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Abstract— This paper describes GLOC3, a general software
control architecture intended for unmanned vehicles. Applying
a criterion of maximizing software maintainability and reusabil-
ity, as well as fulfilling the monitoring and logging needs that
arise from any experimental platform, this architecture is based
on a single minimalist generic component. Besides, this software
infrastructure is intended to make easier both the specification
of experiments and missions at the different development stages.
The case of the control architecture of an Unmanned Aerial
Vehicle, to be employed as part of the robot fleet of the MINOAS
project, is considered by way of illustration.

Index Terms— Autonomous Unmanned Vehicle, Unmanned
Vehicle System, Control Software Architecture

I. INTRODUCTION

Unmanned Vehicle Systems (UVS), in its many different

autonomous/untethered forms as Unmanned Aerial Vehi-

cles (UAV), Autonomous Underwater Vehicles (AUV), Au-

tonomous Surface Vehicles (ASV) or Unmanned Ground

Vehicles (UGV), and also as the non-autonomous/tethered

Remotely Operated Vehicles (ROV) or Remotely Piloted

Vehicles (RPV), have become more and more prevalent over

the last decade, being involved in an exponentially increasing

number of either land, marine/submarine and aerial applica-

tions. Irrespective of the environment, UVS have been pro-

posed to be used for a broad range of tasks including security,

monitoring, inspection, and military operations (intelligence,

reconaissance, surveillance and target acquisition), just to

name but a few, and new uses are being identified every

day. Just as examples of the impact UVS are expected to

have in the near future, the AUV and ROV market reports

by Douglas-Westwood forecast that 1,144 AUVs will be

required over the next decade in the most likely scenario,

with a total market value of $2.3 billion for AUVs and $3.2

billion for workclass ROVs [1], [2], while Teal Group’s 2010

market study estimates that UAV spending will more than

double over the next decade from current worldwide UAV

expenditures of $4.9 billion annually to $11.5 billion, totaling

just over $80 billion in the next ten years [3].

As the use of Autonomous Unmanned Vehicle Systems

(AUVS) continues growing, as forecasted above, Control

Software Architectures (CSA) will become an even more

critical aspect within the development process of those
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robotic systems. In effect, the CSA constitutes the framework

where the required functionalities are implemented, ranging

from the lowest level tasks —e.g. a control law— to the

highest level tasks —e.g. scene 3D reconstruction—, so that,

using an analogy, the CSA can be regarded as the backbone

of the robot. The election of a proper CSA is not as critical

for validating isolated functionalities, but, when a complete

system is concerned, the inherent complexity requires from

a careful election of system components and how they are

interfaced.

Moreover, since AUVS come in a wide variety of con-

figurations differing in size, sensor suites, processing power

and communication patterns, not to mention the differences

in their locomotion capabilities, this diversity has naturally

led to a great deal of one-of-a-kind control software, and,

thus, most research and development for robotic platforms

is based on proprietarily designed software architectures

invented from scratch, where implementations are tied to

specific robot hardware. However, underlying this variety

there is a significant portion of robot functionality that is

common to a large number of robotic systems and different

application domains: UAV, AUV, ASV and UGV need all

sensor sampling and pre-processing, sensor data processing

and fusion —many times for very similar sensor suites across

platforms—, self-localization, and perhaps map building,

motion planning and control (including obstacle avoidance

and path planning), etc., with similar solutions for platforms

sharing the same number of degrees of freedom. Therein

lies a large opportunity to reduce cost, complexity and risk.

Furthermore, these architectures can now be implemented

using standard compliant Components Off-The-Shelf (COTS)

software to provide stable, mature solutions.

The choice of a flexible and easily extendable CSA,

as well as code reuse and transfer between platforms, is

crucial to avoid spending more time and effort than strictly

necessary in every single project. Even during early stages

of development, when experimentation takes most part of the

time, a CSA that makes easier not only the incorporation of

new functionalities at low cost, but also mission specification

and monitoring, is undoubtedly of great value to shorten

prototyping times and so meet the UVS market requirements.

