: if the timer
expires before the transmission controller notifies of a successful transmission, the node discards

48

5.3. ReCANcentrate nodes

the transmission controller and uses the other controller to transmit and receive.
Additionally, to prevent controllers from going into the error-passive state, in which they

could inconsistently exchange frames (that is, in which some nodes could accept a given frame
while other nodes reject that same frame), a CAN controller is discarded whenever its Transmis-
sion Error Counter (TEC) or its Reception Error Counter (REC) reaches a given threshold (that
threshold is known in many CAN controllers as the error warning limit).

When the microcontroller discards a CAN controller for communication, it also has to check
if that controller is the one which is currently marked as the transmission controller. If that is
the case, it assigns the transmission controller role to the surviving controller.

Finally, there are some situations in which an omission discrepancy can be caused by a media
fault that does not prevent all controllers from communicating, but that leads them to inconsis-
tently exchange a frame. On the one hand, this may happen in the presence of any of the error
scenarios affecting the next-to-last bit of a frame that have been identified for CAN (see Sec-
tion 3.4.3). On the other hand, this inconsistent frame exchange may happen due to a stuck-at-
recessive fault. Specifically, if the stuck-at-recessive fault prevents a controller from monitoring
the traffic, or if it affects the controller’s uplink and prevents the controller from aborting an on-
going frame that it rejects. As an example, consider a downlink that is stuck-at-recessive during
the broadcast of a whole frame. In that case, the controller connected to that downlink will not
receive the frame, whereas the other controllers will receive it—the frame has therefore been
exchanged inconsistently due to a stuck-at-recessive. The ReCANcentrate media management
takes into account the scenarios affecting the next-to-last bit of a frame to some extent, as well
as the inconsistencies provoked by stuck-at-recessive faults, by assuming that a frame is not in-
consistently exchanged more than a predefined number of consecutive times. This is explained
in Chapter 6.

5.3.3. Driver architecture

Manuel Barranco designed the media management to be implemented as a software driver that
abstracts away the details of the node architecture and the media replication. Figure 5.5 depicts
the basic structure of the driver. It shows the peripherals the driver requires: two CAN con-
trollers, CAN 1 and CAN 2 in Figure 5.5, and a timer to be used as the transmission timer (tx
timer).

At the top part of the structure we can see the interface the driver provides to the application:
the driver interface. It includes a set of primitives that abstract away the existence of two CAN
controllers and that allow the application to communicate through the replicated channel as if
there was only a single CAN controller.

Below the interface we can find the driver’s transmission buffer (tx buffer) and reception buffer
(rx buffer). When the application requests to transmit a frame, the driver not only writes that
frame to the hardware transmission buffer of the transmission controller, but it stores a copy of
that frame in the driver’s transmission buffer. The driver needs this copy for different manage-
ment operations; for instance, if the driver diagnoses the transmission controller as faulty before
that controller successfully transmits the requested frame, the driver automatically transfers a
copy of that frame to the surviving controller. Regarding the driver’s reception buffer, it is a
buffer that accommodates the last frame received through ReCANcentrate. When the driver ac-

49

Chapter 5. ReCANcentrate

CAN event tracker

Tx routine Rx routine Qua routine

Tx buffer Rx buffer

Driver interface

Tx timer CAN 1 CAN 2

Application

Driver

Figure 5.5.: Basic driver structure. (Reprinted from a paper we published [Barranco, Geßner,
Proenza, and Almeida, 2010].)

cepts a frame reception, it immediately copies the frame from the hardware reception buffer of
one of the controllers to the driver’s reception buffer and releases the hardware reception buffers
of both controllers. Afterwards, the application is informed of the reception of a frame.

The major part of the driver functionality is located in the management routines: the trans-
mission routine (tx routine), the reception routine (rx routine), and the quarantine routine (qua
routine). Each one of them is an interrupt service routine (ISR) that handles a given CAN con-
troller or timer notification. An ISR, also known as an interrupt handler, is a routine that gets
invoked in response to an interrupt. Usually a specific ISR is associated with a given interrupt by
means of an interrupt vector table (IVT), which is a table in memory where each entry contains
the memory address of an ISR and where each entry corresponds to a specific interrupt—the first
table entry corresponds to interrupt one and contains the memory address of the ISR for interrupt
one, the second table entry corresponds to interrupt two and contains the memory address of the
ISR for interrupt two, and so forth.

The tx routine is executed when any of the two CAN controllers notifies of a transmission.
The rx routine is executed when any of the two CAN controllers notifies of a reception. The qua
routine is executed when the TEC or REC of any of the two CAN controllers reaches a specific
threshold or when the transmission timer expires. To simplify the routines, Manuel Barranco
considered that they cannot be nested, which requires that all of them have the same execution
priority. These routines are explained in detail in Chapter 6.

None of these ISRs is directly triggered when a notification occurs. Instead, what a notifi-
cation triggers is another ISR called CAN event tracker. This ISR has the maximum execution
priority so that it can preempt any management routine. When a notification occurs, the CAN
event tracker annotates that it has occurred and, then, triggers the execution of the appropriate
management routine by generating a software interrupt. The triggered management routines will
be pending until the CAN event tracker and any previously preempted management routine end.
If both a qua routine and a rx routine for the same controller are pending, the implementation
must ensure that the qua routine is executed last because, as will be explained in Chapter 6,
the qua routine deactivates the controller and, thus, the rx routine would otherwise access the
reception buffer of a deactivated controller.

The CAN event tracker functions as a dispatcher that decides which management routine must
handle each notification. Moreover, it keeps track of which notifications have occurred and,
thus, which routines it has triggered. This information is essential for the management routines

50

5.4. Previous ReCANcentrate prototype

because they cooperate with each other (see Chapter 6) and must know which other routines have
been triggered. Which routines have been triggered is indicated by several boolean variables,
one for each type of notification, which are called tracking variables.

5.3.4. Hardware requirements of the driver

As can be deduced from the description of the driver architecture, in the previous section, the
driver imposes some requirements on the hardware. These hardware requirements are the fol-
lowing:

• Availability of two CAN controllers. Two CAN controllers are needed so that a node can
be connected to both ReCANcentrate hubs.

• Interrupt nesting with configurable interrupt priorities. Interrupt nesting refers to the pre-
emption of a lower priority ISR by a higher priority ISR. This is needed to allow the CAN
event tracker to preempt any management routine that is executing. Moreover, the driver
must be able to assign a higher priority to the CAN event tracker than to the management
routines so that the CAN event tracker can preempt the latter.

• Software interrupts. This is needed to allow the CAN event tracker to trigger the adequate
media management routine when a notification occurs.

• Interrupt generation when a controller’s transmission error counter (TEC) or receive error
counter (REC) reaches a threshold, which must be below 128, the value at which a CAN
controller enters the error-passive state. This is needed so that the CAN event tracker can
be triggered once a CAN controller has detected too many errors, but before the controller
enters the error-passive state.

• The CPU of the microcontroller must be fast enough to execute the CAN event tracker
and any triggered tx routine or rx routine before the next delivery event takes place, that
is, before the next frame is exchanged. The reason for this is that the tx and rx routines
cooperate with each other and, thus, if the CPU were not fast enough, a tx or rx routine that
is handling a previous delivery event could incorrectly cooperate with a tx or rx routine
that is handling a subsequent delivery event.

5.4. Previous ReCANcentrate prototype

In order to verify the functionality and to measure the performance of ReCANcentrate—in par-
ticular of their hubs—Barranco et al. [2006a] implemented a prototype that had two ReCAN-
centrate hubs and three simplified nodes. In this section we describe the implementation of this
previous prototype, as our prototype builds upon it. However, since both the hubs in the previ-
ous prototype and in our prototype were implemented using Field Programmable Gate Arrays
(FPGAs), we begin this section with a brief introduction to FPGAs.

51

Chapter 5. ReCANcentrate

5.4.1. Brief introduction to FPGAs

FPGA stands for Field Programmable Gate Array, and it is described by the corresponding
Wikipedia article [Wikipedia, 2010a] as follows:

A field-programmable gate array (FPGA) is an integrated circuit designed to
be configured by the customer or designer after manufacturing—hence “field-
programmable”. The FPGA configuration is generally specified using a hardware
description language (HDL), similar to that used for an application-specific inte-
grated circuit (ASIC) FPGAs can be used to implement any logical function
that an ASIC could perform.

FPGAs contain programmable logic components called “logic blocks”, and a
hierarchy of reconfigurable interconnects that allow the blocks to be “wired to-
gether” Logic blocks can be configured to perform complex combinational
functions, or merely simple logic gates like AND and XOR. In most FPGAs, the
logic blocks also include memory elements, which may be simple flip-flops or more
complete blocks of memory.

FPGAs also have several I/O pins that can be used to input signals to the logic blocks or to
output signals from the logic blocks. Figure 5.6 shows the internal structure of an FPGA.

The process of programming an FPGA can be summarized as follows [XESS Corporation,
2010]:

1. The logic circuit to be installed on the FPGA is designed using a hardware description
language (HDL).

2. A logic synthesizer program transforms the HDL code into a so called netlist, which is a
description of various logic gates and of how these logic gates are interconnected.

3. A mapping tool groups the logic gates of the netlist into several groups that can be fitted
into the logic blocks of the FPGA.

4. A place and route tool assigns the groups of logic gates to specific logic blocks of the
FPGA and specifies how the interconnections between the logic blocks are to be config-
ured.

5. A software tool called a bitstream generator generates an appropriate bitstream from the
specification that resulted from the previous step. This bitstream can then be downloaded
into the physical FPGA (for instance, via a cable connecting the board that contains the
FPGA to the parallel port of the computer where the bitstream is). After the download the
FPGA performs the operations specified in the HDL code.

5.4.2. Hub implementation

Barranco et al. [2006a] implemented the coupler module and the fault-treatment module using
a Xilinx Spartan-3 XC3S1000 FPGA embedded within an XSA-1000 board. Specifically, they

52

5.4. Previous ReCANcentrate prototype

Logic Block

Reconfigurable
interconnection

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O

I/O I/O I/O

Figure 5.6.: Internal structure of a field-programmable gate array (FPGA). An FPGA is comprised
of programmable logic blocks interconnected through reconfigurable interconnections and has
several input/output (I/O) pins.

implemented the coupler module and the fault-treatment module using the VHSIC Hardware
Description Language (VHDL), which is a particular HDL used to specify FPGA configurations.
On the other hand, for the I/O module, they implemented “a dedicated board with four pairs of
PCA82C250 CAN transceivers and four RJ45 plugs (one for each transceiver pair) providing the
connection for four hub ports” [Barranco et al., 2006a]. Each of these hub ports could either be
used as an interlink or as a link to a node, depending on the configuration specified in the VHDL
file used to configure the FPGA [Barranco et al., 2006a]. Finally, “each link and each interlink
were built using a dedicated UTP Cat 5 Ethernet cable, which contains 4 twisted pairs, allowing
a fast implementation of both the uplink and downlink in a single cable, as well as both sublinks
of an interlink” [Barranco et al., 2006a]. The electronic circuits they used for the I/O modules
of their hubs are described in Section 5.4.4.

5.4.3. Node implementation

In their prototype Barranco et al. [2006a] did not implement the nodes as shown in Figure 5.4
(page 47), but with a single CAN controller instead, as shown in Figure 5.7. We call these nodes,
which use a single CAN controller, simplified nodes. The approach used for the simplified
nodes is similar to an approach proposed by Rufino et al. [1999]. As can be seen in Figure 5.7,

53

Chapter 5. ReCANcentrate

µControllerCAN

Txrx

Tx

TxrxTxrx

Tx

Txrx

StDD1 StDD2

Rx

Uplink Downlink Downlink Uplink

Link to Hub 1 Link to Hub 2

Figure 5.7.: ReCANcentrate node architecture using an approach inspired by Rufino et al. [1999].
This is the architecture that Barranco et al. [2006a] used for their simplified nodes.

it incorporates for each node one CAN controller (labeled CAN) with four CAN transceivers
(labeled Txrx) grouped in two pairs. Each pair connects to a different hub using one transceiver
for the downlink and the other one for the uplink. Each of the node’s downlinks bifurcates into
two branches after having entered the downlink’s transceiver. One branch enters an OR gate
while the other enters a stuck-at-dominant detector (StDD1 and StDD2 in Figure 5.7), whose
output then enters the same OR gate.

Each of the stuck-at-dominant detectors is a simple circuit that outputs a logical 0 as long as
the number of consecutive dominant bits received through the corresponding downlink does not
exceed a specific threshold; otherwise, when the threshold is exceeded, the circuit permanently
outputs a logical 1.

In the absence of faults, each of the OR gates receives a stream of zeros from its attached
stuck-at-dominant detector. This means that each of the OR gates has a permanent zero at one
of its inputs. The output of the OR gates will therefore be what comes through the other input,
the one without the permanent zero. The inputs without the permanent zero are the downlinks,
thus, each OR gate outputs the stream received through the corresponding downlink. Moreover,
as ReCANcentrate enforces a single broadcast domain, each bit value is quasi-simultaneously
received on both of the node’s downlinks. Therefore, during any given bit time, both OR gates
output the same bit value. This means that the AND gate receives the same value on both its
inputs and, thus, outputs that bit value, which then enters the CAN controller. In summary,
in the absence of faults, the node’s CAN controller receives the bit stream coming from both

54

5.4. Previous ReCANcentrate prototype

downlinks, which is the bit stream being broadcast by both hubs.
If a fault manifests as a stuck-at-recessive downlink, the sequence of 1’s coming from that

downlink enters the AND gate. Each bit coming from the non-faulty downlink will then be
ANDed together with the 1’s from the stuck-at-recessive downlink and, therefore, the stream of
bits that gets to the CAN controller is the one from the non-faulty downlink.

If a fault manifests as a stuck-at-dominant downlink, the corresponding stuck-at-dominant
detector is the one producing the sequence of 1’s that isolates the faulty contribution received
through that downlink.

Barranco et al. implemented the CAN nodes using COTS components only: the single CAN
controller and the CPU of each node were part of a PIC microcontroller [Microchip, 2004];
the stuck-at-dominant detectors were implemented using a simple electronic circuit comprised
of a capacitor, a resistor, and a NOT gate; and the transceivers were the PCA82C250 CAN
transceivers from Philips Semiconductors [1997].

Unfortunately we cannot recommend the simplified nodes for highly fault-tolerant systems.
First, they do not tolerate faults that manifest as a bit-flipping downlink. Second, there is another
big disadvantage to this approach, and in general to any approach where a node uses a CAN
controller that sends the same signal through both uplinks. Notice in Figure 5.7 that since the
CAN controller sends error flags through both uplinks in response to errors it detects in any of
the downlinks, both hubs observe these error flags at the respective uplink ports. This will likely
cause both hubs to isolate the node even when the fault only affects the connection of the node
to one of the hubs. Finally, this approach would require higher level protocol layers to tolerate
the data inconsistency scenarios described in Section 3.4.3.

5.4.4. Electronic circuits

This section contains two schematic diagrams of electronic circuits that Barranco et al. [2006a]
developed and implemented for their prototype. We implemented them again in our prototype
as will be explained in Chapter 7.

Electronic circuit for an I/O module port of a ReCANcentrate hub or node

Figure 5.8 shows the schematic of the electronic circuit that Barranco et al. [2006a] designed
to implement the port of an Input/Output module of a hub or of a node. If the circuit is used
for a hub, then we can plug into such a port (into the RJ45 connector) either a link from a
node—comprised of an up- and a downlink—or an interlink from the other hub—comprised of
an incoming and an outgoing sublink. If the circuit is used for a node, we can plug into such a
port a link to a hub—comprised of an up- and a downlink.

The transceivers used are PCA82C250 CAN transceivers [Philips Semiconductors, 1997].
In the schematic, the transceiver shown in the top is the receiving transceiver; whereas the
transceiver shown in the bottom is the transmitting transceiver. These transceivers have each
a pin for the CANH and the CANL wire and are labeled accordingly in the schematic. More-
over, these transceivers have the following additional pins:

Slope resistor input pin (RS): used to switch between high-speed, slope control, and standby

55

Chapter 5. ReCANcentrate

OUT

IN

OUT

120 Ω

RJ45

RxD

Vcc

GND

TxD

Vref

CANL

CANH

Rs

PCA82C250

100nF

+5 Vcc

RxD

Vcc

GND

TxD

Vref

CANL

CANH

Rs

PCA82C250

100nF

+5 Vcc

120Ω

120Ω

470Ω
47pF

Figure 5.8.: Electronic circuit for a port of the I/O module of a hub or node.

mode [Philips Semiconductors, 1997]. It is connected to ground in the schematic, which
selects the high-speed mode.

Reference voltage output pin (Vref): provides a reference voltage. It is left unconnected in the
schematic.

Supply voltage pin (Vcc): it is connected to 5 V and protected from noise by a 100 nF decou-
pling capacitor, that is, a capacitor that removes momentary glitches in the power source.

Ground pin: connected to ground.

Transmit data input pin (TxD): connected to the source of the logic level signals which are to
be converted to a differential voltage between the CANH and CANL pins. It is left un-
connected in the receiving transceiver. In the transmitting transceiver it is attached to a
resistor-capacitor circuit, which is used in case the wire labeled OUT is connected to a
3.3 V output pin that needs to be pulled up to 5 V (that would be the case if the CAN
controller or the hub to which the OUT wire is connected operates at 3.3 V instead of the
transceiver’s 5 V).

Receive data output pin (RxD): connected to the destination of the logic level signals corre-
sponding to the differential voltage between the CANH and CANL pins. It is left un-
connected in the transmitting transceiver.

When the circuit of Figure 5.8 is used to implement an input port of a hub, the wire labeled IN
connects the RxD pin of the receiving transceiver to the pin of the coupler module corresponding
to that port contribution: Bi (of Figure 5.3, page 45) when the contribution is from a node or
B’0i when the contribution is from a hub. When the circuit is used to implement an output port of
a hub, the wire labeled OUT connects the TxD pin of the transmitting transceiver to the coupler

56

5.4. Previous ReCANcentrate prototype

module pin that outputs the hub’s contribution (B0) or to the pin that outputs the result of the
coupling of both hubs’ contributions (BT).

On the other hand, when the circuit is used by a simplified node, the IN wire is the wire
that splits in two and connects both to an OR gate and to a stuck-at-dominant detector (see
Figure 5.7), and the OUT wire is the wire that carries the output of the simplified node’s CAN
controller.

Regardless of whether the circuit is used to implement the port of a hub or a node, the port
is implemented with an RJ45 plug, and the link or interlink is implemented with a UTP Cat 5
Ethernet cable, of which only four wires are used: two for the CANH and CANL of the incom-
ing signal, and two for the CANH and CANL of the outgoing signal. Finally, to avoid signal
reflections, both CANH and CANL wire pairs are terminated using a 120 Ω terminating resistor.

Electronic circuit to connect an external oscillator

In order to properly communicate, the oscillators of the ReCANcentrate hubs and the ReCAN-
centrate nodes must all have frequencies that are multiples of each other. The frequencies of
these oscillators can then be scaled by each node and hub so that they all use a clock with the
exact same frequency to sample each other’s transmitted bits. If they did not use the same clock
frequency for sampling, receiving nodes and hubs would not be able to synchronize themselves
with the leading transmitter. Refer back to Section 3.3, for a more detailed discussion on the
synchronization between nodes.

HD74LS04P

Vcc

+5 Vcc

GND

Oscillator

INN

CLK

150 Ω

470 Ω

10 nF

470 Ω

Figure 5.9.: Electronic circuit to attach an external oscillator.

Because the internal oscillators of the FPGAs, where the hubs were synthesized, were not a
multiple of the internal oscillators of the simplified nodes, Barranco et al. had to attach an exter-
nal oscillator to either the hubs or the nodes. Specifically, either an oscillator had to be attached
to the hubs to match the frequency of the nodes’ oscillators or, alternatively, an oscillator had
to be attached to the nodes to match the frequency of the hubs’ oscillators. This is what the
electronic circuit shown in the schematic of Figure 5.9 is for.

57

Chapter 5. ReCANcentrate

Microcontrollers and FPGAs usually have a dedicated pin to which an external clock source
can be connected to. By inserting an appropriate oscillator into the electronic circuit, by then
connecting the wire labeled CLK to that pin, and by configuring the microcontroller or FPGA
to use an external clock source, we can ensure that the nodes and the hubs have frequencies
multiples of each other.

58

Part II.

Project specific tasks

6. Final design of the media management
driver for the ReCANcentrate nodes

This chapter describes the final design of the media management driver that allows the ReCAN-
centrate nodes to communicate through the replicated media provided by the hubs while tolerat-
ing both the crash of a CAN controller and the occurrence of faults that manifest as stuck-at or
bit-flipping bits in the channel. The design is based on the original design by Manuel Barranco
(the flowcharts of which are printed in Appendix A), but corrects and improves a few things. We
do not discuss the original design and we do not compare it to the final design; instead, we only
discuss the final design, which is what we implemented for the nodes of our prototype.

Note that Manuel Barranco did not only create the initial design of the media management
driver, but that he also provided a fair amount of input to the final design.

Remember from Section 5.3.3 that the driver for the nodes has three main components: the
CAN event tracker, the media management routines, and the driver interface. This chapter begins
by first describing in detail each of the media management routines: the tx routine, the rx rou-
tine, and the qua routine. Afterwards, it introduces the transmission request routine (tx request
routine), which is part of the driver interface. Then it describes three examples that illustrate
how the media management routines work and how they interact with the CAN event tracker
and the tx request routine. Finally, the chapter describes the fault-tolerance capacities of the me-
dia management driver, focusing on how the CAN inconsistency scenarios from Section 3.4.3
are tolerated.

6.1. Media management routines

As described in Section 5.3, when a delivery event occurs at a ReCANcentrate node, it is ex-
pected that each of the node’s CAN controllers notifies about the transmission or reception that
has occurred. This notification is done through interrupts which invoke the CAN event tracker.
The CAN event tracker invocation then checks why it was invoked and then subsequently trig-
gers the tx routine, if it was invoked because of a transmission; or the rx routine, if it was invoked
because of a reception.

In the absence of faults, there will be two CAN event tracker invocations for each delivery
event—one for each controller. If a transmission occurred, one invocation will trigger the tx
routine and the other invocation will trigger the rx routine; if a reception occurred, both invoca-
tions will trigger an rx routine. In any case, two media management routine executions will be
triggered and one of the executions will execute before the other. In that case, the two executions
must collaborate to handle the delivery event.

On the other hand, in the presence of faults, one of the CAN controllers may omit a notification
and only one routine execution may be triggered because of the delivery event. In that case, the

61

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

single routine execution must handle the event alone.

idle
TxEvent [ctrl] =
false; disable Tx

timer

FrameManaged
= false

FrameManaged
== true?

Wait K units of
time

Signal tx to user
app; TxPending

= false

FrameManaged
= true;

MsgTxOmi = 0

RxEvent
[otherCtrl]
== true?

MsgTxOmi
== maxIn-
consists?

MsgTxOmi++;
ctrlPend-

ingTx[txctrl] =
true; enable Tx

timer

CAN transmission interrupt occured

yes

no

yes

no

yes

no

A B

C D

E

F G H

I

J

Figure 6.1.: Final design of the tx routine.

6.1.1. The tx routine

The flowchart for the tx routine is shown in Figure 6.1. The routine starts with the reset of both
a tracking variable and the transmission timer (this is shown in block B of Figure 6.1; ctrl
refers to the controller that notified the transmission). The tracking variable was set by the CAN
event tracker and indicates that the tx routine has been triggered because of a notification by the
controller ctrl. The transmission timer was first introduced in Section 5.3.2. As explained in
that section, it counts the time that the transmission controller has available for the transmission
of a frame before the driver considers the transmission controller to be faulty. Next, since a frame
transmitted by the transmission controller should be received by the non-transmission controller,
the tx routine checks if the rx routine was triggered first and if it has verified that the non-
transmission controller has received the frame that the transmission controller had transmitted.
For this purpose it consults the driver variable FrameManaged (decision D in Figure 6.1). If its

62

6.1. Media management routines

value is true, it means that the rx routine has already managed the transmission notification and,
thus, the tx routine simply needs to reset this variable to false (block C). If FrameManaged
is false, the routine waits K units of time to give the non-transmission controller enough time
to notify the reception of the transmitted frame (block E)—the non-transmission controller may
have been slower to notify so the wait may be necessary. Afterwards, it consults the tracking
variable RxEvent[otherCtrl] to check if this notification has occurred (block H). If it has,
the routine sets FrameManaged to true and resets the driver variable MsgTxOmi, whose
role will be explained later, to zero (block G). Setting FrameManaged to true (in block G)
informs the rx routine which is going to be executed next that the tx routine has already verified
that the non-transmission controller received the transmitted frame; the rx routine will therefore
not have to verify it again. Finally, (in block F) the tx routine indicates to the application that
the frame has been successfully transmitted and resets the driver variable TxPending, which
indicated that the frame was pending to be transmitted.

In contrast, if after waitingK units of time, the rx routine has not been triggered, the tx routine
detects an omission discrepancy (see Section 5.3.2). When this happens, it checks if the number
of omissions detected so far is equal to the maximum number of consecutive inconsistencies
(decision I). If so, the tx routine assumes that this inconsistency is not due to one of the data
inconsistency scenarios discussed in Section 3.4.3, but due to a permanent stuck-at-recessive
fault that prevents the non-transmission controller from communicating; thus, it simply indi-
cates to the application that the frame has been successfully transmitted (block F). Otherwise,
it increases the omission counter and requests a retransmission of the frame through the trans-
mission controller (block J)—note that the retransmission may cause the reception of duplicated
frames at some nodes.

6.1.2. The rx routine

The flowchart for the rx routine is shown in Figure 6.2. Just like the tx routine, the rx routine
starts by resetting the tracking variable that indicates that it has been triggered because of a
notification by the corresponding controller (block B)—although this time the notification was a
reception event instead of a transmission event. The next thing that the rx routine does is to check
the driver variable FrameManaged (decision E). If the variable is true, it means that the frame
whose reception has launched the rx routine has either already been managed by the tx routine or
that it has already been managed by another execution of the rx routine which was triggered by
the other controller; in any case, if the FrameManaged variable is true, all the rx routine must
do is reset the variable (block D) and release the reception buffer of its corresponding controller
(block C).

If the FrameManaged variable is false (in block E), the rx routine knows that it is the one
that is executing first; it therefore waitsK units of time to give the other controller time to notify
(block F). Then, the rx routine checks whether or not the other controller has triggered a tx rou-
tine (decision I). If it has, this means that the frame the rx routine is managing is actually a frame
that was transmitted by the other controller. In that case, the rx routine sets FrameManaged
to true to inform the tx routine—which will be executed next—that it already managed the
transmission and resets the driver variable MsgTxOmi (block H). Next, the rx routine indicates
to the application that the frame has been successfully transmitted and resets the driver variable

63

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

idle RxEvent [ctrl] =
false

Release
RxBuffer[ctrl]

FrameManaged
= false

FrameManaged
== true?

Wait K units of
time

Signal tx to user
app; TxPending

= false

FrameManaged
= true;

MsgTxOmi = 0

TxEvent
[otherCtrl]
== true?

MsgTxOmi++ RxMsg[ctrl]
== MsgTx?

TxPending
== true?

Signal reception
to user app

RxEvent
[otherCtrl]
== true?

MsgRx =
RxMsg[ctrl]

FrameManaged
= true

CAN receive interrupt occured

yes

no

yes

no

yes yes

no

no

yes

no

A B

C D E

F

G H I

J K L

M N

O P

Figure 6.2.: Final design of the rx routine.

TxPending (block G), thus indicating that the transmission of the frame is no longer pending.
Finally, the rx routine releases the reception buffer of the controller whose notification caused
the rx routine to be executed (block C).

In case the rx routine detects (in decision I) that the other controller has not triggered a tx
routine, the rx routine still needs to check if it is managing a frame transmitted by the other
controller. The reason is that the other controller could omit the notification of a transmission due
to a fault—it could crash before triggering the tx routine—or it could omit the notification of the
transmission due to a CAN inconsistency scenario which led the other controller to believe that
it did not successfully broadcast the frame. In order to make sure that it is not managing a frame
transmitted by the other controller, the rx routine checks if the driver variable TxPending is
true (decision L) and (in decision K) if the frame placed at the tx buffer of the driver (MsgTx) is
equal to the frame contained within the hardware reception buffer of the corresponding controller
(RxMsg[ctrl]). If so, the rx routine assumes that an omission discrepancy occurred and, thus,

64

6.1. Media management routines

increases the omission counter (MsgTxOmi) (block J). Note that in case the omission is due to
a permanent fault, that is, the transmission controller has crashed, then the transmission timer
will eventually expire and the qua routine will carry out the actions needed to tolerate the fault
(see Section 6.1.3). If the node had a frame pending for transmission (decision L, branch labeled
yes), but the controller did not receive the pending frame (decision K, branch labeled no), then
the controller received a frame from another node. The controller has also received a frame from
another node if there was no transmission pending on the node that is executing the rx routine
(decision L, branch labeled no).

Either way, when the rx routine determines that the frame came from another node, it checks
if the other controller has also received it (decision N). If it has, the other controller will have
triggered another execution of the rx routine. Therefore the current rx routine execution sets
the driver variable FrameManaged to true (in block P) to indicate to the other rx routine
execution that it has already managed the reception of the frame; additionally, it copies the
received frame from the controller’s hardware reception buffer to the driver’s reception buffer
(block O). If the other controller has not received the frame, the rx routine proceeds directly to
copying the received frame to the driver’s reception buffer (block O again, but now through the
branch labeled no outgoing from decision N). In any case, at the end, the rx routine sets a flag
of the driver to signal to the user application that the frame was received (block M) and releases
its controller’s hardware reception buffer (block C).

6.1.3. The qua routine

When the transmission error counter (TEC) or the reception error counter (REC) of a controller
reaches a given threshold (the error warning limit), this causes an interrupt that invokes the
CAN event tracker. The CAN event tracker then determines that it was called because of an
error warning and invokes the qua routine, which then quarantines (deactivates) the controller
whose TEC or REC has reached the error warning limit. Similarly, when the transmission timer
expires, the qua routine is also invoked through the CAN event tracker in order to quarantine the
transmission controller as the expiration of the transmission timer implies that the transmission
controller has crashed.

The flowchart for the qua routine is shown in Figure 6.3. The routine starts by checking if the
controller that is to be quarantined is active (decision B in Figure 6.3). If it is not active, it has
already been quarantined by a previous execution of the qua routine (the qua routine could be
invoked twice for the same controller if the error warning limit is reached and shortly after that
the transmission timer expires). So, if the controller has already been quarantined, then there is
nothing left to do for the qua routine and it simply finishes. On the other hand, if the controller
is still active, then the qua routine is marked as deactivated and then reset (this is done in block
C). Next, the qua routine must check whether the deactivated controller was the transmission
controller (decision G). If it was not the transmission controller, the qua routine has finished.
But if it was, then the qua routine has to perform a set of actions needed to start using the
surviving controller as the new transmission controller. These actions are the following. First,
the routine disables the transmission timer (block F): this prevents the timer from unnecessarily
expiring in case the qua routine was triggered because of an error warning and the timer was
still running. Afterwards, the qua routine checks if the other controller is non-faulty, that is, if

65

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

idle

active [ctrl]? active[ctrl] =
false; reset ctrl

txctrl = otherCtrl
active

[otherCtrl]? disable Tx timer txctrl ==
ctrl?

TxPending? noCtrlAval =
true

TxEvent[ctrl]?

write
TxBuffer[txctrl];

ctrlPendingTx
[txctrl] = true;

reset and enable
Tx timer

CAN error-warning or transmission timer interrupt occured

no

yes

yesyes

no

no

yes

yes

no

no

A

B C

D E F G

H I

J

K

Figure 6.3.: Final design of the qua routine.

the other controller is active (decision E). If not, this means that there are no controllers left for
the node to communicate; thus, all the routine can do is inform the application that there are no
controllers available anymore (block I). If the other controller is still active (decision E, branch
labeled yes), the routine marks the other controller as the new transmission controller (block D)
and, then, checks whether or not a frame’s transmission is pending (decision H). If it is pending,
it could be necessary to request the transmission of the frame through the new transmission
controller. To decide if it has to transmit the frame through the new transmission controller, the
qua routine checks the tracker variable that indicates whether the controller that was deactivated
previously (in block C) notified the transmission (decision J). If it is true, then the controller
that was deactivated previously (in block C) was able to finish the transmission before the qua
routine was invoked; thus, the qua routine must not instruct the transmission through the new
transmission controller. However, if the variable is false, then the deactivated controller was not
able to finish the pending transmission before the qua routine was invoked and a transmission
through the new transmission controller must be instructed (block K).

66

6.2. The tx request routine

6.2. The tx request routine

idle

TxPending? return tx already
pending

return Tx
successfully

requested

write frame to
MsgTx

enable inetrrupts disable
inetrrupts

write frame to
TxBuffer[txctrl]

reset Tx timer;
enable Tx timer

transmit(txctrl);
TxPending =

true;
MsgTxSucc =

false

transmission requested by user

yes

no

A

B C

D E

G

H

JI

F

Figure 6.4.: Final design of the tx request routine.

In contrast to the media management routines, the tx request routine—which is part of the
driver interface (see Figure 5.5 on page 50)—is directly called by the user application running
on the node instead of being called through software interrupts generated by the CAN event
tracker. The user application calls this routine whenever it wants to transmit a frame through
the replicated channel provided by the ReCANcentrate hubs. When the routine is called, as the
flowchart in Figure 6.4 shows, it first checks whether a transmission is already pending (decision
B). If it is, this is simply communicated to the user application (block C) and nothing else is done
in the routine. If no transmission is pending yet, the routine writes to the driver’s transmission
buffer the frame whose transmission is requested (block E), which is passed as a parameter to
the tx request routine. Afterwards, the routine temporarily disables the interrupts to the CPU
(block G). This is done in order for the routine to have exclusive access to the controllers, the
transmission timer, and the driver’s variables. If the interrupts were not disabled, one of the me-
dia management routines could preempt the CPU while the tx request routine is being executed.
The preempting media management routine could then, for instance, modify the transmission
buffer of the transmission controller or change any of the driver’s state variables (such as the
variable that indicates whether a transmission is pending or the variable that indicates which is

67

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

the transmission controller). This would have unintended consequences.
After the interrupts have been disabled, the tx request routine copies the frame to be transmit-

ted to a second buffer: the hardware transmission buffer of the transmission controller (see block
H). Then, the routine instructs the transmission controller to transmit the frame and it updates
the driver’s status variables to indicate that the transmission is pending and that the transmis-
sion has not (yet) been carried out successfully (block J). Note that when the routine instructs
the transmission controller to transmit the frame, the frame is not transmitted immediately; the
transmission controller will first have to gain access to the medium: it will have to wait until the
communication channel is idle and then it will have to win the arbitration if there are other nodes
that also attempt to transmit a frame. Anyway, after the transmission through the transmission
controller has been instructed and the status variables have been updated, the routine needs to
set up the transmission timer (block I). It resets the transmission timer so that it starts counting
again from zero up to the transmission timeout and it then enables the timer. Once this is done,
the interrupts can be enabled again (block F) and the user application can be informed that the
transmission was successfully requested (block D).

6.3. Example executions

To better illustrate how the CAN event tracker and the media management routines interact
with each other, and to further clarify how the media management routines work, this section
describes three example executions of the CAN event tracker and media management routines.

6.3.1. Fault-free reception

CAN1 Tracker

CAN2 Tracker

CAN1 Rx

CAN2 Rx

CAN1 Downlink EOF Interm. New frame

CAN2 Downlink EOF Interm. New frame

Figure 6.5.: Example execution of the reception of a data frame.

In this section we describe what occurs at a node when a frame is received from another node
and there are no faults. This scenario is illustrated in the chronogram of Figure 6.5. CAN1
and CAN2 are the CAN controllers of the node. The bottom of the figure shows what each of
the two CAN controllers receives through its downlinks, which is the same for both of them.
The chronogram starts with the last few bits of the end of frame field (EOF) transmitted by
another node. When the last EOF bit has been received by the controllers, both controllers

68

6.3. Example executions

notify the reception of the transmitted frame. They do this through interrupts which invoke the
CAN event tracker (shown as upward arrows in the figure). More precisely, each of the two
interrupts invokes the CAN event tracker ISR corresponding to the controller that generated
these interrupts.

The first CAN event tracker ISR to execute is the one for the CAN1 controller. It determines
that it was invoked because of a reception at the CAN1 controller and, thus, indicates that fact
in a corresponding tracking variable—it sets RxEvent[CAN1] = true—and triggers the rx
routine for the CAN1 controller by generating an appropriate software interrupt (represented as
a downward arrow). When it finishes, the pending CAN2 tracker ISR executes, which has a
higher priority than the now also pending ISR of the CAN1 rx routine. The CAN2 tracker ISR
also determines that it was invoked because of a reception and, thus, indicates in a correspond-
ing tracking variable that a reception at the CAN2 controller occurred—RxEvent[CAN2] =
true—and triggers the rx routine for the CAN2 controller. Now the ISRs of the CAN1 rx
routine and the CAN2 rx routine are pending.

In the scenario shown in the figure the CAN1 rx routine ISR executes before the CAN2 rx
routine ISR. Referring back to the flowchart of the rx routine (Figure 6.2), the ISR of the CAN1
rx routine resets to false the tracking variable that the CAN1 tracker ISR had just set to true
(block B in Figure 6.2) and then determines that it has to manage the frame just received at the
CAN1 controller (decision E). It waits K units of time for the CAN2 controller to notify the
delivery event (block F), which in the current scenario is unnecessary because the CAN2 con-
troller already notified the reception of a frame—but in general there could be a delay between
the notifications of the two CAN controllers, making the wait necessary. After the wait, the
ISR for the CAN1 rx routine determines that the tracking variable that indicates that the CAN2
controller notified of a transmission is not set to true (decision I). It then further checks whether
there is a transmission pending (decision L). Let us assume that there is not, that is, that there
was no recent call to the tx request routine. The ISR for the CAN1 rx routine then moves on to
check whether the tracking variable that indicates that the CAN2 controller notified a reception
is set to true (decision N). It is: the CAN2 tracker ISR had set it to true just before the CAN1 rx
routine ISR started its execution; thus, the CAN1 rx routine ISR knows that the CAN2 rx rou-
tine ISR is going to execute. So, to tell the CAN2 rx routine ISR that the reception of the frame
has already been managed, the CAN1 rx routine ISR sets the FrameManaged variable to true
(block P). Then, all that is left to do is to copy the received frame from the CAN1 controller’s
hardware reception buffer to the driver reception buffer (block O), signal to the user application
that a frame was received (block M), and release the hardware reception buffer of the CAN1
controller (block C).

Once the ISR for the CAN1 rx routine finishes, the ISR for the CAN2 rx routine starts its
execution (Figure 6.5). Referring again to the rx routine flowchart (Figure 6.2), the ISR for the
CAN2 rx routine resets to false the tracking variable that indicates that the CAN2 controller no-
tified a reception (block B)—the variable was set to true by the CAN2 tracker ISR that executed
previously. Then it checks if it has to manage the reception of the frame by checking the value
of the FrameManaged variable (decision E). As the CAN1 rx routine ISR has previously set
that variable to true, the CAN2 rx routine ISR knows that it must not manage the delivery event
again. So it merely resets that variable to false (block D) and releases the hardware reception
buffer of the CAN2 controller (block C).

69

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

6.3.2. Fault-free transmission

CAN1 Tracker

CAN2 Tracker

CAN1 Tx

CAN2 Rx

CAN1 uplink EOF Recessive bits

CAN2 downlink EOF Interm. New frame

Figure 6.6.: Example execution of the transmission of a frame.

The next example execution we consider is a fault free transmission. Figure 6.6 shows the
corresponding chronogram. As opposed to the previous example scenario, this time we have to
differentiate between the roles of the two CAN controllers: CAN1 is the transmission controller
and CAN2 is the non-transmission controller. The bottom of the chronogram shows for the
CAN1 controller what it transmits through its uplink, and it shows for the CAN2 controller what
it receives through its downlink. The end of frame field (EOF) shown at the beginning of the
chronogram is being transmitted by the CAN1 controller and received by the CAN2 controller.
After the EOF, the CAN1 controller does not transmit any other frame; and the new frame
that is depicted at the part of the chronogram corresponding to the CAN2 downlink, after the
intermission, is a frame coming from another node.

As in the previous example, the two CAN controllers notify the delivery event after the last
EOF bit. However, what the CAN1 controller notifies now is a transmission, while the CAN2
controller continues to notify a reception. Again, both notifications are interrupts that invoke the
corresponding CAN event tracker ISR.

Of the two tracker ISRs the first to execute is the one for the CAN1 controller. As always,
it checks why it was invoked and, this time, it determines that it was invoked because of a
transmission notification from the CAN1 controller. Thus, it keeps track of that fact by setting
the appropriate tracking variable, TxEvent[CAN1] = true, and triggers the ISR for the
CAN1 tx routine by generating an appropriate software interrupt. This makes the CAN1 tx
routine ISR pending to be executed.

Next the tracker ISR for the CAN2 controller executes because it was pending and has a higher
priority than the now also pending CAN1 tx routine ISR. It determines that it was invoked
because of a reception notification by the CAN2 controller; keeps track of that fact, that is,
it executes RxEvent[CAN2] = true; and generates a software interrupt for the CAN2 rx
routine ISR.

Now the ISR for the CAN1 tx routine executes—it has the same priority as the CAN2 rx
routine ISR, so, another valid scenario would be one where the CAN2 rx routine ISR executes
before the CAN1 tx routine ISR. To describe what the CAN1 tx routine ISR does we will refer

70

6.3. Example executions

back to the flowchart of Figure 6.1. First, it resets the tracking variable that the CAN1 tracker
ISR had recently set and disables the transmission timer (block B). Then it checks whether it
has to manage the frame or whether it has already been managed (decision D). As it has not
been managed yet, the ISR continues by waiting K units of time for a notification of the CAN2
controller (block E)—the notification has already occurred in the scenario we are describing,
but it might not have occurred yet in another scenario where there is a significant delay between
the notifications of the two CAN controllers. After the wait, the ISR checks whether the cor-
responding tracking variable indicates that the CAN2 controller notified a reception (decision
H). As it has, this means that the CAN2 controller has received the frame that the CAN1 con-
troller transmitted. Thus, the tx routine ISR flags the frame as already been managed—it sets
FrameManaged = true—and resets the omission counter to zero (block G). Finally, the
ISR signals a successful transmission to the user application and marks the transmission as no
longer pending (block F).

Once the ISR for the CAN1 tx routine has finished its execution, the ISR for the CAN2 rx
routine starts. Referring to the flowchart of the rx routine in Figure 6.2, the ISR simply resets the
tracking variable that the CAN2 tracker ISR had set to true (block B), it determines that the frame
has already been managed (decision E), it resets to false the status variable that indicates that
the frame has been managed (FrameManaged, block D), and releases the hardware reception
buffer of the CAN2 controller (block C).

6.3.3. Example involving all four routines

Tx request

CAN1 Tracker

CAN2 Tracker

CAN1 Tx

CAN2 Rx
CAN2 Qua

CAN1 uplink EOF Recessive bits

CAN1 downlink EOF Interm. New frame

CAN2 uplink Isolated by hub

CAN2 downlink EOF
Error warning reached

Disable
interrupts Enable

interrupts

Figure 6.7.: Example execution involving a tx request, a rx routine, a tx routine, and a qua routine.

The final example we are going to describe involves all four media management routines.
Its chronogram is shown in Figure 6.7. CAN1 is the transmission controller and CAN2 is the
non-transmission controller.

71

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

The chronogram starts with the last few bits of the end of frame field (EOF) that the CAN1
controller transmits. These bits are received by the CAN1 and CAN2 controllers through their
downlinks. Moreover, the chronogram shows that the uplink of the CAN2 controller has been
isolated by the corresponding hub due to previous errors (which are not shown in the figure).
When the frame transmitted by the CAN1 controller ends, CAN1 notifies a transmission and
CAN2 notifies a reception. However, the CAN event tracker ISRs cannot start to execute because
interrupts have been disabled by the tx request routine, which was called by the user application
just before the CAN1 controller finished its transmission. The ISRs of the CAN event tracker
are therefore postponed until the tx request routine enables interrupts again. Additionally, before
interrupts are enabled again, the CAN2 controller detects an erroneous dominant bit during the
second bit of the intermission. The CAN2 controller will mistake this for the start of an overload
flag and attempt to transmit its own overload flag, which fails because its uplink is isolated
(CAN2 will not monitor at its downlink the dominant bits that constitute the overload flag).
Specifically, it detects a bit error during the third intermission bit. In this example, it is assumed
that before the last frame was received at the CAN2 controller, its transmission or reception
error counter had already nearly reached the error warning limit; thus, the error it detects makes
one of its error counters cross the error warning limit. This causes an additional interrupt to the
CAN2 event tracker ISR.

When the interrupts are enabled again, the CAN1 event tracker ISR preempts the tx request
routine and starts to execute. It then determines that it was invoked because of a transmission
by the CAN1 controller and therefore triggers the CAN1 tx routine ISR through a software
interrupt. Next, the CAN2 event tracker ISR executes. It determines that it was invoked both
because of a reception on the CAN2 controller and because of an error warning that occurred
at the CAN2 controller. It therefore triggers both the CAN2 rx routine ISR and the CAN2 qua
routine ISR and then finishes. At this point there are three media management routines pending
to start their execution. As explained in Section 5.3.3, the implementation must ensure that the
qua routine is executed after a rx routine, but apart from this requirement, the pending media
management routines could execute in any order.

In the chronogram the next routine to execute is the CAN1 tx routine ISR. Its execution trace is
exactly the same as in the previous example, so we do not explain it again. When it finishes, the
CAN2 rx routine ISR starts its execution. Its execution trace is also the same as in the previous
example, so we do not explain it again either.

Next, the pending CAN2 qua routine ISR executes. To explain its execution trace we refer to
the flowchart of Figure 6.3. First, it checks whether the faulty controller that is to be deactivated,
CAN2, is marked as active or not active (decision B). As there was no previous execution of a qua
routine for the CAN2 controller, the CAN2 controller is still marked as active; it therefore needs
to be marked as deactivated and then it must be reset (this is done in block C). Afterwards, the
routine checks whether the just deactivated controller was the transmission controller (decision
G). In the example (Figure 6.7), the CAN2 controller is not the transmission controller, the
result of the check is therefore negative. Thus, no further actions are required by the CAN2 qua
routine ISR and it simply finishes. Finally, the previously preempted tx request routine continues
its execution and finishes (this is shown at the end of Figure 6.7).

72

6.4. Fault-tolerance capacities of the media management driver

6.4. Fault-tolerance capacities of the media management
driver

A ReCANcentrate node that uses the media management driver can tolerate the failure of one
of its links or the crash of one of its CAN controllers in a manner that is transparent to the user
application it executes. In addition, the media management driver allows to tolerate to some
extent the CAN inconsistency scenarios described in Section 3.4.3. The next two subsections
describe how these inconsistency scenarios are tolerated.

6.4.1. Tolerance of the inconsistent message omission scenario
identified by Rufino et al.

As described in Section 3.4.3, in the inconsistent message omission scenario that Rufino et al.
[1998] identified for CAN, some nodes receive a copy of a frame, whereas others do not receive
any copy at all. More specifically, the frame is initially transmitted and then rejected by some
CAN nodes because they detect an error in the next-to-last bit of the EOF; whereas it is accepted
by others because they detect a dominant bit in the last bit of the EOF and CAN’s last-bit rule
applies. After the initial transmission, the transmitter schedules a retransmission, but none of the
nodes receive the retransmitted frame because the controller of the transmitting node fails before
the retransmission. Thus, the nodes that did not get the frame initially do not get the frame at all.

In contrast, in ReCANcentrate each node gets at least one copy of the frame thanks to the
media management driver. To explain how this works, note that the scenario that Rufino et al.
identified for CAN can be divided into two separate cases because in ReCANcentrate each node
has two CAN controllers.

Case 1
The first case is one where none of the controllers of the transmitting node notify of the deliv-
ery event. Figure 6.8 illustrates this case and shows how the inconsistent message omission is
avoided.

A set of receivers X does not have a controller that notifies the reception of the initial trans-
mission because both its controllers detect an error in the next-to-last bit of the EOF. Thus, both
CAN controllers of these nodes reject the initial copy of the frame and do not notify its reception.
The application running on a node X does therefore not receive the initial copy of the frame.

On the other hand, two other sets of receivers, Y and Z, have at least one CAN controller
that does notify a reception. These controllers notify because they do not detect an error in the
next-to-last bit of the EOF, but instead detect a dominant bit during the last bit of the EOF. This
dominant bit is the first dominant bit of the error frame transmitted by the other controllers.
Because it falls within the last bit of the EOF, the controllers are obliged to accept the frame (see
Section 3.4.3) and they consequently notify the reception.

The fact that the two controllers of a receiver Y notify the reception means that for these
receivers the scenario is equivalent to a fault-free reception (see Section 6.3.1). Thus, each
application running on a receiver Y receives the initial copy of the frame.

Each application running on a receiver Z does also receive the initial copy of the frame. To
better understand why, refer to the flowchart of the rx routine, which is depicted in Figure 6.2. In

73

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

Receivers (Z)
ctrl A Error flag

ctrl B Overload flag

Receivers (Y)
ctrl A Overload flag

ctrl B Overload flag

Transmitter
Tx ctrl Error flag

Non-Tx ctrl Error flag

Receivers (X)
ctrl A Error flag

ctrl B Error flag

EOF Intermission

Does not notify reception

Notifies reception

Application
gets two copies

of the frame

Notifies reception

Notifies reception

Application
gets two copies

of the frame

Does not notify reception

Does not notify reception

Application
gets one copy
of the frame

Fails before retransmission

Does not notify reception

Driver instructs
retransmis-

sion through
Non-Tx ctrl

Figure 6.8.: Management of the inconsistent message omission scenario identified by Rufino et al.
in ReCANcentrate (case 1). In this case neither of the controllers of the transmitting node notifies
of the delivery event. The inconsistent message omission is avoided because the driver executing
on the transmitter ensures that a retransmission occurs through the non-faulty controller. Thus,
the set of receivers X, which did not receive a copy of the initially transmitted frame, do get a
copy when the retransmission occurs.

particular, note that the rx routine ISR corresponding to the notifying controller (ctrl B of set Z in
Figure 6.8) is invoked by that controller’s CAN event tracker ISR and then manages the delivery
event alone. When this happens, as Figure 6.2 shows, the rx routine resets the tracking variable
previously set by the CAN event tracker ISR (block B); determines that the frame was not yet
managed (decision E); waits K units of time (block F); determines that the other controller did
not notify a transmission (decision I), that there is no transmission pending (decision L), and
that the other controller did not notify a reception (decision N); copies the received frame from
the controller’s hardware reception buffer to the driver reception buffer (block O); signals a
successful reception to the user application (block M); and releases the reception buffer of the
controller (block C).

The summary so far is that there are nodes that did not get the initial copy of the frame
(set X) and nodes that did get it (sets Y and Z). Moreover, the transmission controller of the
transmitting node fails and it therefore does not retransmit. Remember, this is what caused an
inconsistent message omission in CAN. In ReCANcentrate, however, no inconsistent message
omission occurs. This is so because the media management driver instructs the retransmission
of the frame through the transmitting node’s non-faulty controller, which initially was the non-
transmission controller. Specifically, the retransmission occurs because of the following.

74

6.4. Fault-tolerance capacities of the media management driver

Before the transmitter initiated the transmission of the frame, the transmission timer was
enabled by the tx request routine. Then, when the transmitter was sending the EOF of that
frame, its non-transmission controller detected an error in the next-to-last bit of the EOF and the
transmission controller detected a dominant bit in the last bit of the EOF (see Figure 6.8). As
a result, neither of the controllers of the transmitter notified the delivery event. Thus, none of
the media management routines is executed on the transmitter for that delivery event. Moreover,
since the transmission controller fails, it will not be able to retransmit. This means that the
faulty transmission controller will not cause a second delivery event for the pending frame and
therefore no routine will be invoked to disable the transmission timer. The consequence is that
the transmission timer expires, which invokes the qua routine for the transmission controller.

When the qua routine is invoked on the transmitter, it does the following. It determines
that the controller for which it was invoked, the transmission controller, is marked as active
(decision B in Figure 6.3); marks the controller as inactive and resets it (block C); determines
that the controller that is being quarantined is the transmission controller (decision G); disables
the transmission timer (block F); determines that the other controller is still marked as active
(decision E); marks the other controller as the new transmission controller (block D); determines
that there is a transmission still pending (decision H); determines that the quarantined controller
did not notify a transmission (decision J); and instructs the retransmission of the pending frame
through the new transmission controller (block K).

Thanks to the retransmission instructed by the qua routine, another copy of the frame is trans-
mitted. This second copy will hopefully be received by the set of receivers X, thereby ensuring
that they also get a copy of the frame. In this way, all receivers will have received at least one
copy and the inconsistent message omission is avoided.

Case 2
The second way in which the inconsistent message omission scenario identified by Rufino et al.
can manifest itself in ReCANcentrate is illustrated in Figure 6.9.

The set of receivers X, Y, and Z act as described in case 1 (Figure 6.8). The difference is in
the transmitter. Now (in Figure 6.9), the transmitter’s non-transmission controller does notify a
reception because that controller does not detect an error in the next-to-last bit of the EOF. As a
consequence, the CAN event tracker ISR for the non-transmission controller is invoked, which
in turn invokes the rx routine.

The rx routine on the transmitter does the following. It resets the tracking variable previously
set by the CAN event tracker ISR (block B in Figure 6.2); determines that the frame was not
managed yet (decision E); waits K units of time (block F); determines that the other controller
did not notify a transmission (decision I), that a transmission is pending (decision L), and that
the received frame was the one pending to be transmitted (decision K); increases the omission
counter (block J); and releases the reception buffer of the non-transmission controller (block C).

Notice that the transmision timer is not reset by the rx routine and that since the transmission
controller is faulty, no routine associated with the pending transmission will execute. The result
is thus the same as before: the transmission timer expires, thereby triggering the qua routine.
The qua routine then instructs the retransmission of the frame trough the surviving controller,
which allows the set of receivers X to also receive a copy of the frame.

75

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

Receivers (Z)
ctrl A Error flag

ctrl B Overload flag

Receivers (Y)
ctrl A Overload flag

ctrl B Overload flag

Receivers (X)
ctrl A Error flag

ctrl B Error flag

Transmitter
Tx ctrl Error flag

Non-Tx ctrl Overload flag

EOF Intermission

Does not notify reception

Notifies reception

Application
gets two copies

of the frame

Notifies reception

Notifies reception

Application
gets two copies

of the frame

Does not notify reception

Does not notify reception

Application
gets one copy
of the frame

Fails before retransmission

Notifies reception

Driver instructs
retransmis-

sion through
Non-Tx ctrl

Figure 6.9.: Management of the inconsistent message omission scenario identified by Rufino
et al. in ReCANcentrate (case 2). As opposed to case 1 (see Figure 6.8), in this case the non-
transmission controller of the transmitting node does notify the reception of the frame. However,
just as in case 1, the inconsistent message omission is avoided because the driver executing on the
transmitter ensures that a retransmission occurs through the non-faulty controller. Thus, the set of
receivers X, which did not receive a copy of the initially transmitted frame, do get a copy when
the retransmission occurs.

6.4.2. Tolerance of the inconsistent message omission scenario
identified by Proenza and Miro-Julia

As described in Section 3.4.3, the inconsistent message omission scenario that Proenza and
Miro-Julia identified for CAN is identical to the one identified by Rufino et al., except that
the transmitting controller omits the retransmission not because it fails but because it detects
an additional error. This additional error causes the transmitting controller not to detect the
first bit of the error frame transmitted by the other controllers, thereby causing it to consider
the transmission as successful. Having considered the transmission as successful, it does not
retransmit the frame. Thus, the controllers that detected an error in the next-to-last bit, which
did not receive the frame initially, do not receive any copy of the frame.

In ReCANcentrate, the scenario that Proenza and Miro-Julia identified for CAN can also
manifest itself in two different ways. We therefore also consider two cases for this scenario.
However, as opposed to the scenario identified by Rufino et al., where both cases were tolerated,
of the two cases for the scenario identified by Proenza and Miro-Julia only the first is tolerated
by the media management driver.

76

6.4. Fault-tolerance capacities of the media management driver

Receivers (Z)
ctrl A Error flag

ctrl B Overload flag

Receivers (Y)
ctrl A Overload flag

ctrl B Overload flag

Receivers (X)
ctrl A Error flag

ctrl B Error flag

Transmitter
Tx ctrl Overload flag

Non-Tx ctrl Error flag

EOF Intermission

Does not notify reception

Notifies reception

Application
gets two copies

of the frame

Notifies reception

Notifies reception

Application
gets two copies

of the frame

Does not notify reception

Does not notify reception

Application
gets one copy
of the frame

Notifies transmission

Does not notify reception

Driver instructs
retransmission

Figure 6.10.: Case where the inconsistent message omission scenario identified by Proenza and
Miro-Julia is avoided in ReCANcentrate. The inconsistent message omission is avoided because
the driver executing on the transmitter ensures that a retransmission occurs through the trans-
mission controller. Thus, the set of receivers X, which did not receive a copy of the initially
transmitted frame, do get a copy when the retransmission occurs.

Case 1
Figure 6.10 illustrates the case where the inconsistent message omission identified by Proenza
and Miro-Julia is tolerated by the media management driver.

As in the previous section, a set of receivers X does not get the frame initially because both
its controllers detect an error in the next-to-last bit of the EOF. Also, as in the previous section,
two other sets of receivers, Y and Z, have at least one CAN controller that does not detect an
error in the next-to-last bit of the EOF. These controllers accept the initially transmitted copy of
the frame.

The set of receivers X, Y, and Z act as in the two cases described in the previous section.
Moreover, like in that section, the transmitter retransmits, but due to a different reason. Specif-
ically, this time the transmission controller of the transmitter notifies of a transmission. This
invokes the CAN event tracker ISR for the transmission controller, which in turn invokes the tx
routine.

The tx routine does the following. It resets the tracking variable that the CAN event tracker
ISR set and disables the transmission timer (Figure 6.1, block B); it determines that the frame
was not managed yet (decision D); it waits K units of time (block E); it determines that the
other controller did not notify of a reception (decision H) and that the omission counter has
not reached its maximum value (decision I); and it increases the omission counter and instructs

77

Chapter 6. Final design of the media management driver for the ReCANcentrate nodes

Receivers (Z)
ctrl A Error flag

ctrl B Overload flag

Receivers (Y)
ctrl A Overload flag

ctrl B Overload flag

Receivers (X)
ctrl A Error flag

ctrl B Error flag

Transmitter
Tx ctrl Overload flag

Non-Tx ctrl Overload flag

EOF Intermission

Does not notify reception

Notifies reception

Application
gets one copy
of the frame

Notifies reception

Notifies reception

Application
gets one copy
of the frame

Does not notify reception

Does not notify reception

Application does
not get frame

Notifies transmission

Notifies reception

Driver does
not instruct

retransmission

Figure 6.11.: Case where the inconsistent message omission scenario identified by Proenza and
Miro-Julia is not avoided in ReCANcentrate. The inconsistent message omission is not avoided
because the driver executing on the transmitter does not instruct a retransmission. Thus, the set of
receivers X do not get a copy of the frame.

a retransmission (block J). Note that if the omission counter had reached its maximum value,
the transmitter would consider the transmission as successful (block F). This is so because it is
highly improbable that an inconsistency scenario had occurred a number of consecutive times
equal to the maximum value of the omission counter. So, if the omission counter reaches its
maximum value, the cause for the non-transmission controller not notifying is almost certainly
not because of an inconsistency scenario, but more likely because it has crashed or its downlink
is stuck-at-recessive. In that case we must not do any further retransmissions.

