Universitat de les Illes Balears

Departament de Ciencies Matematiquesi Informatica

Master en tecnologies de lainformacid i les comunicacions

MEMORIA DE TREBALL DE FI DE MASTER

Design and verification by means of model
checking of reCANdrv: a media redundancy
management driver for the nodes of a
ReCANcentrate network

Data: 23 de setembre 2011

Autor, Directors,

David Gessner Julian Proenza Arenas Manuel Algjandro

Barranco Gonzalez

(signatura) (signatura) (signatura)

Resum

Controller Area Network (CAN) és un bus de camp ampliament emprat en sistemes
de control distribuits. Pero a pesar del seu s estes, hi ha una controversia sobre si CAN
és adequat per sistemes que requereixen un nivell de fiabilitat elevat. Aixo és degut a
una serie de limitacions de fiabilitat que tenen els bussos de camp, i en particular CAN.
No obstant, moltes d’aquestes limitacions es poden solucionar reemplagant la topolo-
gia en bus per una topologia en estrella. En particular, ReCANcentrate, una topologia
en estrella replicada amb mecanismes avangats de contencié d’errors i tolerancia a
fallades, soluciona moltes d’aquestes limitacions. ReCANcentrate esta compost per
dos concentradors acoblats i que proporcionen un tnic domini 1ogic de difusié. Aixo
permet als nodes, que estan connectats a ambdds concentradors, gestionar facilment,
mitjancant un driver software anomenat reCANdrv, I’estrella replicada. Aquest driver
abstreu els detalls de la redundancia proporcionada per ReCANcentrate i permet a una
aplicaci6 CAN comunicar-se amb altres nodes a la vegada que es toleren fallades i
s’oculta de I’aplicacid la gestié de la redundancia. Aquest document descriu el disseny
de reCANdrv i de les rutines que formen reCANdrv. A més, el document especifica les
propietats que obté un node ReCANcentrate gracies a reCANdrv i verifica, creant un
model que empra autdmats amb temps (timed automata) implementats amb el model
checker UPPAAL, que aquestes propietats son satisfetes per un node ReCANcentrate.

Paraules clau: tolerancia a fallades, gestié de redundancia de medi, topologia en
estrella replicada, verificacié formal, model checking, UPPAAL, bussos de camp, Con-
troller Area Network

Design and verification by means of model checking of
reCANdrv: a media redundancy management driver for the
nodes of a ReCANcentrate network

David Gessner

davidges @ gmail.com

Abstract

Controller Area Network (CAN) is a fieldbus widely used in distributed control
systems. However, despite its wide use, it is controversial that CAN can be used for
systems that require a high level of reliability. This is due to a series of severe depend-
ability limitations of fieldbuses, and in particular of CAN. Nevertheless, many of these
dependability limitations can be overcome by replacing their bus topology with a star
topology. In particular, ReCANcentrate, a replicated star topology for CAN with ad-
vanced error-containment and fault-tolerance mechanisms, overcomes many of these
limitations. ReCANcentrate is comprised of two hubs that are coupled with each other
and create a single logical broadcast domain. This allows the nodes, which are con-
nected to both hubs, to easily manage the replicated star by means of a software driver
called reCANdrv. This driver abstracts away the details of the replication provided by
ReCANCcentrate and allows a CAN application to communicate with other ReCANcen-
trate nodes, while tolerating faults and hiding the management of the available redun-
dancy from the application. This paper describes the overall design of reCANdrv and
describes the routines that comprise it. Moreover, the paper specifies the properties
that a ReCANcentrate node achieves thanks to reCANdrv, and, by creating a model us-
ing timed automata implemented using the UPPAAL model checker, verifies that these
properties are satisfied by a ReCANcentrate node.