It becomes as well fruitful during platform exploitation —

including for research use— when it is a goal to apply a

criterion of greatest efficiency and, accordingly, widen the

scope of executable missions for the same AUVS.

After the great difficulties we have encountered in the

development, maintenance and upgrade of the control system

of unmanned platforms, this paper presents GLOC3, Generic
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LOosely-Coupled Component-based Control software archi-

tecture, our latest effort on developing robotic software ar-

chitectures. One of the primary goals while devising GLOC3

has been the design of a network-transparent CSA general

enough to account for virtually any kind of autonomous ve-

hicle and mission. Easy maintenance and software reusability

have also been of utmost importance, and, to this end,

GLOC3 is organized around a generic component fitted

with usually needed functions —i.e. data exchange, error

handling, status notifying, etc.— and a command interface

through which the component receives orders, input data

and provides results. In this way, only the strictly intended

functionality for the module must be specified (i.e. estimate

vehicle motion by means of the fusion of laser and vision

data using a particle filter), and, once defined, it can be

reutilized without restriction because of the loose coupling

between components which the command interface provides.

The rest of the paper is organized as follows: Section II re-

vises the concepts involved in CSA and existing approaches;

Section III gives an overall view of GLOC3 and the main

components that it defines; Sections IV and V describe

the generic structure of GLOC3’s components; Section VI

presents the case of the control software for a UAV; finally,

Section VII concludes the paper.

II. CONTROL SOFTWARE ARCHITECTURES FOR

ROBOTS

By definition, an AUVS is both unmanned (i.e. there is no

man in the loop to continuously guide the robot so that the

system must make its own decisions) and untethered (i.e.

there is no power supply nor communication towards the

vehicle), or, in other words, an AUVS acquires the neces-

sary information from the environment, using the adequate

sensors, process it as necessary to decide how to act, and then

executes the appropriate actions by means of the available

effectors in order to achieve the set of goals corresponding

to a specific mission. Although part of these functions can

be solved by classical control theory (which, thanks to the

solid mathematical foundation underneath, is able to provide

most times optimum solutions), overall AUVS control needs

to be addressed through complementary methods, such as try

to mimic somehow human-like reasoning.

Getting inspiration from this general model, the spectrum

of control methodologies that have been developed and ap-

plied to control real vehicles is ample. However, it is widely

recognized that they can be generally grouped as: deliber-

ative/hierarchical, which feature explicit reasoning/planning

on symbolic representations as well as on accurate and com-

plete world models; reactive/behaviour-based, characterized

by a tight coupling of sensing to action through the so-called

behaviours, sort of rules that almost directly map sensor

data to actions; and hybrid, halfway between the deliberative

and the reactive paradigms, exemplified by three-layered

architectures mixing reactive and deliberative components,

where the former handles low-level control issues requiring

fast response time, while the latter is responsible for high-

level issues on a longer time scale (see [4], [5], [6], [7],

among others).

Although a control methodology is an essential piece of

a complete robotic system, it is not enough with adopting

one: it is still necessary to decide how the control software

is going to be specified and implemented. It is true that

many times the control methodology has, to a great extent,

determined the software structure, or, in other words, the

framework for defining the control software has been devised

around a certain control methodology. Because of this, it

is usual the confusion between the CSA and the control

methodology, although, clearly, they are quite a different

thing.

Although it is really difficult to evaluate quantitatively the

design of a CSA, there are several acknowledged qualitative

criteria describing how a well-developed architecture should

be, namely predictability, reactivity, robustness, modularity,

extendibility, generality and standardization [6], as well as

reduced footprint and end-to-end turnaround time [8]. So far,

a number of platforms for robot software development trying

to satisfy some or all of these goals have been proposed.

Among them, Player/Stage [9] and, very recently, ROS [10]

have become very popular, although other relevant efforts

in this line that are also worth mentioning are Orocos [11],

CoRoBa [12], MCA [13], Miro/SORA [14], [15], Marie [16]

and JAUS/OpenJAUS [17], [18]. Many of them additionally

provide middleware functionality that simplifies software

distribution over different physical agents, as well as libraries

of components to simplify prototypes building.