Case 2
Figure 6.11 shows the other possible manifestation in ReCANcentrate of the scenario identified
by Proenza and Miro-Julia. Unfortunately, in this case the inconsistent message omission is not
avoided by ReCANcentrate.

The set of receivers X, Y, and Z act as in the previous cases; the transmitter, however, now re-
ceives a notification from both its controllers. This is so because the non-transmission controller
does not detect an error in the next-to-last bit of the EOF but instead accepts the transmitted
frame. This causes the media management driver to not instruct the retransmission of the frame.
Specifically, there are two possible ways for this to occur.

The first possibility is that the tx routine gets invoked before the rx routine. In that case, the tx
routine resets its tracking variable and disables the transmission timer (block B in Figure 6.1);

78

6.4. Fault-tolerance capacities of the media management driver

it determines that the frame was not managed yet (decision D); waits K units of time (block
E); determines that the other controller did notify a reception event (decision H); marks the
frame as already managed and resets the omission counter (block G); and signals a successful
transmission to the application (block F). The rx routine that gets executed next, on the other
hand, just resets its tracking variable (block B in Figure 6.2), determines that the frame was
already managed (block E), marks the frame as no longer managed for the next delivery event
(block D), and releases the reception buffer of the non-transmission controller (block C).

The second possibility is that the rx routine gets invoked before the tx routine. In that case,
the rx routine resets its tracking variable (block B in Figure 6.2); determines that the frame was
not managed (decision E); waits K units of time (block F); determines that the other controller
notified a transmission (decision I); marks the frame as managed and resets the omission counter
(block H); signals a successful transmission to the application (block D); and releases the recep-
tion buffer of the non-transmission controller (block C). Afterwards, when the tx routine starts
to execute, it simply resets its tracking variable and disables the transmission timer (block B
in Figure 6.1), determines that the frame was already managed (decision D), and finishes by
resetting the variable that indicates that the frame was already managed (block C).

79

7. New ReCANcentrate hardware
prototype

This chapter introduces the new ReCANcentrate prototype, which is the successor of the pre-
vious prototype built by Barranco et al. [2006a] and which was introduced in Chapter 5. We
begin the chapter with a brief introduction into the wirewrap prototyping technique, which is the
technique that we used to build the new prototype. Then we describe the implementation of the
hubs and the nodes of ReCANcentrate in the new prototype. Finally, we describe how we tested
the hardware of the prototype.

7.1. The wirewrap prototyping technique

Wirewrapping is a fast prototyping technique with which prototypes can be built that are very
easy to change later on. Wirewrapping is therefore particularly well suited for prototypes whose
final design is not yet clear and which might change in the future. Moreover, wirewrap proto-
types are very easy to repair.

Figure 7.1.: Pin with a wire connected to it through wirewrapping. (Source
http://upload.wikimedia.org/wikipedia/commons/thumb/3/35/Wire_
Wrapping.jpg/800px-Wire_Wrapping.jpg, licensed under the public domain.)

To built a prototype using the wirewrapping technique one uses a ready-made perforated board

81

http://upload.wikimedia.org/wikipedia/commons/thumb/3/35/Wire_Wrapping.jpg/800px-Wire_Wrapping.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/3/35/Wire_Wrapping.jpg/800px-Wire_Wrapping.jpg

Chapter 7. New ReCANcentrate hardware prototype

onto which electronic components can be mounted such as resistors, capacitors, and dual in-line
package (DIP) integrated circuits. Although the electronic components can be often mounted
directly on the perforated board, usually they are mounted on sockets that are then directly
attached to the board instead. These sockets have long pins that have a square cross section
especially suited to wind wires around them.

Figure 7.2.: Manual wirewrapping tool and wirewrapping wire. (Source http://upload.
wikimedia.org/wikipedia/commons/thumb/f/f5/Manual_wire_wrap_
tool_and_wire_wrap_wire_in_various_colours.jpg/800px-Manual_
wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg, licensed
under the public domain.)

More specifically, connections are made by winding thin wire—whose ends have been stripped
off their insulating plastic—around the to-be-connected pins. For this, special tools known as
wirewrapping tools are used. Figure 7.1 shows the pin of a socket to which a wire has been
connected through wirewrapping. Figure 7.2 shows a manual wirewrapping tool together with
some wirewrapping wire. The tool is basically a thin hollow cylinder with an opening and a
second hole on the side. The stripped wire is placed into the hole on the side and the opening of
the tool is placed onto the to-be-connected pin. The tool is then turned so that the wire is wound
around the pin. This connects one end of the wire to the pin. The other end is connected to a
second pin analogously, thereby creating a connection between the first and the second pin.

7.2. Implementation of the ReCANcentrate hubs

Figure 7.3 shows a sketch of the hardware of one of our prototype’s hubs. We built each Re-
CANcentrate hub on a perforated wirewrapping board. Onto each of these boards we mounted
an XSA-3S1000 prototyping board from XESS [XESS Corporation, 2007], which contains an
FPGA manufactured by Xilinx.

The particular FPGA included in the XSA-3S1000 is a Xilinx Spartan 3 XC3S1000 [XESS
Corporation, 2007]. It is the same FPGA model that Barranco et al. [2006a] had used to im-
plement the hubs in their prototype. We were therefore able to reuse for our FPGAs the VHDL
code that Barranco et al. had written for their prototype—as mentioned in Chapter 5, this VHDL

82

http://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg/800px-Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg/800px-Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg/800px-Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg/800px-Manual_wire_wrap_tool_and_wire_wrap_wire_in_various_colours.jpg

7.2. Implementation of the ReCANcentrate hubs

Implements
Coupler

and Fault-
Treatment
Module

XSA-3S1000 prototyping board

FPGA

Push buttons

External
oscillator

circuit

Circuit
for

port 1

Circuit
for

port 2

Circuit
for

port 3

Circuit
for

port 4

Circuit
for

port 5

IN0 OUT0 IN1 OUT1 IN2 OUT2 IN3 OUT3 IN4 OUT4

CLK

I/O module

Perforated wirewrapping board

Figure 7.3.: Implementation of a ReCANcentrate hub, showing its main building blocks. We
implemented each hub using a perforated wirewrapping board onto which we mounted an XSA-
3S1000 prototyping board, whose FPGA implements the hub’s coupler and fault-treatment mod-
ules; 5 electronic circuits implementing ports of the hub’s I/O module, 3 of which are used by the
FPGA as link ports to nodes and 2 of which are used as interlink ports to the other hub; and one
electronic circuit to attach an external oscillator to the FPGA.

code implements the coupler module and the fault-treatment module of a ReCANcentrate hub.
Apart from a coupler module and a fault-treatment module, we also had to implement an I/O

module for each hub. As Figure 7.3 shows, the I/O module is comprised of 5 electronic circuits
implementing a port of the I/O module each. Each of these 5 electronic circuits implements the
circuit shown in the schematic of Figure 5.8 from Chapter 5 (page 56).

The schematic is explained in more detail in Section 5.4.4, but to summarize, each I/O module
port is comprised of an RJ45 plug and two PCA82C250 CAN transceivers (one for the incoming
sublink or uplink, and one for the outgoing sublink or downlink); UTP Cat 5 Ethernet cables are
used for the links and interlinks; and the wires labeled IN and OUT in the schematic (also shown
in Figure 7.3) are the points to be connected to the coupler and fault-treatment module.

Focusing on the last point, that the IN and OUT wires have to be connected to the coupler and
fault-treatment module, note that this means that the IN and OUT wires of each port have to be

83

Chapter 7. New ReCANcentrate hardware prototype

connected to I/O pins of the FPGA contained within the XSA-3S1000 prototyping board. For
this purpose, we used the 84-pin prototyping header located at the bottom of the XSA3S1000
[XESS Corporation, 2007]. Specifically, the IN and OUT wires of the hub ports were connected
to a subset of the pins of the header, namely, to some of the pins that are directly connected to
the I/O pins of the FPGA.

Now we may ask, how does the FPGA know to which of its I/O pins we connected the IN and
OUT wires? The answer is that the FPGA pins to which the IN and OUT wires are connected are
mapped to appropriate variables in Barranco et al.’s VHDL code. This mapping is specified in a
so called user constraints file (UCF), which is taken into account by the tools used to program
an FPGA. The relevant section of the UCF file has the following contents (the complete file is
found in Appendix E):

NET "rx_0" LOC = "H15" ;
NET "rx_1" LOC = "H14" ;
NET "rx_2" LOC = "G12" ;
NET "rehRx_0" LOC = "G16" ;
NET "rehRx_1" LOC = "H13" ;

NET "tx_0" LOC = "G15" ;
NET "tx_1" LOC = "G14" ;
NET "tx_2" LOC = "F14" ;
NET "hubTx_0" LOC = "F15" ;
NET "hubTx_1" LOC = "G13" ;

The first line maps a pin labeled H15 to a variable named rx 0, the second line maps a pin
labeled H14 to a variable named rx 1, the third line maps a pin labeled G12 to a variable named
rx 2, and so forth for the remaining lines. Variables rx 0, rx 1, and rx 2 represent uplinks;
variables tx 0, tx 1, and tx 2 represent downlinks; variables rehRx 0 and rehRx 1 repre-
sent incoming sublinks; and variables hubTx 0 and hubTx 1 represent outgoing sublinks.

As an example, and considering the above listed section of the UCF file, the wire labeled IN0

in Figure 7.3 is connected to pin H15 and is therefore mapped to variable rx 0. This means
that IN0 is interpreted by the coupler and fault-treatment modules implemented in the FPGA as
the contribution received from the node whose uplink is connected to the first port of the hub.
Similarly, the wire labeled OUT0 in Figure 7.3 is connected to pin G15 and is therefore mapped
to variable tx 0. Thus, this pin is used to send the signal coupled by the hubs (BT in Figure 5.3,
page 45) to the node whose downlink is connected to the first hub port. The remaining IN and
OUT wires of Figure 7.3 are mapped analogously to the remaining variables in the UCF file.

Regarding the external oscillator circuit, shown on the right of Figure 7.3, it implements
the electronic circuit of the schematic of Figure 5.9 (Chapter 5, page 57). As mentioned in Sec-
tion 5.4.4, the oscillators that the hubs and the nodes use must have the same frequency, or at least
be a multiple of each other (which can then be scaled up or down), so that all hubs and nodes can
sample each other’s transmitted bits. Unfortunately the oscillators provided with the hubs’ XSA-
3S1000 prototyping boards have a frequency of 100 MHz [XESS Corporation, 2007], whereas
the oscillators available to a node have frequencies of 7.37 MHz, 512 KHz, and 32.768 KHz [Mi-
crochip, 2006c]—none of which is a multiple of 100 MHz. To overcome the mismatch between

84

7.3. Implementation of the ReCANcentrate nodes

these frequencies, we added to each hub an external oscillator of 14.74 MHz—which is a multi-
ple of a node’s 7.37 MHz oscillator—using the external oscillator circuit. This circuit provides
a wire carrying a clock signal (labeled CLK in Figure 5.9 and in Figure 7.3) which is connected
to a dedicated clock input pin of the XSA-3S1000 board’s prototyping header.

7.3. Implementation of the ReCANcentrate nodes

The first step in implementing the nodes for the new prototype was to decide what hardware
components to use. The hubs of the new prototype were basically the same as the hubs of the
previous prototype. We therefore chose the same hardware for them. In contrast, the hardware
requirements for the nodes of the new prototype (see Section 5.3.4) were different and they
therefore required different hardware. The dsPICDEM prototyping board from Microchip [Mi-
crochip, 2006c], which contains a dsPIC30F6014A microcontroller [Microchip, 2006a], satisfies
all of these requirements:

• The dsPIC30F6014A microcontroller has two embedded CAN controllers.

• The interrupts in a dsPIC30F6014A microcontroller can be nested, that is, any interrupt
service routine that is in progress may be interrupted by another source of interrupt with a
higher user assigned priority level [Microchip, 2006b, Section 6].

• The dsPIC30F6014A microcontroller has seven user selectable priority levels for the in-
terrupts. Moreover, if two interrupts have the same user selectable priority and are both
pending, then, to resolve the priority conflict, a so-called natural order priority is used.
According to this priority, interrupts with a lower address in the interrupt vector table have
a higher priority than interrupts with the same user selectable priority that have a higher
address in the interrupt vector table.

• Interrupts can be generated through software in the dsPIC30F6014A microcontroller. The
microcontroller has several interrupt flag status registers whose bits indicate if a given in-
terrupt is pending. Simply setting such a bit to the appropriate logic value will generate
the interrupt corresponding to that bit. However, all interrupts correspond to hardware
peripherals and there are no special purpose software interrupts; luckily, interrupts corre-
sponding to unused peripherals can be used as software interrupts.

• The CAN controllers embedded in the dsPIC30F6014A microcontroller provide a so-
called error warning interrupt. If this interrupt has been enabled, then, whenever a con-
troller’s receive error counter (REC) or transmission error counter (TEC) reaches the value
of 96, known as the error warning limit, an interrupt is generated. Note that the value of
the error warning limit, 96, is below 128, the value at which a controller enters the error-
passive state.

• The CPU in the dsPIC30F6014A microcontroller is fast enough to execute the driver’s
routines before the next delivery event takes place.

85

Chapter 7. New ReCANcentrate hardware prototype

That last point requires a little more elaboration. The microcontroller has three internal oscil-
lators of frequencies 32.768 kHz, 512 kHz, and 7.37 MHz. Moreover, it is possible to connect
external oscillators. The basis for the instruction clock is the frequency of one of these oscil-
lators, which can then be scaled up using a phase locked loop (PLL) or scaled down using a
post-scaler. Figure 7.4 shows the microcontroller’s three internal oscillators (labeled as FRC,
Y2, and LPRC) and the two external oscillator slots provided with the dsPICDEM prototyp-
ing board (labeled Y1, which comes with a 7.37 MHz oscillator, and Y3, which comes with no
oscillator preinstalled); moreover, it also shows the PLL and the post-scaler. The maximum os-
cillator frequency (FOSC in Figure 7.4) that can be derived from the oscillators is 117.92 MHz,
achieved when a 7.37 MHz frequency (either Y1 or FRC) is multiplied by 16 in the PLL and
then divided by one in the post-scaler. However, the instruction clock frequency (FCY) cannot
be the maximum oscillator frequency; instead, the instruction clock frequency always results
from dividing the oscillator frequency by 4. Thus, the maximum instruction clock frequency
is 117.92

4 = 29.48 MHz, or, stated differently, each instruction cycle is 1
29.48 MHz = 33.92 ns

long. When we evaluated whether the CPU of the dsPIC30F6014A microcontroller satisfies
our speed requirements, we came to the conclusion that this is fast enough: with a bit rate
of 1 Mbps (the maximum CAN bit rate) each bit time is one microsecond long and therefore
b 1µs

33.92nsc = b29.48c = 29 instructions can be executed in each bit time. So, in the worst case,
when the shortest possible frame is exchanged (a 44 bit remote frame or a 44 bit data frame)
44 · 29 = 1276 instruction cycles can be executed. We considered this to be enough for two
main reasons. First, in the dsPIC30F6014A microcontroller “all instructions execute in a single
cycle, with the exception of instructions that change the program flow, the double-word move
(MOV.D) instruction and the table instructions1” [Microchip, 2006b, Section 5]. This means that
most of the instructions of the driver would be single cycle. Second, we estimated the number
of instructions that the driver would have to perform before each frame exchange to be fairly
low. The reason for this is that the driver does not have to execute any CPU or memory intensive
tasks (such as image processing), but only the short routines described in the previous chapter.

As we had assessed that it was viable to implement the nodes using dsPICDEM boards, we
decided to use these boards for our prototype. Figure 7.5 shows a sketch of the hardware of one
of our prototype’s nodes.

On the left-hand side we see a node’s core, implemented with a dsPICDEM board, which
includes a dsPIC30F6014A microcontroller and two CAN controllers embedded in the micro-
controller. Moreover, we see that a node core’s dsPICDEM board contains four LEDs, two push
buttons, and an 80-pin header that gives easy access to the pins of the microcontroller and the
pins of the embedded CAN controllers.

On the right-hand side we see the node’s I/O module, implemented on a perforated wirewrap-
ping board. This board provides the means to connect the node to each of the hubs: a link
connected to port 1 connects the node to one hub, and a link connected to port 2 connects the
node to the other hub. The two electronic circuits on the I/O module implement ports equivalent
to the ones on a ReCANcentrate hub, that is, they also implement the schematic of Figure 5.8
from Chapter 5. The IN and OUT wires of a given circuit port are respectively connected to the

1The dsPIC30F6014A CPU has a Harvard architecture, that is, it has physically separate program and data memory.
Table instructions are used to transfer data between program memory space and data memory space.

86

7.3. Implementation of the ReCANcentrate nodes

Clock
switching

and
control
block

Y1 (7.37 MHz)
PLL
×4,×8,
×16

Y3 (external)

FRC (7.37 MHz)

Y2 (32.768 KHz)

LPRC (512 KHz)

Post-scaler
÷64,÷16,
÷4,÷1

Fosc

÷4 Fcy

Figure 7.4.: Clock sources in a dsPICDEM prototyping board.

dsPIC30F6014A

CAN1

CAN2

Circuit
for port 1

Circuit
for port 2

80-pin header Pin header

I/O moduleNode core (dsPICDEM board)

Flat IDE cable

LEDs Push buttons

IN1

OUT1

IN2

OUT2

Figure 7.5.: Implementation of a ReCANcentrate node, showing its main building blocks. We
implemented each node using two boards: a dsPICDEM prototyping board and an I/O module
implemented on a perforated wirewrapping board.

87

Chapter 7. New ReCANcentrate hardware prototype

reception and transmission pins of one of the two CAN controllers. Specifically, this is done by
means of a flat IDE cable connecting a pin header on the I/O module to the 80-pin header on
the dsPICDEM board. By having the CAN controllers connected to the ports of the node’s I/O
module in this way, the driver, which is running on the microcontroller, can transmit frames to
the hubs and receive frames from the hubs.

7.4. Testing the hardware of the prototype

Once we had built the prototype’s hardware, we tested it to make sure that it had been built
correctly. We did this in an incremental fashion, that is, instead of testing the whole hardware at
once we first tested a subset and then incrementally added more parts. This incremental approach
had the advantage of making it easier to localize the cause of any errors found during the tests.
If a particular test was successful, but the subsequent test was not, we could determine with high
probability that the root of the problem was the part of the system that had been added last. Next
we will describe each of these tests.

7.4.1. Verification of the electronic circuits

Before any other test, we first had to be sure that each pin of each hardware device—FPGA,
microcontroller, oscillator, and so forth—was connected to where it ought to be and that there
were no short-circuits. Moreover, we had to be sure that the electronic circuits for the I/O ports
and external oscillators, which we build from the schematics shown in Section 5.4.4, exactly
matched those schematics. We verified both things by using a digital multimeter in continuity
test mode—the one where the multimeter beeps when there is a direct connection between the
probes. Afterwards we proceeded to test the nodes, which, once we were sure that they worked,
would be used to test the hardware of the hubs.

7.4.2. Testing the node cores

We started the testing of each node by first considering only one of its two building blocks,
namely, the node core. As we said in Section 7.3, each node core was implemented as a dsPIC-
DEM board. The tests therefore consisted in verifying that each dsPICDEM board was func-
tioning correctly, that is, that they had no manufacturing defects or shipping damage.

The tests consisted of two simple programs which use the CAN controllers of a node’s micro-
controller in loopback mode [Microchip, 2006b, Section 23]. This mode connects the internal
transmit signal of a CAN controller to its internal receive signal. Moreover, it causes special
hardware to generate an ACK bit in order to make transmissions successful. The loopback mode
therefore allowed us to test the dsPICDEM boards, the embedded dsPIC30F6014A microcon-
trollers, and their CAN controllers in isolation, without having to worry about any potential
complications that might arise at the hubs or the I/O modules of the nodes. In fact, for these two
tests the physical setup of the prototype was irrelevant: it did not matter how the hubs and nodes
were interconnected through their I/O modules. Even more, the node cores did not even have to
be connected to their corresponding I/O modules.

88

7.4. Testing the hardware of the prototype

Concerning the details of the two tests, both basically initialized a node’s CAN controller
in loopback mode and subsequently sent a single data frame with it. This frame was there-
after received by that same CAN controller. After each stage—initialization, transmission, and
reception—another one of the four LEDs on the dsPICDEM board was turned on. The only dif-
ference between the two tests was that the first used polling to determine when the transmission
and reception of the frame occurred while the second used interrupts. The source code for the
two tests can be found in Appendix B, sections B.2.1 and B.2.2. Finally, these two tests allowed
us to learn how to properly initialize and configure the CAN controllers and how to send and
receive frames using them.

After these tests, we were confident that the node cores were functioning correctly. We there-
fore proceeded to use them together with the second building blocks of the nodes: the nodes’
I/O modules.

7.4.3. Testing the node cores together with their I/O modules

Microcontroller

CAN 1

Txrx1 Txrx2

Tx Rx

CAN 2

Txrx3 Txrx4

Tx Rx

CANH

CANL

CANH

CANL

Node core

I/O module

Figure 7.6.: Connecting the two CAN controllers of a single ReCANcentrate node to each other.

The next set of tests used both the node cores and their attached I/O modules. Each test
consisted in taking a single node core with its respective I/O module in isolation. Specifically,
each test consisted in transmitting frames between the two CAN controllers of a given node core
by using the corresponding I/O module. This was accomplished by interconnecting both CAN
controllers of each node as shown in Figure 7.6. We connected the transmission transceiver
of the first CAN controller (Txrx1 in Figure 7.6) to the reception transceiver of the second
CAN controller (Txrx4), and we connected the transmission transceiver of the second CAN
controller (Txrx3) to the reception transceiver of the first CAN controller (Txrx2). Note that
both transceiver interconnections are each comprised of a CANH and a CANL wire.

89

Chapter 7. New ReCANcentrate hardware prototype

Remember that a transmitting CAN controller observes the medium and verifies that it re-
ceives the frame that it is transmitting (with the ACK slot overridden). If a CAN controller does
not receive what it transmits, it detects an error. Therefore, to allow the communication between
the two CAN controllers of a single node, we also had to ensure that each CAN controller re-
ceives its own frame. This was accomplished through a couple of additional interconnections
that make the setup equivalent to a CAN bus that has both controllers attached to it. Specifically,
this was achieved by connecting the CANH and CANL wire of one transceiver interconnection
to the CANH and CANL wire of the other transceiver interconnection. This is also depicted in
Figure 7.6. The source code we executed for this test can be found in Appendix B, Section B.3.

At this point we had all the relevant hardware of the nodes tested. We could therefore proceed
to use the nodes to test the hardware of the hubs.

7.4.4. Testing the hardware of the hubs

After we verified that the hardware of the nodes worked correctly, we used them to test the
hardware of the hubs, that is, the hub I/O modules and the XSA-3S1000 boards with their em-
bedded FPGAs. We wrote a simple AND-coupling module in VHDL and downloaded it to each
of the FPGAs. The VHDL source code can be found in Appendix B, Section B.4. This simple
AND-coupling module takes the uplink signals of each of the five ports of a hub as inputs to an
AND gate and outputs the result to the downlinks. In other words, it simply performs CAN’s
wired-AND functionality.

Figure 7.7 shows the setup; note that to simplify the figure, it only shows two nodes and two
hub ports (transceiver pairs) of the hub I/O module, instead of the three nodes and five hub ports
involved in the actual experiment. As can be seen, each node is connected by means of one of
their ports to this AND-coupling module.

In the experiment, we installed on one of the nodes a simple program that transmits a frame
and on the other two nodes a simple program that receives the frame; the source code for these
two programs is found in Appendix B, sections B.4.4 and B.4.5.

We verified that the two receiving nodes actually received the frame sent by the transmitting
node. Then we executed the test again, but now with two of the nodes plugged into the ports that
had previously remained unplugged. We did this for both hubs. In this way we checked that all
five ports of both hubs and the two XSA-3S1000 boards worked correctly.

90

7.4. Testing the hardware of the prototype

Microcontroller

CAN 1

Txrx Txrx

CAN 2

Txrx Txrx

Tx Rx

Node I/O
module

Node core

Microcontroller

CAN 1

Txrx Txrx

CAN 2

Txrx Txrx

Txrx TxrxTxrx Txrx

AND

Hub I/O
module

AND-
coupling
module

CANH CANL

CANH CANL

Figure 7.7.: Connecting two ReCANcentrate nodes through a signal coupler.

91

8. Implementation of the driver

In this chapter we describe the implementation of the media management driver. We first de-
scribe briefly the development environment that we used, then we say a few things about the
methodology that we used during the development of the driver, and finally we describe the
driver’s source code. Note that this chapter does not describe the driver source code in excruci-
ating detail. Instead, it just attempts to give an overview and serves as a starting point for anyone
interested in the full implementation details. For the full details we refer the interested reader
directly to the driver source code, which is listed in Appendix C.

8.1. Development environment

We implemented the driver using the C programming language and the toolchain provided by
Microchip to program the dsPIC30F family of devices, of which the dsPIC30F6014A micro-
controller which we used in our prototype is a member. This toolchain is based on the GNU
compiler collection (GCC) and other GNU language tools from the Free Software Foundation
(FSF). Specifically, the Microchip toolchain includes the following tools [Microchip, 2005a,b]:

• The MPLAB C30 C compiler.

• The MPLAB ASM30 assembler.

• The MPLAB LINK30 linker.

• The MPLAB LIB30 librarian/archiver.

The MPLAB C30 compiler takes as input C source code files and produces as output assembly
language files. The MPLAB ASM30 assembler then takes these assembly language files as an
input and produces object code from them. The object code files are then linked together using
the MPLAB LINK30 linker to produce the final executable. This executable is loaded from the
developer’s computer to the dsPICDEM board using an ICD2 programmer, which is a small
USB device manufactured by Microchip. Regarding the MPLAB LIB30 librarian/archiver, it is
used to create libraries from object files. A library contains subroutines which may be needed
by several programs. By linking a given library with object files from different programs, these
programs can use the subroutines within the library. This allows to share code between different
programs. We had no need for the MPLAB LIB30 librarian/archiver, but we used the other three
tools.

Finally, in addition to the above-mentioned tools, we also used a simulator for the
dsPIC30F6014A microcontroller. The particular simulator we used was the MPLAB SIM sim-
ulator from Microchip [Microchip, 2009]. This simulator models the CPU of the dsPIC30F

93

Chapter 8. Implementation of the driver

family of microcontrollers and several peripherals (such as timers, A/D converters, and I/O
ports) of these microcontrollers. Unfortunately, however, no CAN controllers are modeled by
this simulator. This was a major drawback because our media management driver uses the two
CAN controllers of the dsPIC30F6014A microcontroller extensively.

Nevertheless, during the development of the driver, before it was ready enough to be executed
on the physical hardware, we periodically tested the driver on the MPLAB SIM simulator. This
was useful during the early stages of the development of the driver, allowing us to test parts of
the driver code that did not directly depend on the existence of CAN controllers. Later on, we
were even able to simulate the transmission and reception of frames in a limited manner through
the use of a so-called stimulus file for the simulator, which is a file that tells the simulator to
load specified registers, such as the registers of the CAN controllers, with specified values at
specified instants of time. These stimulus files can be found in Appendix J.

8.2. Methodology

Our focus during the development of the driver was on producing readable, modular, easily
modifiable, and correct code. To achieve this we used abstract data types (ADTs), assertions,
and what Hunt and Thomas [1999] call the DRY principle.

ADTs are collections of data with a collection of operations that work on that data. ADTs
have many benefits [McConnell, 2004], the following are some noteworthy ones:

• They hide implementation details. This allows a developer to change the underlying im-
plementation without affecting the whole program.

• They make it easier to improve performance. If the implementation of an ADT is not fast
enough, only the few routines of the ADT that are too slow must be rewritten instead of
having to revise an entire program.

• They make programs more self-documenting and readable. By using appropriate and
informative names for the operations of an ADT, the intent of source code statements be-
comes clearer. For instance, light LEDs() is much clearer than PORTD = 0xFFFF,
assuming that the port labeled D is the one where the LEDs are connected to and that the
hexadecimal value 0xFFFF is the correct value to transmit through the port to light the
LEDs.

• They make programs more obviously correct. For instance, if the program should light
the LEDs, the developer is much less likely to introduce a mistake if all that has to be
done is call the function light LEDs() than if the developer has to determine which
port to access and what value to transmit through that port every time the LEDs should be
lighted.

• They make it easier to introduce changes. Instead of having to change a great number of
program statements spread out around the whole program, changes are localized to the
part of the program where the ADT’s operations are defined.

94

8.2. Methodology

• They allow the developer “to work in the problem domain rather than at the low-level
implementation domain” [McConnell, 2004]. For instance, the developer can work with
ADTs representing LEDs instead of having to work with ports and bits transmitted through
those ports.

Another main technique we used during the development of the driver are assertions. Asser-
tions are a technique often used in an approach to programming commonly known as defensive
programming [Hunt and Thomas, 1999; McConnell, 2004]. Specifically, assertions are pieces
of code that actively check whether specific assumptions hold at a given point of a program.
Assertions can therefore be used to check whether assumed preconditions and postconditions
actually hold. If an assertion is true, that means that the checked assumption holds in the code;
if an assertion is false, that means that the code is not behaving as expected. Assertions are
usually implemented as routines or macros that take at least one argument, which is a boolean
expression describing the assumption to be checked. Additional arguments to an assertion may
be, for instance, the message to display when the assertion fails. As an example of an assertion,
consider a developer who assumes that at a given point in the program a specific variable is
positive. To actively check whether that assumption is true the developer can use an assertion:

ASSERT(variable > 0);

If the variable is positive, the program continues unaffected (except for the small overhead
of the assertion). However, if the variable is negative or zero, the assertion fails and the pro-
gram’s execution is halted. Halting the program execution is an application of another defensive
programming technique which states that it is better to crash early than to crash late [Hunt and
Thomas, 1999]: it is easier to identify the source of an error if the program halts as soon as the
fault occurs than if the program crashes later on, when it has propagated to other parts of the
program and finally manifests.

Assertions are usually only left in the code during development. Once development has fin-
ished, the developer may choose to eliminate them before the compilation to generate the final
executable. In this way, the final executable will not have the overhead of the assertions.

Finally we want to highlight the DRY principle, which we also applied during the development
of the driver. The DRY principle states that

Every piece of knowledge must have a single, unambiguous, authoritative represen-
tation within a system [Hunt and Thomas, 1999].

The principle is called DRY because DRY stands for Don’t Repeat Yourself. The DRY principle
does not only apply to code but also to other contexts such as design, documentation, adminis-
trative tasks, testing, and others. This chapter, however, is only concerned with the application
of the DRY principle to code, that is, to the avoidance of code duplication. Avoiding code
duplication has many benefits. As McConnell [2004] put it:

With code in one place, you save the space that would have been used by dupli-
cated code. Modifications will be easier because you’ll need to modify the code
in only one location. The code will be more reliable because you’ll have to check

95

Chapter 8. Implementation of the driver

only one place to ensure that the code is right. Modifications will be more reliable
because you’ll avoid making successive and slightly different modifications under
the mistaken assumption that you’ve made identical ones.

8.3. Overview of the driver source code

In this section we overview the driver source code, which can be found in Appendix C.

8.3.1. Implementation of assertions

We implemented assertions as a C preprocessor macro. This macro can be found in the file
assert.h, which is listed in Appendix C, Section C.2. To make the following discussion easier to
follow we reprint the macro here:

#ifdef NDEBUG

#define ASSERT(expr) ((void)0)

#else

void aFailed(
char *file_name,
int line

);

#define ASSERT(expr) if (expr) {/*Do nothing*/} else\
aFailed(__FILE__, __LINE__)

#endif /* NDEBUG */

The first thing that the macro does is to check whether the constant NDEBUG has been de-
fined (NDEBUG is shorthand for “no debugging”). If it has been defined, all assertions spread
throughout the code will be compiled into an empty statement, that is, a statement that does
nothing (the statement consists of a simple 0, which does nothing, cast to a void pointer in or-
der to make the compiler complain when the developer attempts to assign that 0 to a variable);
whereas if it has not been defined, all assertions will be compiled into an if-else statement. This
if-else statement uses in the if-part the expression passed as a parameter to the assertion. If the
expression is true, the assertion macro does nothing. On the other hand, if the expression is false,
the helper function aFailed() is called. This function is defined in the file assert.c, listed in
Section C.1 of Appendix C. The function takes two parameters: the name of the source code
file where the assertion has failed and the line number within that file where the assertion has
failed. The values of these two parameters are provided by the C preprocessor, that is, before the
file is compiled, the preprocessor processes the file and substitutes all occurrences of FILE
with a string that contains the filename of the processed file, and it substitutes all occurrences of

96

8.3. Overview of the driver source code

LINE with the current line number within the file. The function aFailed() then copies
these two values to the data memory of the microcontroller and then enters an infinite loop in
which the four LEDs of the dsPICDEM board are continuously flashed. This allows for easy
debugging and validation of the code: if the four LEDs are flashing, we know that the code is not
behaving as expected and by simply inspecting the microcontroller’s data memory (Microchip’s
ICD2 programmer allows in-circuit debugging) we can assess where in the code—in which file
and at which line—an assumption was violated.

We used these assertions heavily in the driver code. This introduced a notable penalty on
the performance of the driver; however, the penalty was not so big as to make the driver too
slow to process a delivery event before the next frame is exchanged (see Section 9.2). Anyway,
the assertions can easily be removed during compilation. It is possible to define a preprocessor
constant by passing a command line option to the MPLAB C30 compiler [Microchip, 2005a].
Thus, to compile the driver with or without assertions is simply a matter of defining or not the
constant NDEBUG when invoking the compiler from the command line and does not require any
changes to the source code itself.

8.3.2. Abstract Data Types

The CAN frame ADT
We implemented a simple ADT for CAN frames that basically consists of a data structure with
three elements: the data transmitted in a frame, the length in bytes of that data, and the identifier
of the frame. The operations provided by the CAN frame ADT are a function to compare two
frames and assess whether they are equal or not, a function to copy all the contents (data, data
length, and identifier) of one frame to another frame, and a function that serves both to copy
the data field of a frame to a buffer and to copy the contents of a buffer into a data field of a
frame. The ADT is implemented in the files can frame.c, listed in Section C.5 of Appendix C,
and can frame.h, listed in Section C.6 of Appendix C,

The CAN controller ADT
We implemented an ADT for the CAN controllers of the dsPIC30F6014A microcontroller. The
source code for this ADT is found in the files can controller.c, listed in Section C.3 of Ap-
pendix C, and can controller.h, listed in Section C.4 of the same appendix. But before we ex-
plain this ADT and its implementation we should perhaps first explain the basic characteristics
of the CAN controllers.

Each of the two CAN controllers of a dsPIC30F6014A microcontroller has a total of 70 reg-
isters associated with it. These registers can be grouped as follows:

CAN module control and status registers. There is one of these registers for each of the two
CAN controllers. They are used to configure, send commands, and check the state of the
corresponding CAN controller. For instance, they are used to choose whether the CAN
clock (that is, the clock from which the time quantum length is derived) should be the
oscillator clock (FOSC in Figure 7.4, page 87) or the instruction cycle clock (FCY in Fig-
ure 7.4), to choose the CAN controller operation mode (normal operation, disable mode,
loopback mode, listen only mode, configuration mode, or listen all messages mode), to

97

Chapter 8. Implementation of the driver

indicate whether the CAN controller should be stopped when the dsPIC30F6014A micro-
controller enters the idle mode, and to instruct the CAN controller to abort all pending
transmissions.

Transmission buffer registers. Each of the two CAN controllers has three transmission buffers.
Moreover, each transmission buffer is actually a collection of registers: for each transmis-
sion buffer there are four data field registers, each of two bytes, that hold the payload of a
frame that is to be transmitted; there is a register to hold a standard identifier (in case the
frame that is to be transmitted is a standard frame) and a register to hold an extended iden-
tifier (in case the frame that is to be transmitted is an extended frame); there is a register
that holds the data length code, which is also used to indicate whether the frame that is to
be transmitted is a remote frame; and there is a transmit buffer status and control register.
The transmit buffer status and control register is used to request the transmission of the
frame that is to be transmitted and to assign a priority to that frame. The priority is rela-
tive to the other transmission buffers and should not be confused with the priority on the
CAN medium, which inherently comes from the identifier used for the frame. Moreover,
the transmit buffer status and control register also indicates whether a message has been
aborted, whether it has lost the CAN arbitration when a transmission was attempted, or
whether an error occurred during a transmission.

Reception buffer registers. In addition to the transmission buffers, each CAN controller also has
its own reception buffers. Specifically, there are two reception buffers per CAN controller.
Just like the transmission buffers, the reception buffers are also a collection of registers:
for each reception buffer there are four data field registers, each of two bytes, that hold
the payload of a frame that has been received; there is a register that holds the standard
identifier of a received frame and a register that holds the extended identifier of a received
frame (whether the frame was extended or standard is indicated in a flag bit of the standard
identifier register); and there is a register that holds the data length code of the received
frame, which additionally indicates whether the frame was a remote frame or a data frame.
In addition to these registers, there are a series of registers associated with each reception
buffer that control whether a received frame should be accepted or discarded. These reg-
isters are the acceptance filters and the acceptance filter masks. The message acceptance
filter masks indicate which bits of a received frame’s identifier should be examined to de-
cide whether to accept the received frame or not; whereas the message acceptance filters
are used to determine what value those bits must have for the frame to be accepted. Fi-
nally, each of the two reception buffers has its own status and control register. These status
and control registers have a flag that indicates whether the corresponding reception buffer
is full, a flag that indicates whether a remote frame was received, and a flag that indicates
which acceptance filter enabled the reception of a frame at the corresponding reception
buffer.

Bit rate configuration registers. There are two bit rate configuration registers for each CAN con-
troller. Together they allow to configure the bit rate at which the corresponding CAN con-
troller should work. The first bit rate configuration register allows to set a value for the
resynchronization jump width (SJW) and to set the value by which the baud rate prescaler

98

8.3. Overview of the driver source code

should pre-scale the CAN clock in order to have the correct time quantum length for a
desired bit rate. The second bit rate configuration register allows to program the length of
the different CAN bit time segments, as well as to choose whether the channel should be
sampled once or three times. Note that having three sample points is not specified in the
CAN specification [Bosch GmbH, 1991], but it is nonetheless an available option in the
CAN controllers of the dsPIC30F family of devices [Microchip, 2006b].

Transmission/reception error counter registers. For each CAN controller there is a single regis-
ter that contains both the CAN transmission error counter (TEC) and the CAN reception
error counter (REC).

Interrupt status and control registers. When a CAN event occurs on a given CAN controller,
an interrupt is triggered for that controller. The interrupt is known as the CAN combined
interrupt of the controller and is the same for all CAN events that occur at that controller.
The CPU of the microcontroller then accesses the interrupt vector table (IVT) and invokes
the interrupt service routine (ISR) located at the interrupt vector corresponding to the CAN
combined interrupt1. Afterwards, the invoked CAN combined ISR must discern what
specific CAN event caused the CAN combined interrupt to be triggered. For this, each
CAN controller has an interrupt flag register whose bits are flags that identify the specific
CAN event that triggered the CAN combined interrupt. The interrupt flag registers are
granular enough to discern among error warning; error passive; bus off; transmission error;
reception error; transmission at transmission buffer 1, 2, or 3; reception at reception buffer
1 or 2; and other possible events. In addition, each CAN controller has a CAN interrupt
enable register. With the bits of this register it is possible to specify what particular CAN
events must trigger the CAN combined interrupt.

The above description is just a summary of the CAN controller registers. The complete details
can be found in Section 23 of the dsPIC30F Family Reference Manual [Microchip, 2006b].

The large number of registers associated with the CAN controllers, and the even larger total
number of control and status bit fields contained within those registers, makes the implemen-
tation of an ADT especially appropriate for the CAN controllers because in this way most of
the complexity of dealing with the CAN registers is hidden from other parts of the driver pro-
gram. Specifically, the CAN controller ADT abstracts away which specific control and status
registers of the microcontroller—and which bits within those registers—need to be accessed for
various control and status operations on the CAN controllers. Moreover, the CAN controller
ADT provides the driver with additional status information and control operations specific to the
media management the driver implements. For example, it allows the driver to know whether a
specific CAN controller is a ReCANcentrate node’s transmission controller or non-transmission
controller, and whether a given CAN controller is active (that is, not quarantined) or not active
(that is, quarantined).

Note, however, that because the driver is fairly low-level (close to the hardware), there are
a few implementation details regarding the CAN controllers that we did not hide from other

1An interrupt vector table is a table in memory that contains a series of function addresses; the addresses contained
within that table are known as interrupt vectors and the functions located at those addresses are known as interrupt
service routines

99

Chapter 8. Implementation of the driver

parts of the driver. These implementation details are the fact that each CAN controller has
two reception buffers and three transmission buffers, and that events occurring at these buffers
generate interrupts. Nevertheless, the CAN controller ADT does not expose to other parts of the
driver that each transmission and reception buffer is actually a collection of registers. For this
purpose we implemented an additional ADT for the transmission buffers and another ADT for
the reception buffers. Both of these ADTs are nested within the CAN controller ADT and their
implementations are also found in the files can controller.c and can controller.h.

The LED ADT
The dsPICDEM board provides a row of four LEDs. An electronic circuit on the dsPICDEM
board connects these LEDs to pins of the dsPIC30F6014A microcontroller [Microchip, 2006c].
These pins are pins of a general-purpose I/O port, called port D. Thus, to light the LEDs, the pins
of port D that are connected to the LEDs must be configured as outputs. This is done through a
so-called TRIS register, also known as a data direction register [Microchip, 2006b, Section 11].
In order to hide how the TRIS register of port D needs to be set up and what specific values then
need to be transmitted through those pins to light the LEDs we implemented an ADT for the
LEDs. The source code for this ADT can be found in the files led.c and led.h, which are listed
in Section C.11 and C.12 of Appendix C respectively. The ADT is very simple. It provides one
operation to initialize the LEDs, which basically sets up the TRIS register of port D, and another
operation to display on the LEDs, in binary, a number passed as a parameter to the operation.

We mainly used the LEDs for debugging purposes: to alert us when an assertion failed, as
described in Section 8.3.1, and, at times, as a simple substitute for tracing statements, that is,
diagnostic messages that developers typically print to the screen in order to assess whether a
particular piece of code gets executed or to determine the value of some variable.

The transmission timer ADT
The dsPIC30F6014A microcontroller has five embedded hardware timers. Of the five we used
the first one, referred to as timer 1, as the transmission timer (see Section 5.3.2). We created a
transmission timer ADT that provides three operations: an operation that enables the transmis-
sion timer so that it starts counting, an operation that disables it so that it stops counting, and an
operation that resets its value to zero. By having these operations as part of an ADT, other parts
of the driver source code did not have to concern themselves with the configuration register for
timer 1. The source code for the transmission timer ADT is listed in sections C.19 and C.18 of
Appendix C.

The interrupt ADT
The dsPIC30F6014A microcontroller has up to 41 interrupt sources [Microchip, 2006a, Section
5], all of which correspond to either hardware peripherals embedded in the microcontroller or to
external interrupts, that is, interrupts that are generated by hardware peripherals external to the
microcontroller.

There are no special-purpose instructions to generate software interrupts. At first, this might
seem as a problem for us because the CAN event tracker needs to generate software interrupts in
order to invoke the media management routines (see sections 5.3.3 and 5.3.4). But, luckily, all
of the hardware interrupts can also be triggered by software; that is, an interrupt can be triggered
either by a hardware peripheral or by the software writing a ‘1’ to the appropriate interrupt

100

8.3. Overview of the driver source code

flag. This means that we can reuse otherwise unused interrupt sources as software interrupts to
trigger the media management routines. For instance, in our prototype we had no need for the
first external interrupt, known as INT1; we therefore reused it as the software interrupt to trigger
the ISR for the CAN1 rx routine. Thus, when the CAN event tracker wants to invoke the CAN1
rx routine, it simply sets the flag for the INT1 interrupt.

This works perfectly, but it is confusing to any developer reading the source code: a developer
would ask why the INT1 interrupt triggers the rx routine. So, to make the source code more
readable, we implemented an ADT for interrupts. The interrupt ADT is implemented in files
interrupts.c and interrupts.h, listed in sections C.9 and C.10 of Appendix C respectively. Its main
functionality is to provide an interface to the interrupts of the dsPIC30F6014A microcontroller
that the driver needs. This interface abstracts away which specific interrupt enable, interrupt
priority, and interrupt flag registers—and which bits of those registers—need to be accessed for
the different tasks carried out by the driver. To accomplish this, the interrupt ADT provides a
new t interrupt enumerated data type and several operations on that new data type. The
possible values for the new datatype are listed in the interrupts.h file. For easier reference, the
relevant section of the file is reprinted here:

typedef enum t_interrupt_enum {
/* Interrupts generated by hardware */
HW_INTERRUPT_CAN1,
HW_INTERRUPT_CAN2,
HW_INTERRUPT_TIMER1,

/* Interrupts generated through software by the

* CAN event tracker */
SW_INTERRUPT_CAN1_TX_EVENT,
SW_INTERRUPT_CAN1_RX_EVENT,
SW_INTERRUPT_CAN1_ERROR_WARNING,
SW_INTERRUPT_CAN2_TX_EVENT,
SW_INTERRUPT_CAN2_RX_EVENT,
SW_INTERRUPT_CAN2_ERROR_WARNING

} t_interrupt;

The first three values for the t interrupt datatype correspond respectively to the CAN1
combined interrupt, the CAN2 combined interrupt, and the interrupt of the transmission timer.
The following six values represent software interrupts which are to be generated by the CAN
event tracker. The interrupt ADT actually maps these software interrupts to unused hardware
interrupt sources.

By ensuring that other parts of the driver source code only use interrupts through the interrupt
ADT we increase the readability of the driver source code. First, the otherwise unused hardware
interrupts that have been reused as software interrupts can be referred to by names that make
semantically sense within the context of the driver. Second, the interrupt ADT provides a central
point where an overview of the interrupts used by the driver is given. Additionally, the interrupt
ADT makes the code more maintainable: if it later turns out that an interrupt that has been

101

Chapter 8. Implementation of the driver

recycled as a software interrupt is actually needed, only the interrupt ADT needs to be changed
instead of every single line of the driver where that software interrupt had been used. Moreover,
that change is very simple: it simply consists of a remap of the software interrupt to another
unused hardware interrupt.

The interrupt ADT provides six operations: enabling interrupt nesting, setting the priority of
interrupts, enabling a given interrupt, disabling a given interrupt, invoking a given interrupt by
setting the appropriate interrupt flag, and clearing the interrupt flag corresponding to a given
interrupt. All operations, except the one enabling interrupt nesting, receive as a parameter a
t interrupt datatype.

8.3.3. The CAN event tracker and the media management routines

The source code for the CAN event tracker can be found in file tracker.c, which is listed in
Section C.16 of Appendix C. The source code for the rx routine can be found in files rxroutine.c
and rxroutine.h, listed in sections C.14 and C.15 respectively; the code for the tx routine is
found in file txroutine.c, listed in Section C.17; and the code for the qua routine is found in the
file quaroutine.c, which is listed in Section C.13.

The tasks carried out by the CAN event tracker and the media management routines have
already been described in detail in chapters 5 and 6. So we are not going to repeat what the
tracker and the media management routines do. Instead, we want to highlight how we solved the
problem of code duplication (see DRY principle, Section 8.2).

Remember that the CAN event tracker and each of the media management routines is actually
implemented as two ISRs, one for each of the two CAN controllers. That means that, for in-
stance, the ISR of the CAN1 rx routine and the ISR of the CAN2 rx routine are nearly identical
and only differ in the CAN controller they consider to be the one that notified the reception. The
most straightforward way to implement the rx routine ISRs would perhaps been the following.
First write the code for, let us say, the ISR for the CAN1 rx routine. Then, in order to have
an ISR for the CAN2 rx routine, copy and paste that code and replace all instances of CAN1
with CAN2 in the copy. However, this creates a lot of code duplication and violates the DRY
principle.

A much better solution is possible thanks to the CAN controller ADT. The main functionality
of each media management routine is implemented in a dedicated helper function that takes as a
parameter two CAN controllers: the CAN controller that notified the delivery event/error and the
other controller. These parameters are pointers to instances of the CAN controller ADT. A given
ISR for a media management routine then simply calls the appropriate helper function passing
as a parameter either a pointer to the CAN1 controller or a pointer to the CAN2 controller. To
illustrate this, consider the following section of code, which is a simplified version of the relevant
section of the rxroutine.c file:

extern volatile struct can_controller ctrl1, ctrl2;

/*
* Handles a receive event notified by this_ctrl.

*/

102

8.3. Overview of the driver source code

static inline void handle_receive_event(
volatile struct can_controller *const this_ctrl,
volatile struct can_controller *const other_ctrl

)
{

/* Implements the rx routine */
}

void __attribute__((__interrupt__, no_auto_psv))
_CAN1RxEventInterrupt(void)
{

/* ACK software interrupt */
clear_interrupt_flag(SW_INTERRUPT_CAN1_RX_EVENT);

handle_receive_event(&ctrl1, &ctrl2);
}

void __attribute__((__interrupt__, no_auto_psv))
_CAN2RxEventInterrupt(void)
{

/* ACK software interrupt */
clear_interrupt_flag(SW_INTERRUPT_CAN2_RX_EVENT);

handle_receive_event(&ctrl2, &ctrl1);
}

The function CAN1RxEventInterrupt() is the ISR for the CAN1 reception event, the
function CAN2RxEventInterrupt() is the ISR for the CAN2 reception event, and the
function handle receive event() is the rx routine helper function. Both ISRs start by ac-
knowledging the corresponding software interrupt and then they simply call the rx routine helper
function. The CAN1 reception ISR passes as parameters to the helper function first a pointer to
the CAN1 controller and then a pointer to the CAN2 controller; whereas the CAN2 reception
ISR passes the same parameters in reverse order to the helper function. This accomplishes what
we want: when the helper function is called by the CAN1 reception ISR it implements an rx
routine for the CAN1 controller and when the helper function is called by the CAN2 reception
ISR it implements an rx routine for the CAN2 controller.

Moreover, note the inline keyword in the definition of the helper function. This means
that when the appropriate optimization level is used during compilation, the body of the helper
function will be appropriately inlined into the ISRs and there will be no actual call to the helper
function. This removes the overhead of calling the helper function from the ISRs, resulting in
an executable that should not be much slower than if we had used the copy and paste approach.

103

Chapter 8. Implementation of the driver

8.4. Implementation of a simple API to interface with the
driver

We implemented a very simple application programming interface (API) for the ReCANcentrate
driver that allows a user application executing on a node to transmit frames to other nodes and
to receive frames from other nodes. The API implements the driver interface shown at the top
of Figure 5.5, page 50. Moreover, as explained in Section 5.3.3, it abstracts away the existence
of two CAN controllers, thereby allowing the user application to send and receive frames as if
there was a single CAN controller. Note that this API is intended to be a proof of concept and
has not been designed for real-world applications.

The source code for the API is found in the files recancentrate.c and recancentrate.h, which
are both listed in Appendix D.

A user application that wants to use the driver must add an include statement of the recan-
centrate.h file and be linked with the driver object files to produce the final executable. Then it
can use the functions declared in the recancentrate.h file. These functions are the following:

init recancentrate driver() The user application must invoke this function prior to any of the
other functions provided by the API. It initializes the CAN controllers, and it enables the
interrupts used by the driver and assigns them the adequate priorities .

request recancentrate tx() This function allows the user application to request the transmission
of a frame through a ReCANcentrate network. It implements the tx request routine de-
scribed in Chapter 6. The function takes four parameters. The first three parameters are
input parameters and the fourth parameter is an output parameter. The input parameters
are the identifier of the frame to be transmitted, the payload to be transmitted, and the
length of the payload. The output parameter is used by the function to return a value
that indicates whether the transmission request was successful or whether it failed be-
cause a transmission request was already pending. Note that the output parameter does
not indicate whether the frame was actually transmitted successfully (for this see recan-
centrate tx carried out() below), it only indicates whether the request to transmit was
successful.

read received data() This function allows the user application to read a frame received from the
ReCANcentrate network. It has four output parameters: the identifier of a received frame;
the payload of a received frame; the length of the payload; and a status, which indicates
whether or not there was a received frame and whether the other three parameters have
been loaded.

received data is available() This function returns true if the node has received a frame from
another node. The user application can use this function to determine through polling
when a frame has been received.

recancentrate tx carried out() This function returns true if the last transmission request was
carried out successfully and it returns false otherwise. The user application can use this
function to determine through polling if the last frame that was requested for transmission
has been successfully transmitted through the ReCANcentrate network.

104

8.4. Implementation of a simple API to interface with the driver

recancentrate controller available() This function returns true as long as at least one of the two
CAN controllers is still available for communication. It returns false when both CAN con-
trollers have been quarantined and there are therefore no controllers left to communicate.

Using the above functions a node can communicate with other nodes on a ReCANcentrate
network. As described above, a node uses polling to detect when a frame has been transmitted
or when a frame has been received. We know that this is not very efficient and that it wastes
processor cycles, but it was the easiest and fastest way to implement a simple API that is good
enough for us. All that we needed was some means to write a few simple programs that would
allow us to test the driver and the ReCANcentrate infrastructure that we built. If the API should
ever be used by real-world applications, then it should probably be improved to allow a user
application to write its own ISRs and to add them to the interrupt vector table. In this way the
user defined ISRs would be invoked through interrupts as soon as a transmission request was
fulfilled or a frame was received.

105

9. Testing the driver on the hardware
prototype

This chapter describes the tests we carried out to verify the fault tolerance capabilities and per-
formance of the new prototype. Note that these tests assumed that the hardware was working
correctly because this had already been verified (see Section 7.4). Moreover, note that the focus
of the tests described herein is on the nodes and not on the hubs, which had already been tested
thoroughly in the prototype that Barranco et al. [2006a] built before this project. Specifically,
the tests were intended to verify that the driver running on the nodes had been built accord-
ing to the specification, that is, that the driver correctly implemented the flowcharts described
in Chapter 6. But, more importantly, the tests were intended to validate if the driver and the
node architecture are adequate to handle the replicated media provided by the ReCANcentrate
hubs. Also, although we did not focus on testing the hubs, they did get exercised, which further
increased our confidence in their correct functioning.

All tests were carried out using the network configuration of our prototype, that is, with two
hubs, three nodes, and two interlinks. Moreover, we used the maximum achievable bit rate in
all tests. Note that this was 921.25 Kbps, instead of CAN’s maximum 1 Mbps, because with the
7.37 MHz oscillators of the nodes and the 14.74 MHz oscillators of the hubs we cannot reach
more than 921.25 Kbps.

We begin this chapter by describing the tests we carried out to check whether the nodes of our
prototype are capable of tolerating faults. Afterwards, the second part of this chapter deals with
the performance tests of the driver.

9.1. Fault tolerance tests

Testing whether the nodes of our prototype are capable of tolerating faults required some means
to inject faults. We therefore start this section by describing the implementation of fault injec-
tion.

9.1.1. Implementation of fault injection

In order to inject faults into the prototype, we designed and implemented, in VHDL, two differ-
ent fault-injection modules for the hubs.

The first is the downlink-fault-injection module. As its name indicates, it allows to inject
faults into a downlink of a hub. Figure 9.1 shows the internal structure of a ReCANcentrate
hub (equivalent to Figure 5.3, page 45) with the additional new downlink-fault-injection module
highlighted. The downlink-fault-injection module contains 3 units: a fault-selection multiplexer
(MUXFS), a fault-enabling multiplexer (MUXEF), and a fault-enabling unit. Fault injection

107

Chapter 9. Testing the driver on the hardware prototype

A
B

C
D

ANDT

A
B

C
D

ANDC

Tr Tr TrTr Tr TrTrTr

Outgoing
sublinks to
other hub

Uplink
from

node 1

Down-
link to
node 1

Uplink
from

node 2

Down-
link to
node 2

Uplink
from

node 3

Down-
link to
node 3

Tr Tr

Incoming
sublinks from

other hub

Coupler Module

Input/Output
Module

Fault-
Treatment

module

Rx CAN

Ena/Dis

Hub Ena/Dis

BT

C p

M
U

X
FS

’1’

’0’

bitflip

Select fault

ABCDMUXEF

Fault-
enabling

unit

Sw

Downlink Fault-Injection
Module

Figure 9.1.: Downlink-fault-injection module.

starts after the switch button (Sw) connected to the fault-enabling unit is pushed. Before the
switch button is pushed, the fault-enabling multiplexer MUXEF simply forwards the output BT
of the ANDT gate to the downlink of node 1. This is equivalent to what a ReCANcentrate hub
without any fault-injection module does. Once the switch button has been pushed, the fault-
enabling unit waits until it detects in the Rx CAN’s output that the CAN frame field at which
fault injection should start is currently being broadcasted. Then it selects as output for the fault-
enabling multiplexer MUXEF—and, thus, as input to node 1’s downlink—the output of the
fault-selection multiplexer MUXFS. The fault-selection multiplexer MUXFS allows to choose
the type of fault to inject: a stuck-at-recessive (’1’), a stuck-at-dominant (’0’), or a bit-flipping
fault.

As an example consider the case where, once the switch button has been pressed, a stuck-
at-dominant fault should be injected from the next data field being broadcasted onwards. For
this, the downlink-fault-injection module must have been preconfigured appropriately by modi-
fying its VHDL file. The preconfiguration is the following. First, the fault-selection multiplexer
MUXFS must select as an output the stuck-at-dominant fault. Second, the fault-enabling unit
must change its output when the switch button has been pressed and the output of the Rx CAN
module indicates the broadcast of a data field. After this preconfiguration, the downlink to node 1

108

9.1. Fault tolerance tests

initially receives the coupled signal BT. Then, when the switch button is pressed, the downlink
to node 1 continues to receive the coupled signal BT until the Rx CAN module indicates that the
coupled signal BT corresponds to a data field. At that instant the fault-enabling unit is triggered
to change its output. This causes the fault-enabling multiplexer MUXEF to change its output:
now it selects the stuck-at-dominant that is output by the fault-selection multiplexer MUXFS
instead of the coupled signal BT. The result is that from that point in time onwards the downlink
to node 1 receives a stuck-at-dominant bit stream.

A
B

C
D

ANDT
A

B
C

D

ANDC

Tr Tr TrTr Tr TrTrTr

Outgoing
sublinks to
other hub

Uplink
from

node 1

Down-
link to
node 1

Uplink
from

node 2

Down-
link to
node 2

Uplink
from

node 3

Down-
link to
node 3

Tr Tr

Incoming
sublinks from

other hub

Coupler Module

Input/Output
Module

Fault-
Treatment

module

Rx CAN

Ena/Dis

Hub Ena/Dis

BT

C p

M
U

X
FS

’1’

’0’

bitflip

Select fault

ABCDMUXEF

Fault-
enabling

unit

Sw

Uplink Fault-Injection Module

Figure 9.2.: Uplink-fault-injection module.