Key words: fault tolerance, media redundancy management, replicated star topology,
formal verification, model checking, UPPAAL, field buses, Controller Area Network

1. Introduction

The Controller Area Network (CAN) protocol is widely used in industrial systems.
However, it has severe dependability limitations [3]] and it is thus not adequate for
safety-critical applications. Several approaches have been proposed to improve CAN’s
dependability, e.g., [10} 115} 22H24]]. Two particular approaches are based on the use of
star topologies [4].

The first approach [3]] attacks CAN’s limited error containment by means of a sim-
plex star topology for CAN, called CANcentrate. It solves CAN’s error containment
limitations by allowing the star’s central element—the hub—to isolate faulty links.
However, the hub is still a single point of failure. Thus, the second approach [2]], which
uses a replicated star topology for CAN, called ReCANcentrate, has been proposed. It
overcomes CAN’s limited fault tolerance, with its several single points of failure, and

CANCcentrate’s sole single point of failure. This second approach provides fault toler-
ance through media redundancy by accommodating an additional hub. With these star
topologies most of CAN’s dependability limitations can be overcome. In fact, their ac-
tual effectiveness to increase the dependability of the distributed systems that use them
has recently been verified [1} 16} [7].

Figure [I] shows ReCANcentrate’s basic architecture. It includes two hubs with
nodes connected to them through dedicated links comprised each of an uplink and
a downlink. The nodes contain a single microcontroller and two CAN controllers,
each connected to one of the node’s links through a pair of CAN transceivers. The
hubs are interconnected by interlinks, which contain two independent sublinks, one for
each direction. Each hub has mechanisms to contain errors coming from nodes, links,
interlinks, or the other hub. Moreover, ReCANcentrate as a whole has mechanisms to
tolerate faults at one of the hubs, at links/interlinks, and at the nodes’ CAN controllers.

The hubs couple the signals from their uplinks in an internal AND-gate, whose
result is then exchanged through the interlinks. Each hub then couples the incoming
interlink traffic with the aforementioned AND-gate in a second AND-gate. The re-
sult of the second coupling is then signaled by each hub on its downlinks. All this is
performed within a fraction of the bit time, thereby preserving CAN’s in-bit response
and implementing CAN’s wired-AND while providing a network-wide single broad-
cast domain. In other words, in the absence of faults all CAN controllers sample the
same bit-value for each bit received from the hubs. This allows a media redundancy
management approach for the nodes that is, as opposed to other approaches, e.g. [25],
compatible with traditional event-triggered CAN applications.

The media redundancy management is implemented by a software driver, called re-
CANdrv, that executes on the nodes. This driver allows a CAN application executing on
a node to communicate with applications on other nodes, while the media redundancy
and tolerance of faults are handled transparently by the driver. Specifically, the purpose
of reCANdrv is to allow each node’s application to exchange information through the
channel as long as its node has one correct controller with a correct link, while toler-
ating permanent faults in one of the links, the failure of one of the controllers, as well
as, to some extent, inconsistent message omission (IMO) scenarios such as those that
have been identified for CAN [21} [22]]. Transient channel faults are not handled by
the driver, but through the CAN error handling mechanisms implemented in the CAN
controllers [9]].

The viability of a preliminary version of reCANdrv, which does not include all
the features of the current design, has already been experimentally assessed by means
of a prototype [5]. Nevertheless, since ReCANcentrate is intended for safety-critical
applications, it is of utmost importance to additionally ensure that the driver has been
designed correctly. To ensure the correctness of the design, it is appropriate to use
formal methods, which in the context of industrial systems have recently gathered in-
creased interest [114513)[16-18]].

This paper, after introducing the final design of reCANdrv, which is a significant
improvement over the previous one, formalizes as a series of properties the features
that reCANdrv provides to a ReCANcentrate node; describes a model of reCANdrv
that was implemented as a series of timed automata; and formally verifies, by means
of model checking, that the model satisfies the properties.

Uplink & Sublinks i — :
donwlink

Transceiver

’
’

) / CAN
Link /. controller
]] O OO T S
0 O 0O [0 [J| Nodel[] [} . Micro
C = | controller

Figure 1: ReCANCcentrate architecture.