Two recent European initiatives have tried to bring order

to this existing software for robot programming: RoSta, a

Coordination Action funded under the European Union’s

Sixth Framework Programme (FP6)1, and its continuation

as the FP7 BRICS (Best Practice in Robotics)2 project,

whose prime objective is to structure and formalize the robot

development process itself and to provide tools, models, and

functional libraries. The Joint Architecture for Unmanned

Systems (JAUS) was a similar initiative formerly sponsored

by the Office of Naval Research (ONR) of the United

States Department of Defense, which finally migrated from

the JAUS Working Group, composed of individuals from

the government, industry and academia, to the Society of

Automotive Engineers (SAE), Aerospace Division, Avionics

Systems Division; the AS4, Unmanned Systems Technical

Committee, now maintains and advances the set of standards.

Adopting the categorization of RoSta, which distinguishes

between (1) middleware and integration frameworks, (2)

control architectures, and (3) development toolkits, the work

that is presented in this paper is intended to be independent

of the middleware to be finally used, and therefore lies in-

between the two first RoSta categories.

1http://www.robot-standards.eu/index.php?id=2
http://wiki.robot-standards.org/index.php/Main Page

2http://www.best-of-robotics.org/
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III. A GENERIC LOOSELY-COUPLED

COMPONENT-BASED CSA

A. Overall View

GLOC3 has been devised around a typical configuration

for the whole robotic system consisting of one or more

base stations and one or more platforms (i.e. vehicles) that

communicate with the base station(s). On the one hand,

platforms are assumed to be able to respond to requests

from the base stations for executing either individual actions

or partially ordered sets of actions, which will be referred

to as tasks. A platform can execute an action depending

on its capabilities, i.e. perform a certain motion primitive,

perceive surrounding obstacles, estimate the platform motion,

etc. A mission can in turn be expressed as the execution of a

partially ordered set of tasks. By definition, thus, both tasks

and mission definitions can include the parallel execution of

actions.

On the other hand, the communication links between

platforms and base stations are intended to carry:

(1) status information and sensor data from the plat-

form(s) to the base station(s), so that platforms’ health

and sensor data are remotely available at all times; and

(2) commands, from the base station(s) to the platform(s),

requesting the execution of tasks, through high-level

commands, or actions, through low-level commands.

This framework is general enough so as to cover almost

any configuration. Besides, it permits dealing particularly

well with the typical setups of underwater and aerial applica-

tions. In effect, in the first case, it is usual to have a surface

station which, while the AUV is on the surface, uploads

mission specification files to the AUV and downloads the

data gathered while the vehicle was submerged. In the

case of aerial applications, a ground station is typically

supporting the vehicle, for data visualization purposes and

even for processing sensor data off-board due to the payload

restrictions of these platforms, which particularly limit the

available processing power onboard.

B. Main Components of GLOC3

The execution unit in GLOC3 is the component, simi-

larly to CoRoBa [12], OROCOS [11] and MARIE [16].

In accordance with the above-depicted setup, a total of

five different types of generic components are distinguished

within GLOC3:

• sensor samplers (SS), which implement the interface

with the corresponding physical sensor and sample it at

the requested rate;

• data processors (DP), which process the available sen-

sor data and produce the elaborate estimations about

the surrounding environment required by the current

mission;

• controllers (CC), which, from the data produced by

the data processors, generate commands to the vehicle

actuators, so that the platform can progress towards

achieving the mission goals;

(a)

(b)

(c)

Fig. 1. Examples of setups: (a) UAV case, (b) AUV case, (c) several base
stations (2) and platforms (3).

• actuator drivers (AD), which implement the interfaces

with the physical actuators; and

• command interfaces (CI), which take care of the com-

munication between a base station (client side) and a

platform (server side).

Clearly, the first four types of component represent the

typical elements of a control system as considered by the

classical control theory. Consequently, they form a chain

along which information flows unidirectionally, from sensor

samplers to actuators. Regarding the command interfaces,

they not only encapsulate the functionality required to sup-

port the distribution of the control software, but also are

intended to make easier the interaction with the platform(s).