The second fault-injection module is the uplink-fault-injection module. It is shown in Fig-
ure 9.2. It is very similar to the downlink-fault-injection module shown in Figure 9.1: it also
contains a fault-selection multiplexer (MUXFS), a fault-enabling multiplexer (MUXEF), and a
fault-enabling unit. What changes with respect to the downlink-fault-injection module is where
the right-most input to the fault-enabling multiplexer MUXEF comes from and where its output
goes to. Its right-most input is now the signal coming from node 1’s uplink, and its output is
now connected to both the OR gate and the enabling/disabling unit corresponding to node 1. As
long as the switch button is not pressed, and thus no fault is injected, the result is equivalent to a
ReCANcentrate hub with no fault-injection module: the signal from node 1’s uplink enters both
an OR gate and a corresponding enabling/disabling unit. But once a fault is injected, what enters

109

Chapter 9. Testing the driver on the hardware prototype

the OR gate and the corresponding enabling/disabling unit changes to the fault selected at the
fault-selection multiplexer MUXFS. The result is equivalent to a permanent fault, of the type
selected, at the uplink of node 1.

The source code for the downlink-fault-injection module can be found in Section F.2.1 of Ap-
pendix F, and the source code for the uplink-fault-injection module can be found in Section F.2.2
of Appendix F. Both files implement the same interface, that is, seen as a black-box, they look
the same from outside. However, inside one implements the downlink-fault-injection module
and the other the uplink-fault-injection module. We modified the original VHDL code that we
inherited from the previous prototype by Barranco et al.. Specifically, we changed the VHDL
file that integrates and interconnects all the different modules of a ReCANcentrate hub in order
to add the interface that is common to both fault-injection modules. Then, by synthesizing either
one or the other implementation of the fault-injection module interface, we could program a
given hub’s FPGA to include either the downlink- or the uplink-fault-injection module. The file
modified to integrate a fault-injection module can be found in Section F.2.3 of Appendix F.

Finally, apart from faults in the medium, the driver has also been designed to handle the
crash of CAN controllers. To inject a controller crash we implemented a simple ISR for each
controller that gets called when one of the push buttons on the dsPICDEM board is pushed.
This ISR then disables all interrupts from the corresponding CAN controller and also shuts the
controller down. To the driver this appeared as if the controller had suffered a crash and was no
longer responding. The source code that allows the injection of CAN controller crashes can be
found in Appendix F, Section F.1.

9.1.2. Test programs

The basis for all our fault-tolerance tests were 3 programs. The first program, named 3Bit-
Counter (listed in Appendix G, Section G.1), continuously increments an 8-bit counter, displays
the value of that counter modulo 8 on the 3 right-most LEDs of the dsPICDEM board where
3BitCounter is running, and transmits the value of that counter in the payload of a 1-byte data
frame. The second program, named Blinker (listed in Appendix G, Section G.2), also contin-
uously increments an 8-bit counter and transmits the value of that counter in the payload of a
1-byte data frame. What is different is that it displays the value of that counter modulo 1 on
the left-most LED of its dsPICDEM board. The third program, named Receiver (listed in Ap-
pendix G, Section G.3), continuously receives any frame transmitted by 3BitCounter or Blinker.
It displays on its three least significant LEDs the counter values received from 3BitCounter
modulo 8 and on its most significant LED the counter values received from Blinker modulo 1.
The result on the 4 LEDs of Receiver is that the left-most LED blinks while the 3 right-most
LEDs count in binary—although visually it seems that all 4 LEDs are continuously lit up, in
less than the full brightness, because the LEDs switch their value too fast for the human eye.
Moreover, using two local counters, Receiver keeps track of which was the last counter value
it received from 3BitCounter and which was the last counter value it received from Blinker. It
then compares the counter value received in each frame with the corresponding local counter.
If the received counter value is synchronized with the corresponding local counter, Receiver
determines that it correctly received the next frame from 3BitCounter or Blinker. Otherwise, it
determines whether a single frame was missed, multiple frames were missed, or a duplicate of

110

9.1. Fault tolerance tests

the previous frame was received. Finally, Receiver includes assertions that check whether one or
more frames were missed. If so, the assertions fail, thereby alerting us (through blinking LEDs,
see Section 8.3.1) of this fact. Note that there are no assertions that fail if duplicate frames are
received. This is so because the occurrence of duplicate frames is not considered an error—as
described in Section 3.4.3, in CAN it is known that duplicates can occur and applications should
be written so that they can deal with that.

In our tests we ran all 3 programs simultaneously, each one on a different node. The channel
utilization was maximized, that is, the separation between each pair of consecutive frames was
just the minimum intermission period (3 bits). We injected the faults described in the following
sections and easily determined if the injected faults were tolerated: if Receiver had all of its 4
LEDs slightly lit up, it was receiving both 3BitCounter’s and Blinker’s frames. If a frame was
missed, the corresponding assertion failed.

9.1.3. Test strategy

As we said in Section 5.3.2, nodes must deal with faults that manifest to them as syntactic
faults in an up- or downlink, that is, they must deal with stuck-at, bit-flipping, and hub faults.
Moreover, apart from syntactic faults, nodes must also be able to tolerate the crash of one of
their CAN controllers and of certain CAN inconsistency scenarios. We have tested permanent
syntactic faults and controller crashes, but we have not tested any scenarios that involve the
CAN inconsistency scenarios that have been identified by Rufino et al. [1998] and Proenza and
Miro-Julia [2000]. We have not tested these because injecting them would have required more
sophisticated fault-injection mechanisms than we had available, and building those mechanisms
was considered out of the scope of this project.

Regarding controller crashes, we did test a few scenarios that involve injected controller
crashes. These are described in Section 9.1.8.

Regarding syntactic faults, there are four possible fault-injection points: the uplink of the
transmission controller, the downlink of the transmission controller, the uplink of the non-
transmission controller, and the downlink of the non-transmission controller. Each of these
points can either be non-faulty, stuck-at-dominant, stuck-at-recessive, or bit flipping; that is,
there are four possible fault states associated with each of the four injection points. There are
therefore a total of 4× 4× 4× 4 = 256 possible fault combinations to be considered for testing
so far.

However, we do not only need to consider the type of faults that occur at a given fault-injection
point, but for some types of faults we also need to consider when a given fault is injected. Al-
though all faults in our fault model are permanent, the instant when a fault is injected can be
relevant and can change how the node is expected to respond. This is true for stuck-at-recessive
faults: when a permanent stuck-at-recessive occurs between the transmission of the start of
frame (SOF) and the ACK delimiter of a frame, that frame will be corrupted and the affected
controller will detect an error. However, when the stuck-at-recessive occurs anywhere between
(and including) an ACK delimiter and the next SOF, the controller of the node affected by that
stuck-at-recessive will not detect any error until it tries to transmit a frame. This is so because
that controller will interpret the stuck-at-recessive stream as the last part of the frame and, af-
terwards, as an idle bus. It will continue with this interpretation until it monitors a recessive bit

111

Chapter 9. Testing the driver on the hardware prototype

when it tries to transmit an SOF.
We will refer to the period between an SOF and the next ACK delimiter as a dominant includ-

ing period and to the period from an ACK delimiter to the next SOF as a recessive only period.
Taking into account these periods for stuck-at-recessive faults, the number of possible fault states
increases to five for each fault-injection point: a fault-injection point can be non-faulty, stuck-at-
dominant, stuck-at-recessive that started during a dominant including period, stuck-at-recessive
that started during a recessive only period, and bit flipping. This means that the possible fault
combinations that in principle need to be tested increases to 5× 5× 5× 5 = 625.

Unfortunately this is still not the number of all possible fault combinations that we need to
consider for testing. Another thing that we need to take into account is the role (transmitter/re-
ceiver) of a node into whose link the fault is injected: if the node was only receiving frames and
not transmitting any frames, then we do not expect any retransmissions to occur at that node.
However, if the node was transmitting a frame when the permanent fault manifested, then in our
tests we will also have to check if a retransmission of the corrupted frame occurs. Taking into
account the role of a node doubles the number of fault scenarios to consider for testing, giving
us 2× 625 = 1250 fault scenarios.

Moreover, if multiple faults occur, then the delay between faults is also relevant. Consider
the following example. A fault occurs at a link and is globalized through CAN’s error signaling
mechanism until it is isolated by the corresponding hub. This will increase the error counters
(TEC/REC) of the controllers of all nodes—although, for the controllers that have a non-faulty
link, they will not increase so far as to reach the error warning limit because the hub will have
isolated the fault before that. After the first fault, the error counters of the controllers that have
non-faulty links will start to decrease with each successfully transmitted or received frame. But
if now a second fault occurs, the error counters of these controllers will start to increase again
until that second fault is isolated by the corresponding hub. If that second fault occurs before
the error counters had time to decrease enough, the error counters could reach the error warning
limit. That means that, depending on the delay between the first fault and the second fault and the
time it takes the hubs to isolate the fault, the increase of the error counters due to the second fault
may cause the error counters of some controllers whose links are not faulty to reach the error
warning limit. Thus, if we consider multiple faults, then, for certain fault scenarios, we need to
take into account the delay between the faults in order to know if the nodes should quarantine
their controllers in our tests or not. This further increases the number of fault scenarios to
consider for our tests. Finally, even considering the delay between multiple faults, there are still
more things that we need to consider in order to identify all fault scenarios which we may need
to test. For instance, bit flipping faults can occur in many different patterns and with varying
delays between successive bit flips.

From the above discussion it should be clear that the number of possible fault scenarios that
we need to consider is very large—even infinite if we do not put some restrictions on the fault
scenarios or group them into equivalent scenarios by some criteria. However, there is some hope.
Not all considered fault scenarios need to be actually tested. Despite the fault-tolerance mecha-
nisms of ReCANcentrate, many of the possible fault scenarios do not allow the affected node to
communicate. For instance, there is no way a node can communicate if both its downlinks are
stuck-at-dominant. To test these scenarios does not make any sense because we know that the
node will not be able to communicate anyway. We can therefore restrict the number of tests to

112

9.1. Fault tolerance tests

those fault scenarios where we expect a node to tolerate the faults.
Moreover, there are many scenarios that can possibly be grouped and considered equivalent.

In that case it may be enough to test a single scenario out of each group. But even with this
strategy there are still too many scenarios to test them all manually, that is, with a person having
to set up and supervise each test. If we wanted to test all scenarios exhaustively we would have
needed some infrastructure for automated testing—which we did not have. So, for this project,
we decided to test those scenarios where a single fault occurs with the additional restriction
that the single fault can only be a stuck-at-recessive or stuck-at-dominant fault. We excluded
bit-flipping faults as they would increase the number of tests to execute significantly: there are
many different types of bit-flipping faults that need to be considered, depending on the bit-
flipping pattern, the delay between successive bit flips, and where within a transmitted frame the
bit flips coincide. Note, however, that many bit-flipping scenarios are equivalent to the injection
of stuck-at-dominant faults. This is so because both bit-flipping and stuck-at-dominat faults
corrupt frames.

We have identified 21 different groups of scenarios where a single permanent stuck-at-recessive
or stuck-at-dominant fault occurs. For each of these 21 groups we have designed a test that rep-
resents the whole group. In other words, we have executed a total of 21 different representative
tests involving either a single permanent stuck-at-recessive fault or a single permanent stuck-at-
dominant fault. These tests are summarized in tables 9.1, 9.2, 9.3, and 9.4. We ran each test at
least 10 times and, in all cases, observed that the injected fault was correctly isolated by the hub
and tolerated by the node into whose downlink/uplink the fault was injected.

Nevertheless, despite all the tests having succeeded, we need to highlight that this unfortu-
nately does not prove that further executions of our tests will also be tolerated by ReCANcen-
trate. Note that the circumstances between different executions of the same test may slightly vary
because the setup of each test and the injection of a fault in each test required the intervention of
a person. This means that the exact circumstances for a given test are not deterministic for differ-
ent executions of that test—even though in each execution of the same test the nodes and the hubs
have been configured identically. For this reason, a sample of only 10 executions for each test is
not enough to convincingly show through experimentation, and from a statistical viewpoint, that
ReCANcentrate tolerates the 21 groups of scenarios we identified. To have any confidence in
the fault tolerance capabilities of ReCANcentrate, many more test executions would be required.
This, however, would be very time intensive and tedious without an automated testing infras-
tructure (consider that the 10 executions for each of the 21 tests we executed means that we had
to manually set up a test and inject a fault 210 times, and getting a statistically significant sample
size of executions would require thousands of executions, which is completely unreasonable to
do manually). Nevertheless, our tests did at least not falsify the hypothesis that ReCANcentrate
can tolerate single permanent stuck-at-dominant and single permanent stuck-at-recessive faults,
but instead supports that hypothesis.

9.1.4. Stuck-at-recessive downlink

Let us start by describing the tests in which we injected a stuck-at-recessive fault in a downlink
during the recessive only period (see Section 9.1.3), which includes the ACK delimiter, the
EOF, the interframe space, and the next SOF. During that period a receiving controller expects

113

Chapter 9. Testing the driver on the hardware prototype

Table 9.1.: Stuck-at recessive downlink-fault-injection tests

Node Injection point When Observed consequences and fault-tolerance actions

1 Receiver tx ctrl downlink EOF no global error; tx ctrl not quarantined (sees medium as
idle); receptions continue at non-tx ctrl

2 Receiver non-tx ctrl downlink EOF no global error; non-tx ctrl not quarantined (sees
medium as idle); receptions continue at tx ctrl

3 Receiver tx ctrl downlink data field temporarily global error; hub isolates tx ctrl uplink; tx
ctrl is quarantined; non-tx ctrl becomes new tx ctrl;
receptions continue at new tx ctrl

4 Receiver non-tx ctrl downlink data field temporarily global error; hub isolates non-tx ctrl uplink;
non-tx ctrl is quarantined; receptions continue at tx ctrl

5 / 6 Blinker tx ctrl downlink EOF /
data field

temporarily global error; hub isolates tx ctrl uplink; tx
ctrl is quarantined; non-tx ctrl becomes new tx ctrl; if a
frame was pending in old tx ctrl, qua routine instructs its
transmission through the new tx ctrl;
maxInconsists retransmissions through new tx ctrl

7 Blinker non-tx ctrl downlink EOF no global error; non-tx ctrl not quarantined (sees
medium as idle); maxInconsists retransmissions
through tx ctrl

8 Blinker non-tx ctrl downlink data field temporarily global error; hub isolates non-tx ctrl uplink;
non-tx ctrl is quarantined; transmissions continue at tx
ctrl; maxInconsists retransmissions through tx ctrl

recessive bits anyway and, thus, the controller into whose downlink we injected the stuck-at-
recessive fault will not detect any errors until it tries to transmit a frame itself. This leads to 3
possible subsequent scenarios:

(a) The stuck-at-recessive was injected into a downlink of a node that exclusively receives
frames. The controller affected by the fault will simply see the medium as idle and,
when another node transmits a frame, the affected controller will omit the notification
of receptions without being quarantined, while the unaffected controller of the same node
correctly receives the frames. (Covered by tests 1 and 2, Table 9.1.)

(b) The stuck-at-recessive was injected into the transmission controller’s downlink of a node
that, afterwards, initiates a transmission. The transmission controller will detect a bit er-
ror when it tries to transmit an SOF. It will therefore globalize the error by transmitting
an error flag, which the other controllers will receive. The transmission controller itself,
however, will not receive its own error flag nor any subsequent error flags transmitted by
other controllers. It will therefore continue to detect further bit errors, which will also be
globalized until the corresponding hub isolates the uplink through which the transmission
controller keeps transmitting error flags. Once isolated, the transmission controller with
the faulty downlink does no longer disturb the communication channel with its error flags.
However, it itself continues to detect errors and, thus, its TEC keeps incrementing until
it reaches the error warning limit. At that point the qua routine is invoked, which then
quarantines the transmission controller, assigns the transmission controller role to the
non-transmission controller, and instructs the new transmission controller to retransmit

114

9.1. Fault tolerance tests

the pending frame. The new transmission controller then retransmits maxInconsists
times (see decision I of the tx routine flowchart, page 62) before the driver considers that
the frame is successfully transmitted. Note that these retransmissions may be unnecessary,
but they are a tradeoff that allows to tolerate in most cases the inconsistent message omis-
sion scenarios identified for CAN (see sections 3.4.3 and 6.4). Any further transmissions
will be carried out by the new transmission controller. (Covered by test 5, Table 9.1.)

(c) The stuck-at-recessive was injected into the non-transmission controller’s downlink of a
node that, afterwards, initiates a transmission. The driver will observe that the trans-
mission controller notifies the transmission, but the non-transmission controller omits the
reception of the node’s own frame. The transmission controller will retransmit because it
must assume that the omission could have been due to a CAN inconsistency scenario and
a retransmission is the correct thing to do in that case. In fact, since the non-transmission
controller remains active but will permanently see the medium as idle, the transmission
controller retransmits maxInconsists times (see decision I of the tx routine flowchart,
page 62) before the driver considers that the frame is successfully transmitted. As in the
previous case, these potentially unnecessary retransmissions are a tradeoff that allows to
tolerate in most cases the inconsistent message omission scenarios identified for CAN (see
sections 3.4.3 and 6.4). (Covered by test 7, Table 9.1.)

Next let us consider permanent stuck-at-recessive faults in downlinks that start during the
dominant expecting period, which ranges from (and including) the first bit of a frame’s identifier
to (and including) the ACK slot of that same frame. During that period dominant bits are ex-
pected by a receiving controller at some points within the frame according to different rules, such
as the bit stuffing rule. A transmitting controller expects to receive each bit value it transmits
(except the ACK slot). Thus, the controller into whose downlink we inject the stuck-at-recessive
fault will definitely detect an error and globalize it. We distinguish the subsequent scenarios:

(d) The stuck-at-recessive was injected into the non-transmission controller’s downlink of a
node that exclusively receives frames. The consequences are the following. First, the
non-transmission controller will detect a stuff, CRC, or form error. In response it will
transmit an error flag, which will be received by the other controllers; the non-transmission
controller itself, however, will not receive its own error flag and will therefore detect bit
errors during the error flag transmission. As a consequence, it will transmit even more
error flags. This will cause the hub on the other end of the non-transmission controller’s
uplink to diagnose the non-transmission controller as stuck-at-dominant and to isolate its
uplink. Once isolated, all other controllers (including the transmission controller of the
same node) can resume the communication. The non-transmission controller with the
faulty downlink, however, will continue to detect errors until it hits the error warning
limit, at which point it is quarantined by the qua routine. (Covered by test 4, Table 9.1.)

(e) The stuck-at-recessive was injected into the transmission controller’s downlink of a node
that exclusively receives frames. The transmission controller will detect a stuff, CRC,
or form error. Because of this, it will transmit an error flag through its uplink, which,
however, it will not receive through its faulty downlink. This causes it to detect bit errors

115

Chapter 9. Testing the driver on the hardware prototype

and to transmit further error flags through its uplink, which again causes the correspond-
ing hub to diagnose the uplink as stuck-at-dominant and to isolate it. Once isolated, the
transmission controller with the faulty downlink no longer blocks with its error flags the
communication between the other controllers. It itself, however, continues to detect bit
errors until it hits the error warning limit. At this point the qua routine is invoked, which
then quarantines the transmission controller and assigns the transmission controller role
to the non-transmission controller. (Covered by test 3, Table 9.1.)

(f) The stuck-at-recessive was injected into the non-transmission controller’s downlink of the
node that was transmitting the frame in which the fault was injected. The non-transmission
controller will detect a stuff, CRC, or form error; globalize the error; detect bit errors dur-
ing the error flag transmission, which will trigger the transmission of further error flags;
the nonstop transmission of the error flags will cause the corresponding hub to isolate the
uplink of the non-transmission controller; and, afterwards, when it hits the error warning
limit, the non-transmission controller will be quarantined. No retransmission is instructed
by the qua routine, but the tx routine executing for the transmission controller will re-
transmit maxInconsists times (this again is unnecessary, but a tradeoff to tolerate
some inconsistent message omission scenarios). (Covered by test 8, Table 9.1.)

(g) The stuck-at-recessive was injected into the transmission controller’s downlink of the node
that was transmitting the frame in which the fault was injected. The transmission con-
troller will detect bit errors, globalize them until the corresponding hub isolates the up-
link, then it will reach the error warning limit, and be quarantined by the qua routine. The
non-transmission controller will become the new transmission controller, and it will be
instructed by the qua routine to retransmit the corrupted frame. The tx routine executing
on the new transmission controller will retransmit maxInconsists times (this is once
more unnecessary, but, as in the previous cases, a tradeoff to tolerate some inconsistent
message omission scenarios). (Covered by test 6, Table 9.1.)

9.1.5. Stuck-at-recessive uplink

When injecting a stuck-at-recessive fault into the uplink of a node, there are the following pos-
sible scenarios:

(h) The permanent stuck-at-recessive fault was injected into an uplink of a receiving node.
In that case, as long as the affected controller continues to exclusively receive and does
not transmit any frames itself, no controller detects an error because the stuck-at-recessive
cannot corrupt any transmitted frame. Moreover, the stuck-at-recessive at the uplink does
not prevent the affected controller from receiving frames. It does, however, prevent the
affected controller from transmitting an ACK during an ACK slot. Nevertheless, because
we only test scenarios where a single fault occurs, there will always be another controller
that is able to transmit an ACK. Thus, although the controller into whose uplink we in-
jected a stuck-at-recessive fault will not receive the ACK it transmits, it will detect an
indistinguishable ACK from another controller (either of the same node or from another

116

9.1. Fault tolerance tests

Table 9.2.: Stuck-at-recessive uplink-fault-injection tests

Node Injection point When Observed consequences and fault-tolerance actions

9 Receiver tx ctrl uplink arbitrary no global error; tx ctrl is not quarantined (no bit error
during ACK because tx ctrl receives non-tx ctrl’s ACK);
both controllers continue to receive

10 Receiver non-tx ctrl uplink arbitrary no global error; non-tx ctrl is not quarantined (no bit error
during ACK because non-tx ctrl receives tx ctrl’s ACK);
both controllers continue to receive

11 Blinker non-tx ctrl uplink arbitrary no global error; non-tx ctrl is not quarantined (no bit error
during ACK because non-tx ctrl receives ACK from
another node); receptions continue at non-tx ctrl

12 Blinker tx ctrl uplink EOF no global error; tx ctrl is quarantined; non-tx ctrl becomes
new tx ctrl; if a frame was pending in old tx ctrl, qua
routine instructs its transmission through the new tx ctrl;
maxInconsists retransmissions through new tx ctrl

13 Blinker tx ctrl uplink data field temporarily global error; tx ctrl is quarantined; non-tx ctrl
becomes new tx ctrl; if a frame was pending in old tx ctrl,
qua routine instructs its transmission through the new tx
ctrl; maxInconsists retransmissions through new tx
ctrl

node). The controller will therefore continue to notify the reception of frames as if no
fault had occurred. (Covered by tests 9 and 10, Table 9.2.)

(i) The permanent stuck-at-recessive fault was injected into the uplink of the non-transmission
controller of a transmitting node. In this scenario the non-transmission controller will not
be able to transmit anything. However, as it is not being used for transmissions and it can
continue to receive frames through its downlink, it will not detect any errors (we assume
that there is at least one other non-faulty node that transmits ACKs); thus, it will not be
quarantined and it will continue to notify receptions. (Covered by test 11, Table 9.2.)

(j) The permanent stuck-at-recessive fault was injected into the uplink of the transmission
controller of a transmitting node during the recessive only period. In that case the trans-
mission controller with the faulty uplink will detect bit errors at some point when it tries
to transmit a frame. Note, however, that the transmission controller must not necessar-
ily detect an error with its next transmission attempt: its next transmission attempt could
lose the arbitration against a frame transmitted by another node. Specifically, note that
although the transmission controller with the faulty uplink will not be able to transmit an
SOF, it will not detect a bit error because there will be an SOF transmitted by the other
node. If the frame transmitted by the other node has a higher priority, then the transmis-
sion controller with the faulty uplink will assume that it had lost the arbitration instead of
that its uplink was stuck-at-recessive and it would therefore not detect a bit error yet. Nev-
ertheless, at some point the controller with the faulty uplink will be the only one that wants
to transmit a frame, or it will be the one to transmit a frame with the highest priority, and
then it will detect a bit error. Anyway, when the bit error finally occurs, the transmission
controller with the faulty uplink will not be able to globalize the error (it will therefore

117

Chapter 9. Testing the driver on the hardware prototype

be the only one to detect the error) and its TEC will reach the error warning limit. Then
the qua routine will be invoked, and it will deactivate the transmission controller and as-
sign the transmission controller role to the non-transmission controller. Moreover, the qua
routine will instruct the transmission of the pending frame through the new transmission
controller and maxInconsists (unnecessary) retransmissions will occur. (Covered by
test 12, Table 9.2.)

(k) The permanent stuck-at-recessive fault was injected into the uplink of the transmission
controller of a transmitting node during the dominant including period. In that case the
frame that the node was transmitting will be corrupted. As a consequence the receiving
controllers of the other nodes and the non-transmission controller of the transmitting node
will detect a stuff, CRC, or form error and will therefore start to transmit error flags. The
transmission controller of the transmitting node, into whose uplink we injected the stuck-
at-recessive, will continuously detect a bit error, but it will not be able to transmit an error
flag. Note that this scenario actually includes several subscenarios. Depending where
exactly within the transmitted frame the stuck-at-recessive was injected, the transmission
controller with the faulty uplink could either detect an error before any of the other, re-
ceiving, controllers or they could all detect the error at the same time. For instance, if
the fault was injected during the data field, the transmitting transmission controller would
detect the stuck-at-recessive as soon as it transmitted a dominant bit (it would detect a
bit error); whereas the other controllers may assume that the transmitting controller had
transmitted a recessive bit. The transmitting controller would not be able to globalize the
error it has detected because it’s uplink is stuck-at-recessive. Nevertheless, at most five bit
times later, all controllers will have detected an error because either a stuff, CRC, or form
error would have occurred. Anyway, at the end the transmitting transmission controller
will be quarantined by the qua routine, the non-transmission controller of the transmitting
node will become the new transmission controller, the qua routine will instruct a retrans-
mission through the new transmission controller, and maxInconsists (unnecessary)
retransmissions will occur. (Covered by test 13, Table 9.2.)

9.1.6. Stuck-at-dominant downlink

We now turn our focus to the stuck-at-dominant tests. As opposed to stuck-at-recessive faults,
a long (more than 5 bits) series of stuck-at-dominant bits will always cause a CAN controller
to detect an error. Thus, for permanent stuck-at-dominant faults we do not distinguish when
the fault starts, but only where the fault was injected and whether the node was receiving or
transmitting. For the case where the fault-injection point is a downlink, we have the following
scenarios:

(l) If the permanent stuck-at-dominant fault was injected into the downlink of the transmis-
sion controller of a receiving node, the consequences are the following. First, the faulty
stuck-at-dominant downlink will cause the transmission controller with the faulty down-
link to detect errors, to which it responds by transmitting error flags. These error flags
globalize the local stuck-at-dominant fault, preventing the further communication between

118

9.1. Fault tolerance tests

Table 9.3.: Stuck-at dominant downlink-fault-injection tests

Node Injection point When Observed consequences and fault-tolerance actions

14 Receiver tx ctrl downlink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl
is quarantined; non-tx ctrl becomes new tx ctrl; receptions
continue at new tx ctrl

15 Receiver non-tx ctrl downlink arbitrary temporarily global error; hub isolates non-tx ctrl uplink;
non-tx ctrl is quarantined; receptions continue at tx ctrl

16 Blinker tx ctrl downlink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl
is quarantined; non-tx ctrl becomes new tx ctrl; if a frame
was pending in old tx ctrl, qua routine instructs its
transmission through the new tx ctrl; maxInconsists
retransmissions through new tx ctrl

17 Blinker non-tx ctrl downlink arbitrary temporarily global error; hub isolates non-tx ctrl uplink;
non-tx ctrl is quarantined; transmissions continue at tx
ctrl; maxInconsists retransmissions through tx ctrl

any controllers until the corresponding hub isolates the uplink of the transmission con-
troller with the faulty downlink. Once isolated, the other controllers can communicate
again; whereas the transmission controller with the faulty downlink continues to detect er-
rors. At some point the transmission controller reaches the error warning limit and the qua
routine is invoked on the corresponding node. The qua routine then deactivates the trans-
mission controller and it assigns the transmission controller role to the other controller,
which becomes the new transmission controller. (Covered by test 14, Table 9.3.)

(m) If the permanent stuck-at-dominant fault was injected into a receiving node’s non-
transmission controller downlink, the consequences are basically the same as for scenario
(l). The differences are that the consequences apply to the non-transmission controller in-
stead of the transmission controller, and that there is no reassignment of the transmission
controller role from one controller to the other. (Covered by test 15, Table 9.3.)

(n) If the permanent stuck-at-dominant fault was injected into a transmitting node’s transmis-
sion controller downlink, the consequences are basically the same as for scenario (g). The
difference is that in scenario (g) the transmission controller detects bit errors when it tries
to transmit its error flag; whereas in this scenario it does not detect errors during the trans-
mission of its error flag, but instead never detects an error delimiter. (Covered by test 16,
Table 9.3.)

(o) If the permanent stuck-at-dominant fault was injected into a transmitting node’s non-
transmission controller downlink, the consequences are basically the same as for sce-
nario (f). Moreover, similar to the difference between scenario (n) and scenario (g),
the difference between this scenario and scenario (f) is that in this scenario the non-
transmission controller never detects an error-delimiter instead of detecting bit errors.
(Covered by test 17, Table 9.3.)

119

Chapter 9. Testing the driver on the hardware prototype

9.1.7. Stuck-at-dominant uplink

For the case where the fault-injection point of the stuck-at-dominant is an uplink, we have the
following scenarios:

(p) If the permanent stuck-at-dominant fault was injected into a receiving node’s uplink, the
consequences are the following. First, the dominant bits of the stuck-at-dominant will
be received through the downlinks of all controllers, of all nodes, because of the single
broadcast domain provided by the hubs. As a consequence, all controllers will respond by
transmitting error flags until the faulty uplink is isolated by the corresponding hub. Note
that the threshold of the hubs to isolate a port is lower than the error warning limit; thus, the
faulty uplink is isolated before any of the controllers reaches the error warning limit. Once
isolated, all controllers resume communication. The one with the faulty uplink will also
communicate as long as it does not try to transmit a frame. This is so because the faulty
uplink does not impede it from receiving frames and no bit error is detected during the
ACK slot because it receives the ACKs sent by other controllers (remember that because
we only consider single faults there will always be another controller transmitting ACKs).
(Covered by tests 18 and 19, Table 9.4.)

(q) If the permanent stuck-at-dominant was injected into the uplink of the transmission con-
troller of a transmitting node, the following occurs. As in the previous case, the dominant
bits of the stuck-at-dominant will be received through the downlinks of all controllers, of
all nodes, and, as a consequence, all controllers transmit error flags until the faulty uplink
is isolated. Once isolated, the other controllers resume communication; whereas the one
with the faulty uplink continues to detect errors because it tries to transmit frames through
the isolated uplink. At some point it reaches the error warning limit, which invokes the
qua routine. The qua routine then quarantines the controller, assigns the transmission
controller role to the non-transmission controller, instructs the transmission of any pend-
ing frame through the new transmission controller, and maxInconsists (unnecessary)
retransmissions occur. (Covered by test 20, Table 9.4.)

(r) If the permanent stuck-at-dominant was injected into the uplink of the non-transmission
controller of a transmitting node, the consequences are basically the same as for sce-
nario (p). Note that this means that, once the faulty uplink is isolated, the transmission
controller of the transmitting node can continue to transmit frames. Also note that no re-
transmissions are instructed because the non-transmission controller continues to receive
the frames transmitted by the transmission controller (assuming that some other controller
is transmitting ACKs). (Covered by test 21, Table 9.4.)

9.1.8. Tests that inject controller crashes

We have carried out a series of tests to check whether the driver correctly handles the crash of a
controller. As described in Section 9.1.1, the crash of a controller was injected through the man-
ual push of a button on the dsPICDEM board. We tested the handling of controller crashes by the

120

9.2. Performance tests

Table 9.4.: Stuck-at-dominant uplink-fault-injection tests

Node Injection point When Observed consequences and fault-tolerance actions

18 Receiver tx ctrl uplink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl
is not quarantined (no bit error during ACK because tx ctrl
receives non-tx ctrl’s ACK); both controllers continue to
receive

19 Receiver non-tx ctrl uplink arbitrary temporarily global error; hub isolates non-tx ctrl uplink;
non-tx ctrl is not quarantined (no bit error during ACK
because non-tx ctrl receives tx ctrl’s ACK); both
controllers continue to receive

20 Blinker tx ctrl uplink arbitrary temporarily global error; hub isolates tx ctrl uplink; tx ctrl
is quarantined; non-tx ctrl becomes new tx ctrl; if a frame
was pending in old tx ctrl, qua routine instructs its
transmission through the new tx ctrl; maxInconsists
retransmissions through new tx ctrl

21 Blinker non-tx ctrl uplink arbitrary temporarily global error; hub isolates non-tx ctrl uplink;
non-tx ctrl is not quarantined (no bit error during ACK
because non-tx ctrl receives ACK from another node);
both controllers continue to receive; tx ctrl continues to
transmit

driver when the affected node was a receiving node and when it was a transmitting node. More-
over, we tested both the crash of a non-transmission controller and a transmission controller.
The timing of the simulated crashes was arbitrary: they occurred shortly after the corresponding
button on the dsPICDEM board was pressed. It may have been possible to precisely time the
crashes; however, this would have required changes in the source code which could impact the
behavior of the driver. For instance, the routine that compels the controller to act as if it had
crashed would have had to have a higher priority than the driver’s routines in order to inject the
controller crash while the driver was executing; this would have affected the performance of the
driver, which is crucial for its correct functioning as described in the next section.

In all controller-crash tests we verified, through the assertions in the driver’s source code and
by inspecting the oscilloscope (which probed the up- and downlinks of the affected node), that
the crash was handled correctly.

9.2. Performance tests

The performance of the driver is important for its correct functioning since the driver must
handle each delivery event and reset the respective tracking variables before a new delivery
event occurs. If the performance is not good enough, any of the routines that must handle a
given delivery event may not have finished before the next delivery event takes place. This could
lead to a situation in which a media management routine corresponding to a new delivery event
incorrectly cooperates with a media management routine corresponding to a previous one.

In all our fault tolerance tests (see Section 9.1) we maximized the channel utilization at
921.25 Kbps by having two transmitters: 3BitCounter and Blinker. In this way, whenever one of

121

Chapter 9. Testing the driver on the hardware prototype

the two just transmitted a frame, the other was already ready to transmit its own frame. Thus, the
delay between successive frames was always the minimum. During these tests we checked, by
means of the corresponding assertions in the code, that all delivery events were timely managed.

In addition to the fault tolerance tests, we also simultaneously ran the three test programs—
3BitCounter, Blinker, and Receiver—during sessions of more than 8 hours in which no faults
were injected. As in the fault tolerance tests, in these additional tests the channel utilization was
also maximized at 921.25 Kbps. Moreover, as before, we checked that all delivery events where
timely managed using the corresponding assertions in the code.

Although promising, this in no way proves that the driver will in all instances timely manage
all delivery events. To confidently claim that the performance of the driver is good enough,
we need to carry out a timing analysis of the driver’s routines, that is, we need to establish an
upper bound for the worst-case execution time (WCET) and check that this upper bound does
not exceed the minimum available time to manage a delivery event.

In this section we briefly introduce the two basic methods that can be used to establish the
WCET: static methods and measurement-based methods. Then we describe why we chose a
measurement-based method and how we performed the measurement of the execution time of
our driver. Afterwards we describe the scenario that we estimated to be the worst-case in terms
of performance. Finally, we conclude this section by estimating the execution time of this worst-
case scenario.

9.2.1. Methods to establish the worst-case execution time (WCET)

Establishing the WCET for a program is not trivial. For the most general case it is even impossi-
ble, that is, there is no general algorithm to establish the WCET of an arbitrary program because
it would allow one to solve the halting problem, which is known to be undecidable. In other
words, if the WCET analysis algorithm gave you an infinite amount of time as the WCET for a
given program, you would know that the program does not halt, thereby giving you a solution
to the halting problem, which is impossible. Nevertheless, for a subcategory of programs it is
possible to calculate or, at the least, estimate the WCET. Specifically, the WCET can be estab-
lished for programs that are known to halt because, for instance, they do not use any recursion
and have explicit bounds for all loop counts [Wilhelm et al., 2008].

The execution time of a program depends on the input data or its environment. If we knew
the input data or the conditions of the environment in which the program takes the longest time
to execute, it would in principle be trivial to obtain the WCET: simply execute the program with
that input or under the worst-case conditions and measure the execution time. Unfortunately,
often the worst-case input and the worst-case conditions are not known and are not easy or even
impossible to determine. Therefore, usually a timing analysis is done to obtain a value for the
WCET [Wilhelm et al., 2008].

Timing analysis can be classified into two different types of methods: static methods and
measurement-based methods. Static methods “do not rely on executing code on real hardware
or on a simulator”, but analyze the code of a program: they determine the possible control
flow paths and, by using a model of the hardware architecture, derive upper bounds for the
execution times of the different control flow paths. Measurement-based methods, on the other
hand, execute the program or parts of it on the hardware or a simulator and obtain an estimate

122

9.2. Performance tests

for the WCET of the program from the measured execution times [Wilhelm et al., 2008].
Static methods have the advantage that they produce bounds instead of only estimates for the

execution times. However, for the results to be precise, they need a detailed model of the hard-
ware architecture on which the program is going to be executed—which is not that easy to obtain
as modern processors contain caches, pipelines, branch prediction, and so forth. Measurement-
based methods, in contrast, have the advantage that their results are more exact because they do
not abstract the hardware architecture. However, they have the problem that it is generally not
easy to know whether the longest observed execution time actually corresponds to the WCET.
To be sure that the longest observed execution time does correspond to the WCET, we would
have to measure all possible execution paths and each one of these paths would have to be mea-
sured under the worst-case conditions (with the caches set up so that they produce the maximum
cache-miss penalties, with an execution history that disturbs the most the processor’s pipeline,
and so forth) [Wilhelm et al., 2008].

9.2.2. Performance measurement rationale

We have opted to use a measurement-based timing analysis approach instead of a static method.
The three main reasons that led us to choose this option are the following:

• We did not have any tools available to support the static analysis of our code. This means
that we would have had to build our own tools or that the analysis would have had to be
done manually. Building our own tools would have been a whole project of its own. Doing
the analysis manually, on the other hand, is tedious and error-prone; moreover, whenever
we changed the source code or a compiler option, we would have had to redo this tedious
and error-prone task. In contrast, a measurement-based approach is much quicker, less
tedious, and the measurements can be somewhat automated.

• Although the CPU of the dsPIC30F6014A microcontroller is fairly simple (most instruc-
tions are single cycle and there are no caches, no out-of-order execution, and no branch
prediction), the CPU does use pipelining. This means that data dependencies between
instructions must be taken into account, which may lead to instruction stalls and makes
the static analysis more complicated.

• We believe to have found the worst-case scenario in terms of performance—although
we can obviously not be sure unless we rigorously explore the state space of all possible
executions. So, to get the execution time for what we believe to be the worst-case scenario,
we only need to set up that scenario and measure it in a test. We further explain this in the
next subsection.

There are several ways to measure the execution time of a program. The ones we considered
for the driver are the following:

Use an I/O pin of the microcontroller. The idea would be to set an otherwise unused pin of the
microcontroller to a high value at the beginning of a given code section and to set it to a
low value at the end of that code section. By connecting the probe of an oscilloscope to

123

Chapter 9. Testing the driver on the hardware prototype

that pin we can then measure the time to execute that code section. More specifically, the
oscilloscope will display a pulse that starts when the pin is set high and that ends when the
pin is set low; the width of that pulse can then be measured in time units with the oscillo-
scope, giving the execution time of the code section. We considered this option to be too
inconvenient: it requires manually connecting the probes to the pins, inspecting visually
the oscilloscopes display, and adjusting manually the oscilloscopes knobs to measure the
pulse width—none of which can be automated. Also, the number of code sections that can
be measured in one step, that is, without having to re-execute an experiment, is limited by
the number of oscilloscopes we have.

Use the MPLAB SIM simulator to measure execution time. The MPLAB SIM simulator displays
the total number of instruction cycles simulated for the program it has loaded. Moreover,
it has a stopwatch that increases with each simulated instruction cycle and that can be reset
to zero at any given instant. The stopwatch is intended to be used to measure the execution
time between two points in the code, which is precisely what we need. Nevertheless, we
did not use it to evaluate the performance of our driver’s code because we found it to be
too limited: the stopwatch is only available in the simulator and not when the driver is ex-
ecuted on the physical nodes; there is only a single stopwatch, but we wanted to measure
in one step the execution time of the different sections of a trace; and the stopwatch is not
programmable, but it has to be reset manually (that is, by clicking with the mouse on the
appropriate button of the simulator’s graphical user interface) before each measurement.

Use a code profiler. A code profiler is a software tool used to analyze the performance of a
program. They typically collect data of a running program such as how many times each
function is called and what percentage of the total execution time is spent in each function.
There are various different types of profilers depending on how they collect the data.
There are for instance statistical profilers, which probe the program counter of the running
program at regular intervals; instrumenting profilers, which add additional instructions
to the program that is to be measured; and simulator-based profilers, which execute the
unmodified program under an instruction set simulator [Wikipedia, 2010b]. For programs
running on desktop computers we can usually choose among many code profilers (some
popular ones are for instance gprof [Fenlason and Stallman] and Valgrind [Seward et al.]).
Unfortunately, for embedded systems it can be harder to find a code profiler. In our case
we were not able to find a code profiler which we could use for the driver. Nevertheless,
we had the option to implement a simple one ourselves, which is what we finally did.

We first experimented with compiler assisted instrumentation, that is, instrumentation where
the compiler adds at the beginning and end of each and every function a call to a measurement
function we define. However, at the end we implemented a simple instrumenting profiler with
manual instrumentation, that is, an instrumenting profiler that required us to manually add to
the functions that we wanted to measure calls to the profiler’s measurement functions. We
opted for manual instrumentation because it gave us better control and less of a performance hit.
Consider that we only needed to measure certain functions—we were for instance not interested
in the performance of the functions of the user application, but only in the performance of the
driver functions. Thus, to us the advantage of manual instrumentation over compiler assisted

124

9.2. Performance tests

instrumentation was that in the first we could restrict the measurement overhead to only those
functions whose execution time interests us; whereas in compiler assisted instrumentation an
overhead is added to each and every function.

Appendix I lists the contents of the two files we used to implement the profiler: profiler.c and
profiler.h. These files simply provide functions to start and stop the remaining four timers of the
dsPIC30F6014A microcontroller (the fifth timer was already used as the driver’s transmission
timer). Thus, to measure a given section of code, we simply had to choose one of the four
timers, start the timer at the beginning of the section of code by calling the appropriate profiler
function, stop the timer at the end of the section of code by calling another profiler function, and
then (using the ICD2 in-circuit debugger) inspect the contents of the timer registers to view the
number of instruction cycles that have been measured. With this profiler we were able to measure
four sections of code simultaneously, one with each timer, while the driver was executing on the
physical hardware. Moreover, the timers are started and stopped by software and not through
manual intervention, which made taking the measurements less tedious. Note, however, that the
profiler introduces a small overhead.

9.2.3. Estimated worst-case scenario in terms of performance

The worst-case scenario in terms of performance occurs when the most work needs to be done
and the least amount of time is available for that work. We believe that this occurs in the scenario
whose chronogram is shown in Figure 9.3. In this scenario the node needs to execute an 8-byte-
data transmission request, the CAN1 event tracker twice, the CAN2 event tracker, the CAN1 rx
routine for the reception of an 8-byte-data frame, and the CAN2 rx routine; and all of this needs
to be done before the shortest CAN frame—starting just after the minimum, 3-bit, intermission
period—is broadcast.

deadline

Tx request

CAN1 Tracker

CAN2 Tracker

CAN1 Rx

CAN2 Rx
CAN1 Qua

CAN1 downlink 8 B frame
CAN1 uplink Isolated by Hub

CAN2 downlink 8 B frameInterm. 0 B frame or remote frame Interm.
CAN2 uplink Recessive bits

Disable
interrupts

Enable interrupts

Error warning reached

Figure 9.3.: Estimated worst-case scenario in terms of performance. The execution traces high-
lighted in gray must finish before the next delivery event, that is, before the shown deadline.

Let us discuss the chronogram in a little more detail. The chronogram begins with the recep-

125

Chapter 9. Testing the driver on the hardware prototype

tion of an 8-byte-data frame through the downlinks of the two controllers of the node. When
the last EOF bit of that 8-byte-data frame is received, both controllers notify that reception by
generating an interrupt (shown as upward arrows). This invokes the two CAN event tracker
ISRs, one for each controller. However, the invocation is delayed because the reception of the
frame coincided with a call to the tx request routine by the user application in such a way that
the interrupts are disabled just when the frame is received. Moreover, the delay is the maximum
possible because the transmission request was for the longest possible frame length, that is, 8
bytes—this means that the maximum amount of data has to be transferred to the transmission
buffer of the transmission controller. After the delay, when the tx request routine enables the
interrupts again, the pending CAN event tracker ISRs can start to execute. In the chronogram
the first to execute is the one for the CAN1 controller. It determines that the cause for its invo-
cation was a reception and, thus, generates a software interrupt (shown as a downward arrow)
to invoke the ISR for the CAN1 rx routine. Next, the CAN2 event tracker ISR executes, which
has a higher priority than the now also pending CAN1 rx routine ISR. It also determines that
the cause for its invocation was a reception and, thus, generates a software interrupt to invoke
the ISR for the CAN2 rx routine. After the CAN2 tracker ISR finishes, one of the pending rx
routine ISRs executes. In the chronogram the one to execute first is the ISR for the CAN1 rx
routine. It begins the management of the received frame, but, before it finishes, it is preempted
by another invocation of the CAN1 tracker ISR. This second invocation occurs because of an er-
ror that only the CAN1 controller detects in its downlink and which made the REC of the CAN1
controller cross the error warning threshold. Note that the error is not globalized because the
uplink of the CAN1 controller has been isolated due to prior errors (these are not shown in the
chronogram). The second invocation of the CAN1 tracker ISR determines that it was invoked
because the error warning limit was reached. It therefore generates a software interrupt to invoke
the qua routine for the CAN1 controller. After it finishes, the previously interrupted CAN1 rx
routine ISR resumes its execution. It concludes the management of the 8-byte-data frame and
finishes. Afterwards, the CAN2 rx routine ISR executes—the also pending qua routine cannot
execute yet because the implementation ensures that a qua routine is always executed after an
also pending rx routine. The CAN2 rx routine ISR sees that the received frame has already been
managed and simply finishes (see the flowchart of the rx routine, Figure 6.2, page 64). Finally,
the qua routine starts to execute. In the scenario the CAN1 controller is the transmission con-
troller. This means that the qua routine must not only deactivate the CAN1 controller, but also
assign the transmission controller role to the CAN2 controller and, moreover, copy the frame
whose transmission was requested at the beginning of the chronogram to the transmission buffer
of the new transmission controller.

The execution traces that must finish before the next delivery event are highlighted in gray
in the chronogram. The deadline, that is, the instant at which the next delivery event occurs, is
shown as a dashed vertical line. This deadline is the strictest possible because it occurs after the
shortest possible frame is exchanged following the minimum intermission. The qua routine is
not highlighted: there is no need for it to finish before the next delivery event. That is so because
the qua routine does not cooperate with any other media management routine but handles the
deactivation of a controller on its own. In contrast, the other media management routines must
finish timely because they could otherwise cooperate incorrectly with the media management
routines of the next delivery event.

126

9.2. Performance tests

9.2.4. Performance measurement of the estimated worst-case scenario

We have measured the execution times of the traces of the primitives and ISRs involved in the
worst-case scenario described above. Note, however, that the measurements were not taken by
setting up a test that produces the worst-case scenario since our testing infrastructure was too
limited to produce that scenario. Instead, we set up several tests (using the test programs from
Appendix H) to produce parts of the worst-case scenario and we measured these parts. After-
wards, we combined these measurements to get the execution time of the worst-case scenario.

We measured the execution time of the driver for two different versions of the driver ex-
ecutable: one compiled with assertions and the other compiled without assertions. Apart
from that, there was no difference between the two executables. For both executables the
compiler used was the MPLAB C30 compiler, version 3.23, which is based on the GCC
compiler, version 4.0.3. Both were compiled with the maximum optimization level (com-
piler option -O3), with function inlining enabled (-finline), and with the inline limit
set to a sufficiently high value so that all code is inlined where ever possible (--param
max-inline-insns-single=900). Note that this last compiler option increases the size
of the executable.

Table 9.5 summarizes our measurements for the executable that includes assertions, and Fig-
ure 9.4 shows the chronogram of the worst-case scenario with these measurements plugged in.
Note that in Figure 9.4, the execution traces are drawn to scale with respect to the bit time (32
instruction cycles correspond to each bit time). With assertions enabled the qua routine is de-
layed enough to interfere with the next delivery event. This is shown in the chronogram and is
the reason why the table includes measurements for the second delivery event.

Specifically, what occurs when the qua routine interferes with the next delivery event is the
following. When the last bit of the 0-byte-data frame or remote frame is received through the
CAN2 downlink, the CAN2 controller notifies the reception—the CAN1 controller, on the other
hand, does not notify the reception as it detected an error that prevented it from correctly re-
ceiving the frame. The notification from the CAN2 controller triggers the CAN2 tracker, which
preempts the executing qua routine as the CAN2 tracker has a higher priority. The CAN2 tracker
detects that it was invoked because of a notification by the CAN2 controller and, thus, gener-
ates a software interrupt to invoke the CAN2 rx routine. After the CAN2 tracker finishes, the
qua routine resumes its execution, thereby delaying the start of the pending CAN2 rx routine1.
Luckily, the amount of the delay is only 79 instruction cycles, which is a little more than 2 bit
times. This is not enough to delay the rx routine so much that it will not have finished before the
next, the third, delivery event (which is not shown in the chronogram) occurs.

1We said that when both a qua routine and an rx routine are pending, the qua routine must execute after the rx
routine. In this case, however, the qua routine is not pending anymore but has already started its execution.
Therefore, when the qua routine resumes its execution, it does not wait for the rx routine to finish first.

127

Chapter 9. Testing the driver on the hardware prototype

Table 9.5.: Measured execution time (in instruction cycles) for the media management routines
(compiled with assertions) involved in the estimated WCET scenario.

CAN1 Tracker CAN2 Tracker CAN1 Tracker CAN1 Rx CAN2 Rx CAN1 Qua
(1st call) (2nd call)

Delivery event 1:
Interrupt latency 4 4 4 4 4 4
Save context 9 9 9 11 11 9
Start profiler 4 4 4 4 4 4
body + stop pro-
filer

169 188 141 265 103 361

Restore context 9 9 9 12 12 9
Return 2 2 2 2 2 2

Total 197 216 169 298 136 389

Delivery event 2:
Interrupt latency — 4 — — 4 —
Save context — 9 — — 11 —
Start profiler — 4 — — 4 —
body + stop pro-
filer

— 188 — — 205 —

Restore context — 9 — — 12 —
Return — 2 — — 2 —

Total — 216 — — 238 —

128

9.2. Performance tests

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

T
x

re
qu

es
t

C
A

N
1

Tr
ac

ke
r

C
A

N
2

Tr
ac

ke
r

C
A

N
1

R
x

C
A

N
2

R
x

C
A

N
1

Q
ua

C
A

N
bi

tt
im

in
g

C
A

N
1

do
w

nl
in

k
8

B
fr

am
e

C
A

N
1

up
lin

k
Is

ol
at

ed
by

H
ub

C
A

N
2

do
w

nl
in

k
8

B
fr

am
eI

nt
er

m
.

0
B

fr
am

e
or

re
m

ot
e

fr
am

e
In

te
rm

.
0

B
fr

am
e

or
re

m
ot

e
fr

am
e

C
A

N
2

up
lin

k
R

ec
es

si
ve

bi
ts

SO
F

+
id

17
8

cy
cl

es
D

is
ab

le
in

te
rr

up
ts

E
na

bl
e

in
te

rr
up

ts

19
7

cy
cl

es
21

6
cy

cl
es

76
cy

cl
es

E
rr

or
w

ar
ni

ng
re

ac
he

d

16
9

cy
cl

es
22

2
cy

cl
es

13
6

cy
cl

es
31

0
cy

cl
es

21
6

cy
cl

es
79

cy
cl

es
23

8
cy

cl
es

Fi
gu

re
9.

4.
:E

st
im

at
ed

w
or

st
-c

as
e

sc
en

ar
io

in
te

rm
s

of
pe

rf
or

m
an

ce
(w

ith
pr

ofi
le

ro
ve

rh
ea

d)
co

m
-

pi
le

d
w

ith
as

se
rt

io
ns

.

129

Chapter 9. Testing the driver on the hardware prototype

Table 9.6.: Measured execution time (in instruction cycles) for the media management routines
(compiled without assertions) involved in the estimated WCET scenario.

CAN1 Tracker CAN2 Tracker CAN1 Tracker CAN1 Rx CAN2 Rx CAN1 Qua
(1st call) (2nd call)

Interrupt latency 4 4 4 4 4 4
Save context 9 9 9 11 11 9
Start profiler 4 4 4 4 4 4
body + stop pro-
filer

129 139 113 206 61 299

Restore context 9 9 9 12 12 9
Return 2 2 2 2 2 2

Total 157 167 141 239 94 327

Table 9.6 summarizes our measurements for the executable that has been compiled without
assertions and Figure 9.5 shows the corresponding chronogram for the worst-case scenario. As
can be seen in the chronogram, the performance improvement achieved by disabling the asser-
tions is significant and the qua routine no longer interferes with the next delivery event.

The measurements that we have taken show that the driver performs timely in the scenario that
we have estimated to be the worst-case. We want to make clear, however, that we have not found
an upper bound for the worst-case execution time, but only an estimate for it. Nevertheless,
we are very confident that the performance of the driver is not a problem. The reason for our
confidence is that, even if it turns out that there is still a scenario that is even worse than our
estimated worst-case scenario, we still have the possibility to improve the performance of the
driver through code optimizations—remember that during the development of the driver we
have always opted for readability, ease of maintenance, and modularity over performance (see
Chapter 8). This means that there is still a fair amount of room for performance improvements
on the source code level. Moreover, we also have the option to use a faster microcontroller.

130

9.2. Performance tests

-3
-2

-1
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47

T
x

re
qu

es
t

C
A

N
1

Tr
ac

ke
r

C
A

N
2

Tr
ac

ke
r

C
A

N
1

R
x

C
A

N
2

R
x

C
A

N
1

Q
ua

C
A

N
bi

tt
im

in
g

C
A

N
1

do
w

nl
in

k
8

B
fr

am
e

C
A

N
1

up
lin

k
Is

ol
at

ed
by

H
ub

C
A

N
2

do
w

nl
in

k
8

B
fr

am
eI

nt
er

m
.

0
B

fr
am

e
or

re
m

ot
e

fr
am

e
C

A
N

2
up

lin
k

R
ec

es
si

ve
bi

ts

16
0

cy
cl

es
D

is
ab

le
in

te
rr

up
ts

E
na

bl
e

in
te

rr
up

ts

15
7

cy
cl

es
16

7
cy

cl
es

76
cy

cl
es

E
rr

or
w

ar
ni

ng
re

ac
he

d

14
1

cy
cl

es
16

3
cy

cl
es

94
cy

cl
es

32
7

cy
cl

es

Fi
gu

re
9.

5.
:E

st
im

at
ed

w
or

st
-c

as
e

sc
en

ar
io

in
te

rm
s

of
pe

rf
or

m
an

ce
(w

ith
pr

ofi
le

ro
ve

rh
ea

d)
co

m
-

pi
le

d
w

ith
ou

ta
ss

er
tio

ns
.

131

10. Conclusions

10.1. Summary

In this report we have presented the construction of a new hardware prototype of ReCANcen-
trate, which is based on a previous one that used simplified nodes, that is, nodes that do not
implement all of the fault-tolerance mechanisms that have been designed for ReCANcentrate.
In contrast to the nodes in the previous prototype, the nodes of the new one do implement
all of these fault-tolerance mechanisms. Specifically, these mechanisms are implemented as a
software driver for the nodes that allows applications running on these nodes to communicate
through the ReCANcentrate star infrastructure. We have presented the design, implementation,
and a first experimental validation of this software driver. We explained in detail the driver’s
media management routines and how they interact to handle receptions and transmissions both
in the absence and in the presence of faults. We demonstrated that it is feasible to implement a
ReCANcentrate network where the nodes implement all of the fault-tolerance mechanisms de-
signed for them and that this can be done with commercial off-the-shelf (COTS) components.
Moreover, we described the tests we executed in order to validate the fault-tolerance capabilities
of the nodes and we explained why we had to compromise and did not exhaustively test all of
the possible fault scenarios. We also carried out a measurement-based analysis of the worst-case
execution time (WCET) of the driver. As with all measurement-based timing analysis methods,
this did not give us an upper bound for the WCET, but it did give us an estimate for it. With this
estimate we have demonstrated to some extent that the driver is always able to perform timely.

The project is a further contribution to the goal of demonstrating that the reliability of CAN
networks can be improved while maintaining the key advantages of the CAN protocol: low cost,
good real-time performance, and robustness to electromagnetically harsh environments.

10.2. Future work

Although some may have the opinion that a project to earn a degree as an Ingeniero en In-
formática should not leave work for the future, this project made it clear that there is future
work to be done in order to convincingly show that ReCANcentrate tolerates all the faults of its
fault model. It turned out that to exhaustively test our prototype is much more laborious than we
initially anticipated. For this reason we plan to build a more sophisticated testing infrastructure
and to use model checking techniques to formally verify the fault tolerance capabilities of the
ReCANcentrate nodes.

The future testing infrastructure will hopefully allow us to show experimentally that the driver
can not only deal with single stuck-at faults but also with bit-flipping faults, CAN inconsistency
scenarios, and certain constellations of multiple faults. Moreover, we hope to collect in these

133

Chapter 10. Conclusions

future tests enough experimental data for the tests to have a statistical significance.
Regarding our plans to use model checking, we should perhaps first briefly explain what

model checking is. Model checking is a technique to formally verify a system. It consists
in building a model of a system, typically as a set of automata, and then to formalize, using
expressions in a specific logic, a set of properties that the model should hold. The model and the
properties are then used as an input to a tool called a model checker. Based on the model, the
tool then generates all the possible states the model can be in and verifies for each of these states
that all the defined properties hold.

Manuel Barranco has already built a model of the ReCANcentrate media management driver,
using the UPPAAL model checker [Behrmann, David, and Larsen, 2004], and verified that it
holds the fault-tolerance properties that he formalized. This model, however, needs to be fur-
ther refined as it does not take into account a few subtle things that we discovered during our
experimental tests. This is actually one of the important lessons that we learned in this project:
to demonstrate that a system satisfies certain requirements it is best to use both model checking
and experimental tests. Model checking allows one to exhaustively test all the possible scenar-
ios, but it depends on having a model that correctly reflects the real system; on the other hand,
by executing experimental tests on the real system it is much harder to test all the possible sce-
narios, but it is very useful to detect subtleties that one may not have considered when initially
modeling the system for model checking.