2. Fault model

A node is comprised of two controllers that can diagnose their own failure. A sin-
gle such self-diagnosing CAN controller can be built from two individual off-the-shelf
CAN controllers and an electronic circuit that acts as a comparator of the individual
controllers’ outputs. The individual CAN controllers may suffer byzantine failures.
The probability of both individual controllers generating the same erroneous output is
assumed to be negligible. Thus, the comparator can detect when one of the individual
controllers fails by noticing a discrepancy between their outputs. When such a discrep-
ancy is detected, the comparator first generates an alert interrupt, which signals to the
microcontroller that the self-diagnosing controller failed, and then triggers additional
circuitry that ensures that the self-diagnosing controller can no longer generate traffic
on the channel nor generate any interrupts to the microcontroller. Thus, in our fault
model the self-diagnosing controllers are assumed to fail silently once they alerted of
their failure. However, the microcontroller may still attempt to access buffers and reg-
isters of a failed controller. In that case arbitrary values may be read. Finally, note
that in the remainder of this paper no further references are made to the individual con-
trollers that make up a self-diagnosing controller and the term “controller” refers to a
self-diagnosing controller.

Everything beyond the nodes’ CAN controllers (on the transceivers’ side) is part of
the channel, which may fail in arbitrary ways, as long as no medium partitions occur,
i.e., faults that partition the nodes into subsets that cannot communicate with each
other. That is, we assume a single broadcast domain at all times.

We also assume that the implemented software routines are not affected by faults,
e.g., that they have been implemented correctly and are not affected by memory cor-
ruptions.

Finally, we exclude from our fault model the failure of a node’s microcontroller.

3. Media management

In reCANdrv’s media management strategy, one of the CAN controllers of each
node is the transmission (tx) controller. Its role is to transmit and receive frames. The
other is the non-transmission (non-tx) controller and it exclusively receives frames—
which may have been transmitted by its own node or by some other node.

When a frame is successfully exchanged through the network, i.e., when a commu-
nication event occurs, each node expects that its two controllers quasi-simultaneously
notify of that event by means of an interrupt. Thus, when no faults occur, the node
manages transmissions and receptions as follows. First, if the node successfully trans-
mits a frame, the tx controller and the non-tx controller generate an interrupt to notify

of the transmission and reception of this frame respectively; thus, the node only needs
to accept the transmission and release the reception buffer of the non-tx controller. Sec-
ond, if the node receives a frame sent from another node, it is notified of this by its two
CAN controllers. When this happens, the node simply consumes the frame received at
one of the controllers and releases the reception buffers of both controllers.

When errors occur, the driver determines that it was not able to communicate
through a link when it observes that the link’s controller does not notify of a com-
munication event while the other does, i.e., when an omission discrepancy occurs. To
tolerate the fault, the driver accepts as valid the transmission or reception notified by
one of the controllers. The notification is considered correct and the omission wrong
because in CAN channel errors are converted into omissions and because the generation
of spurious notifications is, thanks to the controllers being self-diagnosing, negligible.

If the controller that omits notifications is the non-tx controller, the driver does not
need to diagnose it as faulty. This is so because the node can continue to correctly
receive and transmit through the tx controller despite the non-tx controller omitting the
notification of receptions.

If it is the tx controller that omits, the driver eventually diagnoses it as faulty by
initiating a transmission (tx) timer when it requests a transmission. If the timer expires
before the tx controller notifies of a successful transmission, the driver discards it,
uses the other controller as the tx controller, and instructs a retransmission through the
new tx controller. This ensures that if the old tx controller was not able to transmit,
a transmission is ultimately performed through the other controller. Note that the tx
timer must be set appropriately: it must not expire while the controller is correct, but
only after it has suffered a permanent failure—otherwise a correct controller would be
discarded. Specifically, the timer’s value must be greater than the worst-case response
time for a message with an error model that includes transient faults only [[14].