To this end, they are devised as a finite state machine that

interprets and responds to a set of well defined commands

that directly refer to the vehicle capabilities, i.e. the sort of

tasks it is able to carry out.

The information flow between the different components

is supposed to be in the form of messages. The kind of

messaging provided by a subscribe/publish mechanism —

such as the one provided by e.g. ROS [10]— would be

particularly adequate. However, GLOC3 is intended to be

as independent as possible of a specific middleware, so

that no election is performed in this regard. Nevertheless,

since the interaction with a specific middleware will be

unavoidable once chosen, this interaction is hidden within

the generic component that is described in Section IV, in

accordance with the maintenance simplification goal that has

been outlined above.

978-1-4577-0123-8/11/$26.00 ©2011 IEEE 1219



Fig. 2. Structure of the generic component of GLOC3.

To finish, the distribution of the control software is in-

tended to be at the component level. In this regard, fig-

ures 1(a) and (b) describe how the control software compo-

nents could be distributed among the available processors for,

respectively, the UAV and AUV cases. Moreover, figure 1(c)

illustrates the case of several base stations and platforms

interacting all together and sharing the computational load,

if necessary.

IV. THE GENERIC COMPONENT

Every component of GLOC3 follows a common structure

which accounts for the generic functionality that every

component is likely to make use of in one way or another.

In this way, the specification and maintenance of usually

needed functions is simplified. Specifically, every component

is endowed with (see Fig. 2):

• A local command interface (LCI) which makes the

component provide the functionality requested by the

platform CI through the corresponding commands. To

this end, the LCI is implemented as the finite state

machine depicted in Fig. 3 and Table I. As can be

observed, the component can be in one of five states:

idle, standby, working, quiet and faulty. The transition

from one state to another, after the reception of the

corresponding command, entails the execution of, using

C++ terminology, the appropriate method:

initialize() — configures the component to the

settings specified;

finish() — resets the component and makes it wait

for another configuration;

start() — makes the component provide its func-

tionality, reporting the results produced, if any;

stop() — the component stops providing the in-

tended functionality;

goquiet() — the component continues working but

no results are being reported;

resume() — the component resumes the publication

of its results.

While in the working or quiet states, every execution

cycle the LCI calls the work() method, which imple-

ments one cycle of the component specific functionality.

Fig. 3. Finite state machine implemented in the LCI of every generic
component of GLOC3: states in blue, command messages in red.

TABLE I

LOCAL COMMAND INTERFACE STATES

S
ta

te
s

idle Initial state of the component.
standby Component properly initialized or re-initialized.
working Component operating and publishing results.
quiet Component operating but not publishing results.
faulty An error that prevents the component from start-

ing/operating has occurred.

Observe that, by means of the initialize, finish, start

and stop commands, the base stations can enable/disable

any component and have total control about the system

configuration.

• A data logger, which, if enabled, logs selected items

from the component internal state at the end of every

cycle.

• An error handler, which makes the component transit

to a fault state if a malfunction is detected and keeps

track of errors.

• A status notifier, which periodically reports the state of

the component to the rest of the system.

• A data exchanger, which implements the messaging

functionality and, thus, maps it to the specific middle-

ware functions. It also handles incoming and outgoing

message queues.

Table II enumerates the different kind of messages that

can be used for interacting with the generic component.

Apart from the messages oriented to make the component

transit from one state to another, the message catalogue

also includes status messages, for periodic health status

reporting, and function messages, reserved for interacting

with the component while it is in the working/quite states,

and, therefore, they depend on the particular functionality

the component implements.

As can be observed, GLOC3 components are fitted with

minimum generic functionality. Some previous works in this

regard, however, have tried to provide the component with as

much functionality as possible, what leads to strange situa-

tions when the particular functionality of a given component

978-1-4577-0123-8/11/$26.00 ©2011 IEEE 1220



TABLE II

MESSAGES

C
o
m

m
a
n

d
m

es
sa

g
es

initialize Makes the component initialize and adopt the config-
uration specified.

finish Disables the component.
start The component starts providing the intended function-

ality.
stop The component stops providing any functionality.
goquiet The component continues providing service but does

not report results.
resume The component resumes reporting results.
shutdown The component disconnects from the rest of the

system. Particularly happens during system shutdown.