It has also remained pending to find a guaranteed upper bound for the WCET of the media
management routines, which we need in order to demonstrate that the media management rou-
tines will timely manage a delivery event in all the scenarios in which the node should be able
to communicate. For this we plan to explore all possible execution scenarios and assign an exe-
cution cost to each of them. We may do this using a hybrid timing analysis that combines static
analysis with measurement-based analysis. More specifically, we may use a model checker to
obtain the possible execution scenarios and afterwards we may use the measurements to assign
a cost to these execution scenarios.

Apart from the tasks that still need to be carried out to convincingly demonstrate that ReCAN-
centrate tolerates all the faults of its fault model, there are other things related to this project that
we still want to do, but that were not set out as goals for this project. For instance, the current
design of the media management routines of the driver does not allow the reintegration of a
CAN controller that has been quarantined if after some time the faults in the medium disappear.
Currently, once a CAN controller has been quarantined, the driver does not use it again even if it
turned out that the fault was not really permanent but just temporary. So, a further improvement
to the driver may be to detect when a fault is no longer present and in that case rehabilitate the
quarantined controller. Note that for this improvement we must carefully consider whether the
once quarantined controller can be trusted again or whether it just appears to be no longer faulty.

Another improvement that is worth studying is the ability of a node to continue to commu-
nicate as long as one of its uplinks and one of its downlinks is correct, independently of which
link they belong to—in the current implementation a link can only be used for communication if
both the uplink and the downlink of that link are functioning correctly, that is, it is not possible
for a controller to transmit through the uplink of one link and receive through the downlink of
the other link. This improvement, however, cannot be implemented by solely modifying the
driver, but would require additional hardware. It would therefore have to be studied if the ad-

134

10.3. Personal opinion

ditional hardware would improve or reduce the reliability of the nodes because more hardware
also means more possible components that could fail.

Moreover, a different approach worth studying is one where, instead of having a dedicated
transmission controller, the driver alternates through which controller to transmit as long as both
controllers and their links are correct. The advantage of this is that using each time a different
controller to transmit allows the driver to better check the state of the redundancy and prevents
an unnoticed redundancy attrition. In other words, the driver will detect sooner when a given
controller is no longer able to transmit frames—although it may still be able to receive frames.

Finally, we propose a further improvement to the tx routine with the goal to avoid the unneces-
sary retransmissions that occur when a controller is quarantined (see sections 9.1.4, 9.1.5, 9.1.6,
and 9.1.7). Although these retransmissions are not erroneous, they are unnecessary. We think
that they can be avoided by simply checking whether the other controller is active before diag-
nosing a given delivery event as an inconsistent message omission. This would be achieved by
adding to the tx routine’s flowchart (see Figure 6.1, page 62) a new decision block, labeled K, as
shown in Figure 10.1. Note that with this change the driver would have to be formally verified
again and that the driver would have to be retested to ensure that the change does not produce
unintended consequences.

10.3. Personal opinion

So far I have referred to myself in the first-person plural—the academic “we”—instead of in the
first-person singular, because many readers consider the first-person singular to be very inap-
propriate for academic writing; here, however, I give my personal opinion and the first-person
singular pronoun seems more appropriate.

I honestly enjoyed doing this project. I found it especially interesting as it involved work on
many different levels: implementing electronic circuits and building the physical hardware using
wirewrapping; studying, designing, and implementing digital logic circuits (in VHDL); gaining
knowledge of a communication protocol (CAN) on its lowest levels; introducing myself into
the field of fault tolerance, learning the design decisions (and trade-offs) involved in building a
fault-tolerant system and how such a system can actually be implemented; helping to design the
driver that I ultimately implemented for the ReCANcentrate nodes (during which I learned a few
things about formal verification by means of model checking); doing a fair amount of embedded
systems programming; testing on electronic circuit, logic circuit, and software level; learning
about different timing analysis techniques and applying a particular one; getting introduced on
how research is done; sharpening my English writing skills and my technical and academic
writing skills (I chose English as it is the language in which research is communicated); and
probably a few other things I have now forgotten.

Something that I personally find very noteworthy is that this project made it possible for me to
get hired by the UIB as a technician and to assist in the further research of new ways to improve
the reliability of CAN-based networks. This also means that the future work that is still to be
done and which I described in the previous section will not be abandoned, but be part of my job
duties.

135

Chapter 10. Conclusions

idle
TxEvent [ctrl] =
false; disable Tx

timer

FrameManaged
= false

FrameManaged
== true?

Wait K units of
time

Signal tx to user
app; TxPending

= false

FrameManaged
= true;

MsgTxOmi = 0

RxEvent
[otherCtrl]
== true?

active
[otherCtrl]?

MsgTxOmi
== maxIn-
consists?

MsgTxOmi++;
ctrlPend-

ingTx[txctrl] =
true; enable Tx

timer

CAN transmission interrupt occured

yes

no

yes

no

yes

yes

no

no

A B

C D

E

F G H

I

J

K

Figure 10.1.: Proposed improvement for the tx routine.

136

10.4. Publications

10.4. Publications

Finally, I want to conclude this report by highlighting three publications that I co-authored with
Manuel Barranco, Julián Proenza, and Luı́s Almeida. All three publications are based on work
carried out in this project. These publications are the following:

• Manuel Barranco, David Gessner, Julián Proenza, and Luı́s Almeida. Demonstrating the
feasibility of media management in ReCANcentrate. In 14th IEEE international con-
ference on Emerging Technologies and Factory Automation (ETFA), Mallorca, Spain,
September 2009.

• David Geßner, Manuel Barranco, Julián Proenza, and Luı́s Almeida. Evaluation of dif-
ferent approaches for the media management in ReCANcentrate nodes. Technical report
A-01-2010, Universitat de les Illes Balears, July 2010.

• Manuel Barranco, David Geßner, Julián Proenza, and Luı́s Almeida. First prototype and
experimental assessment of media management in ReCANcentrate. In 15th IEEE inter-
national conference on Emerging Technologies and Factory Automation (ETFA), Bilbao,
Spain, September 2010.

The first publication is a work-in-progress paper that presents the, back then, ongoing imple-
mentation of the media management driver. The second publication is a technical report that
compares different approaches for the media management of ReCANcentrate nodes—among
them the approach that we used in our prototype and the approach based on simplified nodes
that was used in the prototype that was the precursor to the one we implemented for this project.
The third publication is a full research paper that we presented in September 2010 at the ETFA
conference. It describes the main features of the media management routines, of the driver
implementation, and of the experimental stuck-at tests that we carried out.

137

Appendices

A. Initial design of the media
management driver for ReCANcentrate

idle RxEvent [ctrl] =
false

FrameManaged =
false

FrameManaged
== true?

MsgTxSucc = true;
TxPending = false

FrameManaged =
true; MsgTxOmi =

0
read RxBuffer[ctrl]

INT quaRou-
tine(otherCtrl)

TxEvent
[otherCtrl] ==

true?

active
[otherCtrl] ==

true?
MsgTxOmi = 0 TxPending ==

true?

MsgTxOmi++
MsgTxOmi ==

maxIncon-
sists?

RxMsg[ctrl]
== MsgTx?

RxEvent
[otherCtrl] ==

true?

MsgRx =
RxMsg[ctrl];

release
RxBuffer[ctrl]

FrameManaged =
true

CAN receive interrupt occured

yes

no

yes

no

yes

no

no

yes

yes

yes

no

no

yes

no

Figure A.1.: Initial design of the rx routine.

141

Appendix A. Initial design of the media management driver for ReCANcentrate

idle TxEvent [ctrl] =
false

FrameManaged =
false

FrameManaged
== true?

wait K units of time

MsgTxSucc = true;
TxPending = false

FrameManaged =
true; MsgTxOmi =

0

RxEvent
[otherCtrl] ==

true?

INT quaRou-
tine(otherCtrl)

active
[otherCtrl] ==

true?
MsgTxOmi = 0

MsgTxOmi ==
maxIncon-

sists?

MsgTxOmi++;
ctrlPend-

ingTx[txctrl] =
true

CAN transmission interrupt occured

yes

no

yes

no

yes

no

yes

no

Figure A.2.: Initial design of the tx routine.

142

idle

TxPending?

write libTxBuffer

enable inetrrupts disable inetrrupts

write
TxBuffer[txctrl]

reset timer
ctrlPendingTx
[txctrl] = true;

TxPending = true

transmission requested by user

yes

no

Figure A.3.: Initial design of the tx request routine.

idle

active[ctrl]?

pendingTx [txctrl]
= true

call quaRoutine

transmission timed out

yes

no

Figure A.4.: Initial design of the tx timeout routine.

143

Appendix A. Initial design of the media management driver for ReCANcentrate

idle

active [ctrl]? active[ctrl] = false;
reset ctrl

write
TxBuffer[txctrl];

ctrlPendingTx
[txctrl] = true

txctrl = otherctrl
active

[otherctrl]? txctrl == ctrl?

noCtrlAval = true
active

[otherctrl]

CAN error-warning interrupt occured

no

yes

yes

no

yes

no

no

yes

Figure A.5.: Initial design of the qua routine.

144

B. Source code for the preliminary tests

B.1. Header files used by the preliminary tests

B.1.1. can aux.h

i f n d e f CAN AUX H
d e f i n e CAN AUX H

/∗ CAN Module O p e r a t i o n Modes ∗ /
d e f i n e CAN NORMAL MODE 0
d e f i n e CAN DISABLE MODE 1
d e f i n e CAN LOOPBACK MODE 2
d e f i n e CAN LISTEN ONLY MODE 3
d e f i n e CAN CONFIG MODE 4
d e f i n e CAN LISTEN ALL MSGS MODE 7

/∗ CAN r e c e i v e b u f f e r s .
∗ The CAN module has two v i s i b l e r e c e i v e b u f f e r s (t h e t h i r d b u f f e r i s
∗ t h e message a s s e m b l y b u f f e r (MAB) and i s n o t d i r e c t l y a c c e s s i b l e) ∗ /

d e f i n e CAN RXB0 0
d e f i n e CAN RXB1 1

/∗ CAN t r a n s m i t b u f f e r s ∗ /
d e f i n e CAN TXB0 0
d e f i n e CAN TXB1 1
d e f i n e CAN TXB2 2

/∗
∗ CAN Baud Rate P r e s c a l e r .
∗
∗ BRP PLUS1 i s t h e d e s i r e d BRP v a l u e i n c r e m e n t e d by 1 .
∗
∗ Time quantum :
∗
∗ 2 (BRP + 1) 2 (BRP PLUS1)
∗ TQ = −−−−−−−−−−−−− = −−−−−−−−−−−−−
∗ FCAN FCAN
∗ /

d e f i n e BRP PLUS1 2 /∗ V a l i d v a l u e s are 1 , 2 , . . . 64 ∗ /

/∗
∗ Leng th i n t i m e quan ta f o r each CAN b i t t i m e segment
∗ (t h e SYNC segment i s a lways 1 TQ)

145

Appendix B. Source code for the preliminary tests

∗ /
d e f i n e CAN SEG1 TQ 5 /∗ V a l i d v a l u e s are 1 , 2 , . . . 8 ∗ /
d e f i n e CAN SEG2 TQ 2 /∗ V a l i d v a l u e s are 1 , 2 , . . . 8 ∗ /
d e f i n e CAN PROP TQ 8 /∗ V a l i d v a l u e s are 1 , 2 , . . . 8 ∗ /

/∗ R e s t r i c t i o n s on t h e CAN b i t t i m e s e g m e n t s (s e e t h e dsPIC30F Fami ly R e f e r e n c e
∗ Manual f o r d e t a i l s) :
∗
∗ CAN PROP TQ + CAN SEG1 TQ >= CAN SEG2 TQ
∗ CAN SEG2 TQ > Synchronous Jump Width
∗
∗ The v a l u e s f o r t h e Nominal B i t Time (NBT) must be be tween 8 ∗ TQ and 25 ∗ TQ .
∗
∗ NBT = (1 + CAN SEG1 TQ + CAN SEG2 TQ + CAN PROP TQ) ∗ TQ
∗
∗ T h e r e f o r e :
∗ 8 <= (1 + CAN SEG1 TQ + CAN SEG2 TQ + CAN PROP TQ) <= 25
∗ /

e n d i f /∗ CAN AUX H ∗ /

B.1.2. device config.h

i f n d e f DEVICE CONFIG H
d e f i n e DEVICE CONFIG H

i n c l u d e <p30F6014A . h>

/∗ ∗∗∗∗∗∗∗ DEVICE CONFIGURATION ∗∗∗∗∗∗∗ ∗ /

/ / O s c i l l a t o r c o n f i g u r a t i o n
FOSC (CSW FSCM OFF & /∗ Clock s w i t c h i n g and f a i l s a f e c l o c k m o n i t o r o f f , i . e .

do n o t d e t e c t c l o c k f a i l u r e s and do n o t s w i t c h over
t o i n t e r n a l FRC o s c i l l a t o r . ∗ /

XT PLL8) ; /∗ Use c r y s t a l l o s c i l l a t o r m u l t i p l y i n g t h e c l o c k speed
by 8 w i t h a Phase Locked−Loop . ∗ /

/ / Watchdog t i m e r c o n f i g u r a t i o n
FWDT(WDT OFF) ; / / Watchdog t i m e r o f f .

/ / R e s e t c o n f i g u r a t i o n
FBORPOR(PBOR ON & BORV 20 & /∗ Enable brown o u t a t 20 v o l t s . ∗ /

PWRT 64 & /∗ Power up t i m e r = 64ms , g i v e s t h e o s c i l l a t o r t i m e t o
s t a r t and s t a b i l i z e . ∗ /

MCLR EN) ; /∗ Master c l e a r r e s e t enab led , i . e . use t h e MCLR p i n
as a r e s e t s i g n a l i n s t e a d o f u s i n g i t as an IO p i n .
P u l l i n g t h e MCLR p i n low w i l l r e s e t t h e dsPIC and
s t a r t e x e c u t i o n from 0 x000 . ∗ /

/ / Genera l Code Segment c o n f i g u r a t i o n
FGS (CODE PROT OFF) ; / / D i s a b l e Code P r o t e c t i o n

e n d i f /∗ DEVICE CONFIG H ∗ /

146

B.2. Loopback test

B.1.3. dspicdem.h

i f n d e f DSPICDEM H
d e f i n e DSPICDEM H

/∗
∗ dsPICDEM S t a r t e r Demo Board V2
∗ /

d e f i n e LED1 PORTDbits . RD4 / / LED c o n n e c t e d t o RD4
d e f i n e LED2 PORTDbits . RD5 / / LED c o n n e c t e d t o RD5
d e f i n e LED3 PORTDbits . RD6 / / LED c o n n e c t e d t o RD6
d e f i n e LED4 PORTDbits . RD7 / / LED c o n n e c t e d t o RD7

d e f i n e LED ON 1
d e f i n e LED OFF 0

e n d i f /∗ DSPICDEM H ∗ /

B.1.4. portd.h

i f n d e f PORTD H
d e f i n e PORTD H

void i n i t p o r t d (void) ;

e n d i f /∗ PORTD H ∗ /

B.2. Loopback test

B.2.1. canh loopback.c

/∗
∗ CAN l o o p b a c k demo f o r a dsPIC30F6014A on a dsPICDEM 80−Pin S t a r t e r
∗ Development Board .
∗
∗ T h i s program s e n d s a CAN frame i n l o o p b a c k mode . I t u s e s p o l l i n g t o
∗ d e t e r m i n e i f t h e f rame was s e n t / r e c e i v e d .
∗ /

i n c l u d e <p30F6014A . h>
i n c l u d e <can . h>
/∗ R e q u i r e d f o r can . h ∗ /
d e f i n e dsPIC30F6014A

i n c l u d e ” . . / . . / dspicdem . h ”
i n c l u d e ” . . / . . / c a n a u x . h ”
i n c l u d e ” . . / . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / . . / p o r t d . h ”

147

Appendix B. Source code for the preliminary tests

/∗ I n i t i a l i z e CAN1 module ∗ /
void in i t CAN1 (void)
{

i n t i ;

CAN1SetOperationMode (
/∗ S top CAN module when d e v i c e e n t e r s i d l e mode . ∗ /
CAN IDLE STOP &
/∗ FCAN c l o c k i s FCY ∗ /
CAN MASTERCLOCK 1 &
/∗ S e t c o n f i g u r a t i o n mode ∗ /
CAN REQ OPERMODE CONFIG &
/∗ Don ’ t g e n e r a t e a c a p t u r e s i g n a l ∗ /
CAN CAPTURE DIS

) ;

/∗ Wait u n t i l t h e CAN module has e n t e r e d t h e c o n f i g u r a t i o n mode . ∗ /
whi le (C1CTRLbits .OPMODE != CAN CONFIG MODE) ;

C A N 1 I n i t i a l i z e (
/∗ S y n c h r o n i z e d jump w i d t h i s 1 x TQ ∗ /
CAN SYNC JUMP WIDTH1 &
/∗ BRP : TQ = 2 x (BRP PLUS1) / FCAN ∗ /
CAN BAUD PRE SCALE(BRP PLUS1) ,
/∗ CAN bus l i n e f i l t e r i s n o t used f o r wake−up ∗ /
CAN WAKEUP BY FILTER DIS &
/∗ Phase Segment 2 l e n g t h i s 3 x Tq ∗ /
CAN PHASE SEG2 TQ (CAN SEG2 TQ) &
/∗ Phase Segment 1 l e n g t h i s 6 x Tq ∗ /
CAN PHASE SEG1 TQ (CAN SEG1 TQ) &
/∗ P r o p a g a t i o n Time Segment l e n g t h i s 5 x Tq ∗ /
CAN PROPAGATIONTIME SEG TQ(CAN PROP TQ) &
/∗ The l e n g t h o f Phase Segment 2 i s F r e e l y programmable ∗ /
CAN SEG2 FREE PROG &
/∗ Bus l i n e i s sampled once a t t h e sample p o i n t ∗ /
CAN SAMPLE1TIME

) ;

/∗ C o n f i g u r e r e c e i v e b u f f e r s ∗ /
f o r (i = CAN RXB0 ; i <= CAN RXB1 ; i ++) {

CAN1SetRXMode (i ,
/∗ Clear t h e r e c e i v e f u l l s t a t u s r e g i s t e r t o i n d i c a t e
∗ t h a t t h e r e c e i v e r e g i s t e r i s empty and a b l e t o
∗ a c c e p t a new message ∗ /

CAN RXFUL CLEAR &
/∗ Double b u f f e r d i s a b l e d , i . e . i f r e c e i v e b u f f e r 0 i s
∗ f u l l don ’ t o v e r f l o w t o r e c e i v e b u f f e r 1 ∗ /

CAN BUF0 DBLBUFFER DIS
) ;

}

148

B.2. Loopback test

/∗ C o n f i g u r e t r a n s m i t b u f f e r s ∗ /
f o r (i = CAN TXB0 ; i <= CAN TXB2 ; i ++) {

CAN1SetTXMode (i ,
/∗ C l e a r s t h e t r a n s m i t r e q u e s t b i t , TXREQ . We don ’ t
∗ want t o send a message y e t ∗ /

CAN TX STOP REQ &
/∗ A s s i g n t h e same t r a n s m i t p r i o r i t y t o a l l t h r e e
∗ b u f f e r s ∗ /

CAN TX PRIORITY HIGH
) ;

}

/∗ S e t u p message a c c e p t a n c e f i l t e r s and masks .
∗
∗ The message a c c e p t a n c e f i l t e r s and masks d e t e r m i n e i f a message i n
∗ t h e message a s s e m b l y b u f f e r (MAB) s h o u l d be l oa ded i n t o one o f t h e
∗ r e c e i v e b u f f e r s . The f i l t e r s and masks are a p p l i e d t o t h e message
∗ i d e n t i f i e r . The mask d e t e r m i n e s which b i t s o f t h e i d e n t i f i e r s h o u l d
∗ be examined and t h e f i l t e r s c o n t a i n v a l u e s t o which t h o s e b i t s are
∗ compared . The b i t s from t h e i d e n t i f i e r t h a t are masked , i . e . t h e
∗ c o r r e s p o n d i n g mask b i t i s zero , w i l l a lways be a c c e p t e d by t h e
∗ f i l t e r s . The b i t s t h a t are n o t masked , i . e . t h e c o r r e s p o n d i n g mask
∗ b i t i s one , w i l l be a c c e p t e d i f t h e r e i s a match w i t h t h e
∗ c o r r e s p o n d i n g f i l t e r b i t . I f a l l t h e b i t s are a c c e p t e d t h e n t h e
∗ message i s a c c e p t e d and lo ad ed i n t o one o f t h e r e c e i v e b u f f e r s .
∗
∗ Messages whose i d e n t i f i e r match f i l t e r s RXF0 or RXF1 are l oa de d i n t o
∗ r e c e i v e b u f f e r 0 (RXB0) , messages whose i d e n t i f i e r match any o f t h e
∗ f i l t e r s RXF2 t h r o u g h RXF5 are l oa de d i n t o r e c e i v e b u f f e r 1 (RXB1) .
∗ The mask RXM0 i s used w i t h f i l t e r s RXF0 and RXF1 and t h e mask RXM1
∗ i s used w i t h f i l t e r s RXF2−RXF5 .
∗ /

d e f i n e MSG SID 0x0AA8

/∗ Make a f i l t e r t h a t o n l y matches an a l l z e r o s SID and EID ∗ /
CAN1Se tF i l t e r (

/∗ The f i l t e r t o c o n f i g u r e ∗ /
0 ,
/∗ The SID t o match ∗ /
CAN FILTER SID (MSG SID) &
/∗ D i s a b l e EID f i l t e r i n g (c l e a r s EXIDE b i t) . The f i l t e r w i l l
∗ a c c e p t s t a n d a r d i d e n t i f i e r s (u n l e s s MIDE i s c l e a r e d) ∗ /

CAN RX EID DIS ,
/∗ The EID t o match , v a l u e doesn ’ t m a t t e r as EID f i l t e r i n g i s
∗ d i s a b l e d ∗ /

0
) ;

/∗ Load mask f i l t e r r e g i s t e r ∗ /
CAN1SetMask (

/∗ The mask t o c o n f i g u r e ∗ /

149

Appendix B. Source code for the preliminary tests

0 ,
/∗ Do n o t mask any SID b i t s ∗ /
CAN MASK SID(0 xFFFF) &
/∗ S e t MIDE b i t . The EXIDE b i t i n f i l t e r s RXF0 and RXF1 w i l l
∗ s e l e c t be tween s t a n d a r d and e x t e n d e d i d e n t i f i e r s ∗ /

CAN MATCH FILTER TYPE ,
/∗ Mask a l l EID b i t s ∗ /
CAN MASK EID (0)

) ;

/∗ TODO: Shou ld I i n i t i a l i z e masks and f i l t e r s I don ’ t use ???? ∗ /
}

i n t main (void)
{

unsigned char d a t a [1] = { 0xA } ;
i n t d a t a l e n = 1 ;
unsigned char d a t a r e c e i v e d [1] ;

i n i t p o r t d () ;

in i t CAN1 () ;

/∗ S e t r e q u e s t f o r l o o p b a c k mode ∗ /
CAN1SetOperationMode (CAN IDLE STOP &

CAN MASTERCLOCK 1 &
CAN REQ OPERMODE LOOPBK &
CAN CAPTURE DIS) ;

/∗ Load message ID and da ta i n t o t r a n s m i t b u f f e r and s e t t r a n s m i t
∗ r e q u e s t b i t ∗ /

CAN1SendMessage (CAN TX SID (MSG SID) &
CAN TX EID DIS &
/∗ Send a normal (da ta) f rame and n o t a remote
∗ t r a n s m i s s i o n r e q u e s t ∗ /

CAN SUB NOR TX REQ ,
/∗ EID ∗ /
0 ,
da t a , d a t a l e n ,
/∗ Send w i t h t r a n s m i t b u f f e r 0 ∗ /
CAN TXB0

) ;

/∗ Wait u n t i l t h e CAN module has e n t e r e d t h e l o o p b a c k mode ∗ /
whi le (C1CTRLbits .OPMODE != CAN LOOPBACK MODE) ;

LED1 = LED ON ;

/∗ Wait u n t i l t r a n s m i t b u f f e r 0 has send t h e message ∗ /
whi le (! CAN1IsTXReady (CAN TXB0)) ;

LED2 = LED ON ;

150

B.2. Loopback test

/∗ Wait u n t i l r e c e i v e b u f f e r z e r o c o n t a i n s a v a l i d message ∗ /
whi le (! CAN1IsRXReady (CAN RXB0)) ;

LED3 = LED ON ;

/∗ Read r e c e i v e d da ta from r e c e i v e b u f f e r 0 and s t o r e i t i n t o u s e r
∗ d e f i n e d d a t a a r r a y ∗ /

CAN1ReceiveMessage (d a t a r e c e i v e d , d a t a l e n , CAN RXB0) ;

i f (d a t a r e c e i v e d [0] == d a t a [0]) {
LED4 = LED ON ;

}

whi le (1) ;

re turn 0 ;
}

B.2.2. canh loopbk int.c

/∗
∗ CAN l o o p b a c k demo f o r a dsPIC30F6014A on a dsPICDEM 80−Pin S t a r t e r
∗ Development Board .
∗
∗ T h i s program s e n d s a CAN frame i n l o o p b a c k mode . I t u s e s i n t e r r u p t s t o
∗ d e t e r m i n e i f t h e f rame was s e n t / r e c e i v e d .
∗ /

i n c l u d e <p30F6014A . h>
i n c l u d e <can . h>
d e f i n e dsPIC30F6014A /∗ R e q u i r e d f o r can . h ∗ /

i n c l u d e ” . . / . . / dspicdem . h ”
i n c l u d e ” . . / . . / c a n a u x . h ”
i n c l u d e ” . . / . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / . . / p o r t d . h ”

/∗ I n i t i a l i z e CAN1 module ∗ /
void in i t CAN1 (void)
{

i n t i ;

CAN1SetOperationMode (
/∗ S top CAN module when d e v i c e e n t e r s i d l e mode . ∗ /
CAN IDLE STOP &
/∗ FCAN c l o c k i s FCY ∗ /
CAN MASTERCLOCK 1 &
/∗ S e t c o n f i g u r a t i o n mode ∗ /
CAN REQ OPERMODE CONFIG &
/∗ Don ’ t g e n e r a t e a c a p t u r e s i g n a l ∗ /
CAN CAPTURE DIS

) ;

151

Appendix B. Source code for the preliminary tests

/∗ Wait u n t i l t h e CAN module has e n t e r e d t h e c o n f i g u r a t i o n mode . ∗ /
whi le (C1CTRLbits .OPMODE != CAN CONFIG MODE) ;

C A N 1 I n i t i a l i z e (
/∗ S y n c h r o n i z e d jump w i d t h i s 1 x TQ ∗ /
CAN SYNC JUMP WIDTH1 &
/∗ BRP : TQ = 2 x (BRP PLUS1) / FCAN ∗ /
CAN BAUD PRE SCALE(BRP PLUS1) ,
/∗ CAN bus l i n e f i l t e r i s n o t used f o r wake−up ∗ /
CAN WAKEUP BY FILTER DIS &
/∗ Phase Segment 2 l e n g t h i s 3 x Tq ∗ /
CAN PHASE SEG2 TQ (CAN SEG2 TQ) &
/∗ Phase Segment 1 l e n g t h i s 6 x Tq ∗ /
CAN PHASE SEG1 TQ (CAN SEG1 TQ) &
/∗ P r o p a g a t i o n Time Segment l e n g t h i s 5 x Tq ∗ /
CAN PROPAGATIONTIME SEG TQ(CAN PROP TQ) &
/∗ The l e n g t h o f Phase Segment 2 i s F r e e l y programmable ∗ /
CAN SEG2 FREE PROG &
/∗ Bus l i n e i s sampled once a t t h e sample p o i n t ∗ /
CAN SAMPLE1TIME

) ;

ConfigIntCAN1 (
/∗ A l l i n t e r r u p t s o u r c e s are e n a b l e d ∗ /
CAN INDI INVMESS EN &
CAN INDI WAK EN &
CAN INDI ERR EN &
CAN INDI TXB2 EN &
CAN INDI TXB1 EN &
CAN INDI TXB0 EN &
CAN INDI RXB1 EN &
CAN INDI RXB0 EN ,

CAN INT ENABLE &
/∗ I n t e r r u p t p r i o r i t y i s 1 . 1 i s t h e l o w e s t p r i o r i t y , 7 i s t h e
∗ h i g h e s t and 0 d i s a b l e s CAN as an i n t e r r u p t s o u r c e ∗ /

CAN INT PRI 1
) ;

/∗ Enable i n t e r r u p t s ∗ /
EnableIntCAN1 ;

/∗ C o n f i g u r e r e c e i v e b u f f e r s ∗ /
f o r (i = CAN RXB0 ; i <= CAN RXB1 ; i ++) {

CAN1SetRXMode (i ,
/∗ Clear t h e r e c e i v e f u l l s t a t u s r e g i s t e r t o i n d i c a t e
∗ t h a t t h e r e c e i v e r e g i s t e r i s empty and a b l e t o
∗ a c c e p t a new message ∗ /

CAN RXFUL CLEAR &
/∗ Double b u f f e r d i s a b l e d , i . e . i f r e c e i v e b u f f e r 0 i s
∗ f u l l don ’ t o v e r f l o w t o r e c e i v e b u f f e r 1 ∗ /

CAN BUF0 DBLBUFFER DIS

152

B.2. Loopback test

) ;
}

/∗ C o n f i g u r e t r a n s m i t b u f f e r s ∗ /
f o r (i = CAN TXB0 ; i <= CAN TXB2 ; i ++) {

CAN1SetTXMode (i ,
/∗ C l e a r s t h e t r a n s m i t r e q u e s t b i t , TXREQ . We don ’ t
∗ want t o send a message y e t ∗ /

CAN TX STOP REQ &
/∗ A s s i g n t h e same t r a n s m i t p r i o r i t y t o a l l t h r e e
∗ b u f f e r s ∗ /

CAN TX PRIORITY HIGH
) ;

}

/∗ S e t u p message a c c e p t a n c e f i l t e r s and masks .
∗
∗ The message a c c e p t a n c e f i l t e r s and masks d e t e r m i n e i f a message i n
∗ t h e message a s s e m b l y b u f f e r (MAB) s h o u l d be l oa ded i n t o one o f t h e
∗ r e c e i v e b u f f e r s . The f i l t e r s and masks are a p p l i e d t o t h e message
∗ i d e n t i f i e r . The mask d e t e r m i n e s which b i t s o f t h e i d e n t i f i e r s h o u l d
∗ be examined and t h e f i l t e r s c o n t a i n v a l u e s t o which t h o s e b i t s are
∗ compared . The b i t s from t h e i d e n t i f i e r t h a t are masked , i . e . t h e
∗ c o r r e s p o n d i n g mask b i t i s zero , w i l l a lways be a c c e p t e d by t h e
∗ f i l t e r s . The b i t s t h a t are n o t masked , i . e . t h e c o r r e s p o n d i n g mask
∗ b i t i s one , w i l l be a c c e p t e d i f t h e r e i s a match w i t h t h e
∗ c o r r e s p o n d i n g f i l t e r b i t . I f a l l t h e b i t s are a c c e p t e d t h e n t h e
∗ message i s a c c e p t e d and lo ad ed i n t o one o f t h e r e c e i v e b u f f e r s .
∗
∗ Messages whose i d e n t i f i e r match f i l t e r s RXF0 or RXF1 are l oa de d i n t o
∗ r e c e i v e b u f f e r 0 (RXB0) , messages whose i d e n t i f i e r match any o f t h e
∗ f i l t e r s RXF2 t h r o u g h RXF5 are l oa de d i n t o r e c e i v e b u f f e r 1 (RXB1) .
∗ The mask RXM0 i s used w i t h f i l t e r s RXF0 and RXF1 and t h e mask RXM1
∗ i s used w i t h f i l t e r s RXF2−RXF5 .
∗ /

d e f i n e MSG SID 0x0AA8

/∗ Make a f i l t e r t h a t o n l y matches an a l l z e r o s SID and EID ∗ /
CAN1Se tF i l t e r (

/∗ The f i l t e r t o c o n f i g u r e ∗ /
0 ,
/∗ The SID t o match ∗ /
CAN FILTER SID (MSG SID) &
/∗ D i s a b l e EID f i l t e r i n g (c l e a r s EXIDE b i t) . The f i l t e r w i l l
∗ a c c e p t s t a n d a r d i d e n t i f i e r s (u n l e s s MIDE i s c l e a r e d) ∗ /

CAN RX EID DIS ,
/∗ The EID t o match , v a l u e doesn ’ t m a t t e r as EID f i l t e r i n g i s
∗ d i s a b l e d ∗ /

0
) ;

153

Appendix B. Source code for the preliminary tests

/∗ Load mask f i l t e r r e g i s t e r ∗ /
CAN1SetMask (

/∗ The mask t o c o n f i g u r e ∗ /
0 ,
/∗ Do n o t mask any SID b i t s ∗ /
CAN MASK SID(0 xFFFF) &
/∗ S e t MIDE b i t . The EXIDE b i t i n f i l t e r s RXF0 and RXF1 w i l l
∗ s e l e c t be tween s t a n d a r d and e x t e n d e d i d e n t i f i e r s ∗ /

CAN MATCH FILTER TYPE ,
/∗ Mask a l l EID b i t s ∗ /
CAN MASK EID (0)

) ;

/∗ TODO: Shou ld I i n i t i a l i z e masks and f i l t e r s I don ’ t use ???? ∗ /
}

unsigned char d a t a [1] = { 0xA } ;
i n t d a t a l e n = 1 ;
unsigned char d a t a r e c e i v e d [1] ;

i n t main (void)
{

i n i t p o r t d () ;

in i t CAN1 () ;

/∗ S e t r e q u e s t f o r l o o p b a c k mode ∗ /
CAN1SetOperationMode (CAN IDLE STOP &

CAN MASTERCLOCK 1 &
CAN REQ OPERMODE LOOPBK &
CAN CAPTURE DIS) ;

/∗ Load message ID and da ta i n t o t r a n s m i t b u f f e r and s e t t r a n s m i t
∗ r e q u e s t b i t ∗ /

CAN1SendMessage (
CAN TX SID (MSG SID) &
CAN TX EID DIS &
/∗ Send a normal (da ta) f rame and n o t a remote t r a n s m i s s i o n
∗ r e q u e s t ∗ /

CAN SUB NOR TX REQ ,
/∗ EID ∗ /
0 ,
da t a , d a t a l e n ,
/∗ Send w i t h t r a n s m i t b u f f e r 0 ∗ /
CAN TXB0

) ;

/∗ Wait u n t i l t h e CAN module has e n t e r e d t h e l o o p b a c k mode ∗ /
whi le (C1CTRLbits .OPMODE != CAN LOOPBACK MODE) ;

LED1 = LED ON ;

154

B.2. Loopback test

/∗ Wait u n t i l t r a n s m i t b u f f e r 0 has send t h e message ∗ /
whi le (! CAN1IsTXReady (CAN TXB0)) ;

LED2 = LED ON ;

whi le (1) ;

re turn 0 ;

}

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) C 1 I n t e r r u p t (void)
{

/∗ TODO: Shou ld I c a l l Disab le In tCAN1 ? ∗ /

/∗ TODO: What abou t n e s t e d i n t e r r u p t s ? ∗ /

/∗ Clear t h e CAN1 combined i n t e r r u p t f l a g ∗ /
I F S 1 b i t s . C1IF = 0 ;

i f (C1INTFbi ts . TX0IF) {
/∗ The i n t e r r u p t was due t o a t r a n s m i s s i o n t h r o u g h TXB0 o f CAN1
∗ /

/∗ Clear t h e i n t e r r u p t ∗ /
C1INTFbi ts . TX0IF = 0 ;

} e l s e i f (C1INTFbi ts . TX1IF) {
/∗ The i n t e r r u p t was due t o a t r a n s m i s s i o n t h r o u g h TXB1 o f CAN1
∗ /

/∗ Clear t h e i n t e r r u p t ∗ /
C1INTFbi ts . TX1IF = 0 ;

}

i f (C1INTFbi ts . RX0IF) {
/∗ The i n t e r r u p t was due t o a r e c e p t i o n a t RXB0 o f CAN1 ∗ /

/∗ Clear t h e i n t e r r u p t ∗ /
C1INTFbi ts . RX0IF = 0 ;

CAN1ReceiveMessage (d a t a r e c e i v e d , d a t a l e n , CAN RXB0) ;

LED3 = LED ON ;

i f (d a t a r e c e i v e d [0] == d a t a [0]) {
LED4 = LED ON ;

}
} e l s e i f (C1INTFbi ts . RX1IF) {

/∗ The i n t e r r u p t was due t o a r e c e p t i o n a t RXB1 o f CAN1 ∗ /

/∗ Clear t h e i n t e r r u p t ∗ /
C1INTFbi ts . RX1IF = 0 ;

155

Appendix B. Source code for the preliminary tests

CAN1ReceiveMessage (d a t a r e c e i v e d , d a t a l e n , CAN RXB1) ;
}

}

B.3. Single node test

B.3.1. one node.c

/∗
∗ Sends a frame from CAN1 t o CAN2 . T h i s program has been t e s t e d w i t h one
∗ dsPICDEM board c o n n e c t e d t o i t ’ s hardware i n p u t / o u t p u t module . The hardware
∗ i n p u t / o u t p u t module must have t h e CANL /CANH o f t h e t r a n s m i t t r a n s c e i v e r o f
∗ CAN1 c o n n e c t e d t o t h e CANL /CANH o f t h e r e c e i v e t r a n s c e i v e r o f CAN2 . Also ,
∗ t h e CANL /CANH o f t h e t r a n s m i t r e c e i v e r o f CAN1 must be c o n n e c t e d t o t h e
∗ CANL /CANH o f t h e r e c e i v e t r a n s c e i v e r o f CAN1 .
∗ /

i n c l u d e <p30F6014A . h>
i n c l u d e <can . h>
/∗ R e q u i r e d f o r can . h ∗ /
d e f i n e dsPIC30F6014A

i n c l u d e ” . . / dspicdem . h ”
i n c l u d e ” . . / c a n a u x . h ”
i n c l u d e ” . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / p o r t d . h ”

/∗ I n i t i a l i z e CAN1 module ∗ /
void in i t CAN1 (void)
{

i n t i ;

CAN1SetOperationMode (
/∗ S top CAN module when d e v i c e e n t e r s i d l e mode . ∗ /
CAN IDLE STOP &
/∗ FCAN c l o c k i s FCY ∗ /
CAN MASTERCLOCK 1 &
/∗ S e t c o n f i g u r a t i o n mode ∗ /
CAN REQ OPERMODE CONFIG &
/∗ Don ’ t g e n e r a t e a c a p t u r e s i g n a l ∗ /
CAN CAPTURE DIS

) ;

/∗ Wait u n t i l t h e CAN module has e n t e r e d t h e c o n f i g u r a t i o n mode . ∗ /
whi le (C1CTRLbits .OPMODE != CAN CONFIG MODE) ;

C A N 1 I n i t i a l i z e (
/∗ S y n c h r o n i z e d jump w i d t h i s 1 x TQ ∗ /
CAN SYNC JUMP WIDTH1 &
/∗ BRP : TQ = 2 x (BRP PLUS1) / FCAN ∗ /
CAN BAUD PRE SCALE(BRP PLUS1) ,
/∗ CAN bus l i n e f i l t e r i s n o t used f o r wake−up ∗ /

156

B.3. Single node test

CAN WAKEUP BY FILTER DIS &
/∗ Phase Segment 2 l e n g t h i s 3 x Tq ∗ /
CAN PHASE SEG2 TQ (CAN SEG2 TQ) &
/∗ Phase Segment 1 l e n g t h i s 6 x Tq ∗ /
CAN PHASE SEG1 TQ (CAN SEG1 TQ) &
/∗ P r o p a g a t i o n Time Segment l e n g t h i s 5 x Tq ∗ /
CAN PROPAGATIONTIME SEG TQ(CAN PROP TQ) &
/∗ The l e n g t h o f Phase Segment 2 i s F r e e l y programmable ∗ /
CAN SEG2 FREE PROG &
/∗ Bus l i n e i s sampled once a t t h e sample p o i n t ∗ /
CAN SAMPLE1TIME

) ;

/∗ C o n f i g u r e t r a n s m i t b u f f e r s ∗ /
f o r (i = CAN TXB0 ; i <= CAN TXB2 ; i ++) {

CAN1SetTXMode (i ,
/∗ C l e a r s t h e t r a n s m i t r e q u e s t b i t , TXREQ . We don ’ t
∗ want t o send a message y e t ∗ /

CAN TX STOP REQ &
/∗ A s s i g n t h e same t r a n s m i t p r i o r i t y t o a l l t h r e e
∗ b u f f e r s ∗ /

CAN TX PRIORITY HIGH
) ;

}
}

/∗ I n i t i a l i z e CAN2 module , t h e r e c e i v i n g module ∗ /
void in i t CAN2 (void)
{

i n t i ;

CAN2SetOperationMode (
/∗ S top CAN module when d e v i c e e n t e r s i d l e mode . ∗ /
CAN IDLE STOP &
/∗ FCAN c l o c k i s FCY ∗ /
CAN MASTERCLOCK 1 &
/∗ S e t c o n f i g u r a t i o n mode ∗ /
CAN REQ OPERMODE CONFIG &
/∗ Don ’ t g e n e r a t e a c a p t u r e s i g n a l ∗ /
CAN CAPTURE DIS

) ;

/∗ Wait u n t i l t h e CAN module has e n t e r e d t h e c o n f i g u r a t i o n mode . ∗ /
whi le (C2CTRLbits .OPMODE != CAN CONFIG MODE) ;

C A N 2 I n i t i a l i z e (
/∗ S y n c h r o n i z e d jump w i d t h i s 1 x TQ ∗ /
CAN SYNC JUMP WIDTH1 &
/∗ BRP : TQ = 2 x (BRP PLUS1) / FCAN ∗ /
CAN BAUD PRE SCALE(BRP PLUS1) ,
/∗ CAN bus l i n e f i l t e r i s n o t used f o r wake−up ∗ /
CAN WAKEUP BY FILTER DIS &
/∗ Phase Segment 2 l e n g t h i s 3 x Tq ∗ /

157

Appendix B. Source code for the preliminary tests

CAN PHASE SEG2 TQ (CAN SEG2 TQ) &
/∗ Phase Segment 1 l e n g t h i s 6 x Tq ∗ /
CAN PHASE SEG1 TQ (CAN SEG1 TQ) &
/∗ P r o p a g a t i o n Time Segment l e n g t h i s 5 x Tq ∗ /
CAN PROPAGATIONTIME SEG TQ(CAN PROP TQ) &
/∗ The l e n g t h o f Phase Segment 2 i s F r e e l y programmable ∗ /
CAN SEG2 FREE PROG &
/∗ Bus l i n e i s sampled once a t t h e sample p o i n t ∗ /
CAN SAMPLE1TIME

) ;

/∗ The CAN module has two v i s i b l e r e c e i v e b u f f e r s (t h e t h i r d b u f f e r i s
∗ t h e message a s s e m b l y b u f f e r (MAB) and i s n o t d i r e c t l y a c c e s s i b l e) ∗ /

f o r (i = CAN RXB0 ; i <= CAN RXB1 ; i ++) {
/∗ C o n f i g u r e r e c e i v e b u f f e r i ∗ /
CAN2SetRXMode (i ,

/∗ Clear t h e r e c e i v e f u l l s t a t u s r e g i s t e r t o i n d i c a t e
∗ t h a t t h e r e c e i v e r e g i s t e r i s empty and a b l e t o
∗ a c c e p t a new message ∗ /

CAN RXFUL CLEAR &
/∗ Double b u f f e r d i s a b l e d , i . e . i f r e c e i v e b u f f e r 0 i s
∗ f u l l don ’ t o v e r f l o w t o r e c e i v e b u f f e r 1 ∗ /

CAN BUF0 DBLBUFFER DIS
) ;

}

/∗ S e t u p message a c c e p t a n c e f i l t e r s and masks .
∗
∗ The message a c c e p t a n c e f i l t e r s and masks d e t e r m i n e i f a message i n
∗ t h e message a s s e m b l y b u f f e r (MAB) s h o u l d be l oad ed i n t o one o f t h e
∗ r e c e i v e b u f f e r s . The f i l t e r s and masks are a p p l i e d t o t h e message
∗ i d e n t i f i e r . The mask d e t e r m i n e s which b i t s o f t h e i d e n t i f i e r s h o u l d
∗ be examined and t h e f i l t e r s c o n t a i n v a l u e s t o which t h o s e b i t s are
∗ compared . The b i t s from t h e i d e n t i f i e r t h a t are masked , i . e . t h e
∗ c o r r e s p o n d i n g mask b i t i s zero , w i l l a lways be a c c e p t e d by t h e
∗ f i l t e r s . The b i t s t h a t are n o t masked , i . e . t h e c o r r e s p o n d i n g mask
∗ b i t i s one , w i l l be a c c e p t e d i f t h e r e i s a match w i t h t h e
∗ c o r r e s p o n d i n g f i l t e r b i t . I f a l l t h e b i t s are a c c e p t e d t h e n t h e
∗ message i s a c c e p t e d and lo ad ed i n t o one o f t h e r e c e i v e b u f f e r s .
∗
∗ Messages whose i d e n t i f i e r match f i l t e r s RXF0 or RXF1 are l oa de d i n t o
∗ r e c e i v e b u f f e r 0 (RXB0) , messages whose i d e n t i f i e r match any o f t h e
∗ f i l t e r s RXF2 t h r o u g h RXF5 are l oa ded i n t o r e c e i v e b u f f e r 1 (RXB1) .
∗ The mask RXM0 i s used w i t h f i l t e r s RXF0 and RXF1 and t h e mask RXM1
∗ i s used w i t h f i l t e r s RXF2−RXF5 .
∗
∗ U n i n i t i a l i z e d f i l t e r s and masks c o n t a i n unknown v a l u e s .
∗ /

d e f i n e MSG SID 0x0AAF

158

B.3. Single node test

/∗ S e t u p bo th o f RXB0 ’ s f i l t e r s ∗ /
f o r (i = 0 ; i < 2 ; i ++) {

CAN2Se tF i l t e r (
/∗ The f i l t e r t o c o n f i g u r e ∗ /
i ,
/∗ The SID t o match ∗ /
CAN FILTER SID (MSG SID) &
/∗ D i s a b l e EID f i l t e r i n g (c l e a r s EXIDE b i t) . The f i l t e r
∗ w i l l a c c e p t s t a n d a r d i d e n t i f i e r s (u n l e s s MIDE i s
∗ c l e a r e d) ∗ /

CAN RX EID DIS ,
/∗ The EID t o match , v a l u e doesn ’ t m a t t e r as EID
∗ f i l t e r i n g i s d i s a b l e d ∗ /

0) ;
}

/∗ Load mask f i l t e r r e g i s t e r ∗ /
CAN2SetMask (

/∗ The mask t o c o n f i g u r e ∗ /
0 ,
/∗ Do n o t mask any SID b i t s ∗ /
CAN MASK SID(0 xFFFF) &
/∗ S e t MIDE b i t . The EXIDE b i t i n f i l t e r s RXF0 and RXF1 w i l l
∗ s e l e c t be tween s t a n d a r d and e x t e n d e d i d e n t i f i e r s ∗ /

CAN MATCH FILTER TYPE ,
/∗ Mask a l l EID b i t s ∗ /
CAN MASK EID (0)

) ;

/∗ We do n o t c o n f i g u r e masks and f i l t e r s o f RXB1 because we don ’ t use
∗ RXB1 ∗ /

}

i n t main (void)
{

unsigned char d a t a [1] = { 0x0A } ;
i n t d a t a l e n = 1 ;
unsigned char d a t a r e c e i v e d [1] ;

i n i t p o r t d () ;

in i t CAN1 () ;
in i t CAN2 () ;

/∗ S e t r e q u e s t f o r normal mode ∗ /
CAN1SetOperationMode (CAN IDLE STOP &

CAN MASTERCLOCK 1 &
CAN REQ OPERMODE NOR &
CAN CAPTURE DIS) ;

/∗ S e t r e q u e s t f o r normal mode ∗ /
CAN2SetOperationMode (CAN IDLE STOP &

159

Appendix B. Source code for the preliminary tests

CAN MASTERCLOCK 1 &
CAN REQ OPERMODE NOR &
CAN CAPTURE DIS) ;

whi le (C1CTRLbits .OPMODE != CAN NORMAL MODE) ;
whi le (C2CTRLbits .OPMODE != CAN NORMAL MODE) ;

LED1 = LED ON ;

/∗ Load message ID and da ta i n t o t r a n s m i t b u f f e r and s e t t r a n s m i t
∗ r e q u e s t b i t ∗ /

CAN1SendMessage (CAN TX SID (MSG SID) &
/∗ Send a normal (da ta) f rame and n o t a remote t r a n s m i s s i o n r e q u e s t ∗ /
CAN TX EID DIS &
CAN SUB NOR TX REQ ,
/∗ EID ∗ /
0 ,
da t a , d a t a l e n ,
/∗ Send w i t h t r a n s m i t b u f f e r 0 ∗ /
CAN TXB0

) ;

LED2 = LED ON ;

/∗ Wait u n t i l t r a n s m i t b u f f e r 0 has send t h e message ∗ /
whi le (! CAN1IsTXReady (CAN TXB0)) ;

LED3 = LED ON ;

/∗ Wait u n t i l r e c e i v e b u f f e r z e r o c o n t a i n s a v a l i d message ∗ /
whi le (! CAN2IsRXReady (CAN RXB0)) ;

/∗ Read r e c e i v e d da ta from r e c e i v e b u f f e r 0 and s t o r e i t i n t o u s e r
∗ d e f i n e d d a t a a r r a y ∗ /

CAN2ReceiveMessage (d a t a r e c e i v e d , d a t a l e n , CAN RXB0) ;

i f (d a t a r e c e i v e d [0] == d a t a [0]) {
LED4 = LED ON ;

}

whi le (1) ;

re turn 0 ;
}

B.4. Simple AND-coupling module test

B.4.1. couplerModule.vhd

l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 .ALL ;
use IEEE . STD LOGIC ARITH .ALL ;
use IEEE . STD LOGIC UNSIGNED .ALL ;

160

B.4. Simple AND-coupling module test

e n t i t y coup le rModu le i s
port
(

r x 0 : in s t d l o g i c ;
r x 1 : in s t d l o g i c ;
r x 2 : in s t d l o g i c ;
rehRx 0 : in s t d l o g i c ;
rehRx 1 : in s t d l o g i c ;

t x 0 : out s t d l o g i c ;
t x 1 : out s t d l o g i c ;
t x 2 : out s t d l o g i c ;
hubTx 0 : out s t d l o g i c ;
hubTx 1 : out s t d l o g i c

) ;
end coup le rModu le ;

a r c h i t e c t u r e B e h a v i o r a l of coup le rModu le i s

begin
t x 0 <= r x 0 and r x 1 and r x 2 and rehRx 0 and rehRx 1 ;
t x 1 <= r x 0 and r x 1 and r x 2 and rehRx 0 and rehRx 1 ;
t x 2 <= r x 0 and r x 1 and r x 2 and rehRx 0 and rehRx 1 ;
hubTx 0 <= r x 0 and r x 1 and r x 2 and rehRx 0 and rehRx 1 ;
hubTx 1 <= r x 0 and r x 1 and r x 2 and rehRx 0 and rehRx 1 ;

end B e h a v i o r a l ;

B.4.2. couplerModule.ucf

NET ” r x 0 ” LOC = ”H15” ;
NET ” r x 1 ” LOC = ”H14” ;
NET ” r x 2 ” LOC = ”G12” ;
NET ” rehRx 0 ” LOC = ”G16” ; # Bank 5
NET ” rehRx 1 ” LOC = ”H13” ;

NET ” t x 0 ” LOC = ”G15” ;
NET ” t x 1 ” LOC = ”G14” ;
NET ” t x 2 ” LOC = ” F14 ” ;
NET ” hubTx 0 ” LOC = ” F15 ” ;
NET ” hubTx 1 ” LOC = ”G13” ;

B.4.3. msg.h

/∗ D e f i n e s t h e c o n t e n t s o f t h e message t r a n s m i t t e d from t h e t r a n s m i t t i n g
∗ node t o t h e r e c e i v i n g node . ∗ /

i f n d e f MSG H
d e f i n e MSG H

d e f i n e MSG SID 0x0AAA / / 010 1010 1010

161

Appendix B. Source code for the preliminary tests

/∗ The DLC f i e l d o f a CAN frame r e s t r i c t s t h e v a l u e s t o 0 , 1 , . . . 8 ∗ /
d e f i n e NUM PAYLOAD BYTES 1

d e f i n e PAYLOAD BYTE 0x0A / / 0000 1010

e n d i f /∗ MSG H ∗ /

B.4.4. receiver.c

/∗
∗ R e c e i v i n g node . A c c e p t s one CAN frame t h r o u g h t h e CAN1 module .
∗ /

i n c l u d e <p30F6014A . h>
i n c l u d e <can . h>
d e f i n e dsPIC30F6014A /∗ R e q u i r e d f o r can . h ∗ /

i n c l u d e ” . . / . . / dspicdem . h ”
i n c l u d e ” . . / . . / c a n a u x . h ”
i n c l u d e ” . . / . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / . . / p o r t d . h ”

i n c l u d e ” . . / msg . h ”

void in i t CAN1 (void)
{

i n t i ;

CAN1SetOperationMode (CAN IDLE STOP & CAN MASTERCLOCK 1 &
CAN REQ OPERMODE CONFIG & CAN CAPTURE DIS) ;

whi le (C1CTRLbits .OPMODE != CAN CONFIG MODE) ;

C A N 1 I n i t i a l i z e (CAN SYNC JUMP WIDTH1 & CAN BAUD PRE SCALE(BRP PLUS1) ,
CAN WAKEUP BY FILTER DIS &
CAN PHASE SEG1 TQ (CAN SEG1 TQ) &
CAN PHASE SEG2 TQ (CAN SEG2 TQ) &
CAN PROPAGATIONTIME SEG TQ(CAN PROP TQ) &
CAN SEG2 FREE PROG & CAN SAMPLE1TIME) ;

f o r (i = CAN RXB0 ; i <= CAN RXB1 ; i ++) {
CAN1SetRXMode (i , CAN RXFUL CLEAR & CAN BUF0 DBLBUFFER DIS) ;

}

/∗ S e t u p bo th o f RXB0 ’ s f i l t e r s ∗ /
f o r (i = 0 ; i < 2 ; i ++) {

CAN1Se tF i l t e r (i , CAN FILTER SID (0) & CAN RX EID DIS , 0) ;
}

/∗ Mask a l l b i t s , i e any message i s a c c e p t e d ∗ /

162

B.4. Simple AND-coupling module test

CAN1SetMask (0 , CAN MASK SID (0) & CAN MATCH FILTER TYPE ,
CAN MASK EID (0)) ;

/∗ We do n o t c o n f i g u r e masks and f i l t e r s o f RXB1 because we don ’ t use
∗ RXB1 ∗ /

}

i n t main (void)
{

i n t i ;
unsigned char d a t a r e c e i v e d [NUM PAYLOAD BYTES] ;

i n i t p o r t d () ;
in i t CAN1 () ;

CAN1SetOperationMode (CAN IDLE STOP & CAN MASTERCLOCK 1 &
CAN REQ OPERMODE NOR & CAN CAPTURE DIS) ;

whi le (C1CTRLbits .OPMODE != CAN NORMAL MODE) ;

LED1 = LED ON ;

whi le (! CAN1IsRXReady (CAN RXB0)) ;

LED2 = LED ON ;

CAN1ReceiveMessage (d a t a r e c e i v e d , NUM PAYLOAD BYTES, CAN RXB0) ;

LED3 = LED ON ;

/∗ Dummy i n s t r u c t i o n , needed t o t u r n on LED4 . (For some r eas on i f I t r y
∗ t o t u r n on two LEDs , one i m m e d i a t e l y a f t e r t h e o t h e r , t h e n t h e f i r s t
∗ one doesn ’ t g e t t u r n e d on) ∗ /

i = 0 ;

LED4 = LED ON ;

f o r (i = 0 ; i < NUM PAYLOAD BYTES; i ++) {
i f (d a t a r e c e i v e d [i] != PAYLOAD BYTE) {

LED4 = LED OFF ;
}

}

whi le (1) ;

re turn 0 ;
}

B.4.5. transmitter.c

/∗
∗ T r a n s m i t t i n g node . Sends one CAN frame t h r o u g h t h e CAN1 module .
∗ /

163

Appendix B. Source code for the preliminary tests

i n c l u d e <p30F6014A . h>
i n c l u d e <can . h>
d e f i n e dsPIC30F6014A /∗ R e q u i r e d f o r can . h ∗ /

i n c l u d e ” . . / . . / dspicdem . h ”
i n c l u d e ” . . / . . / c a n a u x . h ”
i n c l u d e ” . . / . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / . . / p o r t d . h ”

i n c l u d e ” . . / msg . h ”

void in i t CAN1 (void)
{

i n t i ;

CAN1SetOperationMode (CAN IDLE STOP & CAN MASTERCLOCK 1 &
CAN REQ OPERMODE CONFIG & CAN CAPTURE DIS) ;

whi le (C1CTRLbits .OPMODE != CAN CONFIG MODE) ;

C A N 1 I n i t i a l i z e (CAN SYNC JUMP WIDTH1 & CAN BAUD PRE SCALE(BRP PLUS1) ,
CAN WAKEUP BY FILTER DIS &
CAN PHASE SEG1 TQ (CAN SEG1 TQ) &
CAN PHASE SEG2 TQ (CAN SEG2 TQ) &
CAN PROPAGATIONTIME SEG TQ(CAN PROP TQ) &
CAN SEG2 FREE PROG & CAN SAMPLE1TIME) ;

/∗ C o n f i g u r e t r a n s m i t b u f f e r s ∗ /
f o r (i = CAN TXB0 ; i <= CAN TXB2 ; i ++) {

CAN1SetTXMode (i , CAN TX STOP REQ & CAN TX PRIORITY HIGH) ;
}

}

i n t main (void)
{

i n t i ;
unsigned char d a t a [NUM PAYLOAD BYTES] ;

i n i t p o r t d () ;
in i t CAN1 () ;

CAN1SetOperationMode (CAN IDLE STOP & CAN MASTERCLOCK 1 &
CAN REQ OPERMODE NOR & CAN CAPTURE DIS) ;

whi le (C1CTRLbits .OPMODE != CAN NORMAL MODE) ;

LED1 = LED ON ;

f o r (i = 0 ; i < NUM PAYLOAD BYTES; i ++) {
d a t a [i] = PAYLOAD BYTE;

}

164

B.4. Simple AND-coupling module test

CAN1SendMessage (CAN TX SID (MSG SID) & CAN TX EID DIS &
CAN SUB NOR TX REQ , 0 , da t a , NUM PAYLOAD BYTES,
CAN TXB0) ;

LED2 = LED ON ;