A controller is also discarded when it generates an error warning interrupt, which
indicates that the controller’s error counters [9] reached a threshold. This prevents the
controllers from entering the error-passive state [9], in which they could inconsistently
exchange frames, leading to IMOs.

There is a further noteworthy detail. If the non-tx controller omitted a notification
while the tx controller notified a transmission, and the number of consecutive omission
discrepancies has not reached a threshold, the driver instructs a retransmission through
the tx controller. It does this because an omission discrepancy may indicate an IMO
scenario such as those that have been identified for CAN [21} [22]. Thus, the retrans-
missions are a best-effort attempt to prevent these IMOs. However, if the threshold is
reached, no further retransmissions are performed because in that case it is more likely
that the omission discrepancies are due to a link fault.

3.1. The architecture of reCANdrv

Figure [2] shows the basic architecture of reCANdrv. At the top is the application
executing on the node’s microcontroller, and at the bottom the two hardware CAN
controllers and a hardware timer functioning as the tx timer. The driver is in the middle,
providing a software layer between a node’s application and its two CAN controllers,
thereby abstracting from the application the existence and management of a redundant
link.

Towards the application the driver provides an interface that includes primitives to
allow the application to use the two CAN controllers as if there was only one, thereby
implementing a virtual CAN controller.

[Application |

[Driver interface |

[Txbuffer][Rxbuffer |

Driver

[Tx routine |[Rx routine |[Qua routine |

[CAN event tracker |

[cant][cAN2 [Txtimer |

Figure 2: Basic reCANdrv architecture.

Below the interface are the driver’s transmission (tx) buffer and reception (rx)
buffer. When the application requests the transmission of a message, a copy of the
message is stored in the driver’s tx buffer in addition to being stored in the hardware
transmission buffer of the tx controller. The driver uses this copy for different man-
agement operations. For instance, if the driver diagnoses the tx controller as faulty
before that controller successfully transmits the message, it uses the copy to transfer
the message to the other controller. Regarding the rx buffer, it is a buffer that allocates
the last message received from the channel. By comparing the message in the rx buffer
with the message, if any, in the tx buffer, the driver can determine whether it received
a message from another node or a message that it itself requested to be transmitted.
Moreover, since when the driver is notified of a reception it immediately copies the
received message from one of the controllers to the driver’s rx buffer, it is ensured that
a copy of the received message is saved as soon as possible, which can prevent some
message losses if a controller subsequently fails.

The driver has several media management routines, which cooperate with each
other to implement the driver’s main functionality. These are shown in Figure [2| and
are the transmission (tx) routine, the reception (rx) routine, and the quarantine (qua)
routine. These routines are invoked by the media management ISRs (not shown in the
figure), which are ISRs that simply call with the appropriate parameters the correspond-
ing media management routine. Specifically, the media management ISRs are the ew0
and ew! ISR, which are invoked after an error warning interrupt (HW_INT_EWO or
HW_INT_EW1) and call the qua routine; the rx0 and rxI ISR, which are invoked after
a reception interrupt (HW_INT_RX0 or HW_INT_RX1) and call the rx routine; and the
tx0 and tx] ISR, which are invoked after a transmission interrupt (HW_INT_TXO or
HW_INT_TX1) and call the tx routine.

Although the media management routines are invoked after error warnings and
CAN communication events (transmissions and receptions), none of the media man-
agement ISRs is directly triggered when such an event occurs. Instead, the media
management ISRs are invoked through software interrupts generated by the CAN event
tracker function (shown in Figure[2). Specifically, the ew0 and ew1 ISRs are invoked
when the CAN event tracker function generates the SW_INT_EWO0 and SW_INT_EW 1
software interrupts, respectively; the tx0 and tx1 ISRs are invoked when the function
generates the SW_INT_TXO0 and SW_INT_TX1 software interrupts, respectively; and
the rx0 and rx1 ISRs are invoked when the function generates the SW_INT_RXO0 and
SW_INT_RX1 software interrupts, respectively.