Function

message

To be used to interact with the component while it is
providing its functionality.

Status

message

Periodic reporting about the health of the component.

only requires a small fraction of all the generic functionality.

In our opinion, this is the case of the autonomic element

described in [19]. At the other end of the spectrum lies

MCA [13], whose generic component is not that generic but

oriented towards controller-type components [20].

V. COMMAND INTERFACES

Command interfaces (CI) are not considered different

components, but are components whose functionality is

to take care of the interaction between base stations and

platforms (i.e. this is what they do while in the working

state). Consequently, they follow the structure of generic

components and are endowed with their generic functionality

as any other component of GLOC3. This in particular entails

that a CI integrates an LCI.

As indicated in Fig. 1, a CI acts as a client when runs on a

base station, and as a server when executes on the platform

side. In the former case, the CI interprets mission speci-

fication files, accordingly sends command messages to the

platforms and, finally, also receives status messages from the

platforms. In the latter case, the CI executes the commands

received from the clients, accordingly sends commands to

the components that are under its control and receives status

messages from them, which are finally summarized and sent

to the CI client.

To finish, observe also in Fig. 1 that CI clients are in-

tended to be attached to Human-Machine Interaction (HMI)

software for platform data visualization and interaction.

VI. EXAMPLE OF APPLICATION: A CONTROL

ARCHITECTURE FOR A UAV

The blocks diagram of Fig. 5(left) corresponds to the

control architecture and experimental setup involving two

UAVs that are currently used to develop an aerial platform for

visual inspection purposes in the context of the EU-funded

FP7 project MINOAS3. Both vehicles are fitted with a front-

looking stereo vision system, a ground-looking camera, a

height sensor and an Inertial Measuring Unit; one of them

also carries a laser scanner. Regarding the computational

3http://www.minoasproject.eu

Fig. 4. One of the UAVs to be used in project MINOAS.

power onboard, apart from two ARM7 controllers that are in

charge of platforms low-level control, one of the vehicles is

fitted with a Gumstix Overo Fire board while the other carries

an Intel Atom processor. The vehicles are the Hummingbird

and Pelican self-stabilized platforms from Ascending Tech-

nologies. Fig. 4 shows one of these vehicles.

Essentially, the motion capabilities of the MINOAS flying

robot comprise attain a list of waypoints and automatic

take-off and landing. To this end, for localization purposes,

the platform implements a navigation strategy based on

two visual odometers using a front-looking stereo vision

system and a ground-looking camera, as well as a laser

scan matching-based odometer. The robot pose estimation

produced is finally complemented with the estimation pro-

vided by an external optical follower able to track a vehicle

fitted with a high-brightness LED. This redundant strategy

is intended to provide robust positioning information able

to tolerate the failure of any of the positioning subsystems

in case of the vehicle getting out of the line of sight of

the optical tracker or in case the vehicle motion cannot be

estimated from the available sensor data.

Fig. 5(right) shows the control architecture for the whole

system expressed in terms of the generic components of

GLOC3. By way of illustration, Fig. 6 shows simulation

results of a visual inspection mission for one of the experi-

mental platforms: the left and middle screenshots come from

the simulation/visualization tools employed (Gazebo and rviz

over ROS), while the right plot compares the path followed

by the vehicle (solid blue line) against the path requested as

a list of waypoints (dotted red line).

VII. CONCLUSIONS

This paper has described GLOC3, a general control soft-

ware architecture intended for unmanned vehicles. Apply-

ing a criterion of maximizing software maintainability and

reusability, GLOC3 is based on a single minimalist generic

component, providing basic but essential functionality, which

allows dealing with the complexity of applications involving

autonomous platforms. The loosely-coupled nature of this

component allows for their reutilization without restriction.
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