/∗ Wait u n t i l t r a n s m i t b u f f e r 0 has send t h e message ∗ /
whi le (! CAN1IsTXReady (CAN TXB0)) ;

LED3 = LED ON ;

/∗ Dummy i n s t r u c t i o n , needed t o t u r n on LED4 . (For some r eas on i f I t r y
∗ t o t u r n on two LEDs , one i m m e d i a t e l y a f t e r t h e o t h e r , t h e n t h e f i r s t
∗ one doesn ’ t g e t t u r n e d on) ∗ /

i = 0 ;

LED4 = LED ON ;

whi le (1) ;

re turn 0 ;
}

165

C. Driver source code

C.1. assert.c

/∗
∗ a s s e r t . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” l e d . h ”
i n c l u d e <p30f6014A . h>
i n c l u d e ” i n t e r r u p t s . h ”

i f n d e f NDEBUG

d e f i n e END OF STRING 0
d e f i n e FILE NAME LENGTH MAX 100

char a s s e r t e d f i l e n a m e [FILE NAME LENGTH MAX + 1] = { END OF STRING } ;
i n t a s s e r t e d l i n e n u m b e r = 0 ;

s t a t i c vo id c o p y s t r i n g (
char ∗ sou rce ,
char ∗ d e s t i n a t i o n

)
{

i n t i = 0 ;

whi le (s o u r c e [i] != END OF STRING && i < FILE NAME LENGTH MAX) {
d e s t i n a t i o n [i] = s o u r c e [i] ;
i ++;

}
d e s t i n a t i o n [i] = END OF STRING ;

}

s t a t i c vo id w a i t (void)
{

i n t i , j ;

167

Appendix C. Driver source code

f o r (i = 0 ; i < 10000 ; i ++) {
f o r (j = 0 ; j < 100 ; j + +) ;

}
}

void a F a i l e d 2 (
char ∗ f i l e n a m e ,
i n t l i n e ,
char l e d v a l u e

)
{

/∗ D i s a b l e i n t e r r u p t s ∗ /
SET CPU IPL (INTERRUPT PRIORITY MAX) ;

/∗ Copy t h e f i l e name and l i n e number where t h e a s s e r t f a i l e d t o a
∗ f i x e d memory l o c a t i o n so t h a t t h e s e memory l o c a t i o n s can be l o o k e d
∗ up i n a debugger t o d e t e r m i n e where t h e a s s e r t f a i l e d . ∗ /

c o p y s t r i n g (f i l e n a m e , a s s e r t e d f i l e n a m e) ;
a s s e r t e d l i n e n u m b e r = l i n e ;
i n i t l e d s () ;
whi le (1) {

/∗ Flash LEDs t o show t h a t an a s s e r t f a i l e d ∗ /
l e d d i s p l a y (0 x0) ;
w a i t () ;
l e d d i s p l a y (l e d v a l u e) ;
w a i t () ;

}
}

void a F a i l e d (
char ∗ f i l e n a m e ,
i n t l i n e

)
{

a F a i l e d 2 (f i l e n a m e , l i n e , 0xFF) ;
}

e n d i f / / NDEBUG

C.2. assert.h

/∗
∗ a s s e r t . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

168

C.3. can controller.c

i f n d e f ASSERT H
d e f i n e ASSERT H

i f d e f NDEBUG

d e f i n e ASSERT(exp r) ((void) 0)

e l s e

void a F a i l e d (
char ∗ f i l e n a m e ,
i n t l i n e

) ;

d e f i n e ASSERT(exp r) i f (exp r) { /∗Do n o t h i n g ∗ / } e l s e \
a F a i l e d (F ILE , LINE)

void a F a i l e d 2 (
char ∗ f i l e n a m e ,
i n t l i n e ,
char l e d v a l u e

) ;

d e f i n e ASSERT2 (expr , l e d v a l u e) i f (exp r) { /∗Do n o t h i n g ∗ / } e l s e \
a F a i l e d 2 (F ILE , LINE , l e d v a l u e)

e n d i f /∗ NDEBUG ∗ /

e n d i f /∗ ASSERT H ∗ /

C.3. can controller.c

/∗
∗ c a n c o n t r o l l e r . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e <p30f6014A . h>
i n c l u d e ” c a n c o n t r o l l e r . h ”
i n c l u d e ”common . h ”
i n c l u d e ” a s s e r t . h ”
i n c l u d e ” c a n f r a m e . h ”

/∗
∗ C o n t r o l l e r 1 r e c e i v e b u f f e r i n i t i a l i z a t i o n
∗ /

s t a t i c s t r u c t r x b u f f e r s t r u c t c t r l 1 r x b u f f e r 0 = {

169

Appendix C. Driver source code

. d a t a = &C1RX0B1 ,

. S I D b i t s = &C1RX0SIDbits ,

. DLCbits = &C1RX0DLCbits ,

. t y p e = RX BUFFER0 ,

. CONbitsRX0 = &C1RX0CONbits ,

. CONbitsRX1 = NULL,

. MaskSIDbi t s = &C1RXM0SIDbits ,
} ;

s t a t i c s t r u c t r x b u f f e r s t r u c t c t r l 1 r x b u f f e r 1 = {
. d a t a = &C1RX1B1 ,
. S I D b i t s = &C1RX1SIDbits ,
. DLCbits = &C1RX1DLCbits ,
. t y p e = RX BUFFER1 ,
. CONbitsRX0 = NULL,
. CONbitsRX1 = &C1RX1CONbits ,
. MaskSIDbi t s = &C1RXM1SIDbits ,

} ;

/∗
∗ C o n t r o l l e r 1 t r a n s m i t b u f f e r i n i t i a l i z a t i o n
∗ /

s t a t i c s t r u c t t x b u f f e r s t r u c t c t r l 1 t x b u f f e r 0 = {
. d a t a = &C1TX0B1 ,
. S I D b i t s = &C1TX0SIDbits ,
. DLCbits = &C1TX0DLCbits ,
. CONbits = &C1TX0CONbits

} ;

s t r u c t t x b u f f e r s t r u c t c t r l 1 t x b u f f e r 1 = {
. d a t a = &C1TX1B1 ,
. S I D b i t s = &C1TX1SIDbits ,
. DLCbits = &C1TX1DLCbits ,
. CONbits = &C1TX1CONbits

} ;

s t a t i c s t r u c t t x b u f f e r s t r u c t c t r l 1 t x b u f f e r 2 = {
. d a t a = &C1TX2B1 ,
. S I D b i t s = &C1TX2SIDbits ,
. DLCbits = &C1TX2DLCbits ,
. CONbits = &C1TX2CONbits

} ;

/∗
∗ C o n t r o l l e r 1 i n i t i a l i z a t i o n
∗ /

s t r u c t c a n c o n t r o l l e r c t r l 1 = {
. n o t i f i e d r x = f a l s e ,
. n o t i f i e d t x = f a l s e ,
. i s a c t i v e = t r u e ,

170

C.3. can controller.c

. I N T F b i t s = &C1INTFbits ,

. CTRLbits = &C1CTRLbits ,

. CFG1bits = &C1CFG1bits ,

. CFG2bits = &C1CFG2bits ,

. INTEbi t s = &C1INTEbits ,

. r x b u f f e r [0] = &c t r l 1 r x b u f f e r 0 ,

. r x b u f f e r [1] = &c t r l 1 r x b u f f e r 1 ,

. F i l t e r S I D b i t s [0] = &C1RXF0SIDbits ,

. F i l t e r S I D b i t s [1] = &C1RXF1SIDbits ,

. F i l t e r S I D b i t s [2] = &C1RXF2SIDbits ,

. F i l t e r S I D b i t s [3] = &C1RXF3SIDbits ,

. F i l t e r S I D b i t s [4] = &C1RXF4SIDbits ,

. F i l t e r S I D b i t s [5] = &C1RXF5SIDbits ,

. t x b u f f e r [0] = &c t r l 1 t x b u f f e r 0 ,

. t x b u f f e r [1] = &c t r l 1 t x b u f f e r 1 ,

. t x b u f f e r [2] = &c t r l 1 t x b u f f e r 2 ,

. r x b u f f e r l o a d e d = NULL,
} ;

/∗
∗ C o n t r o l l e r 2 r e c e i v e b u f f e r i n i t i a l i z a t i o n
∗ /

s t a t i c s t r u c t r x b u f f e r s t r u c t c t r l 2 r x b u f f e r 0 = {
. d a t a = &C2RX0B1 ,
. S I D b i t s = &C2RX0SIDbits ,
. DLCbits = &C2RX0DLCbits ,
. t y p e = RX BUFFER0 ,
. CONbitsRX0 = &C2RX0CONbits ,
. CONbitsRX1 = NULL,
. MaskSIDbi t s = &C2RXM0SIDbits ,

} ;

s t a t i c s t r u c t r x b u f f e r s t r u c t c t r l 2 r x b u f f e r 1 = {
. d a t a = &C2RX1B1 ,
. S I D b i t s = &C2RX1SIDbits ,
. DLCbits = &C2RX1DLCbits ,
. t y p e = RX BUFFER1 ,
. CONbitsRX0 = NULL,
. CONbitsRX1 = &C2RX1CONbits ,
. MaskSIDbi t s = &C2RXM1SIDbits ,

} ;

/∗
∗ C o n t r o l l e r 2 t r a n s m i t b u f f e r i n i t i a l i z a t i o n
∗ /

s t a t i c s t r u c t t x b u f f e r s t r u c t c t r l 2 t x b u f f e r 0 = {

171

Appendix C. Driver source code

. d a t a = &C2TX0B1 ,

. S I D b i t s = &C2TX0SIDbits ,

. DLCbits = &C2TX0DLCbits ,

. CONbits = &C2TX0CONbits
} ;

s t a t i c s t r u c t t x b u f f e r s t r u c t c t r l 2 t x b u f f e r 1 = {
. d a t a = &C2TX1B1 ,
. S I D b i t s = &C2TX1SIDbits ,
. DLCbits = &C2TX1DLCbits ,
. CONbits = &C2TX1CONbits

} ;

s t a t i c s t r u c t t x b u f f e r s t r u c t c t r l 2 t x b u f f e r 2 = {
. d a t a = &C2TX2B1 ,
. S I D b i t s = &C2TX2SIDbits ,
. DLCbits = &C2TX2DLCbits ,
. CONbits = &C2TX2CONbits

} ;

/∗
∗ C o n t r o l l e r 2 i n i t i a l i z a t i o n
∗ /

s t r u c t c a n c o n t r o l l e r c t r l 2 = {
. n o t i f i e d r x = f a l s e ,
. n o t i f i e d t x = f a l s e ,
. i s a c t i v e = t r u e ,
. I N T Fb i t s = &C2INTFbits ,
. CTRLbits = &C2CTRLbits ,
. CFG1bits = &C2CFG1bits ,
. CFG2bits = &C2CFG2bits ,
. INTEbi t s = &C2INTEbits ,

. r x b u f f e r [0] = &c t r l 2 r x b u f f e r 0 ,

. r x b u f f e r [1] = &c t r l 2 r x b u f f e r 1 ,

. F i l t e r S I D b i t s [0] = &C2RXF0SIDbits ,

. F i l t e r S I D b i t s [1] = &C2RXF1SIDbits ,

. F i l t e r S I D b i t s [2] = &C2RXF2SIDbits ,

. F i l t e r S I D b i t s [3] = &C2RXF3SIDbits ,

. F i l t e r S I D b i t s [4] = &C2RXF4SIDbits ,

. F i l t e r S I D b i t s [5] = &C2RXF5SIDbits ,

. t x b u f f e r [0] = &c t r l 2 t x b u f f e r 0 ,

. t x b u f f e r [1] = &c t r l 2 t x b u f f e r 1 ,

. t x b u f f e r [2] = &c t r l 2 t x b u f f e r 2 ,

. r x b u f f e r l o a d e d = NULL,
} ;

/∗ The c u r r e n t t r a n s m i s s i o n c o n t r o l l e r ∗ /

172

C.3. can controller.c

s t a t i c v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ t x c o n t r o l l e r = &c t r l 1 ;

/∗ CAN Module O p e r a t i o n Modes , used w i t h t h e REQOP f i e l d o f t h e CAN
∗ c o n t r o l and s t a t u s r e g i s t e r (CTRLbi ts) o f c t r l 1 and c t r l 2 . ∗ /

t y p e d e f enum t can mode enum {
CAN MODE NORMAL = 00 ,
CAN MODE DISABLE = 01 ,
CAN MODE LOOPBACK = 02 ,
CAN MODE LISTEN ONLY = 03 ,
CAN MODE CONFIG = 04 ,
/∗ 05 and 06 are r e s e r v e d i n REQOP ∗ /
CAN MODE LISTEN ALL MSGS = 07

} t c a n m o d e ;

t y p e d e f enum {
CAN TX PRIORIY HIGHEST = 03 ,
CAN TX PRIORIY HIGH INTERMEDIATE = 02 ,
CAN TX PRIORIY LOW INTERMEDIATE = 01 ,
CAN TX PRIORIY LOWEST = 00

} t c a n t x p r i o r i t y ;

/∗ Compile w i t h t h e a p p r o p r i a t e b i t r a t e . For i n s t a n c e , i f −DBITRATE921KBPS i s
∗ pa ss ed as an o p t i o n t o t h e comp i l e r , t h e n t h e code w i l l be c o m p i l e d t o use a
∗ b i t r a t e o f 921 .25 Kbps f o r CAN .
∗
∗ BRP VALUE : CAN Baud Rate P r e s c a l e r . V a l i d v a l u e s are 0 , 1 , . . . 63
∗ CAN PROP TQ : Leng th i n t i m e quan ta f o r t h e p r o p a g a t i o n segment , v a l i d v a l u e s
∗ are 1 , 2 , . . . 8
∗ CAN SEG1 TQ : Leng th i n t i m e quan ta f o r t h e phase segment 1 , v a l i d v a l u e s are
∗ 1 , 2 , . . . 8
∗ CAN SEG2 TQ : Leng th i n t i m e quan ta f o r t h e phase segment 2 , v a l i d v a l u e s are
∗ 1 , 2 , . . . 8
∗
∗ The nomina l b i t r a t e , NBR , i s :
∗ NBR = 1 / NBT
∗ where NBT i s t h e nomina l b i t t i m e . The NBT i n t u r n i s :
∗ NBT = NOMINAL BIT TIME TQ ∗ TQ
∗ where NOMINAL BIT TIME TQ i s t h e number o f t i m e quan ta t h e nomina l b i t t i m e
∗ i s made o f (d e f i n e d below) and where TQ i s t h e l e n g t h o f a t i m e quantum . TQ
∗ i s :
∗ TQ = 2 ∗ (BRP VALUE + 1) / FCAN
∗ T h e r e f o r e t h e NBR i s :
∗ NBR = NOMINAL BIT TIME TQ ∗ (2 ∗ (BRP VALUE + 1) / FCAN)
∗
∗ /

i f d e f BITRATE921KBPS
d e f i n e BRP VALUE 1
d e f i n e CAN PROP TQ 2
d e f i n e CAN SEG1 TQ 3
d e f i n e CAN SEG2 TQ 2

e l i f d e f i n e d (BITRATE737KBPS)
d e f i n e BRP VALUE 1
d e f i n e CAN PROP TQ 3

173

Appendix C. Driver source code

d e f i n e CAN SEG1 TQ 4
d e f i n e CAN SEG2 TQ 2

e l i f d e f i n e d (BITRATE670KBPS)
d e f i n e BRP VALUE 1
d e f i n e CAN PROP TQ 4
d e f i n e CAN SEG1 TQ 4
d e f i n e CAN SEG2 TQ 2

e l i f d e f i n e d (BITRATE567KBPS)
d e f i n e BRP VALUE 1
d e f i n e CAN PROP TQ 5
d e f i n e CAN SEG1 TQ 5
d e f i n e CAN SEG2 TQ 2

e l i f d e f i n e d (BITRATE460KBPS)
d e f i n e BRP VALUE 1
d e f i n e CAN PROP TQ 8
d e f i n e CAN SEG1 TQ 5
d e f i n e CAN SEG2 TQ 2

e l i f d e f i n e d (BITRATE230KBPS)
d e f i n e BRP VALUE 3
d e f i n e CAN PROP TQ 8
d e f i n e CAN SEG1 TQ 5
d e f i n e CAN SEG2 TQ 2

e l s e
e r r o r ” B i t r a t e n o t s p e c i f i e d ! ”

e n d i f

d e f i n e SYNCHRONOUS JUMP WIDTH TQ 1
/∗ Sync segment i s a lways one t i m e quantum ∗ /
d e f i n e CAN SYNC TQ 1
/∗ Number o f t i m e quan ta t h e nomina l b i t t i m e i s made o f ∗ /
d e f i n e NOMINAL BIT TIME TQ (CAN SYNC TQ + CAN PROP TQ + CAN SEG1 TQ + \

CAN SEG2 TQ)

/∗ C o n v e r t s a g i v e n number o f t i m e quan ta t o a c o r r e s p o n d i n g v a l u e which
∗ can be a s s i g n e d t o a CAN baud r a t e c o n f i g u r a t i o n r e g i s t e r f i e l d . For
∗ i n s t a n c e , t o c o n f i g u r e a SJW o f 1 TQ t h e v a l u e 0 must be a s s i g n e d t o
∗ t h e SJW f i e l d o f a CiCFG1 r e g i s t e r . ∗ /

s t a t i c unsigned i n t T Q t o c o n f i g v a l u e (
unsigned i n t t i m e q u a n t a

)
{

re turn t i m e q u a n t a − 1 ;
}

s t a t i c vo id e n a b l e c a n i n t e r r u p t s (
s t r u c t c a n c o n t r o l l e r ∗ c t r l

)
{

174

C.3. can controller.c

/∗ The i n v a l i d message r e c e i v e d i n t e r r u p t and t h e bus wake up
∗ a c t i v i t y i n t e r r u p t are l e f t d i s a b l e d . ∗ /

c t r l −>INTEbi ts−>IVRIE = 0 ;
c t r l −>INTEbi ts−>WAKIE = 0 ;

/∗ Enable e r r o r i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>ERRIE = 1 ;

/∗ Enable t r a n s m i t b u f f e r 2 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>TX2IE = 1 ;
/∗ Enable t r a n s m i t b u f f e r 1 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>TX1IE = 1 ;
/∗ Enable t r a n s m i t b u f f e r 0 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>TX0IE = 1 ;

/∗ Enable r e c e i v e b u f f e r 1 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>RX1IE = 1 ;
/∗ Enable r e c e i v e b u f f e r 0 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>RX0IE = 1 ;

}

s t a t i c vo id d i s a b l e c a n i n t e r r u p t s (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

/∗ The i n v a l i d message r e c e i v e d i n t e r r u p t and t h e bus wake up
∗ a c t i v i t y i n t e r r u p t are l e f t d i s a b l e d . ∗ /

c t r l −>INTEbi ts−>IVRIE = 0 ;
c t r l −>INTEbi ts−>WAKIE = 0 ;

/∗ D i s a b l e e r r o r i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>ERRIE = 0 ;

/∗ D i s a b l e t r a n s m i t b u f f e r 2 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>TX2IE = 0 ;
/∗ D i s a b l e t r a n s m i t b u f f e r 1 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>TX1IE = 0 ;
/∗ D i s a b l e t r a n s m i t b u f f e r 0 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>TX0IE = 0 ;

/∗ D i s a b l e r e c e i v e b u f f e r 1 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>RX1IE = 0 ;
/∗ D i s a b l e r e c e i v e b u f f e r 0 i n t e r r u p t ∗ /
c t r l −>INTEbi ts−>RX0IE = 0 ;

}

s t a t i c vo id i n i t a c c e p t a n c e f i l t e r s (
s t r u c t c a n c o n t r o l l e r ∗ c t r l

)
{

175

Appendix C. Driver source code

i n t f i l t e r i d x ;

f o r (f i l t e r i d x = 0 ; f i l t e r i d x < ACCEPTANCE FILTER COUNT ;
f i l t e r i d x ++) {
/∗ Enable f i l t e r f o r s t a n d a r d i d e n t i f i e r and n o t e x t e n d e d
∗ i d e n t i f i e r ∗ /

c t r l −>F i l t e r S I D b i t s [f i l t e r i d x]−>EXIDE = 0 ;

/∗ SID t o match doesn ’ t m a t t e r because t h e masks i n
∗ i n i t a c c e p t a n c e f i l t e r m a s k s () have been c o n f i g u r e d t o
∗ a c c e p t e v e r y message . We can t h e r e f o r e i n i t i a l i z e t h e
∗ SID f i e l d w i t h an a r b i t r a r y v a l u e (we use 0) . ∗ /

c t r l −>F i l t e r S I D b i t s [f i l t e r i d x]−>SID = 0 ;
}

}

/∗
∗ The message a c c e p t a n c e f i l t e r s and masks d e t e r m i n e i f a message i n t h e
∗ message a s s e m b l y b u f f e r (MAB) s h o u l d be l oad ed i n t o one o f t h e r e c e i v e
∗ b u f f e r s . The f i l t e r s and masks are a p p l i e d t o t h e message i d e n t i f i e r .
∗ The mask d e t e r m i n e s which b i t s o f t h e i d e n t i f i e r s h o u l d be examined and
∗ t h e f i l t e r s c o n t a i n v a l u e s t o which t h o s e b i t s are compared . The b i t s
∗ f rom t h e i d e n t i f i e r t h a t are masked , i . e . t h e c o r r e s p o n d i n g mask b i t i s
∗ zero , w i l l a lways be a c c e p t e d by t h e f i l t e r s . The b i t s t h a t are n o t
∗ masked , i . e . t h e c o r r e s p o n d i n g mask b i t i s one , w i l l be a c c e p t e d i f
∗ t h e r e i s a match w i t h t h e c o r r e s p o n d i n g f i l t e r b i t . I f a l l t h e b i t s are
∗ a c c e p t e d t h e n t h e message i s a c c e p t e d and l oa ded from t h e MAB i n t o one
∗ o f t h e r e c e i v e b u f f e r s .
∗
∗ Messages whose i d e n t i f i e r match f i l t e r s RXF0 or RXF1 are l oa de d i n t o
∗ r e c e i v e b u f f e r 0 (RXB0) , messages whose i d e n t i f i e r match any o f t h e
∗ f i l t e r s RXF2 t h r o u g h RXF5 are l oa de d i n t o r e c e i v e b u f f e r 1 (RXB1) . The
∗ mask RXM0 i s used w i t h f i l t e r s RXF0 and RXF1 and t h e mask RXM1 i s used
∗ w i t h f i l t e r s RXF2−RXF5 .
∗ /

s t a t i c vo id i n i t a c c e p t a n c e f i l t e r m a s k s (
s t r u c t c a n c o n t r o l l e r ∗ c t r l

)
{

i n t r x b u f f e r i d x ;

f o r (r x b u f f e r i d x = 0 ; r x b u f f e r i d x < RX BUFFER COUNT ;
r x b u f f e r i d x ++) {
/∗ C o n f i g u r e a c c e p t a n c e f i l t e r mask t o a c c e p t a l l messages ,
∗ i . e . a l l t h e masks ’ b i t s are s e t t o z e r o t h e r e f o r e a l l
∗ messages are a c c e p t e d i n d e p e n d e n t l y o f t h e v a l u e o f t h e
∗ a c c e p t a n c e f i l t e r s . ∗ /

c t r l −>r x b u f f e r [r x b u f f e r i d x]−>MaskSIDbits−>SID = 0 ;

/∗ Match o n l y message t y p e s (SID or EID) as d e t e r m i n e d by
∗ t h e EXIDE b i t i n t h e c o r r e s p o n d i n g f i l t e r s ∗ /

c t r l −>r x b u f f e r [r x b u f f e r i d x]−>MaskSIDbits−>MIDE = 1 ;

176

C.3. can controller.c

}
}

s t a t i c vo id i n i t c o n t r o l l e r (
s t r u c t c a n c o n t r o l l e r ∗ c t r l

)
{

i n t t x b u f f e r i d x = 0 ;

/∗ S top CAN module when d e v i c e e n t e r s i d l e mode . ∗ /
c t r l −>CTRLbits−>CSIDL = 1 ;
/∗ FCAN c l o c k i s FCY (i n s t r u c t i o n c y c l e c l o c k) i n s t e a d o f
∗ FOSC = 4 x FCY ∗ /

c t r l −>CTRLbits−>CANCKS = 1 ;
/∗ Don ’ t g e n e r a t e a c a p t u r e s i g n a l whenever a v a l i d f rame has been
∗ a c c e p t e d ∗ /

c t r l −>CTRLbits−>CANCAP = 0 ;

/∗ S e t c o n f i g u r a t i o n mode ∗ /
c t r l −>CTRLbits−>REQOP = CAN MODE CONFIG ;

/∗ Wait u n t i l t h e CAN module has e n t e r e d c o n f i g u r a t i o n mode ∗ /
whi le (c t r l −>CTRLbits−>OPMODE != CAN MODE CONFIG) ;

c t r l −>CFG1bits−>SJW =
T Q t o c o n f i g v a l u e (SYNCHRONOUS JUMP WIDTH TQ) ;

c t r l −>CFG1bits−>BRP = BRP VALUE ;

/∗ CAN bus l i n e f i l t e r i s n o t used f o r wake−up ∗ /
c t r l −>CFG2bits−>WAKFIL = 0 ;
/∗ The l e n g t h o f Phase Segment 2 i s F r e e l y programmable ∗ /
c t r l −>CFG2bits−>SEG2PHTS = 1 ;
/∗ Bus l i n e i s sampled once a t t h e sample p o i n t ∗ /
c t r l −>CFG2bits−>SAM = 0 ;

/∗ S e t number o f t i m e quan ta t o use f o r p r o p a g a t i o n segment ∗ /
c t r l −>CFG2bits−>PRSEG = T Q t o c o n f i g v a l u e (CAN PROP TQ) ;
/∗ S e t number o f t i m e quan ta t o use f o r segment 1 ∗ /
c t r l −>CFG2bits−>SEG1PH = T Q t o c o n f i g v a l u e (CAN SEG1 TQ) ;
/∗ S e t number o f t i m e quan ta t o use f o r segment 2 ∗ /
c t r l −>CFG2bits−>SEG2PH = T Q t o c o n f i g v a l u e (CAN SEG2 TQ) ;

/∗
∗ C o n f i g u r e t r a n s m i t b u f f e r s
∗ /

f o r (t x b u f f e r i d x = 0 ; t x b u f f e r i d x < TX BUFFER COUNT ;
t x b u f f e r i d x ++) {
/∗ Clear t r a n s m i t r e q u e s t b i t ∗ /
c t r l −>t x b u f f e r [t x b u f f e r i d x]−>CONbits−>TXREQ = 0 ;
/∗ TODO: Shou ld a l l t r a n s m i t b u f f e r s have t h e same
∗ p r i o r i t y ? ∗ /

177

Appendix C. Driver source code

c t r l −>t x b u f f e r [t x b u f f e r i d x]−>CONbits−>TXPRI =
CAN TX PRIORIY HIGHEST ;

}

/∗
∗ C o n f i g u r e r e c e i v e b u f f e r s
∗ /

/∗ Clear r e c e i v e f u l l s t a t u s b i t ∗ /
c t r l −>r x b u f f e r [0]−>CONbitsRX0−>RXFUL = 0 ;
c t r l −>r x b u f f e r [1]−>CONbitsRX1−>RXFUL = 0 ;
/∗ D i s a b l e d ou b l e b u f f e r , i . e . no r e c e i v e b u f f e r 0 o v e r f l o w t o
∗ r e c e i v e b u f f e r 1 ∗ /

c t r l −>r x b u f f e r [0]−>CONbitsRX0−>DBEN = 0 ;

/∗ TODO: Al low t h e u s e r t o o v e r r i d e t h e r e c e i v e and t r a n s m i t
∗ b u f f e r c o n f i g u r a t i o n by add ing c o r r e s p o n d i n g f u n c t i o n s t o
∗ r e c a n c e n t r a t e . h ∗ /

i n i t a c c e p t a n c e f i l t e r m a s k s (c t r l) ;

/∗ TODO: Al low t h e u s e r t o o v e r r i d e t h e mask c o n f i g u r a t i o n and t o
∗ a l s o c o n f i g u r e t h e a c c e p t a n c e f i l t e r . ∗ /

i n i t a c c e p t a n c e f i l t e r s (c t r l) ;

e n a b l e c a n i n t e r r u p t s (c t r l) ;

/∗ S e t normal mode ∗ /
c t r l −>CTRLbits−>REQOP = CAN MODE NORMAL;

/∗ The s i m u l a t o r does n o t model t h e CAN module ∗ /
i f n d e f SIMULATOR

/∗ Wait u n t i l t h e CAN module has e n t e r e d normal mode ∗ /
whi le (c t r l −>CTRLbits−>OPMODE != CAN MODE NORMAL) ;

e n d i f
}

void i n i t c a n c o n t r o l l e r s (void)
{

/∗
∗ R e s t r i c t i o n s on t h e CAN b i t t i m e s e g m e n t s (s e e t h e dsPIC30F Fami ly
∗ R e f e r e n c e Manual f o r d e t a i l s) :
∗ /

ASSERT(CAN PROP TQ + CAN SEG1 TQ >= CAN SEG2 TQ) ;
ASSERT(CAN SEG2 TQ > SYNCHRONOUS JUMP WIDTH TQ) ;
ASSERT(8 <= NOMINAL BIT TIME TQ) ;
ASSERT(NOMINAL BIT TIME TQ <= 2 5) ;
ASSERT(0 <= BRP VALUE) ;
ASSERT(BRP VALUE <= 6 3) ;

i n i t c o n t r o l l e r (& c t r l 1) ;
i n i t c o n t r o l l e r (& c t r l 2) ;

178

C.3. can controller.c

}

boo l i s t r a n s m i s s i o n c o n t r o l l e r (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

re turn (t x c o n t r o l l e r == c t r l) ;
}

boo l i s a c t i v e (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

re turn c t r l −> i s a c t i v e ;
}

void shutdown (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

d i s a b l e c a n i n t e r r u p t s (c t r l) ;
c t r l −>CTRLbits−>ABAT = 1 ;

}

void m a r k a s i n a c t i v e (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

c t r l −> i s a c t i v e = f a l s e ;
}

s t a t i c boo l h a s t x p e n d i n g (
s t r u c t t x b u f f e r s t r u c t ∗ t x b u f f e r

)
{

re turn t x b u f f e r−>CONbits−>TXREQ;
}

/∗ R e t u r n s a t r a n s m i t b u f f e r o f c t r l which has no t r a n s m i s s i o n pend ing .
∗ I f no f r e e t r a n s m i t b u f f e r i s a v a i l a b l e i t r e t u r n s NULL . ∗ /

s t a t i c s t r u c t t x b u f f e r s t r u c t ∗ g e t f r e e t x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

179

Appendix C. Driver source code

)
{

s t r u c t t x b u f f e r s t r u c t ∗ c u r r e n t t x b u f f e r ;
s t r u c t t x b u f f e r s t r u c t ∗ f r e e t x b u f f e r = NULL;
/∗ T r a n s m i s s i o n b u f f e r i n d e x ∗ /
unsigned i n t t x b u f f e r i d x ;
boo l f r e e t x b u f f e r f o u n d = f a l s e ;

/∗ Search f o r a f r e e t r a n s m i t b u f f e r , i . e . a t r a n s m i t b u f f e r which has
∗ no t r a n s m i s s i o n pend ing ∗ /

t x b u f f e r i d x = 0 ;
whi le (! f r e e t x b u f f e r f o u n d && t x b u f f e r i d x < TX BUFFER COUNT) {

c u r r e n t t x b u f f e r = c t r l −>t x b u f f e r [t x b u f f e r i d x] ;
i f (! h a s t x p e n d i n g (c u r r e n t t x b u f f e r)) {

f r e e t x b u f f e r = c u r r e n t t x b u f f e r ;
f r e e t x b u f f e r f o u n d = t r u e ;

}
t x b u f f e r i d x ++;

}

i f (f r e e t x b u f f e r f o u n d) {
re turn f r e e t x b u f f e r ;

} e l s e {
re turn NULL;

}
}

/∗ I n s t r u c t s one o f c t r l ’ s f r e e t r a n s m i s s i o n b u f f e r s t o t r a n s m i t t h e frame
∗ f r a m e t o t x ∗ /

void r e q u e s t t x (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
s t r u c t c a n f r a m e ∗ f r a m e t o t x

)
{

s t r u c t t x b u f f e r s t r u c t ∗ t x b u f f e r t o u s e ;

ASSERT(i s a c t i v e (c t r l)) ;

t x b u f f e r t o u s e = g e t f r e e t x b u f f e r (c t r l) ;

i f (t x b u f f e r t o u s e == NULL) {
/∗ TODO: What s h a l l we do i f t h e r e i s no f r e e t x b u f f e r ?
∗ For t h e moment we ASSERT (f a l s e) ∗ /

ASSERT(f a l s e) ;
}

t x b u f f e r t o u s e −>S I D b i t s−>SID5 0 = f r a m e t o t x−> i d e n t i f i e r & 0x003F ;
t x b u f f e r t o u s e −>S I D b i t s−>SID10 6 = f r a m e t o t x−> i d e n t i f i e r & 0x07C0 ;

/∗ Copy f r a m e t o t x ’ s da ta t o t h e t r a n s m i t b u f f e r ’ s da ta r e g i s t e r ∗ /
c o p y d a t a (f r a m e t o t x−>da ta , f r a m e t o t x−>l e n g t h ,

(unsigned char ∗) t x b u f f e r t o u s e −>d a t a) ;

180

C.3. can controller.c

t x b u f f e r t o u s e −>DLCbits−>DLC = f r a m e t o t x−>l e n g t h ;

/∗ S i g n a l t r a n s m i t b u f f e r t o enqueue t h e loa de d frame f o r t r a n s m i s s i o n .
∗ The t r a n s m i s s i o n w i l l s t a r t when t h e t r a n s m i t b u f f e r d e t e c t s t h a t
∗ t h e medium i s a v a i l a b l e . ∗ /

t x b u f f e r t o u s e −>CONbits−>TXREQ = 1 ;
}

void r e l e a s e r x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ b u f t o r e l e a s e

)
{

i f (b u f t o r e l e a s e −>t y p e == RX BUFFER0) {
ASSERT(c t r l −>r x b u f f e r [0] == b u f t o r e l e a s e) ;
b u f t o r e l e a s e −>CONbitsRX0−>RXFUL = 0 ;

} e l s e i f (b u f t o r e l e a s e −>t y p e == RX BUFFER1) {
ASSERT(c t r l −>r x b u f f e r [1] == b u f t o r e l e a s e) ;
b u f t o r e l e a s e −>CONbitsRX1−>RXFUL = 0 ;

} e l s e {
/∗ I n v a l i d r e c e i v e b u f f e r t y p e ∗ /
ASSERT(f a l s e) ;

}
s e t r x e v e n t c a u s i n g r x b u f f e r (c t r l , NULL) ;

}

/∗ R e t u r n s t h e r e c e i v e b u f f e r o f c o n t r o l l e r ’ c t r l ’ where t h e l a s t r e c e i v e d
∗ f rame has been s t o r e d and which , thus , caused t h e l a s t CAN combined
∗ i n t e r r u p t f o r ’ c t r l ’ t h a t was t r i g g e r e d due t o a r e c e p t i o n . ∗ /

v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ g e t r x e v e n t c a u s i n g r x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

ASSERT(i s a c t i v e (c t r l)) ;
ASSERT(c t r l −>r x b u f f e r l o a d e d != NULL) ;

re turn c t r l −>r x b u f f e r l o a d e d ;
}

void s e t r x e v e n t c a u s i n g r x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ c o n s t buf

)
{

c t r l −>r x b u f f e r l o a d e d = buf ;
}

181

Appendix C. Driver source code

void r e a d f r a m e (
v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ c o n s t b u f f e r t o r e a d ,
v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t o u t p u t f r a m e

)
{

i n t n u m b y t e s t o r e a d = b u f f e r t o r e a d −>DLCbits−>DLC;

/∗ A s s e r t t h e frame has a s t a n d a r d i d e n t i f i e r and n o t an
∗ e x t e n d e d i d e n t i f i e r ∗ /

ASSERT(b u f f e r t o r e a d −>S I D b i t s−>RXIDE == 0) ;

o u t p u t f r a m e−> i d e n t i f i e r = b u f f e r t o r e a d −>S I D b i t s−>SID ;

/∗ Copy c o n t e n t s o f t h e r e c e i v e b u f f e r t o t h e da ta f i e l d o f
∗ o u t p u t f r a m e ∗ /

c o p y d a t a ((unsigned char ∗) b u f f e r t o r e a d −>da ta , n u m b y t e s t o r e a d ,
o u t p u t f r a m e−>d a t a) ;

o u t p u t f r a m e−>l e n g t h = n u m b y t e s t o r e a d ;
}

boo l t x b u f f e r 0 i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

ASSERT(i s a c t i v e (c t r l)) ;

re turn c t r l −>INTFbi t s−>TX0IF ;
}

void c l e a r t x b u f f e r 0 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

c t r l −>INTFbi t s−>TX0IF = 0 ;
}

boo l t x b u f f e r 1 i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

ASSERT(i s a c t i v e (c t r l)) ;

re turn c t r l −>INTFbi t s−>TX1IF ;
}

182

C.3. can controller.c

void c l e a r t x b u f f e r 1 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

c t r l −>INTFbi t s−>TX1IF = 0 ;
}

boo l t x b u f f e r 2 i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

ASSERT(i s a c t i v e (c t r l)) ;

re turn c t r l −>INTFbi t s−>TX2IF ;
}

void c l e a r t x b u f f e r 2 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

c t r l −>INTFbi t s−>TX2IF = 0 ;
}

boo l r x b u f f e r 0 i r q o c c u r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

re turn c t r l −>INTFbi t s−>RX0IF ;
}

void c l e a r r x b u f f e r 0 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

c t r l −>INTFbi t s−>RX0IF = 0 ;
}

boo l r x b u f f e r 1 i r q o c c u r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

re turn c t r l −>INTFbi t s−>RX1IF ;

183

Appendix C. Driver source code

}

void c l e a r r x b u f f e r 1 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

c t r l −>INTFbi t s−>RX1IF = 0 ;
}

boo l e r r o r i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

ASSERT(i s a c t i v e (c t r l)) ;

re turn (c t r l −>INTFbi t s−>ERRIF) ;
}

boo l n o t i f i e d r x (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

re turn (c t r l −>n o t i f i e d r x == t r u e) ;
}

void s e t n o t i f i e d r x (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
c o n s t boo l b

)
{

ASSERT(i s a c t i v e (c t r l)) ;

c t r l −>n o t i f i e d r x = b ;
}

boo l n o t i f i e d t x (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

re turn (c t r l −>n o t i f i e d t x == t r u e) ;
}

184

C.4. can controller.h

void s e t n o t i f i e d t x (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
c o n s t boo l b

)
{

ASSERT(i s a c t i v e (c t r l)) ;

c t r l −>n o t i f i e d t x = b ;
}

void s e t t r a n s m i s s i o n c o n t r o l l e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

)
{

t x c o n t r o l l e r = c t r l ;
}

v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ g e t t r a n s m i s s i o n c o n t r o l l e r (void)
{

re turn t x c o n t r o l l e r ;
}

C.4. can controller.h

/∗
∗ c a n c o n t r o l l e r . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f CAN CONTROLLER H
d e f i n e CAN CONTROLLER H

i n c l u d e <p30f6014A . h>
i n c l u d e ” c a n f r a m e . h ”
i n c l u d e ”common . h ”

/∗ The r e c e i v e b u f f e r 0 and t h e r e c e i v e b u f f e r 1 o f a dsPIC ’ s CAN c o n t r o l l e r
∗ have d i f f e r e n t c o n t r o l r e g i s t e r s , t h e r e f o r e we d i s t i n g u i s h be tween t h e two
∗ t y p e s o f r e c e i v e b u f f e r s . ∗ /

t y p e d e f enum {
RX BUFFER0 ,
RX BUFFER1

} t r x b u f f e r t y p e ;

185

Appendix C. Driver source code

/∗ CAN r e c e i v e b u f f e r ∗ /
s t r u c t r x b u f f e r s t r u c t {

/∗ F i r s t word o f t h e r e c e i v e b u f f e r . The second , t h i r d and f o u r t h word
∗ are i n c o n t i g u o u s memory l o c a t i o n s f o l l o w i n g t h e f i r s t word ∗ /

v o l a t i l e unsigned i n t ∗ d a t a ;
/∗ P o i n t e r t o r e c e i v e b u f f e r s t a n d a r d i d e n t i f i e r r e g i s t e r ∗ /
v o l a t i l e CxRXxSIDBITS ∗ S I D b i t s ;
/∗ P o i n t e r t o r e c e i v e b u f f e r da ta l e n g t h code r e g i s t e r ∗ /
v o l a t i l e CxRXxDLCBITS ∗DLCbits ;
t r x b u f f e r t y p e t y p e ;
/∗ P o i n t e r t o r e c e i v e b u f f e r c o n t r o l r e g i s t e r ∗ /
/∗ . . . f o r r e c e i v e b u f f e r s o f t y p e RX BUFFER0 ∗ /
v o l a t i l e CxRX0CONBITS ∗CONbitsRX0 ;
/∗ . . . f o r r e c e i v e b u f f e r s o f t y p e RX BUFFER1 ∗ /
v o l a t i l e CxRX1CONBITS ∗CONbitsRX1 ;
/∗ P o i n t e r t o t h e SID a c c e p t a n c e f i l t e r mask r e g i s t e r ∗ /
v o l a t i l e CxRXMxSIDBITS ∗MaskSIDbi t s ;
/∗ TODO: Add masks f o r e x t e n d e d i d s ? ∗ /

} ;

/∗ CAN t r a n s m i t b u f f e r ∗ /
s t r u c t t x b u f f e r s t r u c t {

/∗ F i r s t word o f t h e t r a n s m i t b u f f e r . The second , t h i r d and f o u r t h word
∗ are i n c o n t i g u o u s memory l o c a t i o n s f o l l o w i n g t h e f i r s t word ∗ /

v o l a t i l e unsigned i n t ∗ d a t a ;
/∗ P o i n t e r t o CAN S t a n da r d I d e n t i f i e r r e g i s t e r ∗ /
v o l a t i l e CxTXxSIDBITS ∗ S I D b i t s ;
/∗ P o i n t e r t o t r a n s m i t b u f f e r da ta l e n g t h code r e g i s t e r ∗ /
v o l a t i l e CxTXxDLCBITS ∗DLCbits ;
/∗ P o i n t e r t o t r a n s m i t b u f f e r c o n t r o l r e g i s t e r ∗ /
v o l a t i l e CxTXxCONBITS ∗CONbits ;

} ;

/∗ Number o f r e c e i v e b u f f e r s per CAN c o n t r o l l e r .
∗ The dsPIC ’ s CAN c o n t r o l l e r s have two v i s i b l e r e c e i v e b u f f e r s (t h e t h i r d
∗ b u f f e r i s t h e message a s s e m b l y b u f f e r (MAB) and i s n o t d i r e c t l y
∗ a c c e s s i b l e) . ∗ /

d e f i n e RX BUFFER COUNT 2
/∗ Number o f t r a n s m i t b u f f e r s per CAN c o n t r o l l e r . ∗ /
d e f i n e TX BUFFER COUNT 3
/∗ Number o f a c c e p t a n c e f i l t e r s per CAN c o n t r o l l e r ∗ /
d e f i n e ACCEPTANCE FILTER COUNT 6

/∗
∗ Keeps i n f o r m a t i o n abou t a CAN c o n t r o l l e r
∗ /

s t r u c t c a n c o n t r o l l e r {
/∗ True i f t h e CAN c o n t r o l l e r n o t i f i e d t h e r e c e p t i o n o f a CAN frame ∗ /

186

C.4. can controller.h

boo l n o t i f i e d r x ;
/∗ True i f t h e CAN c o n t r o l l e r n o t i f i e d t h e t r a n s m i s s i o n o f a CAN frame
∗ /

boo l n o t i f i e d t x ;
/∗ F a l s e when t h e CAN c o n t r o l l e r i s i s o l a t e d , t r u e when i t i s i n use ∗ /
boo l i s a c t i v e ;
/∗ P o i n t e r t o CAN i n t e r r u p t f l a g s t a t u s r e g i s t e r ∗ /
v o l a t i l e CxINTFBITS ∗ I N T F b i t s ;
/∗ P o i n t e r t o CAN c o n t r o l and s t a t u s r e g i s t e r ∗ /
v o l a t i l e CxCTRLBITS ∗CTRLbits ;
/∗ P o i n t e r t o CAN baud r a t e c o n f i g u r a t i o n r e g i s t e r 1 ∗ /
v o l a t i l e CxCFG1BITS ∗CFG1bits ;
/∗ P o i n t e r t o CAN baud r a t e c o n f i g u r a t i o n r e g i s t e r 2 ∗ /
v o l a t i l e CxCFG2BITS ∗CFG2bits ;
/∗ P o i n t e r t o CAN i n t e r r u p t e n a b l e r e g i s t e r ∗ /
v o l a t i l e CxINTEBITS ∗ INTEbi t s ;
/∗ The CAN c o n t r o l l e r ’ s r e c e i v e b u f f e r s ∗ /
s t r u c t r x b u f f e r s t r u c t ∗ r x b u f f e r [RX BUFFER COUNT] ;
/∗ P o i n t e r s t o t h e SID a c c e p t a n c e f i l t e r r e g i s t e r s ∗ /
v o l a t i l e CxRXFxSIDBITS ∗ F i l t e r S I D b i t s [ACCEPTANCE FILTER COUNT] ;
/∗ The CAN c o n t r o l l e r ’ s t r a n s m i t b u f f e r s ∗ /
s t r u c t t x b u f f e r s t r u c t ∗ t x b u f f e r [TX BUFFER COUNT] ;
/∗ The r x b u f f e r t h a t c o n t a i n s t h e r e c e i v e d frame (NULL i f no b u f f e r
∗ has a frame) ∗ /

v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ r x b u f f e r l o a d e d ;
} ;

/∗
∗ O p e r a t i o n s o f t h e CAN c o n t r o l l e r ADT
∗ /

/∗ I n i t i a l i z e s bo th CAN c o n t r o l l e r s ∗ /
void i n i t c a n c o n t r o l l e r s (void) ;

/∗ R e t u r n s t r u e i f ’ c t r l ’ i s t h e c o n t r o l l e r t h a t has t h e t r a n s m i s s i o n
∗ c o n t r o l l e r r o l e a s s i g n e d t o ; r e t u r n s f a l s e o t h e r w i s e ∗ /

boo l i s t r a n s m i s s i o n c o n t r o l l e r (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ R e t u r n s t r u e i f ’ c t r l ’ has n o t been q u a r a n t i n e d by t h e qua r o u t i n e ∗ /
boo l i s a c t i v e (

c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l
) ;

/∗ S h u t s ’ c t r l ’ down , d i s a b l i n g a l l i t s i n t e r r u p t s and a b o r t i n g a l l i t s
∗ t r a n s m i s s i o n s ∗ /

void shutdown (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ Marks ’ c t r l ’ as h av in g been q u a r a n t i n e d ∗ /

187

Appendix C. Driver source code

void m a r k a s i n a c t i v e (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ I n s t r u c t s one o f c t r l ’ s f r e e t r a n s m i s s i o n b u f f e r s t o t r a n s m i t t h e frame
∗ ’ f r a m e t o t x ’ ∗ /

void r e q u e s t t x (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
s t r u c t c a n f r a m e ∗ f r a m e t o t x

) ;

/∗ R e t u r n s t r u e i f an e r r o r occured a t ’ c t r l ’ ∗ /
boo l e r r o r i r q o c c u r r e d (

c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l
) ;

/∗ R e t u r n s t r u e i f s e t n o t i f i e d r x (c t r l , t r u e) has p r e v i o u s l y been c a l l e d ∗ /
boo l n o t i f i e d r x (

c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l
) ;

/∗ Used by t h e CAN e v e n t t r a c k e r t o i n d i c a t e t h a t ’ c t r l ’ n o t i f i e d a r e c e p t i o n
∗ /

void s e t n o t i f i e d r x (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
c o n s t boo l b

) ;

/∗ R e t u r n s t r u e i f s e t n o t i f i e d t x (c t r l , t r u e) has p r e v i o u s l y been c a l l e d ∗ /
boo l n o t i f i e d t x (

c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l
) ;

/∗ Used by t h e CAN e v e n t t r a c k e r t o i n d i c a t e t h a t ’ c t r l ’ n o t i f i e d a
∗ t r a n s m i s s i o n ∗ /

void s e t n o t i f i e d t x (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
c o n s t boo l b) ;

/∗ A s s i g n s t h e t r a n s m i s s i o n c o n t r o l l e r r o l e t o ’ c t r l ’ ∗ /
void s e t t r a n s m i s s i o n c o n t r o l l e r (

v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l
) ;

/∗ R e t u r n s a p o i n t e r t o t h e c o n t r o l l e r t h a t i s c u r r e n t l y t h e t r a n s m i s s i o n
∗ c o n t r o l l e r ∗ /

v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ g e t t r a n s m i s s i o n c o n t r o l l e r (void) ;

/∗
∗ O p e r a t i o n s o f t h e n e s t e d r e c e p t i o n b u f f e r ADT

188

C.4. can controller.h

∗ /

/∗ R e l e a s e s t h e r e c e p t i o n b u f f e r ’ b u f t o r e l e a s e ’ o f ’ c t r l ’ so t h a t i t i s f r e e
∗ t o r e c e i v e a new frame ∗ /

void r e l e a s e r x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ b u f t o r e l e a s e

) ;

/∗ R e t u r n s t h e r e c e i v e b u f f e r o f c o n t r o l l e r ’ c t r l ’ where t h e l a s t r e c e i v e d
∗ f rame has been s t o r e d ∗ /

v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ g e t r x e v e n t c a u s i n g r x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ Marks t h e r e c e i v e b u f f e r ’ b u f ’ as b e i n g t h e one which r e c e i v e d t h e l a s t
∗ f rame ∗ /

void s e t r x e v e n t c a u s i n g r x b u f f e r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l ,
v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ c o n s t buf

) ;

/∗ Reads t h e frame c o n t a i n d w i t h i n ’ b u f f e r t o r e a d ’ i n t o ’ f r a m e r e a d ’ ∗ /
void r e a d f r a m e (

v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ c o n s t b u f f e r t o r e a d ,
v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t f r a m e r e a d

) ;

/∗ R e t u r n s t r u e i f r e c e p t i o n b u f f e r 0 o f ’ c t r l ’ g e n e r a t e d a CAN combined
∗ i n t e r r u p t ; r e t u r n s f a l s e o t h e r w i s e ∗ /

boo l r x b u f f e r 0 i r q o c c u r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ C l e a r s t h e f l a g t h a t i n d i c a t e s t h a t r e c e p t i o n b u f f e r 0 o f ’ c t r l ’ caused a
∗ CAN combined i n t e r r u p t ∗ /

void c l e a r r x b u f f e r 0 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ R e t u r n s t r u e i f r e c e p t i o n b u f f e r 1 o f ’ c t r l ’ g e n e r a t e d a CAN combined
∗ i n t e r r u p t ; r e t u r n s f a l s e o t h e r w i s e ∗ /

boo l r x b u f f e r 1 i r q o c c u r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ C l e a r s t h e f l a g t h a t i n d i c a t e s t h a t r e c e p t i o n b u f f e r 1 o f ’ c t r l ’ caused a
∗ CAN combined i n t e r r u p t ∗ /

void c l e a r r x b u f f e r 1 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

189

Appendix C. Driver source code

/∗
∗ O p e r a t i o n s o f t h e n e s t e d t r a n s m i s s i o n b u f f e r ADT
∗ /

/∗ R e t u r n s t r u e i f t r a n s m i s s i o n b u f f e r 0 o f ’ c t r l ’ g e n e r a t e d a CAN combined
∗ i n t e r r u p t ; r e t u r n s f a l s e o t h e r w i s e ∗ /

boo l t x b u f f e r 0 i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ C l e a r s t h e f l a g t h a t i n d i c a t e s t h a t t r a n s m i s s i o n b u f f e r 0 o f ’ c t r l ’ caused a
∗ CAN combined i n t e r r u p t ∗ /

void c l e a r t x b u f f e r 0 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ R e t u r n s t r u e i f t r a n s m i s s i o n b u f f e r 1 o f ’ c t r l ’ g e n e r a t e d a CAN combined
∗ i n t e r r u p t ; r e t u r n s f a l s e o t h e r w i s e ∗ /

boo l t x b u f f e r 1 i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ C l e a r s t h e f l a g t h a t i n d i c a t e s t h a t t r a n s m i s s i o n b u f f e r 1 o f ’ c t r l ’ caused a
∗ CAN combined i n t e r r u p t ∗ /

void c l e a r t x b u f f e r 1 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ R e t u r n s t r u e i f t r a n s m i s s i o n b u f f e r 2 o f ’ c t r l ’ g e n e r a t e d a CAN combined
∗ i n t e r r u p t ; r e t u r n s f a l s e o t h e r w i s e ∗ /

boo l t x b u f f e r 2 i r q o c c u r r e d (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

/∗ C l e a r s t h e f l a g t h a t i n d i c a t e s t h a t t r a n s m i s s i o n b u f f e r 2 o f ’ c t r l ’ caused a
∗ CAN combined i n t e r r u p t ∗ /

void c l e a r t x b u f f e r 2 i r q (
c o n s t v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t c t r l

) ;

e n d i f /∗ CAN CONTROLLER H ∗ /

C.5. can frame.c

/∗
∗ c a n f r a m e . c
∗

190

C.5. can frame.c

∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” c a n f r a m e . h ”
i n c l u d e ” a s s e r t . h ”

boo l e q u a l s f r a m e (
c o n s t v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t frame1 ,
c o n s t v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t f rame2

)
{

i n t i ;

i f (frame1−> i d e n t i f i e r != frame2−> i d e n t i f i e r) {
re turn f a l s e ;

}

i f (frame1−>l e n g t h != frame2−>l e n g t h) {
re turn f a l s e ;

}

f o r (i = 0 ; i < frame1−>l e n g t h ; i ++) {
i f (frame1−>d a t a [i] != frame2−>d a t a [i]) {

re turn f a l s e ;
}

}
re turn t r u e ;

}

void copy f r ame (
c o n s t v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t s r c ,
v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t d s t

)
{

∗ d s t = ∗ s r c ;
}

void c o p y d a t a (
v o l a t i l e unsigned c o n s t char ∗ c o n s t i n p u t b u f f e r ,
i n t n u m b y t e s t o c o p y ,
v o l a t i l e unsigned char ∗ c o n s t o u t p u t b u f f e r

)
{

i n t b y t e i d x = 0 ;

ASSERT(0 <= n u m b y t e s t o c o p y &&

191

Appendix C. Driver source code

n u m b y t e s t o c o p y <= CAN PAYLOAD LEN MAX) ;

f o r (b y t e i d x = 0 ; b y t e i d x < n u m b y t e s t o c o p y ; b y t e i d x ++) {
o u t p u t b u f f e r [b y t e i d x] = i n p u t b u f f e r [b y t e i d x] ;

}
}

C.6. can frame.h

/∗
∗ c a n f r a m e . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f CAN FRAME H
d e f i n e CAN FRAME H

i n c l u d e ”common . h ”

/∗ Accord ing t o t h e CAN s p e c i f i c a t i o n a CAN da ta frame can c a r r y a t most 8
∗ b y t e s ∗ /

d e f i n e CAN PAYLOAD LEN MAX 8

s t r u c t c a n f r a m e {
unsigned char d a t a [CAN PAYLOAD LEN MAX] ;
unsigned char l e n g t h ;
unsigned i n t i d e n t i f i e r ;

} ;

boo l e q u a l s f r a m e (
c o n s t v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t frame1 ,
c o n s t v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t f rame2

) ;

void copy f r ame (
c o n s t v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t s r c ,
v o l a t i l e s t r u c t c a n f r a m e ∗ c o n s t d s t

) ;

void c o p y d a t a (
v o l a t i l e unsigned c o n s t char ∗ c o n s t i n p u t b u f f e r ,
i n t n u m b y t e s t o c o p y ,

192

C.7. common.h

v o l a t i l e unsigned char ∗ c o n s t o u t p u t b u f f e r
) ;

e n d i f /∗ CAN FRAME H ∗ /

C.7. common.h

/∗
∗ common . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f COMMON H
d e f i n e COMMON H

t y p e d e f enum bool enum {
f a l s e = 0 ,
t r u e

} boo l ;

d e f i n e NULL 0

e n d i f /∗ COMMON H ∗ /

C.8. device config.h

/∗
∗ d e v i c e c o n f i g . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f DEVICE CONFIG H
d e f i n e DEVICE CONFIG H

i n c l u d e <p30f6014A . h>

/∗ ∗∗∗∗∗∗∗ DEVICE CONFIGURATION ∗∗∗∗∗∗∗ ∗ /

/∗ O s c i l l a t o r c o n f i g u r a t i o n
∗
∗ O s c i l l a t o r s p r o v i d e d by t h e dsPICDEM board :
∗ − Y1 : 7 . 3 7 MHz
∗ − Y2 : 32 .768 KHz
∗ − Y3 : s o c k e t f o r e x t e r n a l o s c i l l a t o r
∗ dsPIC30F6014A i n t e r n a l o s c i l l a t o r s :

193

Appendix C. Driver source code

∗ − FRC: 7 . 3 7 MHz
∗ − LPRC: 512 KHz
∗ /

FOSC (
/∗ Clock s w i t c h i n g and f a i l s a f e c l o c k m o n i t o r o f f , i . e . do n o t d e t e c t
∗ c l o c k f a i l u r e s and do n o t s w i t c h over t o i n t e r n a l FRC o s c i l l a t o r . ∗ /

CSW FSCM OFF &
/∗ Use c r y s t a l l o s c i l l a t o r (i . e . Y1 on dsPICDEM board) m u l t i p l y i n g
∗ t h e c l o c k speed by 16 w i t h a Phase Locked−Loop . The r e s u l t i s t h a t
∗ t h e o s c i l l a t o r has a f r e q u e n c y o f 16 ∗ 7 . 3 7 = 117 .92 MHz, i . e . FOSC =
∗ 117 .92 MHz . But FOSC i s n o t t h e f r e q u e n c y used f o r t h e i n s t r u c t i o n
∗ c y c l e . The i n s t r u c t i o n c y c l e ’ s f r e q u e n c y i s FCY = FOSC/ 4 = 29 .48
∗ MHz . ∗ /

XT PLL16) ;

/∗ Watchdog t i m e r c o n f i g u r a t i o n = watchdog t i m e r o f f . ∗ /
FWDT(WDT OFF) ;

/∗ R e s e t c o n f i g u r a t i o n ∗ /
FBORPOR(

/∗ Enable brown o u t a t 20 v o l t s . ∗ /
PBOR ON & BORV 20 &
/∗ Power up t i m e r = 64ms , g i v e s t h e o s c i l l a t o r t i m e t o s t a r t and
∗ s t a b i l i z e . ∗ /

PWRT 64 &
/∗ Master c l e a r r e s e t enab led , i . e . use t h e MCLR p i n as a r e s e t s i g n a l
∗ i n s t e a d o f u s i n g i t as an IO p i n . P u l l i n g t h e MCLR p i n low w i l l
∗ r e s e t t h e dsPIC and s t a r t e x e c u t i o n from 0 x000 . ∗ /