The CAN event tracker function is called by the tracker ISRs: tracker0 and trackerl
(not shown in Figure [2). These ISRs are the ones that are directly triggered by error
warnings and CAN communication events. The trackerO ISR is invoked when the first

Table 1: Interrupts, ISRs, and functions of reCANdrv.

Interrupt Invoked ISR Function called Interrupt generated
HW_INT_FAILO alertQ — —
HW_INT_FAIL1 alertl — —
HW_INT_EWO0 tracker0 CAN event tracker SW_INT_EWO
HW_INT_EWI trackerl CAN event tracker SW_INT_EWI1
HW_NT_TXO0 trackerQ CAN event tracker SW_NT_TXO0
HW_INT_TX1 trackerl CAN event tracker SW_INT_TX1
HW_INT_TIMEOUT timeout qua routine —
HW_INT_RXO0 trackerQ CAN event tracker SW_NT_RXO0
HW_NT_RX1 trackerl CAN event tracker SW_NT_RX1
SW_INT_EW0 ew0 qua routine —
SW_INT_EW1 ewl qua routine —
SW_INT_TXO0 tx0 tx routine —
SW_INT_TX1 tx1 tx routine —
SW_INT_RXO rx0 rx routine —
SW_INT_RX1 rx1 rx routine —

controller generates an interrupt indicating an error warning, transmission, or recep-
tion; whereas the trackerl ISR is invoked when the second controller generates the
equivalent interrupts.

In the absence of faults, both tracker ISRs are invoked for each signaled frame—
one for each controller. During a transmission, one tracker ISR will trigger the tx ISR
and the other the rx ISR; during a reception, both tracker ISRs will trigger an rx ISR.
In any case, two media management ISRs will be triggered and one of them executes
before the other. In that case, the two executions must collaborate to handle the frame.

On the other hand, in the presence of faults, omission discrepancies can occur and,
in consequence, there may only be a single tracker ISR that is invoked. This leads to
only a single media management ISR being triggered, which will have to handle the
communication event on its own.

In addition to generating software interrupts to invoke the media management ISRs,
and thus functioning as a dispatcher, the CAN event tracker sets a tracking variable to
keep track of what interrupt occurred. These variables are then taken into account by
the media management routines to correctly cooperate with each other.

Besides handling CAN communication events, the driver also needs to handle the
expiration of the tx timer (which generates the HW_INT_TIMEOUT interrupt). For
this the driver provides a timeout ISR, which is invoked when the tx timer expires and
which also calls the qua routine. Moreover, there are two alert ISRs that handle the alert
interrupt from the first and second controller (HW _INT_FAILO and HW_INT_FAIL1),
respectively. These ISRs are the only ones that can interrupt other ISRs. They mark the
corresponding controller as no longer trustworthy through variables that are checked
by the rx routine before a message is passed on to the application. This ensures that no
corrupted messages are delivered to the application.

Table (T lists the different interrupt sources from higher priority (top) to lower (bot-
tom). Moreover, the table summarizes the ISR invoked by each interrupt, the function
called by each ISR, and, in case the CAN event tracker is called, which software in-
terrupt is generated to invoke the appropriate media management ISR. Note that the

trackerQ ;}
trackerl ;}
l

rx0 i |

ix1 ! R
Rx(ctrl0) EOF \| Intr. | New frame
Rx(ctrll) EOF | Intr. | New frame

(a) Fault-free reception

tracker0 ;}
trackerl ;]
tx0 | —

1 ! —
Tx(ctrl0) EOF \ Recessive bits
Rx(ctrll) EOF [Intr. | New frame

(b) Fault-free transmission

Figure 3: Example driver executions.

priorities assigned to the interrupts are not arbitrary, but allow us to simplify the rou-
tines.

Figure[3|shows two chronograms to illustrate the interaction between the two tracker
ISRs and the media management ISRs. The bottom of each of the two chronograms
shows what each of the controllers receives or transmits, starting with the last bits of
an end of frame (EOF), followed by the intermission [9]. The four top rows of each
chronogram show when and how long each tracker and media management ISR ex-
ecutes. Upward arrows indicate hardware interrupts generated by the corresponding
controller; downward arrows indicate software interrupts.

Figure [3a] shows a fault-free reception. Both the EOF and the new frame shown at
the bottom of that figure are transmitted by some remote node. Upon the reception of
the last bit of the EOF, each controller generates a reception interrupt. The reception
interrupt of controller ctrlO triggers the tracker0O ISR; whereas the one from ctrll trig-
gers the trackerl ISR. Both tracker ISRs then determine that they have been invoked
due to a reception. Consequently, each sets the tracking variable indicating that the
corresponding controller notified of a reception and generates an interrupt by software
to invoke the corresponding rx ISR. Both these rx ISRs call the rx routine, causing
two invocations of the rx routine. These two invocations then collaborate to handle the
reception.

Figure [3bshows a fault-free transmission. The EOF shown is transmitted by ctrl0,
whereas the new frame shown is transmitted by another node. Once ctrl0 transmits the
last bit of the EOF, it generates a hardware interrupt that invokes tracker(. The trackerQ
ISR then sets a tracking variable that indicates that a transmission at ctrl0 occurred and
invokes the tx0 ISR by means of an interrupt generated through software. Similarly,
ctrll notifies a reception after the last bit of the EOF, which invokes trackerl. The
trackerl ISR then triggers the rx1 ISR. The tx0 ISR calls the tx routine and the rx1 ISR
the rx routine. The two routines then collaborate to handle the transmission.

Note that since two rx ISRs, or an rx and a tx ISR, cooperate with each other

void mtx._request(message m)

{
disable_interrupts ();
load_driver_tx_buffer(m);
ftx_-request(d.tx_controller, m);
enable_tx_timer ();
d.has_tx_pending « true;
d.tx_success « false;
enable_interrupts ();

Listing 1: The mtxreq routine.

to handle a given frame, the driver has real-time constraints. Specifically, it must be
ensured that these ISRs have finished their execution before the next frame has been
signaled. If not, an ISR handling one frame could incorrectly cooperate with another
ISR that is already handling the next frame. The result of such an incorrect cooperation
could be, for instance, that the reception of a new frame at a CAN controller of a node
is incorrectly considered as having already been handled because it cooperates with an
ISR that has handled the previous frame. The deadline for handling a frame is therefore
the instant at which the next frame has been signaled.

3.2. The routines of reCANdrv

This section explains the main routines of reCANdrv: the message transmission
request (mtxreq) routine and the media management routines. The mtxreq routine
is part of the driver’s interface. We cover it since it helps to understand the media
management routines. The other primitives of the driver interface are not explained
since they are either trivial, e.g., the one reading a received frame simply returns the
contents of the driver’s reception buffer, or they are out of the scope of this paper, e.g.,
the one initializing the different hardware registers of the CAN controllers.

3.2.1. The mtxreq routine

Listing[T] shows the mtxreq routine. The routine starts by temporarily disabling the
handling of all interrupts in order to have exclusive access to the driver’s variables and
the controllers. Next, it loads the driver’s tx buffer with the message that the applica-
tion requested to be transmitted, which is passed as a parameter. Then it requests from
the controller that is marked by the driver as the tx controller (d.tx_controller) the
transmission of a frame that encapsulates the message. After the request, the trans-
mission will be performed as soon as the channel becomes free. The next step of the
routine is to enable the tx timer, to update the driver’s status as having a transmis-
sion pending, and to reset the transmission success status to false. These two status
variables (d.has_tx_pending and d.tx_success) are then updated by a tx ISR after
a successful transmission, as described in Section [@} Finally, the mtxreq routine
enables interrupts again.