MCLR EN) ;

/∗ Genera l Code Segment c o n f i g u r a t i o n = D i s a b l e Code P r o t e c t i o n ∗ /
FGS (CODE PROT OFF) ;

e n d i f /∗ DEVICE CONFIG H ∗ /

C.9. interrupts.c

/∗
∗ i n t e r r u p t s . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e <p30f6014A . h>
i n c l u d e ” i n t e r r u p t s . h ”
i n c l u d e ”common . h ”
i n c l u d e ” a s s e r t . h ”

194

C.9. interrupts.c

void s e t i n t e r r u p t p r i o r i t y (
i n t p r i o r i t y ,
t i n t e r r u p t i n t e r r u p t

)
{

ASSERT(INTERRUPT PRIORITY MIN <= p r i o r i t y) ;
ASSERT(p r i o r i t y <= INTERRUPT PRIORITY MAX) ;

sw i t ch (i n t e r r u p t) {
case HW INTERRUPT CAN1 :

I P C 6 b i t s . C1IP = p r i o r i t y ;
break ;

case HW INTERRUPT CAN2 :
I P C 9 b i t s . C2IP = p r i o r i t y ;
break ;

case HW INTERRUPT TIMER1 :
I P C 0 b i t s . T1IP = p r i o r i t y ;
break ;

case SW INTERRUPT CAN1 TX EVENT :
SW INTERRUPT CAN1 TX EVENT PRIORITY = p r i o r i t y ;
break ;

case SW INTERRUPT CAN1 RX EVENT :
SW INTERRUPT CAN1 RX EVENT PRIORITY = p r i o r i t y ;
break ;

case SW INTERRUPT CAN1 ERROR WARNING :
SW INTERRUPT CAN1 ERROR WARNING PRIORITY = p r i o r i t y ;
break ;

case SW INTERRUPT CAN2 TX EVENT :
SW INTERRUPT CAN2 TX EVENT PRIORITY = p r i o r i t y ;
break ;

case SW INTERRUPT CAN2 RX EVENT :
SW INTERRUPT CAN2 RX EVENT PRIORITY = p r i o r i t y ;
break ;

case SW INTERRUPT CAN2 ERROR WARNING :
SW INTERRUPT CAN2 ERROR WARNING PRIORITY = p r i o r i t y ;
break ;

d e f a u l t :
/∗ We s h o u l d n e v e r g e t he re ∗ /
ASSERT(f a l s e) ;
break ;

}
}

void e n a b l e i n t e r r u p t (
t i n t e r r u p t i n t e r r u p t

)
{

sw i t ch (i n t e r r u p t) {
case HW INTERRUPT CAN1 :

I E C 1 b i t s . C1IE = 1 ;
break ;

case HW INTERRUPT CAN2 :

195

Appendix C. Driver source code

I E C 2 b i t s . C2IE = 1 ;
break ;

case HW INTERRUPT TIMER1 :
I E C 0 b i t s . T1IE = 1 ;
break ;

case SW INTERRUPT CAN1 TX EVENT :
SW INTERRUPT CAN1 TX EVENT IE = 1 ;
break ;

case SW INTERRUPT CAN1 RX EVENT :
SW INTERRUPT CAN1 RX EVENT IE = 1 ;
break ;

case SW INTERRUPT CAN1 ERROR WARNING :
SW INTERRUPT CAN1 ERROR WARNING IE = 1 ;
break ;

case SW INTERRUPT CAN2 TX EVENT :
SW INTERRUPT CAN2 TX EVENT IE = 1 ;
break ;

case SW INTERRUPT CAN2 RX EVENT :
SW INTERRUPT CAN2 RX EVENT IE = 1 ;
break ;

case SW INTERRUPT CAN2 ERROR WARNING :
SW INTERRUPT CAN2 ERROR WARNING IE = 1 ;
break ;

d e f a u l t :
/∗ We s h o u l d n e v e r g e t he re ∗ /
ASSERT(f a l s e) ;
break ;

}
}

void d i s a b l e i n t e r r u p t (
t i n t e r r u p t i n t e r r u p t

)
{

sw i t ch (i n t e r r u p t) {
case HW INTERRUPT CAN1 :

I E C 1 b i t s . C1IE = 0 ;
break ;

case HW INTERRUPT CAN2 :
I E C 2 b i t s . C2IE = 0 ;
break ;

case HW INTERRUPT TIMER1 :
I E C 0 b i t s . T1IE = 0 ;
break ;

case SW INTERRUPT CAN1 TX EVENT :
SW INTERRUPT CAN1 TX EVENT IE = 0 ;
break ;

case SW INTERRUPT CAN1 RX EVENT :
SW INTERRUPT CAN1 RX EVENT IE = 0 ;
break ;

case SW INTERRUPT CAN1 ERROR WARNING :
SW INTERRUPT CAN1 ERROR WARNING IE = 0 ;

196

C.9. interrupts.c

break ;
case SW INTERRUPT CAN2 TX EVENT :

SW INTERRUPT CAN2 TX EVENT IE = 0 ;
break ;

case SW INTERRUPT CAN2 RX EVENT :
SW INTERRUPT CAN2 RX EVENT IE = 0 ;
break ;

case SW INTERRUPT CAN2 ERROR WARNING :
SW INTERRUPT CAN2 ERROR WARNING IE = 0 ;
break ;

d e f a u l t :
/∗ We s h o u l d n e v e r g e t he re ∗ /
ASSERT(f a l s e) ;
break ;

}
}

void s e t i n t e r r u p t f l a g (
t i n t e r r u p t i n t e r r u p t

)
{

sw i t ch (i n t e r r u p t) {
case HW INTERRUPT CAN1 :
case HW INTERRUPT CAN2 :
case HW INTERRUPT TIMER1 :

/∗ Shou ld o n l y be s e t by hardware , n o t t h r o u g h s o f t w a r e ∗ /
ASSERT(f a l s e) ;
break ;

case SW INTERRUPT CAN1 TX EVENT :
SW INTERRUPT CAN1 TX EVENT IF = 1 ;
break ;

case SW INTERRUPT CAN1 RX EVENT :
SW INTERRUPT CAN1 RX EVENT IF = 1 ;
break ;

case SW INTERRUPT CAN1 ERROR WARNING :
SW INTERRUPT CAN1 ERROR WARNING IF = 1 ;
break ;

case SW INTERRUPT CAN2 TX EVENT :
SW INTERRUPT CAN2 TX EVENT IF = 1 ;
break ;

case SW INTERRUPT CAN2 RX EVENT :
SW INTERRUPT CAN2 RX EVENT IF = 1 ;
break ;

case SW INTERRUPT CAN2 ERROR WARNING :
SW INTERRUPT CAN2 ERROR WARNING IF = 1 ;
break ;

d e f a u l t :
/∗ We s h o u l d n e v e r g e t he re ∗ /
ASSERT(f a l s e) ;
break ;

}
}

197

Appendix C. Driver source code

void c l e a r i n t e r r u p t f l a g (
t i n t e r r u p t i n t e r r u p t

)
{

sw i t ch (i n t e r r u p t) {
case HW INTERRUPT CAN1 :

I F S 1 b i t s . C1IF = 0 ;
break ;

case HW INTERRUPT CAN2 :
I F S 2 b i t s . C2IF = 0 ;
break ;

case HW INTERRUPT TIMER1 :
I F S 0 b i t s . T1IF = 0 ;
break ;

case SW INTERRUPT CAN1 TX EVENT :
SW INTERRUPT CAN1 TX EVENT IF = 0 ;
break ;

case SW INTERRUPT CAN1 RX EVENT :
SW INTERRUPT CAN1 RX EVENT IF = 0 ;
break ;

case SW INTERRUPT CAN1 ERROR WARNING :
SW INTERRUPT CAN1 ERROR WARNING IF = 0 ;
break ;

case SW INTERRUPT CAN2 TX EVENT :
SW INTERRUPT CAN2 TX EVENT IF = 0 ;
break ;

case SW INTERRUPT CAN2 RX EVENT :
SW INTERRUPT CAN2 RX EVENT IF = 0 ;
break ;

case SW INTERRUPT CAN2 ERROR WARNING :
SW INTERRUPT CAN2 ERROR WARNING IF = 0 ;
break ;

d e f a u l t :
/∗ We s h o u l d n e v e r g e t he re ∗ /
ASSERT(f a l s e) ;
break ;

}
}

C.10. interrupts.h

/∗
∗ i n t e r r u p t s . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f INTERRUPTS H
d e f i n e INTERRUPTS H

198

C.10. interrupts.h

d e f i n e INTERRUPT PRIORITY MIN 0
d e f i n e INTERRUPT PRIORITY MAX 7

t y p e d e f enum t i n t e r r u p t e n u m {
/∗ I n t e r r u p t s g e n e r a t e d by hardware ∗ /
HW INTERRUPT CAN1 ,
HW INTERRUPT CAN2 ,
HW INTERRUPT TIMER1 ,

/∗ I n t e r r u p t s g e n e r a t e d t h r o u g h s o f t w a r e by t h e
∗ CAN e v e n t t r a c k e r ∗ /

SW INTERRUPT CAN1 TX EVENT ,
SW INTERRUPT CAN1 RX EVENT ,
SW INTERRUPT CAN1 ERROR WARNING ,
SW INTERRUPT CAN2 TX EVENT ,
SW INTERRUPT CAN2 RX EVENT ,
SW INTERRUPT CAN2 ERROR WARNING

} t i n t e r r u p t ;

/∗ The dsPIC m i c r o c o n t r o l l e r does n o t p r o v i d e s o f t w a r e i n t e r r u p t s . As a
∗ workaround we use i n t e r r u p t s b e l o n g i n g t o unused hardware p e r i p h e r a l s as
∗ s o f t w a r e i n t e r r u p t s ∗ /

/∗ The f o l l o w i n g i n t e r r u p t s are o r d e r e d from h i g h e s t n a t u r a l o r d e r p r i o r i t y t o
∗ l o w e s t n a t u r a l o r d e r p r i o r i t y , i . e . t h e y are o r d e r e d by t h e p r i o r i t y t h e y
∗ w i l l have i f a l l 6 i n t e r r u p t s have t h e same u s e r s e l e c t a b l e p r i o r i t y . ∗ /

/∗ Use UART1 R e c e i v e r I n t e r r u p t as CAN t r a n s m i t e v e n t on CAN c o n t r o l l e r 1 ∗ /
d e f i n e CAN1TxEven t In t e r rup t U 1 R X I n t e r r u p t
d e f i n e SW INTERRUPT CAN1 TX EVENT PRIORITY I P C 2 b i t s . U1RXIP
d e f i n e SW INTERRUPT CAN1 TX EVENT IE I E C 0 b i t s . U1RXIE
d e f i n e SW INTERRUPT CAN1 TX EVENT IF I F S 0 b i t s . U1RXIF

/∗ Use UART1 T r a n s m i t t e r I n t e r r u p t as CAN t r a n s m i t e v e n t on CAN c o n t r o l l e r 2 ∗ /
d e f i n e CAN2TxEven t In t e r rup t U 1 T X I n t e r r u p t
d e f i n e SW INTERRUPT CAN2 TX EVENT PRIORITY I P C 2 b i t s . U1TXIP
d e f i n e SW INTERRUPT CAN2 TX EVENT IE I E C 0 b i t s . U1TXIE
d e f i n e SW INTERRUPT CAN2 TX EVENT IF I F S 0 b i t s . U1TXIF

/∗ Use E x t e r n a l I n t e r r u p t 1 as CAN r e c e i v e e v e n t on CAN c o n t r o l l e r 1 ∗ /
d e f i n e CAN1RxEven t In t e r rup t I N T 1 I n t e r r u p t
d e f i n e SW INTERRUPT CAN1 RX EVENT PRIORITY I P C 4 b i t s . INT1IP
d e f i n e SW INTERRUPT CAN1 RX EVENT IE I E C 1 b i t s . INT1IE
d e f i n e SW INTERRUPT CAN1 RX EVENT IF I F S 1 b i t s . INT1IF

/∗ Use E x t e r n a l I n t e r r u p t 2 as CAN r e c e i v e e v e n t on CAN c o n t r o l l e r 2 ∗ /
d e f i n e CAN2RxEven t In t e r rup t I N T 2 I n t e r r u p t
d e f i n e SW INTERRUPT CAN2 RX EVENT PRIORITY I P C 5 b i t s . INT2IP
d e f i n e SW INTERRUPT CAN2 RX EVENT IE I E C 1 b i t s . INT2IE

199

Appendix C. Driver source code

d e f i n e SW INTERRUPT CAN2 RX EVENT IF I F S 1 b i t s . INT2IF

/∗ Use E x t e r n a l I n t e r r u p t 3 as Error Warning e v e n t on CAN c o n t r o l l e r 1 ∗ /
d e f i n e CAN1Er rWarnEven t In t e r rup t I N T 3 I n t e r r u p t
d e f i n e SW INTERRUPT CAN1 ERROR WARNING PRIORITY I P C 9 b i t s . INT3IP
d e f i n e SW INTERRUPT CAN1 ERROR WARNING IE I E C 2 b i t s . INT3IE
d e f i n e SW INTERRUPT CAN1 ERROR WARNING IF I F S 2 b i t s . INT3IF

/∗ Use E x t e r n a l I n t e r r u p t 4 as Error Warning e v e n t on CAN c o n t r o l l e r 2 ∗ /
d e f i n e CAN2Er rWarnEven t In t e r rup t I N T 4 I n t e r r u p t
d e f i n e SW INTERRUPT CAN2 ERROR WARNING PRIORITY I P C 9 b i t s . INT4IP
d e f i n e SW INTERRUPT CAN2 ERROR WARNING IE I E C 2 b i t s . INT4IE
d e f i n e SW INTERRUPT CAN2 ERROR WARNING IF I F S 2 b i t s . INT4IF

d e f i n e e n a b l e i n t e r r u p t n e s t i n g () asm (”BCLR INTCON1 , #15 ”)

void s e t i n t e r r u p t p r i o r i t y (
i n t p r i o r i t y ,
t i n t e r r u p t i n t e r r u p t

) ;

void e n a b l e i n t e r r u p t (
t i n t e r r u p t i n t e r r u p t

) ;

void d i s a b l e i n t e r r u p t (
t i n t e r r u p t i n t e r r u p t

) ;

void s e t i n t e r r u p t f l a g (
t i n t e r r u p t i n t e r r u p t

) ;

void c l e a r i n t e r r u p t f l a g (
t i n t e r r u p t i n t e r r u p t

) ;

e n d i f /∗ INTERRUPTS H ∗ /

C.11. led.c

/∗
∗ l e d . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e <p30f6014A . h>

200

C.12. led.h

void i n i t l e d s (void)
{

/∗ The LEDs are c o n n e c t e d t o p i n s 4−7 o f p o r t D on t h e d s p i c demo
∗ board . ∗ /

/∗ LEDs i n i t i a l l y t u r n e d o f f ∗ /
PORTD = 0 ;
/∗ TRISD c o n f i g u r e s each p i n o f p o r t D as e i t h e r an i n p u t (1) or an
∗ o u t p u t (0) . S e t RD7 t o RD4 , i . e . LED4 t o LED1 , as o u t p u t s ∗ /

TRISD = 0xFF0F ;
}

/∗ L i g h t s t h e 4 LEDs t o d i s p l a y ’ b ’ i n b i n a r y ∗ /
void l e d d i s p l a y (char b)
{

PORTD &= 0xFF0F ;
PORTD |= ((b & 0x000F)<<4);

}

C.12. led.h

/∗
∗ l e d . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f LED H
d e f i n e LED H

void i n i t l e d s (void) ;

void l e d d i s p l a y (char b) ;

e n d i f /∗ LED H ∗ /

C.13. quaroutine.c

/∗
∗ q u a r o u t i n e . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” i n t e r r u p t s . h ”
i n c l u d e ” c a n c o n t r o l l e r . h ”
i n c l u d e ” a s s e r t . h ”

201

Appendix C. Driver source code

i n c l u d e ” t x t i m e r . h ”

i f d e f PROFILE
i n c l u d e ” p r o f i l e r . h ”
e n d i f

e x t er n v o l a t i l e s t r u c t c a n c o n t r o l l e r c t r l 1 , c t r l 2 ;

e x t er n boo l t x p e n d i n g ;
e x t er n s t r u c t c a n f r a m e f r a m e t o t x ;
e x t er n boo l a c t i v e c o n t r o l l e r a v a i l a b l e ;

s t a t i c i n l i n e void s i g n a l n o c o n t r o l l e r s a v a i l a b l e t o u s e r s o f t w a r e (void)
{

a c t i v e c o n t r o l l e r a v a i l a b l e = f a l s e ;
}

s t a t i c i n l i n e void q u a r a n t i n e (
/∗ C o n t r o l l e r t o be q u a r a n t i n e d ∗ /
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l ,
/∗ The o t h e r c o n t r o l l e r ∗ /
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

m a r k a s i n a c t i v e (t h i s c t r l) ;
shutdown (t h i s c t r l) ;

/∗ TODO: r e s e t c o n t r o l l e r ? ∗ /

i f (i s t r a n s m i s s i o n c o n t r o l l e r (t h i s c t r l)) {
d i s a b l e t x t i m e r () ;
i f (i s a c t i v e (o t h e r c t r l)) {

s e t t r a n s m i s s i o n c o n t r o l l e r (o t h e r c t r l) ;
i f (t x p e n d i n g && ! n o t i f i e d t x (t h i s c t r l)) {

r e q u e s t t x (o t h e r c t r l , &f r a m e t o t x) ;
r e s e t t o z e r o t x t i m e r () ;
e n a b l e t x t i m e r () ;

}
} e l s e {

s i g n a l n o c o n t r o l l e r s a v a i l a b l e t o u s e r s o f t w a r e () ;
}

} e l s e {
/∗ o t h e r c t r l i s t h e t r a n s m i s s i o n c o n t r o l l e r , t h e r e f o r e i t
∗ must be a c t i v e ∗ /

ASSERT(i s a c t i v e (o t h e r c t r l)) ;

202

C.13. quaroutine.c

/∗ Do n o t h i n g ∗ /
}

}

s t a t i c i n l i n e void h a n d l e e r r o r w a r n i n g o r t x t i m e o u t (
/∗ C o n t r o l l e r which caused t h e e r r o r warning or t r a n s m i s s i o n t i m e o u t ∗ /
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l ,
/∗ The o t h e r c o n t r o l l e r ∗ /
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

/∗ Only one o f t h e c o n t r o l l e r s must be t h e t r a n s m i s s i o n c o n t r o l l e r
∗ /

ASSERT(i s t r a n s m i s s i o n c o n t r o l l e r (t h i s c t r l) | |
i s t r a n s m i s s i o n c o n t r o l l e r (o t h e r c t r l)) ;

ASSERT (! (i s t r a n s m i s s i o n c o n t r o l l e r (t h i s c t r l) &&
i s t r a n s m i s s i o n c o n t r o l l e r (o t h e r c t r l))) ;

i f (i s a c t i v e (t h i s c t r l)) {
q u a r a n t i n e (t h i s c t r l , o t h e r c t r l) ;

} e l s e {
/∗ t h i s c t r l has a l r e a d y been q u a r a n t i n e d ∗ /
/∗ Do n o t h i n g ∗ /

}
}

/∗
∗ T h i s ISR i s i n v o k e d t h r o u g h a s o f t w a r e i n t e r r u p t s e t by
∗ t r a c k c a n e v e n t a n d i n v o k e i s r () when i t d e t e c t s t h a t an e r r o r warning
∗ was s i g n a l e d by t h e CAN1 c o n t r o l l e r .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v))
CAN1Er rWarnEven t In t e r rup t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 5 () ;
e n d i f

h a n d l e e r r o r w a r n i n g o r t x t i m e o u t (& c t r l 1 , &c t r l 2) ;

c l e a r i n t e r r u p t f l a g (SW INTERRUPT CAN1 ERROR WARNING) ;
i f d e f PROFILE

p r o f i l e r s t o p t i m e r 5 () ;
e n d i f
}

/∗
∗ T h i s ISR i s i n v o k e d t h r o u g h a s o f t w a r e i n t e r r u p t s e t by
∗ t r a c k c a n e v e n t a n d i n v o k e i s r () when i t d e t e c t s t h a t an e r r o r warning

203

Appendix C. Driver source code

∗ was s i g n a l e d by t h e CAN2 c o n t r o l l e r .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v))
CAN2Er rWarnEven t In t e r rup t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 5 () ;
e n d i f

h a n d l e e r r o r w a r n i n g o r t x t i m e o u t (& c t r l 2 , &c t r l 1) ;

c l e a r i n t e r r u p t f l a g (SW INTERRUPT CAN2 ERROR WARNING) ;
i f d e f PROFILE

p r o f i l e r s t o p t i m e r 5 () ;
e n d i f
}

/∗
∗ T h i s ISR i s i n v o k e d when t h e t r a n s m i s s i o n t i m e o u t has been reached .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) T 1 I n t e r r u p t (void)
{

i f (i s t r a n s m i s s i o n c o n t r o l l e r (& c t r l 1)) {
h a n d l e e r r o r w a r n i n g o r t x t i m e o u t (& c t r l 1 , &c t r l 2) ;

} e l s e {
h a n d l e e r r o r w a r n i n g o r t x t i m e o u t (& c t r l 2 , &c t r l 1) ;

}
}

C.14. rxroutine.c

/∗
∗ r x r o u t i n e . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” i n t e r r u p t s . h ”
i n c l u d e ”common . h ”
i n c l u d e ” a s s e r t . h ”
i n c l u d e ” c a n c o n t r o l l e r . h ”

i f d e f PROFILE
i n c l u d e ” p r o f i l e r . h ”
e n d i f

e x t er n v o l a t i l e s t r u c t c a n c o n t r o l l e r c t r l 1 , c t r l 2 ;

/∗

204

C.14. rxroutine.c

∗ V a r i a b l e s used by t h e ReCANcentra te API and t h e media management ISRs t o
∗ communicate t o each o t h e r :
∗ /

e x t er n s t r u c t c a n f r a m e f r a m e t o t x ;
e x t er n s t r u c t c a n f r a m e f r a m e t o d e l i v e r ;
e x t er n boo l t x p e n d i n g ;
e x t er n boo l t x s u c c e s s ;
e x t er n boo l r x d a t a a v a i l a b l e ;

/∗
∗ V a r i a b l e s which are s ha re d be tween media management ISRs t o c o o r d i n a t e t h e i r
∗ a c t i o n s :
∗ /

/∗ When a d e l i v e r y e v e n t o c c u r s and bo th o f t h e node ’ s CAN c o n t r o l l e r s are
∗ a c t i v e , t h e n two i n t e r r u p t s occur , one f o r each c o n t r o l l e r . The f i r s t
∗ i n v o c a t i o n o f t h e c o r r e s p o n d i n g media management ISR s e t s t h i s boo lean
∗ v a r i a b l e t o t r u e so t h a t t h e second ISR i n v o c a t i o n knows t h a t t h e d e l i v e r y
∗ e v e n t has a l r e a d y been hand led by t h e f i r s t ISR i n v o c a t i o n . ∗ /

boo l d e l i v e r y e v e n t h a n d l e d = f a l s e ;

/∗ Counter t h a t i n d i c a t e s t h e number o f t i m e s a n o t i f i c a t i o n has been o m i t t e d
∗ f rom e i t h e r t h e t r a n s m i t t i n g or t h e non−t r a n s m i t t i n g c o n t r o l l e r f o r a
∗ f rame t h a t i s t o be t r a n s m i t t e d . ∗ /

unsigned i n t o m i s s i o n c o u n t = 0 ;

/∗ The maximum p e r m i t t e d v a l u e f o r o m i s s i o n c o u n t . I f o m i s s i o n c o u n t
∗ r e a c h e s OMISSION COUNT MAX we c o n s i d e r t h e o m i s s i o n s n o t due t o a CAN
∗ i n c o n s i s t e n c y s c e n a r i o (i . e . a s c e n a r i o where some c o n t r o l l e r s , o f any node ,
∗ a c c e p t a frame w h i l e o t h e r s r e j e c t i t) b u t due t o a c r a s h o f a c o n t r o l l e r . ∗ /

c o n s t unsigned i n t OMISSION COUNT MAX = 3 ;

/∗ L e t t h e program t h a t u s e s t h i s d r i v e r know t h a t a t r a n s m i s s i o n was
∗ s u c c e s s f u l ∗ /

void s i g n a l t x s u c c e s s t o u s e r s o f t w a r e (void)
{

t x s u c c e s s = t r u e ;
t x p e n d i n g = f a l s e ;

}

void a c k o w n s u c c e s s f u l t x (void)
{

/∗ C o o r d i n a t e w i t h t h e ISR which i s i n v o k e d due t o an i n t e r r u p t
∗ f rom t h e o t h e r c o n t r o l l e r , i . e . l e t i t know t h a t t h e d e l i v e r y
∗ e v e n t has a l r e a d y been hand led . ∗ /

d e l i v e r y e v e n t h a n d l e d = t r u e ;

205

Appendix C. Driver source code

o m i s s i o n c o u n t = 0 ;

s i g n a l t x s u c c e s s t o u s e r s o f t w a r e () ;
}

s t a t i c i n l i n e void s i g n a l r x s u c c e s s t o u s e r s o f t w a r e (void)
{

r x d a t a a v a i l a b l e = t r u e ;
}

s t a t i c i n l i n e void h a n d l e r e c e p t i o n f r o m o t h e r n o d e (
c o n s t s t r u c t c a n f r a m e ∗ c o n s t r e c e i v e d f r a m e ,
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

ASSERT (! d e l i v e r y e v e n t h a n d l e d) ;
i f (n o t i f i e d r x (o t h e r c t r l)) {

/∗ Make s u r e t h a t when h a n d l e r e c e i v e e v e n t () i s e x e c u t e d
∗ aga in (due t o a r e c e i v e e v e n t n o t i f i c a t i o n from o t h e r c t r l)
∗ i t knows t h a t t h e r e c e i v e d frame has a l r e a d y been managed ∗ /

d e l i v e r y e v e n t h a n d l e d = t r u e ;
} e l s e {

/∗ Do n o t h i n g . ∗ /
/∗ o t h e r c t r l has n o t n o t i f i e d r e c e p t i o n , so we don ’ t s e t
∗ d e l i v e r y e v e n t h a n d l e d t o t r u e because no ISR w i l l be
∗ e x e c u t e d due t o o t h e r c t r l which c o u l d r e s e t i t t o f a l s e ∗ /

}
copy f r ame (r e c e i v e d f r a m e , &f r a m e t o d e l i v e r) ;
s i g n a l r x s u c c e s s t o u s e r s o f t w a r e () ;

}

s t a t i c i n l i n e void h a n d l e t x n o t i f i c a t i o n o m i s s i o n (
/∗ The c o n t r o l l e r t h a t o m i t t e d t h e t r a n s m i s s i o n n o t i f i c a t i o n ∗ /
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

/∗ In t h e comments below t h i s c t r l r e f e r s t o t h e c o n t r o l l e r which
∗ n o t i f i e d o f t h e r e c e p t i o n o f a frame and t h r o u g h whose ISR we g o t
∗ here . ∗ /

/∗ P r e c o n d i t i o n : o t h e r c t r l d i d n o t n o t i f y a t r a n s m i s s i o n . ∗ /
ASSERT (! n o t i f i e d t x (o t h e r c t r l)) ;

/∗ P o s s i b l e r e a s o n s f o r o t h e r c t r l o m i t i n g t h e n o t i f i c a t i o n o f a
∗ t r a n s m i s s i o n :
∗ 1) Both t h i s c t r l and o t h e r c t r l d e t e c t e d an e r r o r i n t h e l a s t b i t
∗ o f t h e EOF . The r e c e i v i n g c o n t r o l l e r , i . e . t h i s c t r l , a c c e p t e d t h e

206

C.14. rxroutine.c

∗ f rame because i n CAN r e c e i v i n g c o n t r o l l e r s must a c c e p t f ra me s w i t h
∗ t h e l a s t b i t e r r o n e o u s . On t h e o t h e r hand t h e t r a n s m i t t i n g
∗ c o n t r o l l e r , i . e . o t h e r c t r l , d i d n o t c o n s i d e r t h e t r a n s m i s s i o n as
∗ s u c c e s s f u l and t h e r e f o r e o m i t t e d t h e n o t i f i c a t i o n .
∗ 2) o t h e r c t r l d e t e c t e d an e r r o r a f t e r t h e CRC b u t c o u l d n o t
∗ g l o b a l i z e t h e e r r o r because a f a u l t i n i t s u p l i n k p r e v e n t e d i t from
∗ s e n d i n g an e r r o r f rame . T h e r e f o r e o t h e r c t r l c o n s i d e r e d t h e
∗ t r a n s m i s s i o n as f a i l e d w h i l e a l l o t h e r c o n t r o l l e r s (t h i s c t r l and
∗ t h e ones from t h e o t h e r nodes) d i d n o t r e c e i v e
∗ t h e e r r o r f rame and t h e r e f o r e c o n s i d e r e d t h e r e c e i v e d frame as
∗ c o r r e c t .
∗ 3) A f a u l t occured i n t h i s c t r l ’ s d o w n l i n k a f t e r t h e ACK b i t ,
∗ p r e v e n t i n g i t from r e c e i v i n g an e r r o r f rame and l e a d i n g i t t o
∗ e r r o n e o u s l y a c c e p t t h e f rame . On t h e o t h e r hand o t h e r c t r l d e t e c t e d
∗ t h e e r r o r f rame and c o r r e c t l y c o n s i d e r e d t h e t r a n s m i s s i o n as f a i l e d .
∗ 4) o t h e r c t r l c r a s h e d i n such a way t h a t i t was a b l e t o t r a n s m i t t h e
∗ f rame b u t i t was n o t a b l e t o n o t i f y o f t h e t r a n s m i s s i o n , e . g . i t
∗ c r a s h e d a f t e r s e n d i n g t h e CRC .
∗
∗ A l l 4 c a s e s can cause i n c o n s i s t e n c i e s , i . e . some c o n t r o l l e r s r e c e i v e
∗ t h e f rame w h i l e o t h e r s do n o t . As OMISSION COUNT MAX must have a
∗ v a l u e l a r g e r than or e q u a l t o t h e maximum p o s s i b l e number o f
∗ c o n s e c u t i v e i n c o n s i s t e n c i e s , i f t h e f o l l o w i n n g ASSERT f a i l s t h e n t h e
∗ v a l u e o f OMISSION COUNT MAX i s p r o b a b l y t o s m a l l . ∗ /

ASSERT(o m i s s i o n c o u n t < OMISSION COUNT MAX) ;

/∗ To s o l v e t h e i n c o n s i s t e n c i e s t h e f rame has t o be r e t r a n s m i t t e d ,
∗ p o s s i b l y l e a d i n g some c o n t r o l l e r s t o r e c e i v e a d u p l i c a t e f rame but ,
∗ and t h i s i s t h e i m p o r t a n t p o i n t , making s u r e t h a t e v e r y c o n t r o l l e r
∗ g e t s a t l e a s t one copy .
∗
∗ I f o t h e r c t r l o m i t t e d f o r re aso n 1) , o t h e r c t r l w i l l r e t r a n s m i t t h e
∗ f rame .
∗
∗ I f o t h e r c t r l o m i t t e d f o r re aso n 2) and t h e f a u l t on o t h e r c t r l ’ s
∗ u p l i n k was t r a n s i e n t t h e n o t h e r c t r l w i l l r e t r a n s m i t and t h e
∗ r e t r a n s m i s s i o n w i l l p r o b a b l y be s u c c e s s f u l (i f not , i t w i l l be
∗ hand led aga in by t h e ISRs) . I f o t h e r c t r l o m i t t e d f o r re aso n 2) and
∗ t h e f a u l t on o t h e r c t r l ’ s u p l i n k i s permanent t h e n o t h e r c t r l w i l l
∗ be q u a r a n t i n e d (e i t h e r because i t r e a c h e s t h e e r r o r warning l i m i t or
∗ because t h e t r a n s m i t t i m e o u t e x p i r e s) and t h i s c t r l w i l l become t h e
∗ new t r a n s m i s s i o n c o n t r o l l e r and i t w i l l be i n s t r u c t e d t o r e t r a n s m i t
∗ t h e f rame .
∗
∗ I f r eas on 3) caused t h e o m i s s i o n t h e n o t h e r c t r l w i l l r e t r a n s m i t t h e
∗ f rame . I f t h e d o wn l i n k f a u l t i n r ea so n 3) i s permanent t h e n any
∗ f u r t h e r r e t r a n s m i s s i o n s w i l l n o t be n o t i f i e d by t h i s c t r l l e a d i n g
∗ o m i s s i o n c o u n t t o reach OMISSION COUNT MAX , p o i n t a t which t h e
∗ t r a n s m i s s i o n r o u t i n e w i l l c o n s i d e r t h e t r a n s m i s s i o n as s u c c e s s f u l .
∗ F u r t h e r t r a n s m i s s i o n s t h r o u g h o t h e r c t r l w i l l a l s o be c o n s i d e r e d
∗ s u c c e s s f u l as o m i s s i o n c o u n t w i l l n o t be r e s e t .
∗
∗ I f r eas on 4) caused t h e o m i s s i o n t h e n t h e t r a n s m i s s i o n t i m e o u t w i l l
∗ e x p i r e l e a d i n g o t h e r c t r l t o be q u a r a n t i n e d and t h i s c t r l t o become

207

Appendix C. Driver source code

∗ t h e new t r a n s m i s s i o n c o n t r o l l e r . Fur thermore t h e q u a r a n t i n e r o u t i n e
∗ w i l l i n s t r u c t t h e new t r a n s m i s s i o n c o n t r o l l e r t o r e t r a n s m i t t h e
∗ f rame .
∗
∗ Whatever caused t h e o m i s s i o n o f o t h e r c t r l , t h e f rame w i l l be
∗ r e t r a n s m i t t e d w i t h o u t any f u r t h e r a c t i o n s here . A l l we have t o do
∗ t h e r e f o r e i s t o i n c r e a s e o m i s s i o n c o u n t . ∗ /

o m i s s i o n c o u n t ++;
}

s t a t i c i n l i n e void h a n d l e f r a m e r e c e p t i o n (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l ,
v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ c o n s t r x b u f f e r t o r e a d

)
{

s t r u c t c a n f r a m e r e c e i v e d f r a m e ;
boo l r e c e i v e d o u r o w n f r a m e ;

r e a d f r a m e (r x b u f f e r t o r e a d , &r e c e i v e d f r a m e) ;

/∗ I f o t h e r c t r l i s a c t i v e i t s h o u l d have n o t i f i e d o f a r e c e p t i o n or
∗ t r a n s m i s s i o n by now (u n l e s s t h e r e was a f a u l t) . ∗ /

i f (n o t i f i e d t x (o t h e r c t r l)) {
a c k o w n s u c c e s s f u l t x () ;

} e l s e {
/∗ Check why o t h e r c t r l d i d n o t n o t i f y a t r a n s m i s s i o n ∗ /
i f (! t x p e n d i n g) {

/∗ E v e r y t h i n g OK, we don ’ t have a n y t h i n g t o t r a n s m i t
∗ t h e r e f o r e t h e frame was s e n t by a n o t h e r node and
∗ c o n s e q u e n t l y o t h e r c t r l was n o t supposed t o n o t i f y a
∗ t r a n s m i s s i o n ∗ /

h a n d l e r e c e p t i o n f r o m o t h e r n o d e (& r e c e i v e d f r a m e ,
o t h e r c t r l) ;

} e l s e {
r e c e i v e d o u r o w n f r a m e = e q u a l s f r a m e (& r e c e i v e d f r a m e ,

&f r a m e t o t x) ;
i f (! r e c e i v e d o u r o w n f r a m e) {

/∗ E v e r y t h i n g OK, a l t h o u g h a t r a n s m i s s i o n i s
∗ pending , t h e frame r e c e i v e d was n o t s e n t by
∗ o t h e r c t r l ∗ /

h a n d l e r e c e p t i o n f r o m o t h e r n o d e (
&r e c e i v e d f r a m e , o t h e r c t r l) ;

} e l s e {
/∗ F a u l t d e t e c t e d , o t h e r c t r l s h o u l d have
∗ n o t i f i e d a t r a n s m i s s i o n ∗ /

h a n d l e t x n o t i f i c a t i o n o m i s s i o n (o t h e r c t r l) ;
}

}
}

}

208

C.14. rxroutine.c

/∗
∗ Handles a r e c e i v e e v e n t n o t i f i e d by t h i s c t r l .
∗ /

s t a t i c i n l i n e void h a n d l e r e c e i v e e v e n t (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l ,
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

v o l a t i l e s t r u c t r x b u f f e r s t r u c t ∗ r x b u f f e r l o a d e d ;

ASSERT(n o t i f i e d r x (t h i s c t r l)) ;

/∗ R e s e t t h i s c t r l ’ s r e c e i v e n o t i f i e d f l a g f o r t h e n e x t d e l i v e r y e v e n t
∗ (i t has been p r e v i o u s l y s e t by t r a c k c a n e v e n t a n d i n v o k e i s r ()) . ∗ /

s e t n o t i f i e d r x (t h i s c t r l , f a l s e) ;

/∗ Determine i n which r e c e i v e b u f f e r t h e r e c e i v e d frame has been s t o r e d
∗ /

r x b u f f e r l o a d e d = g e t r x e v e n t c a u s i n g r x b u f f e r (t h i s c t r l) ;

/∗ I f a media management ISR a l r e a d y hand led t h e c u r r e n t d e l i v e r y e v e n t
∗ ∗ /

i f (d e l i v e r y e v e n t h a n d l e d) {
/∗ R e s e t f o r t h e n e x t d e l i v e r y e v e n t ∗ /
d e l i v e r y e v e n t h a n d l e d = f a l s e ;

} e l s e {
h a n d l e f r a m e r e c e p t i o n (o t h e r c t r l , r x b u f f e r l o a d e d) ;

}

r e l e a s e r x b u f f e r (t h i s c t r l , r x b u f f e r l o a d e d) ;
}

/∗
∗ T h i s ISR i s i n v o k e d t h r o u g h a s o f t w a r e i n t e r r u p t s e t by
∗ t r a c k c a n e v e n t a n d i n v o k e i s r () when i t d e t e c t s t h a t a frame was r e c e i v e d
∗ on t h e CAN1 c o n t r o l l e r .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) CAN1RxEven t In t e r rup t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 3 () ;
e n d i f

/∗ ACK s o f t w a r e i n t e r r u p t s e t by t r a c k c a n e v e n t a n d i n v o k e i s r () ∗ /
c l e a r i n t e r r u p t f l a g (SW INTERRUPT CAN1 RX EVENT) ;

h a n d l e r e c e i v e e v e n t (& c t r l 1 , &c t r l 2) ;
i f d e f PROFILE

p r o f i l e r s t o p t i m e r 3 () ;
e n d i f
}

209

Appendix C. Driver source code

/∗
∗ T h i s ISR i s i n v o k e d t h r o u g h a s o f t w a r e i n t e r r u p t s e t by
∗ t r a c k c a n e v e n t a n d i n v o k e i s r () when i t d e t e c t s t h a t a f rame was r e c e i v e d
∗ on t h e CAN2 c o n t r o l l e r .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) CAN2RxEven t In t e r rup t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 3 () ;
e n d i f

/∗ ACK s o f t w a r e i n t e r r u p t s e t by t r a c k c a n e v e n t a n d i n v o k e i s r () ∗ /
c l e a r i n t e r r u p t f l a g (SW INTERRUPT CAN2 RX EVENT) ;

h a n d l e r e c e i v e e v e n t (& c t r l 2 , &c t r l 1) ;
i f d e f PROFILE

p r o f i l e r s t o p t i m e r 3 () ;
e n d i f
}

C.15. rxroutine.h

/∗
∗ r x r o u t i n e . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

void a c k o w n s u c c e s s f u l t x (void) ;

void s i g n a l t x s u c c e s s t o u s e r s o f t w a r e (void) ;

C.16. tracker.c

/∗
∗ t r a c k e r . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

/∗
∗ CAN e v e n t t r a c k e r
∗
∗ Each non− f a u l t y CAN c o n t r o l l e r g e n e r a t e s an i n t e r r u p t f o r e v e r y d e l i v e r y
∗ e v e n t (i . e . a r e c e p t i o n or a t r a n s m i s s i o n o f a frame) .
∗ /

i n c l u d e ” i n t e r r u p t s . h ”
i n c l u d e ”common . h ”
i n c l u d e ” c a n c o n t r o l l e r . h ”
i n c l u d e ” a s s e r t . h ”

210

C.16. tracker.c

i f d e f PROFILE
i n c l u d e ” p r o f i l e r . h ”
e n d i f

e x t er n v o l a t i l e s t r u c t c a n c o n t r o l l e r c t r l 1 ;
e x t er n v o l a t i l e s t r u c t c a n c o n t r o l l e r c t r l 2 ;

/∗
∗ Keeps t r a c k o f which p a r t i c u l a r CAN i n t e r r u p t o c c u r r e d and i n v o k e s t h r o u g h a
∗ s o f t w a r e i n t e r r u p t a c o r r e s p o n d i n g media management ISR
∗ (CAN1RxEven t In t e r rup t , C A N 1 T x E v e n t I n t e r r u p t , CAN1ErrWarnEven t In ter rup t ,
∗ CAN2RxEven t In t e r rup t , C A N 2 T x E v e n t I n t e r r u p t or CAN2ErrWarnEven t In t e r rup t)
∗ t o ha nd l e t h e p a r t i c u l a r CAN i n t e r r u p t .
∗
∗ Keeping t r a c k o f t h e CAN i n t e r r u p t s i s needed so t h a t a media management ISR
∗ h a n d l i n g an i n t e r r u p t from one c o n t r o l l e r can know whe ther an i n t e r r u p t
∗ occured on t h e o t h e r c o n t r o l l e r and o f what t y p e i t was .
∗
∗ The media management ISRs have lower p r i o r i t y than C 1 I n t e r r u p t and
∗ C 2 I n t e r r u p t so t h a t C 1 I n t e r r u p t or C 2 I n t e r r u p t can i n t e r r u p t t h e media
∗ management ISRs . A l so n o t e t h a t because o f C 1 I n t e r r u p t and C 2 I n t e r r u p t ’ s
∗ h i g h e r p r i o r i t y t h e media management ISR i n v o k e d w i l l n o t be n e s t e d b u t
∗ e x e c u t e d a f t e r C 1 I n t e r r u p t (or C 2 I n t e r r u p t r e s p e c t i v e l y) f i n i s h e s .
∗ /

s t a t i c i n l i n e void t r a c k c a n e v e n t a n d i n v o k e i s r (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l ,
t i n t e r r u p t t x e v e n t i n t e r r u p t ,
t i n t e r r u p t r x e v e n t i n t e r r u p t ,
t i n t e r r u p t e r r o r w a r n i n g i n t e r r u p t

)
{

/∗ p r e c o n d i t i o n : A CAN combined i n t e r r u p t occured and we a r r i v e d here
∗ t h r o u g h C 1 I n t e r r u p t or C 2 I n t e r r u p t . ∗ /

/∗ D i s c e r n what e x a c t l y caused t h e CAN i n t e r r u p t . ∗ /

i f (t x b u f f e r 0 i r q o c c u r r e d (t h i s c t r l)) {
/∗ A s s e r t o n l y one t r a n s m i s s i o n c o n t r o l l e r n o t i f i e d ∗ /
ASSERT (! t x b u f f e r 1 i r q o c c u r r e d (t h i s c t r l) &&

! t x b u f f e r 2 i r q o c c u r r e d (t h i s c t r l)) ;

/∗ Keep t r a c k o f t h e f a c t t h a t a t r a n s m i s s i o n o c c u r r e d on
∗ t h i s c t r l . ∗ /

s e t n o t i f i e d t x (t h i s c t r l , t r u e) ;

/∗ Genera te an i n t e r r u p t which w i l l i n v o k e (a f t e r t h e c u r r e n t
∗ ISR f i n i s h e s) a media management ISR t o ha nd l e t h e t r a n s m i t

211

Appendix C. Driver source code

∗ e v e n t t h a t o c c u r r e d on t h i s c t r l . The i n v o k e d ISR w i l l be
∗ C A N 1 T x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 1) or
∗ C A N 2 T x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 2) . ∗ /

s e t i n t e r r u p t f l a g (t x e v e n t i n t e r r u p t) ;

/∗ Acknowledge t r a n s m i t b u f f e r 0 t r a n s m i t t e d i n t e r r u p t ∗ /
c l e a r t x b u f f e r 0 i r q (t h i s c t r l) ;

} e l s e i f (t x b u f f e r 1 i r q o c c u r r e d (t h i s c t r l)) {
/∗ A s s e r t o n l y one t r a n s m i s s i o n c o n t r o l l e r n o t i f i e d ∗ /
ASSERT (! t x b u f f e r 0 i r q o c c u r r e d (t h i s c t r l) &&

! t x b u f f e r 2 i r q o c c u r r e d (t h i s c t r l)) ;

/∗ Keep t r a c k o f t h e f a c t t h a t a t r a n s m i s s i o n o c c u r r e d on
∗ t h i s c t r l . ∗ /

s e t n o t i f i e d t x (t h i s c t r l , t r u e) ;

/∗ Genera te an i n t e r r u p t which w i l l i n v o k e (a f t e r t h e c u r r e n t
∗ ISR f i n i s h e s) a media management ISR t o ha nd l e t h e t r a n s m i t
∗ e v e n t t h a t o c c u r r e d on t h i s c t r l . The i n v o k e d ISR w i l l be
∗ C A N 1 T x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 1) or
∗ C A N 2 T x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 2) . ∗ /

s e t i n t e r r u p t f l a g (t x e v e n t i n t e r r u p t) ;

/∗ Acknowledge t r a n s m i t b u f f e r 0 t r a n s m i t t e d i n t e r r u p t ∗ /
c l e a r t x b u f f e r 1 i r q (t h i s c t r l) ;

} e l s e i f (t x b u f f e r 2 i r q o c c u r r e d (t h i s c t r l)) {
/∗ A s s e r t o n l y one t r a n s m i s s i o n c o n t r o l l e r n o t i f i e d ∗ /
ASSERT (! t x b u f f e r 0 i r q o c c u r r e d (t h i s c t r l) &&

! t x b u f f e r 1 i r q o c c u r r e d (t h i s c t r l)) ;

/∗ Keep t r a c k o f t h e f a c t t h a t a t r a n s m i s s i o n o c c u r r e d on
∗ t h i s c t r l . ∗ /

s e t n o t i f i e d t x (t h i s c t r l , t r u e) ;

/∗ Genera te an i n t e r r u p t which w i l l i n v o k e (a f t e r t h e c u r r e n t
∗ ISR f i n i s h e s) a media management ISR t o ha nd l e t h e t r a n s m i t
∗ e v e n t t h a t o c c u r r e d on t h i s c t r l . The i n v o k e d ISR w i l l be
∗ C A N 1 T x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 1) or
∗ C A N 2 T x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 2) . ∗ /

s e t i n t e r r u p t f l a g (t x e v e n t i n t e r r u p t) ;

/∗ Acknowledge t r a n s m i t b u f f e r 0 t r a n s m i t t e d i n t e r r u p t ∗ /
c l e a r t x b u f f e r 2 i r q (t h i s c t r l) ;

} e l s e i f (r x b u f f e r 0 i r q o c c u r e d (t h i s c t r l)) {
/∗ A s s e r t t h e r e i s o n l y one r e c e i v e b u f f e r l oa de d ∗ /
ASSERT (! r x b u f f e r 1 i r q o c c u r e d (t h i s c t r l)) ;

/∗ Keep t r a c k o f t h e f a c t t h a t a r e c e p t i o n o c c u r r e d on
∗ t h i s c t r l . ∗ /

s e t n o t i f i e d r x (t h i s c t r l , t r u e) ;

/∗ L e t t h e r x r o u t i n e ISR know which r e c e i v e b u f f e r t o read ∗ /
s e t r x e v e n t c a u s i n g r x b u f f e r (t h i s c t r l ,

t h i s c t r l −>r x b u f f e r [0]) ;

212

C.16. tracker.c

/∗ Genera te an i n t e r r u p t which w i l l i n v o k e (a f t e r t h e c u r r e n t
∗ ISR f i n i s h e s) t h e r x r o u t i n e ISR . The i n v o k e d ISR w i l l be
∗ C A N 1 R x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 1) or
∗ C A N 2 R x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 2) . ∗ /

s e t i n t e r r u p t f l a g (r x e v e n t i n t e r r u p t) ;

/∗ Acknowledge r e c e i v e b u f f e r 0 lo ad ed i n t e r r u p t ∗ /
c l e a r r x b u f f e r 0 i r q (t h i s c t r l) ;

} e l s e i f (r x b u f f e r 1 i r q o c c u r e d (t h i s c t r l)) {
/∗ A s s e r t t h e r e i s o n l y one r e c e i v e b u f f e r l oa de d ∗ /
ASSERT (! r x b u f f e r 0 i r q o c c u r e d (t h i s c t r l)) ;

/∗ Keep t r a c k o f t h e f a c t t h a t a r e c e p t i o n o c c u r r e d on
∗ t h i s c t r l . ∗ /

s e t n o t i f i e d r x (t h i s c t r l , t r u e) ;

/∗ L e t t h e r x r o u t i n e ISR know which r e c e i v e b u f f e r t o read ∗ /
s e t r x e v e n t c a u s i n g r x b u f f e r (t h i s c t r l ,

t h i s c t r l −>r x b u f f e r [1]) ;

/∗ Genera te an i n t e r r u p t which w i l l i n v o k e (a f t e r t h e c u r r e n t
∗ ISR f i n i s h e s) t h e r x r o u t i n e ISR . The i n v o k e d ISR w i l l be
∗ C A N 1 R x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 1) or
∗ C A N 2 R x E v e n t I n t e r r u p t (i f t h i s c t r l i s c t r l 2) . ∗ /

s e t i n t e r r u p t f l a g (r x e v e n t i n t e r r u p t) ;

/∗ Acknowledge r e c e i v e b u f f e r 1 lo ad ed i n t e r r u p t ∗ /
c l e a r r x b u f f e r 1 i r q (t h i s c t r l) ;

}

/∗ An e r r o r warning can happen j u s t a f t e r a r e c e p t i o n or t r a n s m i s s i o n ,
∗ so when t h e t r a c k e r i s i n v o k e d bo th a t r a n s m i s s i o n / r e c e p t i o n and
∗ an e r r o r warning may be pend ing . ∗ /

i f (e r r o r i r q o c c u r r e d (t h i s c t r l)) {
/∗ Keeping t r a c k o f t h e f a c t t h a t an e r r o r o c c u r r e d i s n o t
∗ n e c e s s a r y . ∗ /

/∗ Genera te an i n t e r r u p t which w i l l i n v o k e (a f t e r t h e c u r r e n t
∗ ISR f i n i s h e s) a media management ISR t o ha nd l e t h e e r r o r
∗ warning t h a t o c c u r r e d on t h i s c t r l . The i n v o k e d ISR w i l l be
∗ CAN1ErrWarnEven t In t e r rup t (i f t h i s c t r l i s c t r l 1) or
∗ CAN2ErrWarnEven t In t e r rup t (i f t h i s c t r l i s c t r l 2) . ∗ /

s e t i n t e r r u p t f l a g (e r r o r w a r n i n g i n t e r r u p t) ;
}

}

/∗
∗ Combined CAN1 ISR
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) C 1 I n t e r r u p t (void)

213

Appendix C. Driver source code

{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 2 () ;
e n d i f

/∗ Acknowledge t h e CAN1 combined i n t e r r u p t ∗ /
c l e a r i n t e r r u p t f l a g (HW INTERRUPT CAN1) ;

t r a c k c a n e v e n t a n d i n v o k e i s r (& c t r l 1 , SW INTERRUPT CAN1 TX EVENT ,
SW INTERRUPT CAN1 RX EVENT , SW INTERRUPT CAN1 ERROR WARNING) ;

i f d e f PROFILE
p r o f i l e r s t o p t i m e r 2 () ;

e n d i f
}

/∗
∗ Combined CAN2 ISR
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) C 2 I n t e r r u p t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 2 () ;
e n d i f

/∗ Acknowledge t h e CAN2 combined i n t e r r u p t ∗ /
c l e a r i n t e r r u p t f l a g (HW INTERRUPT CAN2) ;

t r a c k c a n e v e n t a n d i n v o k e i s r (& c t r l 2 , SW INTERRUPT CAN2 TX EVENT ,
SW INTERRUPT CAN2 RX EVENT , SW INTERRUPT CAN2 ERROR WARNING) ;

i f d e f PROFILE
p r o f i l e r s t o p t i m e r 2 () ;

e n d i f
}

C.17. txroutine.c

/∗
∗ t x r o u t i n e . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” i n t e r r u p t s . h ”
i n c l u d e ” c a n f r a m e . h ”
i n c l u d e ” c a n c o n t r o l l e r . h ”
i n c l u d e ”common . h ”
i n c l u d e ” a s s e r t . h ”
i n c l u d e ” t x t i m e r . h ”
i n c l u d e ” r x r o u t i n e . h ”

i f d e f PROFILE
i n c l u d e ” p r o f i l e r . h ”
e n d i f

214

C.17. txroutine.c

e x t er n v o l a t i l e s t r u c t c a n c o n t r o l l e r c t r l 1 , c t r l 2 ;

e x t er n s t r u c t c a n f r a m e f r a m e t o t x ;

e x t er n boo l d e l i v e r y e v e n t h a n d l e d ;

e x t er n unsigned i n t o m i s s i o n c o u n t ;

e x t er n c o n s t unsigned i n t OMISSION COUNT MAX ;

s t a t i c i n l i n e void h a n d l e r x n o t i f i c a t i o n o m i s s i o n (
/∗ The t r a n s m i s s i o n c o n t r o l l e r ∗ /
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l

)
{

i f (o m i s s i o n c o u n t < OMISSION COUNT MAX) {
o m i s s i o n c o u n t ++;

/∗ P o s s i b l e r e a s o n s why o t h e r c t r l , i . e . t h e non−t r a n s m i s s i o n
∗ c o n t r o l l e r , o m i t t e d t h e n o t i f i c a t i o n o f a r e c e p t i o n :
∗ 1) E r r o r s a t t h e EOF l e d t h e non−t r a n s m i s s i o n c o n t r o l l e r t o
∗ r e j e c t t h e frame w h i l e t h e t r a n s m i s s i o n c o n t r o l l e r
∗ c o n s i d e r e d t h e t r a n s m i s s i o n c o r r e c t .
∗ 2) The non−t r a n s m i s s i o n c o n t r o l l e r or a c o n t r o l l e r o f
∗ a n o t h e r node s e n t an e r r o r frame , b u t due t o a f a u l t i n t h e
∗ t r a n s m i s s i o n c o n t r o l l e r ’ s d o w n l i n k t h e t r a n s m i s s i o n
∗ c o n t r o l l e r d i d n o t r e c e i v e t h e e r r o r f rame and i t
∗ e r r o n e o u s l y n o t i f i e d a t r a n s m i s s i o n . On t h e o t h e r hand t h e
∗ non−t r a n s m i s s i o n c o n t r o l l e r c o r r e c t l y d i s c a r d e d t h e frame
∗ and t h e r e f o r e d idn ’ t n o t i f y .
∗ 3) The non−t r a n s m i s s i o n c o n t r o l l e r d e t e c t e d an e r r o r b u t
∗ wasn ’ t a b l e t o g l o b a l i z e i t because o f a f a u l t i n i t s u p l i n k .
∗ T h e r e f o r e i t d i s c a r d e d t h e frame w h i l e a l l o t h e r c o n t r o l l e r s
∗ a c c e p t e d i t .
∗ 4) The non−t r a n s m i s s i o n c o n t r o l l e r c r a s h e d b u t an ACK b i t
∗ was s e n t by a n o t h e r node or by t h e non−t r a n s m i s s i o n
∗ c o n t r o l l e r b e f o r e i t c r a s h e d .
∗
∗ These s c e n a r i o s may have l e d t o i n c o n s i s t e n c i e s , i . e . some
∗ nodes a c c e p t i n g t h e frame and o t h e r s d i s c a r d i n g i t .
∗ T h e r e f o r e we c a r r y o u t a r e t r a n s m i s s i o n t o be s u r e t h a t a l l
∗ nodes g e t a t l e a s t one copy o f t h e frame . ∗ /

r e q u e s t t x (t h i s c t r l , &f r a m e t o t x) ;
r e s e t t o z e r o t x t i m e r () ;

} e l s e {
/∗ There have been t o o many o m i s s i o n s . The o m i s s i o n s t h e r e f o r e
∗ ca nn o t be due t o p o t e n t i a l CAN i n c o n s i s t e n c y s c e n a r i o s b u t
∗ have t o be due t o a c r a s h o f t h e non−t r a n s m i s s i o n c o n t r o l l e r

215

Appendix C. Driver source code

∗ or a permanent f a i l u r e a t t h e non−t r a n s m i s s i o n c o n t r o l l e r ’ s
∗ l i n k . C a r ry i n g o u t y e t a n o t h e r r e t r a n s m i s s i o n doesn ’ t make
∗ s e n s e as t h e non−t r a n s m i s s i o n c o n t r o l l e r won ’ t be a b l e t o
∗ r e c e i v e i t anyway and t h e c o n t r o l l e r s o f t h e o t h e r nodes
∗ w i l l most c e r t a i n l y have r e c e i v e d t h e frame a l r e a d y due t o
∗ t h e p r e v i o u s r e t r a n s m i s s i o n s . We t h e r e f o r e c o n s i d e r t h e
∗ t r a n s m i s s i o n a s u c c e s s . ∗ /

s i g n a l t x s u c c e s s t o u s e r s o f t w a r e () ;

/∗ TODO: Mark o t h e r c t r l as i n a c t i v e ? ∗ /
}

}

s t a t i c i n l i n e void h a n d l e f r a m e t r a n s m i s s i o n (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l ,
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

/∗ I f o t h e r c t r l i s a c t i v e i t s h o u l d have n o t i f i e d o f a r e c e p t i o n by
∗ now (u n l e s s t h e r e was a f a u l t) . ∗ /

i f (n o t i f i e d r x (o t h e r c t r l)) {
a c k o w n s u c c e s s f u l t x () ;

} e l s e {
h a n d l e r x n o t i f i c a t i o n o m i s s i o n (t h i s c t r l) ;

}
}

s t a t i c i n l i n e void h a n d l e t r a n s m i t e v e n t (
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t t h i s c t r l ,
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ c o n s t o t h e r c t r l

)
{

ASSERT(n o t i f i e d t x (t h i s c t r l)) ;

/∗ R e s e t t h i s c t r l ’ s t r a n s m i t n o t i f i e d f l a g f o r t h e n e x t d e l i v e r y e v e n t
∗ (i t has been p r e v i o u s l y s e t by t r a c k c a n e v e n t a n d i n v o k e i s r ()) ∗ /

s e t n o t i f i e d t x (t h i s c t r l , f a l s e) ;

/∗ Cancel t h e t r a n s m i s s i o n t i m e o u t ∗ /
d i s a b l e t x t i m e r () ;

/∗ I f a media management ISR (i . e . C A N 1 R x E v e n t I n t e r r u p t or
∗ C A N 2 R x E v e n t I n t e r r u p t) a l r e a d y hand led t h e c u r r e n t d e l i v e r y e v e n t ∗ /

i f (d e l i v e r y e v e n t h a n d l e d) {
/∗ R e s e t f o r t h e n e x t d e l i v e r y e v e n t ∗ /
d e l i v e r y e v e n t h a n d l e d = f a l s e ;

} e l s e {
h a n d l e f r a m e t r a n s m i s s i o n (t h i s c t r l , o t h e r c t r l) ;

}

216

C.18. tx timer.c

}

/∗
∗ T h i s ISR i s i n v o k e d t h r o u g h a s o f t w a r e i n t e r r u p t s e t by
∗ t r a c k c a n e v e n t a n d i n v o k e i s r () when i t d e t e c t s t h a t a frame was
∗ t r a n s m i t t e d on t h e CAN1 c o n t r o l l e r .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) CAN1TxEven t In t e r rup t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 4 () ;
e n d i f

/∗ ACK s o f t w a r e i n t e r r u p t s e t by t r a c k c a n e v e n t a n d i n v o k e i s r () ∗ /
c l e a r i n t e r r u p t f l a g (SW INTERRUPT CAN1 TX EVENT) ;

h a n d l e t r a n s m i t e v e n t (& c t r l 1 , &c t r l 2) ;
i f d e f PROFILE

p r o f i l e r s t o p t i m e r 4 () ;
e n d i f
}

/∗
∗ T h i s ISR i s i n v o k e d t h r o u g h a s o f t w a r e i n t e r r u p t s e t by
∗ t r a c k c a n e v e n t a n d i n v o k e i s r () when i t d e t e c t s t h a t a frame was
∗ t r a n s m i t t e d on t h e CAN2 c o n t r o l l e r .
∗ /

void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) CAN2TxEven t In t e r rup t (void)
{
i f d e f PROFILE

p r o f i l e r s t a r t t i m e r 4 () ;
e n d i f

/∗ ACK s o f t w a r e i n t e r r u p t s e t by t r a c k c a n e v e n t a n d i n v o k e i s r () ∗ /
c l e a r i n t e r r u p t f l a g (SW INTERRUPT CAN2 TX EVENT) ;

h a n d l e t r a n s m i t e v e n t (& c t r l 2 , &c t r l 1) ;
i f d e f PROFILE

p r o f i l e r s t o p t i m e r 4 () ;
e n d i f
}

C.18. tx timer.c

/∗
∗ t x t i m e r . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” i n t e r r u p t s . h ”

217

Appendix C. Driver source code

i n c l u d e <p30f6014A . h>

/∗ TODO: choose s e n s i b l e v a l u e ∗ /
s t a t i c unsigned i n t t x t i m e o u t = 0xFFFF ;

s t a t i c i n l i n e void c o n f i g u r e t i m e r 1 (void)
{

/∗ t i m e r 1 c l o c k s o u r c e i s i n t e r n a l c l o c k , i . e . FCY = FOSC/ 4 ∗ /
T1CONbits . TCS = 0 ;
/∗ Do n o t p r e s c a l e t h e t i m e r 1 c l o c k s o u r c e ∗ /
T1CONbits . TCKPS = 0 ;
/∗ Do n o t use t h e g a t e d t i m e a c c u m u l a t i o n mode ∗ /
T1CONbits . TGATE = 0 ;
/∗ In i d l e mode , s t o p t i m e r ∗ /
T1CONbits . TSIDL = 1 ;
/∗ A s s i g n t i m e o u t t o t i m e r 1 p e r i o d r e g i s t e r ∗ /
PR1 = t x t i m e o u t ;

}

void e n a b l e t x t i m e r (void)
{

c o n f i g u r e t i m e r 1 () ;
/∗ Enable t imer1 , i . e . t h e t r a n s m i s s i o n t i m e r ∗ /
T1CONbits .TON = 1 ;
e n a b l e i n t e r r u p t (HW INTERRUPT TIMER1) ;

}

void d i s a b l e t x t i m e r (void)
{

d i s a b l e i n t e r r u p t (HW INTERRUPT TIMER1) ;
/∗ D i s a b l e t imer1 , i . e . t h e t r a n s m i s s i o n t i m e r ∗ /
T1CONbits .TON = 0 ;
c l e a r i n t e r r u p t f l a g (HW INTERRUPT TIMER1) ;

}

void r e s e t t o z e r o t x t i m e r (void)
{

TMR1 = 0 ;
}

C.19. tx timer.h

/∗

218

C.19. tx timer.h

∗ t x t i m e r . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

void e n a b l e t x t i m e r (void) ;
void d i s a b l e t x t i m e r (void) ;
void r e s e t t o z e r o t x t i m e r (void) ;

219

D. API source code

D.1. recancentrate.c

/∗
∗ r e c a n c e n t r a t e . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e <p30f6014A . h>
i n c l u d e ” t x t i m e r . h ”
i n c l u d e ” c a n f r a m e . h ”
i n c l u d e ” c a n c o n t r o l l e r . h ”
i n c l u d e ” i n t e r r u p t s . h ”
i n c l u d e ” r e c a n c e n t r a t e . h ”

/∗
∗ V a r i a b l e s used by t h e u s e r s o f t w a r e and t h e media management ISRs t o
∗ communicate t o each o t h e r :
∗ /

/∗ I f t h e node i s a t r a n s m i t t e r i t h o l d s t h e frame t o be t r a n s m i t t e d ∗ /
s t r u c t c a n f r a m e f r a m e t o t x ;

/∗ Message t o d e l i v e r t o t h e s o f t w a r e t h a t u s e s t h i s d r i v e r ∗ /
s t r u c t c a n f r a m e f r a m e t o d e l i v e r ;

/∗ I n d i c a t e s i f t h e t r a n s m i s s i o n o f a frame i s pending , i . e . i t i n d i c a t e s i f
∗ t h e u s e r s o f t w a r e r e q u e s t e d t h e t r a n s m i s s i o n o f a frame and t h e frame has
∗ n o t y e t been t r a n s m i t e d s u c c e s s f u l l y . ∗ /

boo l t x p e n d i n g = f a l s e ;

/∗ True i f t h e d r i v e r was a b l e t o c a r r y o u t a t r a n s m i s s i o n s u c c e s s f u l l y . ∗ /
boo l t x s u c c e s s = f a l s e ;

/∗ True i f t h e r e i s da ta from a n o t h e r node which has been r e c e i v e d b u t which has
∗ n o t been read by t h e u s e r s o f t w a r e . ∗ /

boo l r x d a t a a v a i l a b l e = f a l s e ;

/∗ True i f a t l e a s t one CAN c o n t r o l l e r i s a v a i l a b l e ∗ /
boo l a c t i v e c o n t r o l l e r a v a i l a b l e = t r u e ;

221

Appendix D. API source code

/∗ A s s i g n p r i o r i t i e s t o ReCANcentrate r e l e v a n t i n t e r r u p t s ∗ /
s t a t i c vo id a s s i g n i n t e r r u p t p r i o r i t i e s (void)
{

/∗ The p r i o r i t i e s a s s i g n e d t o t h e i n t e r r u p t s must be lower than
∗ INTERRUPT PRIORITY MAX because we r e s e r v e INTERRUPT PRIORITY MAX
∗ f o r t h e CPU t o e n t e r an u n i n t e r r u p t a b l e s t a t e (a l t h o u g h s t i l l
∗ i n t e r r u p t a b l e by t r a p s) ∗ /

i n t h w i n t e r r u p t p r i o r i t y = INTERRUPT PRIORITY MAX − 1 ;
i n t s w i n t e r r u p t p r i o r i t y = h w i n t e r r u p t p r i o r i t y − 1 ;

/∗ Higher p r i o r i t y f o r CAN and t i m e r 1 i n t e r r u p t s ∗ /
s e t i n t e r r u p t p r i o r i t y (h w i n t e r r u p t p r i o r i t y , HW INTERRUPT CAN1) ;
s e t i n t e r r u p t p r i o r i t y (h w i n t e r r u p t p r i o r i t y , HW INTERRUPT CAN2) ;
s e t i n t e r r u p t p r i o r i t y (h w i n t e r r u p t p r i o r i t y , HW INTERRUPT TIMER1) ;

/∗ Lower p r i o r i t y f o r s o f t w a r e i n t e r r u p t s ∗ /
s e t i n t e r r u p t p r i o r i t y (s w i n t e r r u p t p r i o r i t y ,

SW INTERRUPT CAN1 TX EVENT) ;
s e t i n t e r r u p t p r i o r i t y (s w i n t e r r u p t p r i o r i t y ,

SW INTERRUPT CAN1 RX EVENT) ;
s e t i n t e r r u p t p r i o r i t y (s w i n t e r r u p t p r i o r i t y ,

SW INTERRUPT CAN1 ERROR WARNING) ;
s e t i n t e r r u p t p r i o r i t y (s w i n t e r r u p t p r i o r i t y ,

SW INTERRUPT CAN2 TX EVENT) ;
s e t i n t e r r u p t p r i o r i t y (s w i n t e r r u p t p r i o r i t y ,

SW INTERRUPT CAN2 RX EVENT) ;
s e t i n t e r r u p t p r i o r i t y (s w i n t e r r u p t p r i o r i t y ,

SW INTERRUPT CAN2 ERROR WARNING) ;
}

/∗ Enable ReCANcentra te r e l e v a n t i n t e r r u p t s ∗ /
s t a t i c vo id e n a b l e i n t e r r u p t s (void)
{

/∗ o l d i n t e r r u p t p r i o r i t y l e v e l ∗ /
i n t o l d i p l ;

/∗ The t o be e n a b l e d i n t e r r u p t s have a p r i o r i t y lower than
∗ INTERRUPT PRIORITY MAX . T h e r e f o r e s e t t i n g t h e CPU ’ s p r i o r i t y l e v e l
∗ t o INTERRUPT PRIORITY MAX makes s u r e t h a t t h e CPU ca nn o t be
∗ i n t e r r u p t e d by j u s t e n a b l e d i n t e r r u p t s w h i l e t h e o t h e r i n t e r r u p t s
∗ are s t i l l b e i n g e n a b l e d . T h i s i s n e c e s s a r y because a l l i n t e r r u p t s
∗ must be a v a i l a b l e a t t h e same t i m e t o c o o r d i n a t e t h e d i f f e r e n t ISRs .
∗ /

SET AND SAVE CPU IPL (o l d i p l , INTERRUPT PRIORITY MAX) ;

e n a b l e i n t e r r u p t (HW INTERRUPT CAN1) ;
e n a b l e i n t e r r u p t (SW INTERRUPT CAN1 TX EVENT) ;
e n a b l e i n t e r r u p t (SW INTERRUPT CAN1 RX EVENT) ;
e n a b l e i n t e r r u p t (SW INTERRUPT CAN1 ERROR WARNING) ;

222

D.1. recancentrate.c

e n a b l e i n t e r r u p t (HW INTERRUPT CAN2) ;
e n a b l e i n t e r r u p t (SW INTERRUPT CAN2 TX EVENT) ;
e n a b l e i n t e r r u p t (SW INTERRUPT CAN2 RX EVENT) ;
e n a b l e i n t e r r u p t (SW INTERRUPT CAN2 ERROR WARNING) ;

RESTORE CPU IPL (o l d i p l) ;
}

void i n i t r e c a n c e n t r a t e d r i v e r (void)
{

i n i t c a n c o n t r o l l e r s () ;
e n a b l e i n t e r r u p t n e s t i n g () ;

a s s i g n i n t e r r u p t p r i o r i t i e s () ;
e n a b l e i n t e r r u p t s () ;

}

s t a t i c vo id c r e a t e f r a m e (
unsigned i n t f r a m e i d e n t i f i e r ,
unsigned char ∗ f r a m e d a t a ,
unsigned char f r a m e l e n g t h

)
{

f r a m e t o t x . i d e n t i f i e r = f r a m e i d e n t i f i e r ;
c o p y d a t a (f r a m e d a t a , f r a m e l e n g t h , f r a m e t o t x . d a t a) ;
f r a m e t o t x . l e n g t h = f r a m e l e n g t h ;

}

void r e q u e s t r e c a n c e n t r a t e t x (
unsigned i n t f r a m e i d e n t i f i e r ,
unsigned char ∗ f r a m e d a t a ,
unsigned char f r a m e l e n g t h ,
t r e c a n c e n t r a t e s t a t u s ∗ o u t p u t t x s t a t u s

)
{

/∗ o l d i n t e r r u p t p r i o r i t y l e v e l ∗ /
i n t o l d i p l ;
v o l a t i l e s t r u c t c a n c o n t r o l l e r ∗ t x c t r l ;

i f (t x p e n d i n g) {
∗ o u t p u t t x s t a t u s = RECANCENTRATE STATUS TX ALREADY PENDING ;
re turn ;

}

c r e a t e f r a m e (f r a m e i d e n t i f i e r , f r a m e d a t a , f r a m e l e n g t h) ;

/∗ R a i s i n g t h e CPU ’ s p r i o r i t y makes s u r e t h a t t h e v a l u e o f t x p e n d i n g
∗ and t x s u c c e s s and t h e f a c t o f which c o n t r o l l e r i s t h e t r a n s m i s s i o n

223

Appendix D. API source code

∗ c o n t r o l l e r won ’ t be changed by an ISR w h i l e t h e f o l l o w i n g code i s
∗ e x e c u t e d . ∗ /

SET AND SAVE CPU IPL (o l d i p l , INTERRUPT PRIORITY MAX) ;

t x p e n d i n g = t r u e ;
t x s u c c e s s = f a l s e ;
t x c t r l = g e t t r a n s m i s s i o n c o n t r o l l e r () ;

r e s e t t o z e r o t x t i m e r () ;
e n a b l e t x t i m e r () ;

r e q u e s t t x (t x c t r l , &f r a m e t o t x) ;

RESTORE CPU IPL (o l d i p l) ;

∗ o u t p u t t x s t a t u s = RECANCENTRATE STATUS TX REQUEST SUCCESSFUL ;
}

void r e a d r e c e i v e d d a t a (
unsigned i n t ∗ o u t p u t f r a m e i d e n t i f i e r ,
unsigned char ∗ o u t p u t f r a m e d a t a ,
unsigned char ∗ o u t p u t f r a m e l e n g t h ,
t r e c a n c e n t r a t e s t a t u s ∗ o u t p u t r x s t a t u s

)
{

/∗ o l d i n t e r r u p t p r i o r i t y l e v e l ∗ /
i n t o l d i p l ;

i f (! r x d a t a a v a i l a b l e) {
∗ o u t p u t r x s t a t u s = RECANCENTRATE STATUS NO RX DATA AVAILABLE ;
re turn ;

}

SET AND SAVE CPU IPL (o l d i p l , INTERRUPT PRIORITY MAX) ;

∗ o u t p u t f r a m e i d e n t i f i e r = f r a m e t o d e l i v e r . i d e n t i f i e r ;
c o p y d a t a (f r a m e t o d e l i v e r . da t a , f r a m e t o d e l i v e r . l e n g t h ,

o u t p u t f r a m e d a t a) ;
∗ o u t p u t f r a m e l e n g t h = f r a m e t o d e l i v e r . l e n g t h ;

RESTORE CPU IPL (o l d i p l) ;

∗ o u t p u t r x s t a t u s = RECANCENTRATE STATUS RX DATA LOADED ;
r x d a t a a v a i l a b l e = f a l s e ;

}

boo l r e c e i v e d d a t a i s a v a i l a b l e (void)
{

re turn r x d a t a a v a i l a b l e ;
}

224

D.2. recancentrate.h

boo l r e c a n c e n t r a t e t x c a r r i e d o u t (void)
{

re turn t x s u c c e s s ;
}

boo l r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e (void)
{

re turn a c t i v e c o n t r o l l e r a v a i l a b l e ;
}

D.2. recancentrate.h

/∗
∗ r e c a n c e n t r a t e . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f RECANCENTRATE H
d e f i n e RECANCENTRATE H

i n c l u d e ”common . h ”

t y p e d e f enum {
RECANCENTRATE STATUS TX ALREADY PENDING ,
RECANCENTRATE STATUS TX REQUEST SUCCESSFUL ,
RECANCENTRATE STATUS NO RX DATA AVAILABLE ,
RECANCENTRATE STATUS RX DATA LOADED

} t r e c a n c e n t r a t e s t a t u s ;

void i n i t r e c a n c e n t r a t e d r i v e r (void) ;

void r e q u e s t r e c a n c e n t r a t e t x (
unsigned i n t f r a m e i d e n t i f i e r ,
unsigned char ∗ f r a m e d a t a ,
unsigned char f r a m e l e n g t h ,
t r e c a n c e n t r a t e s t a t u s ∗ o u t p u t t x s t a t u s

) ;

void r e a d r e c e i v e d d a t a (
unsigned i n t ∗ o u t p u t f r a m e i d e n t i f i e r ,
unsigned char ∗ o u t p u t f r a m e d a t a ,

225

Appendix D. API source code

unsigned char ∗ o u t p u t f r a m e l e n g t h ,
t r e c a n c e n t r a t e s t a t u s ∗ o u t p u t r x s t a t u s

) ;

boo l r e c e i v e d d a t a i s a v a i l a b l e (void) ;

boo l r e c a n c e n t r a t e t x c a r r i e d o u t (void) ;

boo l r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e (void) ;

e n d i f /∗ RECANCENTRATE H ∗ /

226

E. ReCanCentrate hub user constraints
file

E.1. cancentrate.ucf

#PACE : P i n e s n o r m a l e s

Swi tch 2 i s r e s e t
NET ”nRST” LOC = ”E11” ;

NET ” c l k O s c l ” LOC = ”H16” ;

Swi tch 3 i s f a u l t i n j e c t i o n
NET ” i n j e c t F a u l t ” LOC = ”A13” ;

NET ” r x 0 ” LOC = ”H15” ;
NET ” r x 1 ” LOC = ”H14” ;
NET ” r x 2 ” LOC = ”G12” ;
NET ” rehRx 0 ” LOC = ”G16” ; # Bank 5
NET ” rehRx 1 ” LOC = ”H13” ;

NET ” t x 0 ” LOC = ”G15” ;
NET ” t x 1 ” LOC = ”G14” ;
NET ” t x 2 ” LOC = ” F14 ” ;
NET ” hubTx 0 ” LOC = ” F15 ” ;
NET ” hubTx 1 ” LOC = ”G13” ;

#PACE : P i n e s de d e p u r a c i o n

#NET ” dbg habCRC ” LOC = ”G12” ;
#NET ” d b g P e t S i n c r o ” LOC = ”G12” ;

NET ” dbg brpClk ” LOC = ” J14 ” ;
NET ” dbg synClkR ” LOC = ”E16” ;
NET ” dbg synROut ” LOC = ”E15” ;
NET ” dbg synClkT ” LOC = ”D16” ;

NET ” d b g s t u B i t S t u f f W a i t e d ” LOC = ” E14” ;
NET ” d b g s t u V a l u e B i t S t u f f W a i t e d ” LOC = ”D15” ;
NET ” d b g g f m I n i E r r o r F r a m e ” LOC = ” F5 ” ;
NET ” d b g g f m L a s t B i t E o f ” LOC = ”D2” ;

227

Appendix E. ReCanCentrate hub user constraints file

NET ” dbg gfmGloba lF rameSta t e<3>” LOC = ”D1” ;
NET ” dbg gfmGloba lF rameSta t e<2>” LOC = ” F4 ” ;
NET ” dbg gfmGloba lF rameSta t e<1>” LOC = ”E2” ; # Bank 4
NET ” dbg gfmGloba lF rameSta t e<0>” LOC = ”E1” ;

NET ” d b g e s t a t E r r o r F r m G e n ” LOC = ” F3 ” ;

NET ” d b g e s t a t T h r e s h o l d 0 <1>” LOC = ”G5” ;
NET ” d b g e s t a t T h r e s h o l d 0 <0>” LOC = ” F2 ” ;

NET ” d b g e s t a t T h r e s h o l d 1 <1>” LOC = ”G4” ;
NET ” d b g e s t a t T h r e s h o l d 1 <0>” LOC = ”G3” ;

#SUPR LIMTBOARD NET ” d b g e s t a t T h r e s h o l d 2 <1>” LOC = ”G2” ;
#SUPR LIMTBOARD NET ” d b g e s t a t T h r e s h o l d 2 <0>” LOC = ”G1” ;

NET ” d b g e s t a t H u b T h r e s h o l d 0<1>” LOC = ”G2” ;
NET ” d b g e s t a t H u b T h r e s h o l d 0<0>” LOC = ”G1” ;

NET ” d b g e s t a t H u b T h r e s h o l d 1<1>” LOC = ”H4” ;
NET ” d b g e s t a t H u b T h r e s h o l d 1<0>” LOC = ”H3” ;

NET ” d b g p o r t T y p e 0 ” LOC = ”H1” ;
NET ” d b g p o r t T y p e 1 ” LOC = ” J1 ” ;
#SUPR LIMTBOARD NET ” d b g p o r t T y p e 2 ” LOC = ” J2 ” ;
NET ” dbg hubType 0 ” LOC = ” J2 ” ;
NET ” dbg hubType 1 ” LOC = ” J3 ” ;

NET ” dbg es t a tBICManage r 0<2>” LOC = ”K1” ;
NET ” dbg es t a tBICManage r 0<1>” LOC = ”L2” ;
NET ” dbg es t a tBICManage r 0<0>” LOC = ”K5” ;

NET ” dbg es t a tBICManage r 1<2>” LOC = ”L3” ;
NET ” dbg es t a tBICManage r 1<1>” LOC = ”M1” ;
NET ” dbg es t a tBICManage r 1<0>” LOC = ”M2” ;

#SUPR LIMTBOARD NET ” dbg es t a tBICManage r 2<2>” LOC = ”L4” ;
#SUPR LIMTBOARD NET ” dbg es t a tBICManage r 2<1>” LOC = ”N1” ;
#SUPR LIMTBOARD NET ” dbg es t a tBICManage r 2<0>” LOC = ”M3” ;

NET ” dbg es ta tHubBICManager 0<2>” LOC = ”L4” ;
NET ” dbg es ta tHubBICManager 0<1>” LOC = ”N1” ;
NET ” dbg es ta tHubBICManager 0<0>” LOC = ”M3” ;

NET ” dbg es ta tHubBICManager 1<2>” LOC = ”N2” ;
NET ” dbg es ta tHubBICManager 1<1>” LOC = ”L5” ;
NET ” dbg es ta tHubBICManager 1<0>” LOC = ” P1 ” ;

NET ” dbg bimBICValue 0<4>” LOC = ”M4” ;

228

E.1. cancentrate.ucf

NET ” dbg bimBICValue 0<3>” LOC = ”N3” ;
NET ” dbg bimBICValue 0<2>” LOC = ” P2 ” ;
NET ” dbg bimBICValue 0<1>” LOC = ”R1” ; # Bank 3
NET ” dbg bimBICValue 0<0>” LOC = ”M10” ;

NET ” dbg bimBICValue 1<4>” LOC = ” P11 ” ;
NET ” dbg bimBICValue 1<3>” LOC = ”T12” ;
NET ” dbg bimBICValue 1<2>” LOC = ”R12” ;
NET ” dbg bimBICValue 1<1>” LOC = ”T13” ;
NET ” dbg bimBICValue 1<0>” LOC = ” P12 ” ;

#SUPR LIMTBOARD NET ” dbg bimBICValue 2<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg bimBICValue 2<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg bimBICValue 2<0>” LOC = ” ” ;

NET ” dbg hbmBICValue 0<6>” LOC = ”N15” ;
NET ” dbg hbmBICValue 0<5>” LOC = ”M15” ;
NET ” dbg hbmBICValue 0<4>” LOC = ”L15” ;
NET ” dbg hbmBICValue 0<3>” LOC = ”K15” ;
NET ” dbg hbmBICValue 0<2>” LOC = ”K16” ;
NET ” dbg hbmBICValue 0<1>” LOC = ” J13 ” ;
#NET ” dbg hbmBICValue 0<0>” LOC = ” J14 ” ;

NET ” dbg hbmBICValue 1<6>” LOC = ” J16 ” ;
#SUPR LIMTBOARD NET ” dbg hbmBICValue 1<5>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg hbmBICValue 1<4>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg hbmBICValue 1<3>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg hbmBICValue 1<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg hbmBICValue 1<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg hbmBICValue 1<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg namNACKValue 0<2>” LOC = ” ” ; # Bank 2
#SUPR LIMTBOARD NET ” dbg namNACKValue 0<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 0<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg namNACKValue 1<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 1<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 1<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg namNACKValue 2<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 2<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 2<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg namNACKValue 3<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 3<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg namNACKValue 3<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg dbmDBCValue 0<4>” LOC = ” ” ; # Bank 1
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 0<3>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 0<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 0<1>” LOC = ” ” ;

229

Appendix E. ReCanCentrate hub user constraints file

#SUPR LIMTBOARD NET ” dbg dbmDBCValue 0<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg dbmDBCValue 1<4>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 1<3>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 1<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 1<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 1<0>” LOC = ” ” ;

#SUPR LIMTBOARD NET ” dbg dbmDBCValue 2<4>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 2<3>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 2<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 2<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 2<0>” LOC = ” ” ; # Bank 0

#SUPR LIMTBOARD NET ” dbg dbmDBCValue 3<4>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 3<3>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 3<2>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 3<1>” LOC = ” ” ;
#SUPR LIMTBOARD NET ” dbg dbmDBCValue 3<0>” LOC = ” ” ;

#PACE : S t a r t o f PACE Area C o n s t r a i n t s

#PACE : S t a r t o f PACE P r o h i b i t C o n s t r a i n t s

#PACE : End of C o n s t r a i n t s g e n e r a t e d by PACE

230

F. Source code for fault injection

F.1. Files to inject controller crashes

F.1.1. crash controller.h

/∗
∗ i n t e r r u p t s . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f CRASH CONTROLLER H
d e f i n e CRASH CONTROLLER H

void e n a b l e b u t t o n i n t e r r u p t s (void) ;

e n d i f /∗ CRASH CONTROLLER H ∗ /

F.1.2. crash controller.c

/∗
∗ c r a s h c o n t r o l l e r . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗
∗
∗ Used t o s i m u l a t e a c o n t r o l l e r c r a s h by p r e s s i n g one o f t h e b u t t o n s on t h e
∗ dsPICDEM board .
∗ /

i n c l u d e ” . . / c a n c o n t r o l l e r . h ”
i n c l u d e ” . . / i n t e r r u p t s . h ”

e x t er n v o l a t i l e s t r u c t c a n c o n t r o l l e r c t r l 1 , c t r l 2 ;

/∗ We use t h e IC1 and IC2 i n t e r r u p t s as t h e c r a s h c o n t r o l l e r 1 and c r a s h
∗ c o n t r o l l e r 2 i n t e r r u p t s ∗ /

void e n a b l e b u t t o n i n t e r r u p t s (void)
{

231

Appendix F. Source code for fault injection

I P C 0 b i t s . IC1IP = INTERRUPT PRIORITY MAX ;
I P C 1 b i t s . IC2IP = INTERRUPT PRIORITY MAX ;

I E C 0 b i t s . IC1IE = 1 ;
I E C 0 b i t s . IC2IE = 1 ;

}

/∗ I n v o k e d when b u t t o n S1 i s p r e s s e d ∗ /
void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) I C 1 I n t e r r u p t (void)
{

shutdown (& c t r l 1) ;

/∗ Acknowledge i n t e r r u p t ∗ /
I F S 0 b i t s . IC1IF = 0 ;

}

/∗ I n v o k e d when b u t t o n S2 i s p r e s s e d ∗ /
void a t t r i b u t e ((i n t e r r u p t , n o a u t o p s v)) I C 2 I n t e r r u p t (void)
{

shutdown (& c t r l 2) ;

/∗ Acknowledge i n t e r r u p t ∗ /
I F S 0 b i t s . IC2IF = 0 ;

}

F.2. Fault-injection modules

F.2.1. downlinkFaultInjectionModule.vhd

l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 .ALL ;
use IEEE . STD LOGIC ARITH .ALL ;
use IEEE . STD LOGIC UNSIGNED .ALL ;

use work . d e f I n t e g e r . a l l ;
use work . d e f S t a t e s . a l l ;

−− Uncomment t h e f o l l o w i n g l i n e s t o use t h e d e c l a r a t i o n s t h a t are
−− p r o v i d e d f o r i n s t a n t i a t i n g X i l i n x p r i m i t i v e components .
−− l i b r a r y UNISIM ;
−−use UNISIM . VComponents . a l l ;

e n t i t y f a u l t I n j e c t i o n M o d u l e i s
port
(

−− Sys tem r e s e t
s y s R e s e t : in s t d l o g i c ;

−− Cl oc ks

232

F.2. Fault-injection modules

synClkR : in s t d l o g i c ;
synClkT : in s t d l o g i c ;

−− Mapped t o s w i t c h b u t t o n 3 , which , when p r e s s e d , i n d i c a t e s
−− t h a t f a u l t i n j e c t i o n s h o u l d s t a r t
i o m I n j e c t F a u l t : in s t d l o g i c ;

−− S t a t e o f g l o b a l F r a m e M o n i t o r U n i t (c u r r e n t s t a t e o f t h e
−− r e s u l t a n t f rame)
g fm Gl o ba lF r am eS t a t e : in e s t a d o G l o b a l F r a m e ;

−− Va lu es t o be i n j e c t e d i n t o t h e d o w n l i n k s
f imTx 0 : out s t d l o g i c ;
f imTx 1 : out s t d l o g i c ;
f imTx 2 : out s t d l o g i c ;

−− Va lu es t o be i n j e c t e d i n t o t h e u p l i n k s
f imRx 0 : out s t d l o g i c ;
f imRx 1 : out s t d l o g i c ;
f imRx 2 : out s t d l o g i c ;

−− Va lu es t o be i n j e c t e d i n t o t h e s u b l i n k s
fimHubTx 0 : out s t d l o g i c ;
fimHubTx 1 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be i n j e c t e d
−− or n o t t h r o u g h t h e g i v e n d o w n l i n k
f i m I n j T x 0 : out s t d l o g i c ;
f i m I n j T x 1 : out s t d l o g i c ;
f i m I n j T x 2 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be i n j e c t e d
−− or n o t t h r o u g h t h e g i v e n u p l i n k
f i m I n j R x 0 : out s t d l o g i c ;
f i m I n j R x 1 : out s t d l o g i c ;
f i m I n j R x 2 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be i n j e c t e d
−− or n o t t h r o u g h t h e g i v e n s u b l i n k
f imIn jHubTx 0 : out s t d l o g i c ;
f imIn jHubTx 1 : out s t d l o g i c

) ;
end f a u l t I n j e c t i o n M o d u l e ;

a r c h i t e c t u r e B e h a v i o r a l of f a u l t I n j e c t i o n M o d u l e i s

type e s t a d o F a u l t I n j e c t i o n i s (nonFau l ty , p r e F a u l t y , f a u l t y , p o s t F a u l t y) ;
s i g n a l e s t a t F a u l t I n j e c t i o n : e s t a d o F a u l t I n j e c t i o n ;

−− A u x i l i a r y s i g n a l s

s i g n a l auxFimTx 0 : s t d l o g i c ;
s i g n a l auxFimTx 1 : s t d l o g i c ;

233

Appendix F. Source code for fault injection

s i g n a l auxFimTx 2 : s t d l o g i c ;

s i g n a l auxFimRx 0 : s t d l o g i c ;
s i g n a l auxFimRx 1 : s t d l o g i c ;
s i g n a l auxFimRx 2 : s t d l o g i c ;

s i g n a l auxFimHubTx 0 : s t d l o g i c ;
s i g n a l auxFimHubTx 1 : s t d l o g i c ;

s i g n a l a u x F i m I n j e c t i n g : s t d l o g i c ;

−− P r e v i o u s v a l u e o f i o m I n j e c t F a u l t
s i g n a l a n t I n j e c t F a u l t : s t d l o g i c ;

begin

−− Map a u x i l i a r y s i g n a l s t o o u t p u t s
f imTx 0 <= auxFimTx 0 ;
f imTx 1 <= auxFimTx 1 ;
f imTx 2 <= auxFimTx 2 ;

f imRx 0 <= auxFimRx 0 ;
f imRx 1 <= auxFimRx 1 ;
f imRx 2 <= auxFimRx 2 ;

fimHubTx 0 <= auxFimHubTx 0 ;
fimHubTx 1 <= auxFimHubTx 1 ;

−− D e t e c t s when s w i t c h b u t t o n 3 i s p r e s s e d
p r o c e s s (synClkR , s y s R e s e t) i s
begin

i f s y s R e s e t = ’1 ’ then
a n t I n j e c t F a u l t <= i o m I n j e c t F a u l t ;
a u x F i m I n j e c t i n g <= ’ 0 ’ ;

e l s i f synClkR ’ e v e n t and synClkR = ’1 ’ then
i f i o m I n j e c t F a u l t = ’0 ’ and a n t I n j e c t F a u l t = ’1 ’ then

a u x F i m I n j e c t i n g <= not a u x F i m I n j e c t i n g ;
end i f ;
a n t I n j e c t F a u l t <= i o m I n j e c t F a u l t ;

end i f ;
end p r o c e s s ;

−− S t a t e machine t h a t c o n t r o l s f a u l t i n j e c t i o n
p r o c e s s (synClkT , s y s R e s e t) i s
begin

i f s y s R e s e t = ’1 ’ then
e s t a t F a u l t I n j e c t i o n <= n o n F a u l t y ;

−− I n i t i a l i z e s i g n a l s t o be i n j e c t e d i n t o d o w n l i n k s
auxFimTx 0 <= ’ 1 ’ ;
auxFimTx 1 <= ’ 1 ’ ;
auxFimTx 2 <= ’ 1 ’ ;

234

F.2. Fault-injection modules

−− I n i t i a l i z e s i g n a l s t o be i n j e c t e d i n t o u p l i n k s
auxFimRx 0 <= ’ 1 ’ ;
auxFimRx 1 <= ’ 1 ’ ;
auxFimRx 2 <= ’ 1 ’ ;
−− I n i t i a l i z e s i g n a l s t o be i n j e c t e d i n t o s u b l i n k s
auxFimHubTx 0 <= ’ 1 ’ ;
auxFimHubTx 1 <= ’ 1 ’ ;

−− Downlink f a u l t i n j e c t i o n d i s a b l e d
f i m I n j T x 0 <= ’ 0 ’ ;
f i m I n j T x 1 <= ’ 0 ’ ;
f i m I n j T x 2 <= ’ 0 ’ ;
−− Up l i nk f a u l t i n j e c t i o n d i s a b l e d
f i m I n j R x 0 <= ’ 0 ’ ;
f i m I n j R x 1 <= ’ 0 ’ ;
f i m I n j R x 2 <= ’ 0 ’ ;
−− S u b l i n k f a u l t i n j e c t i o n d i s a b l e d
f imIn jHubTx 0 <= ’ 0 ’ ;
f imIn jHubTx 1 <= ’ 0 ’ ;

e l s i f synClkT ’ e v e n t and synClkT = ’1 ’ then
case (e s t a t F a u l t I n j e c t i o n) i s

when n o n F a u l t y =>
−− Downlink f a u l t i n j e c t i o n d i s a b l e d
f i m I n j T x 0 <= ’ 0 ’ ;
f i m I n j T x 1 <= ’ 0 ’ ;
f i m I n j T x 2 <= ’ 0 ’ ;
−− Up l i nk f a u l t i n j e c t i o n d i s a b l e d
f i m I n j R x 0 <= ’ 0 ’ ;
f i m I n j R x 1 <= ’ 0 ’ ;
f i m I n j R x 2 <= ’ 0 ’ ;
−− S u b l i n k f a u l t i n j e c t i o n d i s a b l e d
f imIn jHubTx 0 <= ’ 0 ’ ;
f imIn jHubTx 1 <= ’ 0 ’ ;

−− I f s w i t c h b u t t o n p r e s s e d
i f a u x F i m I n j e c t i n g = ’1 ’ then
−− S t a r t f a u l t i n j e c t i o n
e s t a t F a u l t I n j e c t i o n <= p r e F a u l t y ;

end i f ;

when p r e F a u l t y =>
−− P o s i b l e v a l u e s f o r g fmGloba lFrameS ta t e :
−− i d l e , i d F i e l d , r t r F i e l d , r e s F i e l d ,
−− d l c F i e l d , d a t a F i e l d , c r c F i e l d ,
−− c r c D e l i m F i e l d , a c k S l o t F i e l d ,
−− ackDe l imFie ld , e o f F i e l d , i n t e r F i e l d ,
−− e r r o r F l a g , e r r o r D e l i m i t e r ,
−− f r e e S t a t e 1 , f r e e S t a t e 2

−− I n j e c t f a u l t d u r i n g EOF f i e l d
i f g fm Gl o ba lF r am eS t a t e = e o f F i e l d then

e s t a t F a u l t I n j e c t i o n <= f a u l t y ;
end i f ;

235

Appendix F. Source code for fault injection

when f a u l t y =>

−− 1 e n a b l e s f a u l t s i n d o w n l i n k Tx 0 ,
−− 0 d i s a b l e s f a u l t s
f i m I n j T x 0 <= ’ 1 ’ ;
−− . . . i n j e c t s t u c k−at−r e c e s s i v e
−− auxFimTx 0 <= ’ 1 ’ ;
−− . . . i n j e c t s t u c k−at−dominant
auxFimTx 0 <= ’ 0 ’ ;
−− . . . i n j e c t b i t− f l i p p i n g
−− auxFimTx 0 <= n o t auxFimTx 0 ;

−− D e t e c t s when s w i t c h b u t t o n 3 i s
−− p r e s s e d
i f a u x F i m I n j e c t i n g = ’0 ’ then
−− Begin s t o p o f f a u l t i n j e c t i o n
e s t a t F a u l t I n j e c t i o n <= p o s t F a u l t y ;

end i f ;

when p o s t F a u l t y =>
−− S top f a u l t i n j e c t i o n d u r i n g EOF (i f
−− we ’ d s t o p f a u l t i n j e c t i o n a t any
−− a r b i t r a r y moment , t h e
−− d o w n l in k / s u b l i n k / u p l i n k c o u l d become
−− non− f a u l t y i n t h e mi dd l e o f a frame ,
−− and t h e r e m a i n i n g b i t s o f t h a t f rame
−− c o u l d be i n t e r p r e t e d as b i t f l i p p i n g s)
i f g fm Gl o ba lF r am eS t a t e = e o f F i e l d then

e s t a t F a u l t I n j e c t i o n <= n o n F a u l t y ;
end i f ;

when o t h e r s =>
e s t a t F a u l t I n j e c t i o n <= n o n F a u l t y ;

end case ;
end i f ;

end p r o c e s s ;

end B e h a v i o r a l ;

F.2.2. uplinkFaultInjectionModule.vhd

l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 .ALL ;
use IEEE . STD LOGIC ARITH .ALL ;
use IEEE . STD LOGIC UNSIGNED .ALL ;

use work . d e f I n t e g e r . a l l ;
use work . d e f S t a t e s . a l l ;

−− Uncomment t h e f o l l o w i n g l i n e s t o use t h e d e c l a r a t i o n s t h a t are
−− p r o v i d e d f o r i n s t a n t i a t i n g X i l i n x p r i m i t i v e components .

236

F.2. Fault-injection modules

−− l i b r a r y UNISIM ;
−−use UNISIM . VComponents . a l l ;

e n t i t y f a u l t I n j e c t i o n M o d u l e i s
port
(

−− Sys tem r e s e t
s y s R e s e t : in s t d l o g i c ;

−− Cl oc ks
synClkR : in s t d l o g i c ;
synClkT : in s t d l o g i c ;

−− Mapped t o s w i t c h b u t t o n 3 , which , when p r e s s e d , i n d i c a t e s
−− t h a t f a u l t i n j e c t i o n s h o u l d s t a r t
i o m I n j e c t F a u l t : in s t d l o g i c ;

−− S t a t e o f g l o b a l F r a m e M o n i t o r U n i t (c u r r e n t s t a t e o f t h e
−− r e s u l t a n t f rame)
g fm Gl o ba lF r am eS t a t e : in e s t a d o G l o b a l F r a m e ;

−− Va lu es t o be i n j e c t e d i n t o t h e d o w n l i n k s
f imTx 0 : out s t d l o g i c ;
f imTx 1 : out s t d l o g i c ;
f imTx 2 : out s t d l o g i c ;

−− Va lu es t o be i n j e c t e d i n t o t h e u p l i n k s
f imRx 0 : out s t d l o g i c ;
f imRx 1 : out s t d l o g i c ;
f imRx 2 : out s t d l o g i c ;

−− Va lu es t o be i n j e c t e d i n t o t h e s u b l i n k s
fimHubTx 0 : out s t d l o g i c ;
fimHubTx 1 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be i n j e c t e d
−− or n o t t h r o u g h t h e g i v e n d o w n l i n k
f i m I n j T x 0 : out s t d l o g i c ;
f i m I n j T x 1 : out s t d l o g i c ;
f i m I n j T x 2 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be i n j e c t e d
−− or n o t t h r o u g h t h e g i v e n u p l i n k
f i m I n j R x 0 : out s t d l o g i c ;
f i m I n j R x 1 : out s t d l o g i c ;
f i m I n j R x 2 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be i n j e c t e d
−− or n o t t h r o u g h t h e g i v e n s u b l i n k
f imIn jHubTx 0 : out s t d l o g i c ;
f imIn jHubTx 1 : out s t d l o g i c

) ;
end f a u l t I n j e c t i o n M o d u l e ;

237

Appendix F. Source code for fault injection

a r c h i t e c t u r e B e h a v i o r a l of f a u l t I n j e c t i o n M o d u l e i s

type e s t a d o F a u l t I n j e c t i o n i s (nonFau l ty , p r e F a u l t y , f a u l t y , p o s t F a u l t y) ;
s i g n a l e s t a t F a u l t I n j e c t i o n : e s t a d o F a u l t I n j e c t i o n ;

−− A u x i l i a r y s i g n a l s

s i g n a l auxFimTx 0 : s t d l o g i c ;
s i g n a l auxFimTx 1 : s t d l o g i c ;
s i g n a l auxFimTx 2 : s t d l o g i c ;

s i g n a l auxFimRx 0 : s t d l o g i c ;
s i g n a l auxFimRx 1 : s t d l o g i c ;
s i g n a l auxFimRx 2 : s t d l o g i c ;

s i g n a l auxFimHubTx 0 : s t d l o g i c ;
s i g n a l auxFimHubTx 1 : s t d l o g i c ;

s i g n a l a u x F i m I n j e c t i n g : s t d l o g i c ;

−− P r e v i o u s v a l u e o f i o m I n j e c t F a u l t
s i g n a l a n t I n j e c t F a u l t : s t d l o g i c ;

begin

−− Map a u x i l i a r y s i g n a l s t o o u t p u t s
f imTx 0 <= auxFimTx 0 ;
f imTx 1 <= auxFimTx 1 ;
f imTx 2 <= auxFimTx 2 ;

f imRx 0 <= auxFimRx 0 ;
f imRx 1 <= auxFimRx 1 ;
f imRx 2 <= auxFimRx 2 ;

fimHubTx 0 <= auxFimHubTx 0 ;
fimHubTx 1 <= auxFimHubTx 1 ;

−− D e t e c t s when s w i t c h b u t t o n 3 i s p r e s s e d
p r o c e s s (synClkR , s y s R e s e t) i s
begin

i f s y s R e s e t = ’1 ’ then
a n t I n j e c t F a u l t <= i o m I n j e c t F a u l t ;
a u x F i m I n j e c t i n g <= ’ 0 ’ ;

e l s i f synClkR ’ e v e n t and synClkR = ’1 ’ then
i f i o m I n j e c t F a u l t = ’0 ’ and a n t I n j e c t F a u l t = ’1 ’ then

a u x F i m I n j e c t i n g <= not a u x F i m I n j e c t i n g ;
end i f ;
a n t I n j e c t F a u l t <= i o m I n j e c t F a u l t ;

end i f ;
end p r o c e s s ;

238

F.2. Fault-injection modules

−− S t a t e machine t h a t c o n t r o l s f a u l t i n j e c t i o n
p r o c e s s (synClkT , s y s R e s e t) i s
begin

i f s y s R e s e t = ’1 ’ then
e s t a t F a u l t I n j e c t i o n <= n o n F a u l t y ;

−− I n i t i a l i z e s i g n a l s t o be i n j e c t e d i n t o d o w n l i n k s
auxFimTx 0 <= ’ 1 ’ ;
auxFimTx 1 <= ’ 1 ’ ;
auxFimTx 2 <= ’ 1 ’ ;
−− I n i t i a l i z e s i g n a l s t o be i n j e c t e d i n t o u p l i n k s
auxFimRx 0 <= ’ 1 ’ ;
auxFimRx 1 <= ’ 1 ’ ;
auxFimRx 2 <= ’ 1 ’ ;
−− I n i t i a l i z e s i g n a l s t o be i n j e c t e d i n t o s u b l i n k s
auxFimHubTx 0 <= ’ 1 ’ ;
auxFimHubTx 1 <= ’ 1 ’ ;

−− Downlink f a u l t i n j e c t i o n d i s a b l e d
f i m I n j T x 0 <= ’ 0 ’ ;
f i m I n j T x 1 <= ’ 0 ’ ;
f i m I n j T x 2 <= ’ 0 ’ ;
−− Up l i nk f a u l t i n j e c t i o n d i s a b l e d
f i m I n j R x 0 <= ’ 0 ’ ;
f i m I n j R x 1 <= ’ 0 ’ ;
f i m I n j R x 2 <= ’ 0 ’ ;
−− S u b l i n k f a u l t i n j e c t i o n d i s a b l e d
f imIn jHubTx 0 <= ’ 0 ’ ;
f imIn jHubTx 1 <= ’ 0 ’ ;

e l s i f synClkT ’ e v e n t and synClkT = ’1 ’ then
case (e s t a t F a u l t I n j e c t i o n) i s

when n o n F a u l t y =>
−− Downlink f a u l t i n j e c t i o n d i s a b l e d
f i m I n j T x 0 <= ’ 0 ’ ;
f i m I n j T x 1 <= ’ 0 ’ ;
f i m I n j T x 2 <= ’ 0 ’ ;
−− Up l i nk f a u l t i n j e c t i o n d i s a b l e d
f i m I n j R x 0 <= ’ 0 ’ ;
f i m I n j R x 1 <= ’ 0 ’ ;
f i m I n j R x 2 <= ’ 0 ’ ;
−− S u b l i n k f a u l t i n j e c t i o n d i s a b l e d
f imIn jHubTx 0 <= ’ 0 ’ ;
f imIn jHubTx 1 <= ’ 0 ’ ;

−− I f s w i t c h b u t t o n p r e s s e d
i f a u x F i m I n j e c t i n g = ’1 ’ then
−− S t a r t f a u l t i n j e c t i o n
e s t a t F a u l t I n j e c t i o n <= p r e F a u l t y ;

end i f ;

when p r e F a u l t y =>
−− P o s i b l e v a l u e s f o r g fmGloba lFrameS ta t e :
−− i d l e , i d F i e l d , r t r F i e l d , r e s F i e l d ,

239

Appendix F. Source code for fault injection

−− d l c F i e l d , d a t a F i e l d , c r c F i e l d ,
−− c r c D e l i m F i e l d , a c k S l o t F i e l d ,
−− ackDe l imFie ld , e o f F i e l d , i n t e r F i e l d ,
−− e r r o r F l a g , e r r o r D e l i m i t e r ,
−− f r e e S t a t e 1 , f r e e S t a t e 2

−− I n j e c t f a u l t d u r i n g EOF f i e l d
i f g fm Gl o ba lF r am eS t a t e = e o f F i e l d then

e s t a t F a u l t I n j e c t i o n <= f a u l t y ;
end i f ;

when f a u l t y =>

−− 1 e n a b l e s f a u l t s i n u p l i n k Rx 0 ,
−− 0 d i s a b l e s f a u l t s
f i m I n j R x 0 <= ’ 1 ’ ;
−− . . . i n j e c t s t u c k−at−r e c e s s i v e
auxFimRx 0 <= ’ 1 ’ ;
−− . . . i n j e c t s t u c k−at−dominant
−−auxFimRx 0 <= ’ 0 ’ ;
−− . . . i n j e c t b i t− f l i p p i n g
−− auxFimRx 0 <= n o t auxFimTx 0 ;

−− D e t e c t s when s w i t c h b u t t o n 3 i s
−− p r e s s e d
i f a u x F i m I n j e c t i n g = ’0 ’ then
−− Begin s t o p o f f a u l t i n j e c t i o n
e s t a t F a u l t I n j e c t i o n <= p o s t F a u l t y ;

end i f ;

when p o s t F a u l t y =>
−− S top f a u l t i n j e c t i o n d u r i n g EOF (i f
−− we ’ d s t o p f a u l t i n j e c t i o n a t any
−− a r b i t r a r y moment , t h e
−− d o w n l in k / s u b l i n k / u p l i n k c o u l d become
−− non− f a u l t y i n t h e mi dd l e o f a frame ,
−− and t h e r e m a i n i n g b i t s o f t h a t f rame
−− c o u l d be i n t e r p r e t e d as b i t f l i p p i n g s)
i f g fm Gl o ba lF r am eS t a t e = e o f F i e l d then

e s t a t F a u l t I n j e c t i o n <= n o n F a u l t y ;
end i f ;

when o t h e r s =>
e s t a t F a u l t I n j e c t i o n <= n o n F a u l t y ;

end case ;
end i f ;

end p r o c e s s ;

end B e h a v i o r a l ;

F.2.3. ReCanCentrate.vhd

240

F.2. Fault-injection modules

l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 .ALL ;
use IEEE . STD LOGIC ARITH .ALL ;
use IEEE . STD LOGIC UNSIGNED .ALL ;

use work . d e f I n t e g e r . a l l ;
use work . d e f S t a t e s . a l l ;

−− Uncomment t h e f o l l o w i n g l i n e s t o use t h e d e c l a r a t i o n s t h a t are
−− p r o v i d e d f o r i n s t a n t i a t i n g X i l i n x p r i m i t i v e components .
−− l i b r a r y UNISIM ;
−−use UNISIM . VComponents . a l l ;

e n t i t y ReCanCen t ra t e i s
port
(

−− ======== Debugging ==========
dbg brpClk : out s t d l o g i c ;

dbg habCRC : out s t d l o g i c ;
dbg synClkR : out s t d l o g i c ;
dbg synROut : out s t d l o g i c ;
dbg synClkT : out s t d l o g i c ;

d b g s t u B i t S t u f f W a i t e d : out s t d l o g i c ;
d b g s t u V a l u e B i t S t u f f W a i t e d : out s t d l o g i c ;
d b g g f m I n i E r r o r F r a m e : out s t d l o g i c ;
d b g g f m L a s t B i t E o f : out s t d l o g i c ;
d b g g f m G l o b a l F r a m e S t a t e : out s t d l o g i c v e c t o r (3 downto 0) ;
dbg gfmErrorCRC : out s t d l o g i c ;

d b g e s t a t E r r o r F r m G e n : out s t d l o g i c ;

d b g e s t a t T h r e s h o l d 0 : out s t d l o g i c v e c t o r (1 downto 0) ;
d b g e s t a t T h r e s h o l d 1 : out s t d l o g i c v e c t o r (1 downto 0) ;
d b g e s t a t H u b T h r e s h o l d 0 : out s t d l o g i c v e c t o r (1 downto 0) ;
d b g e s t a t H u b T h r e s h o l d 1 : out s t d l o g i c v e c t o r (1 downto 0) ;

d b g p o r t T y p e 0 : out s t d l o g i c ;
d b g p o r t T y p e 1 : out s t d l o g i c ;
dbg hubType 0 : out s t d l o g i c ;
dbg hubType 1 : out s t d l o g i c ;

d b g e s t a t B I C M a n a g e r 0 : out s t d l o g i c v e c t o r (2 downto 0) ;
d b g e s t a t B I C M a n a g e r 1 : out s t d l o g i c v e c t o r (2 downto 0) ;
d b g e s t a t H u b B i c M a n a g e r 0 : out s t d l o g i c v e c t o r (2 downto 0) ;
d b g e s t a t H u b B i c M a n a g e r 1 : out s t d l o g i c v e c t o r (2 downto 0) ;

dbg bimBICValue 0 : out s t d l o g i c v e c t o r (4 downto 0) ;
dbg bimBICValue 1 : out s t d l o g i c v e c t o r (4 downto 0) ;
dbg hbmBICValue 0 : out s t d l o g i c v e c t o r (6 downto 0) ;
dbg hbmBICValue 1 : out s t d l o g i c v e c t o r (6 downto 0) ;

−− ======================

241

Appendix F. Source code for fault injection

−− E x t e r n a l r e s e t s i g n a l
nRST : in s t d l o g i c ;

−− O s c i l l a t o r c l o c k
c l k O s c l : in s t d l o g i c ;

−− Mapped t o s w i t c h b u t t o n 3
i n j e c t F a u l t : in s t d l o g i c ;

−− U p l i n k s
r x 0 : in s t d l o g i c ;
r x 1 : in s t d l o g i c ;
r x 2 : in s t d l o g i c ;

−− Incoming s u b l i n k s
rehRx 0 : in s t d l o g i c ;
rehRx 1 : in s t d l o g i c ;

−− Downl inks
t x 0 : out s t d l o g i c ;
t x 1 : out s t d l o g i c ;
t x 2 : out s t d l o g i c ;

−− Outgoing s u b l i n k s
hubTx 0 : out s t d l o g i c ;
hubTx 1 : out s t d l o g i c

) ;
end ReCanCen t ra t e ;

a r c h i t e c t u r e B e h a v i o r a l of ReCanCen t ra t e i s

component f a u l t I n j e c t i o n M o d u l e i s
port
(

−− Sys tem r e s e t
s y s R e s e t : in s t d l o g i c ;

−− Cl oc ks
synClkR : in s t d l o g i c ;
synClkT : in s t d l o g i c ;

−− I n d i c a t e s whe ther f a u l t s s h o u l d be i n j e c t e d or n o t
i o m I n j e c t F a u l t : in s t d l o g i c ;

−− S t a t e o f g l o b a l F r a m e M o n i t o r U n i t (c u r r e n t s t a t e o f
−− t h e r e s u l t a n t f rame)
g fm Gl o ba lF r am eS t a t e : in e s t a d o G l o b a l F r a m e ;

−− Va lu es t o be i n j e c t e d i n t o t h e d o w n l i n k s
f imTx 0 : out s t d l o g i c ;
f imTx 1 : out s t d l o g i c ;
f imTx 2 : out s t d l o g i c ;

242

F.2. Fault-injection modules

−− Va lu es t o be i n j e c t e d i n t o t h e u p l i n k s
f imRx 0 : out s t d l o g i c ;
f imRx 1 : out s t d l o g i c ;
f imRx 2 : out s t d l o g i c ;

−− Va lu es t o be i n j e c t e d i n t o t h e s u b l i n k s
fimHubTx 0 : out s t d l o g i c ;
fimHubTx 1 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be
−− i n j e c t e d or n o t t h r o u g h t h e g i v e n d o w n l i n k
f i m I n j T x 0 : out s t d l o g i c ;
f i m I n j T x 1 : out s t d l o g i c ;
f i m I n j T x 2 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be
−− i n j e c t e d or n o t t h r o u g h t h e g i v e n u p l i n k
f i m I n j R x 0 : out s t d l o g i c ;
f i m I n j R x 1 : out s t d l o g i c ;
f i m I n j R x 2 : out s t d l o g i c ;

−− Booleans which i n d i c a t e whe ther a f a u l t s h o u l d be
−− i n j e c t e d or n o t t h r o u g h t h e g i v e n s u b l i n k
f imIn jHubTx 0 : out s t d l o g i c ;
f imIn jHubTx 1 : out s t d l o g i c

) ;
end component ;

component b u f G l o b a l P r i m a r y C l o c k i s
port
(

c l k : in s t d l o g i c ;

bufClk : out s t d l o g i c
) ;

end component ;

component couplerRepModule i s
port
(

c p l C o u p l e d S i g n a l : in s t d l o g i c ;
iomRepCon t r i 0 : in s t d l o g i c ;
iomRepCon t r i 1 : in s t d l o g i c ;

htmEnaDisRep 0 : in s t d l o g i c ;
thmEnaDisRep 1 : in s t d l o g i c ;

c r p C o u p l e d S i g n a l : out s t d l o g i c
) ;

end component ;

243

Appendix F. Source code for fault injection

component coup le rModu le i s
port
(

i o m P o r t C o n t r i 0 : in s t d l o g i c ;
i o m P o r t C o n t r i 1 : in s t d l o g i c ;
i o m P o r t C o n t r i 2 : in s t d l o g i c ;

thmEnaDis 0 : in s t d l o g i c ;
thmEnaDis 1 : in s t d l o g i c ;
thmEnaDis 2 : in s t d l o g i c ;

e f g T x S i g n a l : in s t d l o g i c ;

c p l C o u p l e d S i g n a l : out s t d l o g i c
) ;

end component ;

component f a u l t T r e a t m e n t M o d u l e i s
port (

−− ======== Debugging ==========
dbg brpClk : out s t d l o g i c ;

dbg habCRC : out s t d l o g i c ;
dbg synClkR : out s t d l o g i c ;
dbg synROut : out s t d l o g i c ;
dbg synClkT : out s t d l o g i c ;

d b g s t u B i t S t u f f W a i t e d : out s t d l o g i c ;
d b g s t u V a l u e B i t S t u f f W a i t e d : out s t d l o g i c ;
d b g g f m I n i E r r o r F r a m e : out s t d l o g i c ;
d b g g f m L a s t B i t E o f : out s t d l o g i c ;
d b g g f m G l o b a l F r a m e S t a t e : out s t d l o g i c v e c t o r (3 downto 0) ;
dbg gfmErrorCRC : out s t d l o g i c ;

d b g e s t a t E r r o r F r m G e n : out s t d l o g i c ;

d b g e s t a t T h r e s h o l d 0 : out s t d l o g i c v e c t o r (1 downto 0) ;
d b g e s t a t T h r e s h o l d 1 : out s t d l o g i c v e c t o r (1 downto 0) ;
d b g e s t a t H u b T h r e s h o l d 0 : out s t d l o g i c v e c t o r (1 downto 0) ;
d b g e s t a t H u b T h r e s h o l d 1 : out s t d l o g i c v e c t o r (1 downto 0) ;

d b g p o r t T y p e 0 : out s t d l o g i c ;
d b g p o r t T y p e 1 : out s t d l o g i c ;
dbg HubType 0 : out s t d l o g i c ;
dbg HubType 1 : out s t d l o g i c ;

d b g e s t a t B I C M a n a g e r 0 : out s t d l o g i c v e c t o r (2 downto 0) ;
d b g e s t a t B I C M a n a g e r 1 : out s t d l o g i c v e c t o r (2 downto 0) ;
d b g e s t a t H u b B i c M a n a g e r 0 : out s t d l o g i c v e c t o r (2 downto 0) ;
d b g e s t a t H u b B i c M a n a g e r 1 : out s t d l o g i c v e c t o r (2 downto 0) ;

dbg bimBICValue 0 : out s t d l o g i c v e c t o r (4 downto 0) ;
dbg bimBICValue 1 : out s t d l o g i c v e c t o r (4 downto 0) ;

244

F.2. Fault-injection modules

dbg hbmBICValue 0 : out s t d l o g i c v e c t o r (6 downto 0) ;
dbg hbmBICValue 1 : out s t d l o g i c v e c t o r (6 downto 0) ;

−− ======================
−− Rese t , o s c i l l a t o r , and r e s u l t a n t s i g n a l
s y s R e s e t : in s t d l o g i c ;
c l k : in s t d l o g i c ;
c r p C o u p l e d S i g n a l : in s t d l o g i c ;

−− Node c o n t r i b u t i o n s
i o m P o r t C o n t r i 0 : in s t d l o g i c ;
i o m P o r t C o n t r i 1 : in s t d l o g i c ;
i o m P o r t C o n t r i 2 : in s t d l o g i c ;

−− C o n t r i b u t i o n s o f t h e o t h e r hub
iomHubCont r i 0 : in s t d l o g i c ;
iomHubCont r i 1 : in s t d l o g i c ;

−− B i t− f l i p p i n g c o u n t e r t h r e s h o l d
t h r e s h o l d B I C : in s t d l o g i c v e c t o r (4 downto 0) ;
−− Non ACKnowledge c o u n t e r t h r e s h o l d
thresholdNACK : in s t d l o g i c v e c t o r (2 downto 0) ;
−− Dominant b i t c o u n t e r t h r e s h o l d
th resholdDBC : in s t d l o g i c v e c t o r (4 downto 0) ;

−− B i t r a t e c o n f i g u r a t i o n
brp : in s t d l o g i c v e c t o r (5 downto 0) ;
t s e g m e n t 1 : in s t d l o g i c v e c t o r (5 downto 0) ;
t s e g m e n t 2 : in s t d l o g i c v e c t o r (2 downto 0) ;
s jw : in s t d l o g i c v e c t o r (1 downto 0) ;
−− I f 0 , r e s y n c h r o n i z a t i o n w i t h ’ r ’ t o ’d ’ edge ; i f 1 ,
−− r e s y n c h r o n i z a t i o n w i t h bo th ’ r ’ t o ’d ’ and ’d ’ t o ’ r ’
sync : in s t d l o g i c ;
−− I f 0 , sample once ; i f 1 , sample 3 t i m e s
sam : in s t d l o g i c ;

−− S i g n a l s t o e n a b l e or d i s a b l e u p l i n k s
thmEnaDis 0 : out s t d l o g i c ;
thmEnaDis 1 : out s t d l o g i c ;
thmEnaDis 2 : out s t d l o g i c ;

−− S i g n a l s t o e n a b l e or d i s a b l e s u b l i n k s
htmEnaDis 0 : out s t d l o g i c ;
htmEnaDis 1 : out s t d l o g i c ;

−− The hub ’ s t r a n s m i t c o n t r i b u t i o n
e f g T x S i g n a l : out s t d l o g i c ;

−− S t a t e o f g l o b a l F r a m e M o n i t o r U n i t (c u r r e n t s t a t e o f
−− t h e r e s u l t a n t f rame)
g fm Gl o ba l F r am e S t a t e : out e s t a d o G l o b a l F r a m e

) ;
end component ;

245

Appendix F. Source code for fault injection

component b i e s t a b l e D i s
port (

r e s e t : in s t d l o g i c ;
c l k : in s t d l o g i c ;
e n t r a d a : in s t d l o g i c ;
s a l i d a : out s t d l o g i c

) ;
end component ;

s i g n a l s y s R e s e t : s t d l o g i c ;
s i g n a l c l k : s t d l o g i c ;
s i g n a l a u x C p l C o u p l e d S i g n a l : s t d l o g i c ;
s i g n a l a ux Cr pC ou p le dS ig na l : s t d l o g i c ;

s i g n a l auxHrvTx 0 : s t d l o g i c ;
s i g n a l auxHrvTx 1 : s t d l o g i c ;

s i g n a l auxEfgTxS igna l : s t d l o g i c ;

s i g n a l auxThmEnaDis 0 : s t d l o g i c ;
s i g n a l auxthmEnaDis 1 : s t d l o g i c ;
s i g n a l auxThmEnaDis 2 : s t d l o g i c ;
s i g n a l auxThmEnaDis 3 : s t d l o g i c ;

s i g n a l auxHtmEnaDis 0 : s t d l o g i c ;
s i g n a l auxHtmEnaDis 1 : s t d l o g i c ;

s i g n a l auxFimTx 0 : s t d l o g i c ;
s i g n a l auxFimTx 1 : s t d l o g i c ;
s i g n a l auxFimTx 2 : s t d l o g i c ;
s i g n a l auxFimRx 0 : s t d l o g i c ;
s i g n a l auxFimRx 1 : s t d l o g i c ;
s i g n a l auxFimRx 2 : s t d l o g i c ;
s i g n a l auxFimHubTx 0 : s t d l o g i c ;
s i g n a l auxFimHubTx 1 : s t d l o g i c ;

s i g n a l auxFimIn jTx 0 : s t d l o g i c ;
s i g n a l auxFimIn jTx 1 : s t d l o g i c ;
s i g n a l auxFimIn jTx 2 : s t d l o g i c ;

s i g n a l auxFimIn jRx 0 : s t d l o g i c ;
s i g n a l auxFimIn jRx 1 : s t d l o g i c ;
s i g n a l auxFimIn jRx 2 : s t d l o g i c ;

s i g n a l auxFimInjHubTx 0 : s t d l o g i c ;
s i g n a l auxFimInjHubTx 1 : s t d l o g i c ;

s i g n a l auxRx 0 : s t d l o g i c ;
s i g n a l auxRx 1 : s t d l o g i c ;
s i g n a l auxRx 2 : s t d l o g i c ;

s i g n a l auxauxRx 0 : s t d l o g i c ;
s i g n a l auxauxRx 1 : s t d l o g i c ;

246

F.2. Fault-injection modules

s i g n a l auxauxRx 2 : s t d l o g i c ;

s i g n a l auxRehRx 0 : s t d l o g i c ;
s i g n a l auxRehRx 1 : s t d l o g i c ;

s i g n a l auxSynClkR : s t d l o g i c ;
s i g n a l auxSynClkT : s t d l o g i c ;

s i g n a l auxGfmGloba lFrameSta te : e s t a d o G l o b a l F r a m e ;

begin
−− Mapping t o c l o c k s f o r debugg ing
dbg synClkR <= auxSynClkR ;
dbg synClkT <= auxSynClkT ;

−− C a l c u l a t e s y s t e m r e s e t
s y s R e s e t <= not nRST ;

−− A s s i g n o s c i l l a t o r c l o c k t o a g l o b a l c l o c k pa th
b u f C l k O s c l : b u f G l o b a l P r i m a r y C l o c k port map (c l k O s c l , c l k) ;

−− B r o a d c a s t c o u p l e d s i g n a l or f a u l t t o be i n j e c t e d t o d o w n l i n k s
with auxFimIn jTx 0 s e l e c t

t x 0 <=
(a ux Cr pC o up le dS ig n a l or not nRST) when ’0 ’ ,

auxFimTx 0 when o t h e r s ;

with auxFimIn jTx 1 s e l e c t
t x 1 <=

(a ux Cr pC o up le dS ig n a l or not nRST) when ’0 ’ ,
auxFimTx 1 when o t h e r s ;

with auxFimIn jTx 2 s e l e c t
t x 2 <=

(a ux Cr pC o up le dS ig n a l or not nRST) when ’0 ’ ,
auxFimTx 2 when o t h e r s ;

−− A s s i g n u p l i n k s i g n a l s or f a u l t t o be i n j e c t e d t o u p l i n k s
with auxFimIn jRx 0 s e l e c t

auxauxRx 0 <=
(auxRx 0) when ’0 ’ ,
auxFimRx 0 when o t h e r s ;

with auxFimIn jRx 1 s e l e c t
auxauxRx 1 <=

(auxRx 1) when ’0 ’ ,
auxFimRx 1 when o t h e r s ;

with auxFimIn jRx 2 s e l e c t
auxauxRx 2 <=

(auxRx 2) when ’0 ’ ,
auxFimRx 2 when o t h e r s ;

247

Appendix F. Source code for fault injection

−− A s s i g n hub c o n t r i b u t i o n or f a u l t t o be i n j e c t e d t o o u t g o i n g s u b l i n k s
with auxFimInjHubTx 0 s e l e c t

hubTx 0 <=
(a u x C p l C o u p l e d S i g n a l or not nRST) when ’0 ’ ,

auxFimHubTx 0 when o t h e r s ;

with auxFimInjHubTx 1 s e l e c t
hubTx 1 <=

(a u x C p l C o u p l e d S i g n a l or not nRST) when ’0 ’ ,
auxFimHubTx 1 when o t h e r s ;

b i e s t a b l e R x 0 : b i e s t a b l e D port map (s y s R e s e t , c lk , rx 0 , auxRx 0) ;
b i e s t a b l e R x 1 : b i e s t a b l e D port map (s y s R e s e t , c lk , rx 1 , auxRx 1) ;
b i e s t a b l e R x 2 : b i e s t a b l e D port map (s y s R e s e t , c lk , rx 2 , auxRx 2) ;

b i e s t a b l e r e h R x 0 : b i e s t a b l e D port map (s y s R e s e t , c lk , rehRx 0 , auxRehRx 0) ;
b i e s t a b l e r e h R x 1 : b i e s t a b l e D port map (s y s R e s e t , c lk , rehRx 1 , auxRehRx 1) ;

f a u l t I n j e c t i o n M o d u l e U n i t :
f a u l t I n j e c t i o n M o d u l e

port map (
s y s R e s e t => s y s R e s e t ,

synClkR => auxSynClkR ,
synClkT => auxSynClkT ,

i o m I n j e c t F a u l t => i n j e c t F a u l t ,

g fm Gl o ba lF r am eS t a t e => auxGfmGlobalFrameSta te ,

f imTx 0 => auxFimTx 0 ,
f imTx 1 => auxFimTx 1 ,
f imTx 2 => auxFimTx 2 ,

f imRx 0 => auxFimRx 0 ,
f imRx 1 => auxFimRx 1 ,
f imRx 2 => auxFimRx 2 ,

fimHubTx 0 => auxFimHubTx 0 ,
fimHubTx 1 => auxFimHubTx 1 ,

f i m I n j T x 0 => auxFimInjTx 0 ,
f i m I n j T x 1 => auxFimInjTx 1 ,
f i m I n j T x 2 => auxFimInjTx 2 ,

f i m I n j R x 0 => auxFimInjRx 0 ,
f i m I n j R x 1 => auxFimInjRx 1 ,
f i m I n j R x 2 => auxFimInjRx 2 ,

f imIn jHubTx 0 => auxFimInjHubTx 0 ,
f imIn jHubTx 1 => auxFimInjHubTx 1

) ;

248

F.2. Fault-injection modules

−− Coupler r e p l i c a module
coup le rRepModuleUni t :

couplerRepModule
port map (

c p l C o u p l e d S i g n a l => auxCplCoup ledS igna l ,
i omRepCon t r i 0 => auxRehRx 0 ,
iomRepCon t r i 1 => auxRehRx 1 ,

htmEnaDisRep 0 => auxHtmEnaDis 0 ,
thmEnaDisRep 1 => auxHtmEnaDis 1 ,

c r p C o u p l e d S i g n a l => a ux Cr pC ou p le dS ig na l
) ;

−− Coupler module
co up l e rM odu luU n i t :

coup le rModu le
port map (

i o m P o r t C o n t r i 0 => auxauxRx 0 ,
i o m P o r t C o n t r i 1 => auxauxRx 1 ,
i o m P o r t C o n t r i 2 => auxauxRx 2 ,

thmEnaDis 0 => auxThmEnaDis 0 ,
thmEnaDis 1 => auxThmEnaDis 1 ,
thmEnaDis 2 => auxThmEnaDis 2 ,

e f g T x S i g n a l => auxEfgTxSigna l ,

c p l C o u p l e d S i g n a l => a u x C p l C o u p l e d S i g n a l
) ;

−− F a u l t t r e a t m e n t module
f a u l t T r e a t m e n t M o d u l e U n i t :

f a u l t T r e a t m e n t M o d u l e
port map (

−− ======== Debugging ==========
dbg brpClk => dbg brpClk ,
dbg habCRC => dbg habCRC ,

dbg synClkR => auxSynClkR ,
dbg synROut => dbg synROut ,
dbg synClkT => auxSynClkT ,

d b g s t u B i t S t u f f W a i t e d => d b g s t u B i t S t u f f W a i t e d ,
d b g s t u V a l u e B i t S t u f f W a i t e d => d b g s t u V a l u e B i t S t u f f W a i t e d ,
d b g g f m I n i E r r o r F r a m e => dbg g fmI n iE r ro r F rame ,
d b g g f m L a s t B i t E o f => dbg gfmLas tB i tEof ,
d b g g f m G l o b a l F r a m e S t a t e => dbg gfmGloba lF rameSta t e ,
dbg gfmErrorCRC => dbg gfmErrorCRC ,

d b g e s t a t E r r o r F r m G e n => d b g e s t a t E r r o r F r m G e n ,

249

Appendix F. Source code for fault injection

d b g e s t a t T h r e s h o l d 0 => d b g e s t a t T h r e s h o l d 0 ,
d b g e s t a t T h r e s h o l d 1 => d b g e s t a t T h r e s h o l d 1 ,
d b g e s t a t H u b T h r e s h o l d 0 => d b g e s t a t H u b T h r e s h o l d 0 ,
d b g e s t a t H u b T h r e s h o l d 1 => d b g e s t a t H u b T h r e s h o l d 1 ,

d b g p o r t T y p e 0 => d b g p o r tT y p e 0 ,
d b g p o r t T y p e 1 => d b g p o r tT y p e 1 ,
dbg hubType 0 => dbg HubType 0 ,
dbg hubType 1 => dbg HubType 1 ,

d b g e s t a t B I C M a n a g e r 0 => dbg es t a tBICManage r 0 ,
d b g e s t a t B I C M a n a g e r 1 => dbg es t a tBICManage r 1 ,
d b g e s t a t H u b B i c M a n a g e r 0 => dbg es t a tHubBicManage r 0 ,
d b g e s t a t H u b B i c M a n a g e r 1 => dbg es t a tHubBicManage r 1 ,

dbg bimBICValue 0 => dbg bimBICValue 0 ,
dbg bimBICValue 1 => dbg bimBICValue 1 ,
dbg hbmBICValue 0 => dbg hbmBICValue 0 ,
dbg hbmBICValue 1 => dbg hbmBICValue 1 ,

−− ======================
−− Rese t , o s c i l l a t o r , and r e s u l t a n t s i g n a l
s y s R e s e t => s y s R e s e t ,
c l k => c lk ,
c r p C o u p l e d S i g n a l => auxCrpCoup ledS igna l ,

−− Node c o n t r i b u t i o n s
i o m P o r t C o n t r i 0 => auxauxRx 0 ,
i o m P o r t C o n t r i 1 => auxauxRx 1 ,
i o m P o r t C o n t r i 2 => auxauxRx 2 ,

−− C o n t r i b u t i o n s o f t h e o t h e r hub
iomHubCont r i 0 => auxRehRx 0 ,
iomHubCont r i 1 => auxRehRx 1 ,

−− B i t− f l i p p i n g c o u n t e r t h r e s h o l d
t h r e s h o l d B I C => ” 01000 ” ,
−− Non ACKnowledge c o u n t e r t h r e s h o l d
thresholdNACK => ” 111 ” ,
−− Dominant b i t c o u n t e r t h r e s h o l d
th resholdDBC => ” 11000 ” ,

−− B i t r a t e c o n f i g u r a t i o n

−− baud r a t e p r e s c a l e r
−− 2 ∗ (brp + 1)
−− TQ = −−−−−−−−−−−−−−−
−− c l k
brp => ” 000000 ” ,

−− number o f TQ f o r segment 1 (i n c l u d e s
−− p r o p a g a t i o n segment) = t s e g m e n t 1 + 1
t s e g m e n t 1 => ” 000100 ” ,

250

F.2. Fault-injection modules

−− number o f TQ f o r segment 2 = t s e g m e n t 2 + 1
t s e g m e n t 2 => ” 001 ” ,

−− Nominal B i t Time
−− NBT = (1 + (t s e g m e n t 1 + 1) + (t s e g m e n t 2 + 1)) ∗ TQ

−− number o f TQ f o r synch . jump w i d t h = s jw + 1
s jw => ” 00 ” ,

−− I f s ync = 0 , o n l y r e s y n c h r o n i z e w i t h down edge
−− I f s ync = 1 , r e s y n c h r o n i z e w i t h down and up edge
sync => ’0 ’ ,

−− I f sam = 0 , sample 1 t ime ,
−− I f sam = 1 , sample 3 t i m e s
sam => ’0 ’ ,

thmEnaDis 0 => auxThmEnaDis 0 ,
thmEnaDis 1 => auxThmEnaDis 1 ,
thmEnaDis 2 => auxThmEnaDis 2 ,

htmEnaDis 0 => auxHtmEnaDis 0 ,
htmEnaDis 1 => auxHtmEnaDis 1 ,

e f g T x S i g n a l => auxEfgTxSigna l ,

g fm Gl o ba lF r am eS t a t e => auxGfmGloba lFrameSta te
) ;

end B e h a v i o r a l ;

251

G. Source code for the fault-tolerance
tests

G.1. transmitter 3led counter.c

/∗
∗ t r a n s m i t t e r 3 l e d c o u n t e r . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” . . / . . / r e c a n c e n t r a t e . h ”
i n c l u d e ” . . / . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / . . / a s s e r t . h ”
i n c l u d e ” . . / . . / common . h ”
i n c l u d e ” . . / . . / l e d . h ”
i n c l u d e ” . . / c r a s h c o n t r o l l e r . h ”
i n c l u d e ” . . / f t− t e s t s . h ”

i n t main (void)
{

unsigned i n t s i d = LED COUNTER ID ;
t r e c a n c e n t r a t e s t a t u s t x s t a t u s ;
/∗ Data t o t r a n s m i t ∗ /
unsigned char t x d a t a ;
/∗ Number o f f ra me s t r a n s m i t t e d s u c c e s f u l l y ∗ /
unsigned char t x f r a m e s c o u n t = 0 ;

e n a b l e b u t t o n i n t e r r u p t s () ;
i n i t l e d s () ;
i n i t r e c a n c e n t r a t e d r i v e r () ;

whi le (1) {
/∗ Count on t h e 3 l e a s t−s i g n i f i c a n t LEDs ∗ /
l e d d i s p l a y (t x f r a m e s c o u n t % 8) ;

t x d a t a = t x f r a m e s c o u n t ;
r e q u e s t r e c a n c e n t r a t e t x (s i d , &t x d a t a , 1 , &t x s t a t u s) ;

i f (t x s t a t u s != RECANCENTRATE STATUS TX REQUEST SUCCESSFUL) {
ASSERT(f a l s e) ;

}

253

Appendix G. Source code for the fault-tolerance tests

whi le (! r e c a n c e n t r a t e t x c a r r i e d o u t ()) {
i f (! r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e ()) {

ASSERT(f a l s e) ;
}
/∗ e l s e do n o t h i n g , w a i t f o r t r a n s m i s s i o n t o be c a r r i e d
∗ o u t ∗ /

}
t x f r a m e s c o u n t ++;

}

re turn 0 ;
}

G.2. transmitter blinking led.c

/∗
∗ t r a n s m i t t e r b l i n k i n g l e d . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” . . / . . / r e c a n c e n t r a t e . h ”
i n c l u d e ” . . / . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / . . / a s s e r t . h ”
i n c l u d e ” . . / . . / common . h ”
i n c l u d e ” . . / . . / l e d . h ”
i n c l u d e ” . . / c r a s h c o n t r o l l e r . h ”
i n c l u d e ” . . / f t− t e s t s . h ”

i n t main (void)
{

unsigned i n t s i d = BLINKER ID ;
t r e c a n c e n t r a t e s t a t u s t x s t a t u s ;
/∗ Data t o t r a n s m i t ∗ /
unsigned char t x d a t a ;
/∗ Number o f f ra me s t r a n s m i t t e d s u c c e s f u l l y ∗ /
unsigned char t x f r a m e s c o u n t = 0 ;

e n a b l e b u t t o n i n t e r r u p t s () ;
i n i t l e d s () ;
i n i t r e c a n c e n t r a t e d r i v e r () ;

whi le (1) {
/∗ B l i n k most−s i g n i f i c a n t LED ∗ /
l e d d i s p l a y ((t x f r a m e s c o u n t % 2) << 3) ;

t x d a t a = t x f r a m e s c o u n t ;
r e q u e s t r e c a n c e n t r a t e t x (s i d , &t x d a t a , 1 , &t x s t a t u s) ;

254

G.3. receiver.c

i f (t x s t a t u s != RECANCENTRATE STATUS TX REQUEST SUCCESSFUL) {
ASSERT(f a l s e) ;

}

whi le (! r e c a n c e n t r a t e t x c a r r i e d o u t ()) {
i f (! r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e ()) {

ASSERT(f a l s e) ;
}
/∗ e l s e do n o t h i n g , w a i t f o r t r a n s m i s s i o n t o be c a r r i e d
∗ o u t ∗ /

}
t x f r a m e s c o u n t ++;

}

re turn 0 ;
}

G.3. receiver.c

/∗
∗ r e c e i v e r . c
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” . . / r e c a n c e n t r a t e . h ”
i n c l u d e ” . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / a s s e r t . h ”
i n c l u d e ” . . / common . h ”
i n c l u d e ” . . / l e d . h ”
i n c l u d e ” c r a s h c o n t r o l l e r . h ”
i n c l u d e ” f t− t e s t s . h ”

unsigned i n t r x s i d ;
/∗ R e c e i v e d c o u n t ∗ /
unsigned char r x c o u n t ;
unsigned char r x d a t a l e n g t h ;
t r e c a n c e n t r a t e s t a t u s r x s t a t u s ;
/∗ Number o f f ra me s r e c e i v e d from b l i n k e r ∗ /
unsigned char b l i n k e r f r a m e s c o u n t = 0xAA;
/∗ Number o f f ra me s r e c e i v e d from 3 l e d c o u n t e r ∗ /
unsigned char l e d c o u n t e r f r a m e s c o u n t = 0xAA;

void r e a d r e c a n c e n t r a t e f r a m e (void)
{

whi le (! r e c e i v e d d a t a i s a v a i l a b l e ()) {
i f (! r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e ()) {

ASSERT(f a l s e) ;
}
/∗ e l s e do n o t h i n g , w a i t f o r da ta t o be r e c e i v e d ∗ /

}

255

Appendix G. Source code for the fault-tolerance tests

r e a d r e c e i v e d d a t a (& r x s i d , &r x c o u n t , &r x d a t a l e n g t h ,
&r x s t a t u s) ;

i f (r x s t a t u s != RECANCENTRATE STATUS RX DATA LOADED) {
ASSERT(f a l s e) ;

}
ASSERT(r x d a t a l e n g t h == 1) ;

}

void c h e c k c o u n t e r v a l u e (
unsigned char r e f e r e n c e c o u n t ,
unsigned char ∗ c o u n t t o c h e c k ,
i n t ∗ d u p l i c a t e d f r a m e s c o u n t ,
i n t ∗ c o r r e c t f r a m e s c o u n t ,
i n t ∗m i s s e d f r a m e s c o u n t ,
i n t ∗ o u t o f s y n c f r a m e s c o u n t

)
{

unsigned char o l d c o u n t ;
unsigned char n e x t c o u n t ;
unsigned char n e x t n e x t c o u n t ;

o l d c o u n t = ∗ c o u n t t o c h e c k ;
n e x t c o u n t = ∗ c o u n t t o c h e c k + 1 ;
n e x t n e x t c o u n t = ∗ c o u n t t o c h e c k + 2 ;

i f (r e f e r e n c e c o u n t == o l d c o u n t) {
/∗ R e c e i v e d a d u p l i c a t e o f t h e p r e v i o u s frame ∗ /
(∗ d u p l i c a t e d f r a m e s c o u n t) + + ;

} e l s e i f (r e f e r e n c e c o u n t == n e x t c o u n t) {
/∗ We r e c e i v e d t h e c o r r e c t f rame ∗ /
(∗ c o r r e c t f r a m e s c o u n t) + + ;

} e l s e i f (r e f e r e n c e c o u n t == n e x t n e x t c o u n t) {
/∗ We m is s ed a frame ∗ /
(∗ m i s s e d f r a m e s c o u n t) + + ;

} e l s e {
/∗ We are c o m p l e t e l y o u t o f s ync ∗ /
(∗ o u t o f s y n c f r a m e s c o u n t) + + ;

}
/∗ Sync w i t h r e f e r e n c e c o u n t (i f we r e c e i v e d a d u p l i c a t e frame , t h e
∗ s y n c h r o n i z a t i o n i s u n n e c e s s a r y , b u t done anyway) ∗ /

(∗ c o u n t t o c h e c k) = r e f e r e n c e c o u n t ;
}

i n t l e d c o u n t e r d u p l i c a t e d f r a m e s = 0 ;
i n t b l i n k e r d u p l i c a t e d f r a m e s = 0 ;

i n t l e d c o u n t e r m i s s e d f r a m e s = 0 ;
i n t b l i n k e r m i s s e d f r a m e s = 0 ;

i n t l e d c o u n t e r c o r r e c t f r a m e s = 0 ;

256

G.3. receiver.c

i n t b l i n k e r c o r r e c t f r a m e s = 0 ;

i n t l e d c o u n t e r o u t o f s y n c f r a m e s = 0 ;
i n t b l i n k e r o u t o f s y n c f r a m e s = 0 ;

i n t main (void)
{

e n a b l e b u t t o n i n t e r r u p t s () ;
i n i t l e d s () ;
i n i t r e c a n c e n t r a t e d r i v e r () ;

whi le (1) {
r e a d r e c a n c e n t r a t e f r a m e () ;
i f (r x s i d == LED COUNTER ID) {

c h e c k c o u n t e r v a l u e (r x c o u n t ,
&l e d c o u n t e r f r a m e s c o u n t ,
&l e d c o u n t e r d u p l i c a t e d f r a m e s ,
&l e d c o u n t e r c o r r e c t f r a m e s ,
&l e d c o u n t e r m i s s e d f r a m e s ,
&l e d c o u n t e r o u t o f s y n c f r a m e s) ;

l e d d i s p l a y (r x c o u n t % 8) ;
} e l s e i f (r x s i d == BLINKER ID) {

c h e c k c o u n t e r v a l u e (r x c o u n t ,
&b l i n k e r f r a m e s c o u n t ,
&b l i n k e r d u p l i c a t e d f r a m e s ,
&b l i n k e r c o r r e c t f r a m e s ,
&b l i n k e r m i s s e d f r a m e s ,
&b l i n k e r o u t o f s y n c f r a m e s) ;

l e d d i s p l a y ((r x c o u n t % 2) << 3) ;
} e l s e {

/∗ Unknown ID ∗ /
ASSERT(f a l s e) ;

}
ASSERT(l e d c o u n t e r m i s s e d f r a m e s == 0) ;
ASSERT(b l i n k e r m i s s e d f r a m e s == 0) ;

/∗ Only a l l o w a t most a s i n g l e o u t o f s ync frame (which i s t h e
∗ f rame r e c e i v e d f o r t h e i n i t i a l s y n c h r o n i z a t i o n) ∗ /

ASSERT(l e d c o u n t e r o u t o f s y n c f r a m e s == 0 | |
l e d c o u n t e r o u t o f s y n c f r a m e s == 1) ;

ASSERT(b l i n k e r o u t o f s y n c f r a m e s == 0 | |
b l i n k e r o u t o f s y n c f r a m e s == 1) ;

}

re turn 0 ;
}

257

H. Source code for the performance tests

H.1. 8byte transmitter.c

/∗
∗ 8 b y t e t r a n s m i t t e r . c
∗
∗ T r a n s m i t s 8 b y t e s o f data , which i s t h e maximum amount o f da ta t h a t can be
∗ send i n a s i n g l e CAN frame .
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” . . / r e c a n c e n t r a t e . h ”
i n c l u d e ” . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / a s s e r t . h ”
i n c l u d e ” . . / common . h ”
i n c l u d e ” . . / l e d . h ”
i n c l u d e ” c r a s h c o n t r o l l e r . h ”

i n t main (void)
{

unsigned i n t s i d = 1 ;
t r e c a n c e n t r a t e s t a t u s t x s t a t u s ;
unsigned char t x d a t a [8] = { 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 ,

0x08 } ;

e n a b l e b u t t o n i n t e r r u p t s () ;
i n i t l e d s () ;
i n i t r e c a n c e n t r a t e d r i v e r () ;

l e d d i s p l a y (t x d a t a [0]) ;
r e q u e s t r e c a n c e n t r a t e t x (s i d , t x d a t a , 8 , &t x s t a t u s) ;

i f (t x s t a t u s != RECANCENTRATE STATUS TX REQUEST SUCCESSFUL) {
ASSERT(f a l s e) ;

}

whi le (! r e c a n c e n t r a t e t x c a r r i e d o u t ()) {
i f (! r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e ()) {

ASSERT(f a l s e) ;
}
/∗ e l s e do n o t h i n g , w a i t f o r t r a n s m i s s i o n t o be c a r r i e d

259

Appendix H. Source code for the performance tests

∗ o u t ∗ /
}

re turn 0 ;
}

H.2. 0byte transmitter.c

/∗
∗ 0 b y t e t r a n s m i t t e r . c
∗
∗ T r a n s m i t s a 0 b y t e da ta frame , which i s t h e s h o r t e s t p o s s i b l e f rame .
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i n c l u d e ” . . / r e c a n c e n t r a t e . h ”
i n c l u d e ” . . / d e v i c e c o n f i g . h ”
i n c l u d e ” . . / a s s e r t . h ”
i n c l u d e ” . . / common . h ”
i n c l u d e ” . . / l e d . h ”
i n c l u d e ” c r a s h c o n t r o l l e r . h ”

i n t main (void)
{

unsigned i n t s i d = 1 ;
t r e c a n c e n t r a t e s t a t u s t x s t a t u s ;

e n a b l e b u t t o n i n t e r r u p t s () ;
i n i t l e d s () ;
i n i t r e c a n c e n t r a t e d r i v e r () ;

l e d d i s p l a y (t x d a t a [0]) ;
r e q u e s t r e c a n c e n t r a t e t x (s i d , NULL, 0 , &t x s t a t u s) ;

i f (t x s t a t u s != RECANCENTRATE STATUS TX REQUEST SUCCESSFUL) {
ASSERT(f a l s e) ;

}

whi le (! r e c a n c e n t r a t e t x c a r r i e d o u t ()) {
i f (! r e c a n c e n t r a t e c o n t r o l l e r a v a i l a b l e ()) {

ASSERT(f a l s e) ;
}
/∗ e l s e do n o t h i n g , w a i t f o r t r a n s m i s s i o n t o be c a r r i e d
∗ o u t ∗ /

}

re turn 0 ;
}

260

I. Source code for the profiler

I.1. profiler.c

/∗
∗ p r o f i l e r . c
∗
∗ P r o v i d e s t i m e r s t h a t can be s t a r t e d and s t o p p e d be tween two p o i n t s i n t h e
∗ s o u r c e code i n o r d e r t o measure how many i n s t r u c t i o n s c y c l e s have e l a p s e d
∗ be tween t h e two p o i n t s . I n s p e c t t h e c o n t e n t s o f r e g i s t e r TMR2 , TM3 , TMR4 , or
∗ TMR5 t o v iew t h e number o f i n s t r u c t i o n c y c l e s t h a t have been measured .
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f d e f PROFILE

i n c l u d e <p30f6014A . h>
i n c l u d e ” i n t e r r u p t s . h ”

/∗ The t i m e r s , i n 16− b i t mode , can c o u n t up t o a maximum v a l u e o f 0xFFFF .
∗ Because t h e p r o f i l i n g t i m e r s are c o n f i g u r e d t o i n c r e m e n t by 1 w i t h each
∗ i n s t r u c t i o n c y c l e , t h e maximum number o f i n s t r u c t i o n s we can c o u n t w i t h a
∗ 16− b i t t i m e r c o i n c i d e s w i t h t h e maximum v a l u e a 16− b i t t i m e r can c o u n t up t o .
∗ /

s t a t i c c o n s t unsigned i n t INSTRUCTION COUNT MAX = 0xFFFF ;

d e f i n e CONCAT (a , b) a ## b
d e f i n e CONCAT3 (a , b , c) a ## b ## c

d e f i n e DEFINE SETUP TIMER (t i m e r i d x) \
\
s t a t i c vo id CONCAT (s e t u p t i m e r , t i m e r i d x) (void) \
{ \

/∗ C o n f i g u r e t i m e r t o i n c r e m e n t by one w i t h each i n s t r u c t i o n ∗ / \
/∗ . . . t i m e r c l o c k s o u r c e i s t h e i n s t r u c t i o n c y c l e c l o c k , \
∗ i . e . FCY = FOSC/ 4 ∗ / \
CONCAT3 (T , t i m e r i d x , CONbits) . TCS = 0 ; \

/∗ . . . do n o t p r e s c a l e t h e t i m e r c l o c k s o u r c e ∗ / \
CONCAT3 (T , t i m e r i d x , CONbits) . TCKPS = 0 ; \

\
/∗ Do n o t use t h e g a t e d t i m e a c c u m u l a t i o n mode ∗ / \

CONCAT3 (T , t i m e r i d x , CONbits) . TGATE = 0 ; \
/∗ In i d l e mode , s t o p t i m e r ∗ / \

CONCAT3 (T , t i m e r i d x , CONbits) . TSIDL = 1 ; \

261

Appendix I. Source code for the profiler

/∗ A s s i g n maximum t i m e o u t t o t i m e r p e r i o d r e g i s t e r s ∗ / \
CONCAT (PR , t i m e r i d x) = INSTRUCTION COUNT MAX ; \

} \

DEFINE SETUP TIMER (2) ;
DEFINE SETUP TIMER (3) ;
DEFINE SETUP TIMER (4) ;
DEFINE SETUP TIMER (5) ;

void p r o f i l e r s e t u p t i m e r s (void)
{

s e t u p t i m e r 2 () ;
s e t u p t i m e r 3 () ;
s e t u p t i m e r 4 () ;
s e t u p t i m e r 5 () ;

}

d e f i n e DEFINE PROFILER START TIMER (t i m e r i d x) \
\
void CONCAT (p r o f i l e r s t a r t t i m e r , t i m e r i d x) (void) \
{ \

/∗ R e s e t t i m e r t o z e r o ∗ / \
CONCAT (TMR, t i m e r i d x) = 0 ; \

/∗ S e t t i m e r on ∗ / \
CONCAT3 (T , t i m e r i d x , CONbits) . TON = 1 ; \

} \

DEFINE PROFILER START TIMER (2) ;
DEFINE PROFILER START TIMER (3) ;
DEFINE PROFILER START TIMER (4) ;
DEFINE PROFILER START TIMER (5) ;

d e f i n e DEFINE PROFILER STOP TIMER (t i m e r i d x) \
\
void CONCAT (p r o f i l e r s t o p t i m e r , t i m e r i d x) (void) \
{ \

CONCAT3 (T , t i m e r i d x , CONbits) . TON = 0 ; \
} \

DEFINE PROFILER STOP TIMER (2) ;
DEFINE PROFILER STOP TIMER (3) ;
DEFINE PROFILER STOP TIMER (4) ;
DEFINE PROFILER STOP TIMER (5) ;

262

I.2. profiler.h

e n d i f /∗ PROFILE ∗ /

I.2. profiler.h

/∗
∗ p r o f i l e r . h
∗
∗ W r i t t e n by David Gessner <davidges@gmai l . com>
∗ /

i f n d e f PROFILER H
d e f i n e PROFILER H

void p r o f i l e r s e t u p t i m e r s (void) ;

void p r o f i l e r s t a r t t i m e r 2 (void) ;
void p r o f i l e r s t o p t i m e r 2 (void) ;

void p r o f i l e r s t a r t t i m e r 3 (void) ;
void p r o f i l e r s t o p t i m e r 3 (void) ;

void p r o f i l e r s t a r t t i m e r 4 (void) ;
void p r o f i l e r s t o p t i m e r 4 (void) ;

void p r o f i l e r s t a r t t i m e r 5 (void) ;
void p r o f i l e r s t o p t i m e r 5 (void) ;

e n d i f /∗ PROFILER H ∗ /

263

J. Stimulus files for the MPLAB SIM
simulator

J.1. c1omission c2rxb1.sbs

SCL B u i l d e r Se tup F i l e : Do n o t e d i t ! !

VERSION : 3 . 6 0 . 0 0 . 0 0
FORMAT: v2 . 0 0 . 0 1
DEVICE : dsPIC30F6014A

PINREGACTIONS
cyc
No Repea t
IFS1 . C1IF
C1INTF . TXB0IF
IFS2 . C2IF
C2INTF . RXB1IF
C2RX1DLC .DLC
−−
4348

1
1
1000
−−
&
ADVPINREGACTIONS
−−
&
−−
COND1
Any

−−
&
CLOCK
&
STIMULUSFILE

265

Appendix J. Stimulus files for the MPLAB SIM simulator

&
RESPONSEFILE
&
ASYNCH
&
ADVANCEDSCL

1
&

J.2. c1rxb0 c2rxb0 c1ewarn.sbs

SCL B u i l d e r Se tup F i l e : Do n o t e d i t ! !

VERSION : 3 . 6 0 . 0 0 . 0 0
FORMAT: v2 . 0 0 . 0 1
DEVICE : dsPIC30F6014A

PINREGACTIONS
cyc
No Repea t
IFS1 . C1IF
C1INTF . RXB0IF
C1RX0DLC . DLC
IFS2 . C2IF
C2INTF . RXB1IF
C2RX1DLC .DLC
C1INTF .EWARN
C1INTF . ERRIF
−−
3302
1
1
1000

−−
3302

1
1
1000

−−
3998
1

266

J.3. c1rxb0 c2rxb1.sbs

1
1
−−
&
ADVPINREGACTIONS
−−
&
−−
COND1
Any

−−
&
CLOCK
&
STIMULUSFILE
&
RESPONSEFILE
&
ASYNCH
&
ADVANCEDSCL

1
&

J.3. c1rxb0 c2rxb1.sbs

SCL B u i l d e r Se tup F i l e : Do n o t e d i t ! !

VERSION : 3 . 6 0 . 0 0 . 0 0
FORMAT: v2 . 0 0 . 0 1
DEVICE : dsPIC30F6014A

PINREGACTIONS
cyc
No Repea t
IFS1 . C1IF
C1INTF . RXB0IF
C1RX0DLC .DLC
IFS2 . C2IF
C2INTF . RXB1IF
C2RX1DLC .DLC
−−

267

Appendix J. Stimulus files for the MPLAB SIM simulator

4340
1
1
1000

−−
4344

1
1
1000
−−
&
ADVPINREGACTIONS
−−
&
−−
COND1
Any

−−
&
CLOCK
&
STIMULUSFILE
&
RESPONSEFILE
&
ASYNCH
&
ADVANCEDSCL

1
&

J.4. c1txb0 c2omission.sbs

SCL B u i l d e r Se tup F i l e : Do n o t e d i t ! !

VERSION : 3 . 6 0 . 0 0 . 0 0
FORMAT: v2 . 0 0 . 0 1
DEVICE : dsPIC30F6014A

PINREGACTIONS

268

J.5. c1txb0 c2rxb1.sbs

cyc
No Repea t
IFS1 . C1IF
C1INTF . TXB0IF
−−
4348
1
1
−−
&
ADVPINREGACTIONS
−−
&
−−
COND1
Any

−−
&
CLOCK
&
STIMULUSFILE
&
RESPONSEFILE
&
ASYNCH
&
ADVANCEDSCL

1
&

J.5. c1txb0 c2rxb1.sbs

SCL B u i l d e r Se tup F i l e : Do n o t e d i t ! !

VERSION : 3 . 6 0 . 0 0 . 0 0
FORMAT: v2 . 0 0 . 0 1
DEVICE : dsPIC30F6014A

PINREGACTIONS
cyc
No Repea t
IFS1 . C1IF
C1INTF . TXB0IF
IFS2 . C2IF
C2INTF . RXB1IF
C2RX1DLC .DLC

269

Appendix J. Stimulus files for the MPLAB SIM simulator

−−
4340
1
1

−−
4348

1
1
1000
−−
&
ADVPINREGACTIONS
−−
&
−−
COND1
Any

−−
&
CLOCK
&
STIMULUSFILE
&
RESPONSEFILE
&
ASYNCH
&
ADVANCEDSCL

1
&

270

Bibliography

Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004. ISSN 1545-5971. doi: http://doi.ieeecomputersociety.
org/10.1109/TDSC.2004.2.

Manuel Barranco. Improving error containment of controller area network (CAN) by means of
adequate star topologies. Technical report, Universitat de les illes balears, Nov. 2008.

Manuel Barranco. Improving Error Containment and Reliability of Communication Subsystems
Based on Controller Area Network (CAN) by Means of Adequate Star Topologies. PhD thesis,
2010.

Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez-Navas, and Luı́s Almeida. CANcen-
trate: An active star topology for can networks. In IEEE International Workshop on Factory
Communication Systems, pages 219–228, Sept. 2004.

Manuel Barranco, Luı́s Almeida, and Julián Proenza. ReCANcentrate: a replicated star topology
for CAN networks. In 10th IEEE International Conference on Emerging Technologies and
Factory Automation, 2005. ETFA 2005., volume 2, Catania, Italy, Sept. 2005a. doi: 10.1109/
ETFA.2005.1612714.

Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez-Navas, and Luı́s Almeida. A CAN hub
with improved error detection and isolation. In 10th International CAN Conference (ICC
2005), Rome, Italy, March 2005b.

Manuel Barranco, Julián Proenza, and Luı́s Almeida. Experimental assessment of ReCANcen-
trate, a replicated star topology for CAN. SAE 2006 Transactions Journal of Passenger Cars:
Electronic and Electrical Systems, 2006a.

Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez-Navas, and Luı́s Almeida. An active
star topology for improving fault confinement in CAN networks. IEEE transactions on in-
dustrial informatics, 2(2):78–85, May 2006b.

Manuel Barranco, Julián Proenza, and Luı́s Almeida. Management of media replication in
ReCANcentrate. Technical report, Oct. 2007.

Manuel Barranco, Julián Proenza, and Luı́s Almeida. Designing and verifying media man-
agement in ReCANcentrate. In Proceedings of the 13rd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2008), Hamburg, Germany, Sept.
2008.

271

Bibliography

Manuel Barranco, David Geßner, Julián Proenza, and Luiı́s Almeida. First prototype and ex-
perimental assessment of media management in recancentrate. In ETFA 2010. 15th IEEE
International Conference on Emerging Technologies and Factory Automation, Bilbao, Spain,
2010.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. Novem-
ber 2004. URL www.it.uu.se/research/group/darts/papers/texts/
new-tutorial.pdf.

Robert Bosch GmbH. CAN specification version 2.0. Technical report, Robert Bosch GmbH,
1991. URL http://www.semiconductors.bosch.de/pdf/can2spec.pdf.

John Catsoulis. Designing Embedded Hardware, Second Edition. O’Reilly Media, 2005. URL
http://www.oreilly.com/catalog/dbhardware.

Jay Fenlason and Richard Stallman. The gnu profiler. URL http://www.cs.utah.edu/
dept/old/texinfo/as/gprof.html.

Andrew Hunt and David Thomas. The pragmatic programmer: from journeyman to master.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-
61622-X.

Barry W. Johnson. Design and analysis of fault tolerant systems. Addison-Wesley Publishing
Company, Inc., 1989.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. ISSN 0164-0925. doi: http:
//doi.acm.org/10.1145/357172.357176. URL http://research.microsoft.com/
users/lamport/pubs/byz.pdf.

Steve McConnell. Code Complete: A Practical Handbook of Software Construction. Microsoft
Press, 2004.

Microchip. PIC18FXX8 Data Sheet - 28/40-Pin High-Performance, Enhanced Flash Microcon-
trollers with CAN Module, 2004.

Microchip. MPLAB C30 C Compiler User’s Guide, 2005a.

Microchip. MPLAB ASM30, MPLAB LINK30 and utilities user’s guide, 2005b.

Microchip. dsPIC30F6011A/6012A/6013A/6014A Data Sheet, 2006a.

Microchip. dsPIC30F Family Reference Manual, 2006b.

Microchip. dsPICDEM 80-Pin Starter Development Board User’s Guide, 2006c.

Microchip. MPLAB IDE User’s Guide with MPLAB Editor and MPLAB SIM Simulator. Mi-
crochip, 2009.

272

www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.semiconductors.bosch.de/pdf/can2spec.pdf
http://www.oreilly.com/catalog/dbhardware
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://research.microsoft.com/users/lamport/pubs/byz.pdf
http://research.microsoft.com/users/lamport/pubs/byz.pdf

Bibliography

Philips Semiconductors. APPLICATION NOTE PCA82C250 / 251 CAN Transceiver. Philips
Semiconductors, October 1996.

Philips Semiconductors. PCA82C250 CAN controller interface, 1997.

Juan Pimentel, Julián Proenza, Luis Almeida, Guillermo Rodı́guez-Navas, Manuel Barranco,
and Joachim Ferreira. Automotive Embedded Systems Handbook (Industrial Information
Technology), chapter Chapter 6: Dependable Automotive CANs. CRC Press, 2008.

Julián Proenza. RCMBnet: A Distributed Hardware and Firmware Support for Software Fault
Tolerance. PhD thesis, Universitat de les illes balears, 2007.

Julián Proenza. Convocatoria de ayudas de proyectos de investigación fundamental no orientada.
Technical report, 2009.

Julián Proenza and José Miro-Julia. MajorCAN: A modification to the controller area network
protocol to achieve atomic broadcast. IEEE International Workshop on Group Communica-
tion and Computations, Taipei, Taiwan, 2000.

J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant broadcasts in
CAN. In FTCS ’98: Proceedings of the The Twenty-Eighth Annual International Sympo-
sium on Fault-Tolerant Computing, page 150, Washington, DC, USA, 1998. IEEE Computer
Society.

J. Rufino, P. Verı́ssimo, and G. Arroz. A Columbus’ egg idea for CAN media redundancy. In
Digest of Papers, The 29th International Symposium on Fault-Tolerant Computing Systems.
IEEE, June 1999.

Julian Seward, Nicholas Nethercote, Jeremy Fitzharding, Tom Hughes, Josef Weidendorfer,
Paul Mackerras, Greg Parker, Dirk Mueller, Robert Walsh, Bart Van Assche, Cerion Armour-
Brown, Donna Robinson, Vince Weaver, Frederic Gobry, Daniel Berlin, Michael Matz, Simon
Hausmann, and David Woodhouse. Valgrind. URL http://valgrind.org.

Wilfried Voss. A Comprehensible Guide to Controller Area Network. Copperhill Technologies
Corporation, 2005.

Wikipedia. Prescaler — wikipedia, the free encyclopedia, 2009. URL http://en.
wikipedia.org/w/index.php?title=Prescaler&oldid=319040906. [On-
line; accessed 2-June-2010].

Wikipedia. Field-programmable gate array — wikipedia, the free encyclopedia, 2010a. URL
http://en.wikipedia.org/w/index.php?title=Field-programmable_
gate_array&oldid=339015623. [Online; accessed 1-February-2010].

Wikipedia. Profiling (computer programming) — wikipedia, the free encyclopedia,
2010b. URL http://en.wikipedia.org/w/index.php?title=Profiling_
(computer_programming)&oldid=364322500. [Online; accessed 25-June-2010].

273

http://valgrind.org
http://en.wikipedia.org/w/index.php?title=Prescaler&oldid=319040906
http://en.wikipedia.org/w/index.php?title=Prescaler&oldid=319040906
http://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=339015623
http://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=339015623
http://en.wikipedia.org/w/index.php?title=Profiling_(computer_programming)&oldid=364322500
http://en.wikipedia.org/w/index.php?title=Profiling_(computer_programming)&oldid=364322500

Bibliography

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3), 2008.

XESS Corporation. XSA-3S1000 Board V1.1 User Manual, Sept. 2007.

XESS Corporation. What are CPLDs and FPGAs?, 2010. URL http://www.xess.com/
appnotes/fpga_tut.php. [Online; accessed 1-February-2010].

Holger Zeltwanger. Failure detection and error handling in CAN-based networks. In Seminario
Anual de Automática, Electrónica Industrial e Instrumentación, Pamplona, Spain, September
1998.

274

http://www.xess.com/appnotes/fpga_tut.php
http://www.xess.com/appnotes/fpga_tut.php

Index

Abstract Data Types (ADTs)
benefits of, 94

assertions, 95
availability, 10

babbling-idiot fault, 37
backward recovery, see rollback
bit stuffing, 22
bit-flipping fault, 37

CAN, see Controller Area Network
CAN combined interrupt, 99
CANcentrate, 37

architecture, 38
coupler module, 39
enabling/disabling unit, 40
fault model, 37
fault-treatment module, 40
frame-level synchronization, 42
I/O module, 39
physical layer module, 41
resultant frame, 39
Rx CAN module, 42
state of the resultant frame, 41

CANH, 16
CANL, 16
component, 10
Controller Area Network, 15

ACK delimiter, 20
ACK field, 20
ACK slot, 20
active error flag, 24
arbitration field, 19
bit-wise arbitration mechanism, 21
bus-off state, 24

control field, 20
CRC, see Cyclic Redundancy Code
CRC delimiter, 20
Cyclic Redundancy Code, 20
data consistency, 33
data field, 20
data frame, 19
Data Length Code, 20
Data Link Layer, 18
differential voltage, 16
DLC, see Data Length Code
End Of Frame, 21
EOF, see End Of Frame
error containment, 24
error delimiter, 24
error flag, 23
error frame, 24
error-active state, 24
error-passive state, 24
error-signaling mechanism, 22
frame encoding, 21
frame format, 18
hard synchronization, 28
IDE, see Identifier Extension bit
identifier, 19
Identifier Extension bit, 20
inconsistency scenarios, 33
interframe space, 21
intermission, 21
last bit behavior, 33
limited data consistency of, 33
limited error containment of, 31
limited support for fault tolerance of,

32
Object Layer, 18

275

Index

overload delimiter, 25
overload flag, 25
overload frame, 25
overload-signaling, 24
passive error flag, 24
phase error, 28
phase segment, 26
Physical Layer, 15
propagation segment, 26
R0, 20
REC, see reception error counter
reception error counter, 24
relationship to the ISO/OSI reference

model, 15
reliability limitations of, 31
remote frame, 20
Remote Transmission Request bit, 18
resistance to electromagnetic interfer-

ences, 16
resynchronization, 28
RTR, see Remote Transmission Request

bit
SOF, see Start Of Frame
Start Of Frame, 19
synchronization in, 27
synchronization segment, 26
TEC, see transmission error counter
Transfer Layer, 18
transmission error counter, 24
types of error, 22

crash, 9

degraded mode, 9
delivery event, 47, 51
dependability, 10

attributes of, 10
means to, 11
relationship with reliability, 11
threats to, 11

dependability tree, 11
dominant bit, 17
dominant including period, 112
downlink, 38
driver

ADTs
CAN controller ADT, 97
CAN frame ADT, 97
interrupt ADT, 100
LED ADT, 100
transmission timer ADT, 100

API, 104
architecture, 49
CAN event tracker, 50
fault-tolerance tests, 107
hardware requirements, 51
implementation of assertions, 96
media management routines, 50, 61
performance tests, 121
qua routine, 65
reception buffer, 49
rx routine, 63
tracking variables, 51
transmission buffer, 49
tx request routine, 67
tx routine, 62

DRY principle, 95
dsPIC30F6014A microcontroller, 85
dsPICDEM prototyping board, 85

error, 9
latent error, 9
active error, 9
detected error, 9
dormant error, 9
passive error, see dormant error
propagation of, 10
relationship with faults and failures, 9

error compensation, 12
error containment, 13
error detection, 12

concurrent error detection, 12
preemptive error detection, 12

error globalization, 23
error handling, 12
error recovery, 12
error warning limit, 49
external state of a system, 9

276

Index

failure, see service failure
failure mode, see service failure mode
failures

relationship with errors and faults, 9
fault, 9

permanent fault, 9
relationship with errors and failures, 9
transient fault, 10

fault assumption coverage, 13
fault diagnosis, 13
fault forecasting, 11
fault handling, 13
fault isolation, 13
fault model, 13
fault passivation, see fault isolation
fault prevention, 11
fault removal, 11
fault tolerance, 11, 12

implementation of, 13
fault-injection module, 107
Field Programmable Gate Array, 52
forward recovery, see rollforward
FPGA, see Field Programmable Gate Array
function of a system, 9

ICD2 programmer, 93
inconsistent message duplicate, 33
inconsistent message omission, 33
integrity, 10
interlink, 45
internal state of a system, 9
interrupt service routine, 50
interrupt vector table, 50
ISR, see interrupt service routine
IVT, see interrupt vector table

maintainability, 11
model checker, 134
model checking, 134
MPLAB ASM30, 93
MPLAB C30, 93
MPLAB LIB30, 93
MPLAB LINK30, 93
MPLAB SIM, 94

MPLAB SIM simulator, 93

natural order priority, 85
network partition, 38
network partition fault, 38, 43
nominal bit rate, 26
nominal bit time, 26

PCA82C250 CAN transceiver, 55
performance measurement, 123
persistence of a fault, 9
profiler, 124

qua routine, 65

ReCANcentrate, 43
architecture, 44
contribution of a hub, 45
fault model, 43
hub enabling/disabling unit, 46
hub implementation (new prototype), 82
hub implementation (previous prototype),

52
I/O module, 45
media management, 47, 48
node architecture, 46
node implementation (new prototype),

85
node implementation (previous proto-

type), 53
Rx CAN module, 46
simplified nodes, 53
single logical broadcast domain, 46

recessive bit, 17
recessive only period, 112
reconfiguration, 13
redundancy attrition, 12
reinitialization, 13
reliability, 10

relationship with dependability, 11
rollback, 12
rollforward, 12
rx routine, 63

safety, 10

277

Index

semantic faults, 37
service failure, 9

partial failure, 9
service failure mode, 9
service of a system, 9

correct service, 9
single point of failure, 10
state of a system, 9

external state, 9
internal state, 9
total state, 9

stimulus file, 94
stuck-at dominant, 37
stuck-at dominant detector, 54
stuck-at fault, 37
stuck-at recessive, 37
stuff bit, 22
sublink, 45
syntactic faults, 37
system recovery, 12

terminating resistor, 16
time quanta, 27
time quantum, 27
timing analysis, 122
total state of a system, 9
transceiver, 16
transmission request routine, 67
tx request routine, 67
tx routine, 62

UCF, see user constraints file
uplink, 38
UPPAAL, 134
user constraints file, 84
user system, 9

VHDL, 53

WCET, see worst-case execution time
wired-AND, 16
wirewrapping, 81
worst-case execution time, 122

XSA-3S1000 prototyping board, 82

278

	Introduction
	Background and motivation
	Goal of the project
	Tasks realized
	Tasks not realized
	Overview of the remaining chapters

	Foundations and previous work
	Introduction to reliability, fault tolerance, and related concepts
	Basics
	Reliability and dependability
	Fault tolerance
	Implementation of fault-tolerant systems

	Controller Area Network (CAN)
	CAN Physical Layer
	CAN Data Link Layer
	Frame format
	Bit-wise arbitration mechanism
	Frame encoding
	Error-signaling mechanism
	Error containment
	Overload-signaling

	CAN bit rate
	Synchronization

	Reliability limitations of CAN
	Limited error containment
	Limited support for fault tolerance
	Limited data consistency

	CANcentrate
	Fault model for CAN and CANcentrate
	CANcentrate's architecture

	ReCANcentrate
	Fault model for ReCANcentrate
	ReCANcentrate hub architecture
	ReCANcentrate nodes
	Media management in the absence of faults
	Media management in the presence of faults
	Driver architecture
	Hardware requirements of the driver

	Previous ReCANcentrate prototype
	Brief introduction to FPGAs
	Hub implementation
	Node implementation
	Electronic circuits

	Project specific tasks
	Final design of the media management driver for the ReCANcentrate nodes
	Media management routines
	The tx routine
	The rx routine
	The qua routine

	The tx request routine
	Example executions
	Fault-free reception
	Fault-free transmission
	Example involving all four routines

	Fault-tolerance capacities of the media management driver
	Tolerance of the inconsistent message omission scenario identified by Rufino1998
	Tolerance of the inconsistent message omission scenario identified by majorcan

	New ReCANcentrate hardware prototype
	The wirewrap prototyping technique
	Implementation of the ReCANcentrate hubs
	Implementation of the ReCANcentrate nodes
	Testing the hardware of the prototype
	Verification of the electronic circuits
	Testing the node cores
	Testing the node cores together with their I/O modules
	Testing the hardware of the hubs

	Implementation of the driver
	Development environment
	Methodology
	Overview of the driver source code
	Implementation of assertions
	Abstract Data Types
	The CAN event tracker and the media management routines

	Implementation of a simple API to interface with the driver

	Testing the driver on the hardware prototype
	Fault tolerance tests
	Implementation of fault injection
	Test programs
	Test strategy
	Stuck-at-recessive downlink
	Stuck-at-recessive uplink
	Stuck-at-dominant downlink
	Stuck-at-dominant uplink
	Tests that inject controller crashes

	Performance tests
	Methods to establish the worst-case execution time (WCET)
	Performance measurement rationale
	Estimated worst-case scenario in terms of performance
	Performance measurement of the estimated worst-case scenario

	Conclusions
	Summary
	Future work
	Personal opinion
	Publications

	Initial design of the media management driver for ReCANcentrate
	Source code for the preliminary tests
	Header files used by the preliminary tests
	can_aux.h
	device_config.h
	dspicdem.h
	portd.h

	Loopback test
	canh_loopback.c
	canh_loopbk_int.c

	Single node test
	one_node.c

	Simple AND-coupling module test
	couplerModule.vhd
	couplerModule.ucf
	msg.h
	receiver.c
	transmitter.c

	Driver source code
	assert.c
	assert.h
	can_controller.c
	can_controller.h
	can_frame.c
	can_frame.h
	common.h
	device_config.h
	interrupts.c
	interrupts.h
	led.c
	led.h
	quaroutine.c
	rxroutine.c
	rxroutine.h
	tracker.c
	txroutine.c
	tx_timer.c
	tx_timer.h

	API source code
	recancentrate.c
	recancentrate.h

	ReCanCentrate hub user constraints file
	cancentrate.ucf

	Source code for fault injection
	Files to inject controller crashes
	crash_controller.h
	crash_controller.c

	Fault-injection modules
	downlinkFaultInjectionModule.vhd
	uplinkFaultInjectionModule.vhd
	ReCanCentrate.vhd

	Source code for the fault-tolerance tests
	transmitter_3led_counter.c
	transmitter_blinking_led.c
	receiver.c

	Source code for the performance tests
	8byte_transmitter.c
	0byte_transmitter.c

	Source code for the profiler
	profiler.c
	profiler.h

	Stimulus files for the MPLAB SIM simulator
	c1omission_c2rxb1.sbs
	c1rxb0_c2rxb0_c1ewarn.sbs
	c1rxb0_c2rxb1.sbs
	c1txb0_c2omission.sbs
	c1txb0_c2rxb1.sbs