3.2.2. The qua routine

Listing shows the qua routine. The routine has two parameters of a
datatype t_ctrl_id that is used to refer to the CAN controllers: this_ctrl
and other_ctrl. It starts by checking whether the controller to be quarantined
(this_ctrl) has already been marked as deactivated (for this it checks the driver vari-
able d.is_active[this_ctrl]). If so, it simply returns. The check is necessary

because the qua routine can be invoked twice for the same controller, which could hap-
pen if an error warning and transmission timeout coincide. If the check returns false,
the routine marks the controller as no longer active and requests it to be reset. This
reset may not be satisfied immediately, but could take some time. For instance, if the
controller was transmitting or receiving when the reset was requested, it will typically
not be reset until finished (this is how, for instance, the CAN controller of a dsPIC30F
microcontroller [20]] behaves, which is the one used in the experimental prototype of
the driver [5]).

Afterwards, the routine checks whether the quarantined controller is the tx con-
troller. If not, it has finished since in that case the remaining, non-quarantined con-
troller, is already marked as the tx controller and can be used for both future receptions
and transmissions. Otherwise, the qua routine must reassign the tx controller role to
the other controller, assuming that the other one is still marked as active. For that it
continues as follows. It disables the tx timer to avoid its unnecessary expiration—in
case the routine was invoked due to an error warning and not a transmission timeout.
Next, it checks whether the other controller is still active. If not, it indicates (using
the shared variable d. controller_available) that there are no controllers available
anymore. Otherwise, it assigns the tx controller role to the other controller and, if
necessary, instructs a retransmission through the new tx controller. To determine if
it is necessary, it checks two conditions. First, whether the application has requested
a transmission that has not yet been handled by a tx routine (d.has_tx_pending).
Second, if the previous tx controller was not able to transmit before it was quaran-
tined. This is indicated in the second condition of the if-statement, which checks that
the tracking variable d.tx notification[this_ctrl] was not set. This tracking
variable is set by the tracker to indicate to the media management ISRs that the given
controller has generated a transmission interrupt. The tracker sets it when it is invoked
due to a transmission interrupt from the given controller. There is another equivalent
tracking variable for the other controller. If both conditions are true, the tx routine per-
forms the retransmission by requesting the message in the driver’s transmission buffer
to be transmitted in a frame by the new tx controller and by enabling the tx timer.

3.2.3. The rx routine

As shown in Listing [3] like the qua routine, the rx routine also has two parameters
of type t_ctrl_id.

The routine begins by resetting d.rx notification[this_ctrl], which is a
tracking variable that indicates that a reception interrupt occurred at this_ctrl. This
tracking variable was set by the CAN event tracker and indicates that the rx routine
has been triggered because of a reception interrupt by this_ctrl. Then the routine
checks whether the driver variable d.comm_event_handled is true. If so, it means
that the frame whose reception has launched the rx routine has either already been
managed by the tx routine or that it has already been managed by a previous exe-
cution of the rx routine that was triggered by the other controller. In any case, if the
d.comm_event_handled variable is true, all the rx routine must do is reset the variable
and finish by emptying the reception buffer of this_ctrl.

If the d. comm_event_handled variable is false, the rx routine knows that neither
the tx routine nor it itself has been called to handle the current frame. In that case the
rx routine needs to handle the communication event. For this it starts by checking if it
is handling a frame transmitted by the other controller of the node. It does this because
even if the node was the one to transmit the frame, the other controller could omit a
transmission interrupt due to a communication error, e.g., it could have crashed before

void qua.routine (
t_ctrl_id this_ctrl,
t_ctrl_id other_ctrl

if (!d.is_active[this_ctrl]) {
return;
}
d.is_active[this_ctrl] « false;
request_reset(this_ctrl);
if (d.tx_controller # this_ctrl) {
return;
}
disable_tx_timer ();
if (!d.is_active[other_ctrl]) {
d.controller_available « false;
} else {
d.tx_controller « other_ctrl;
if (d.has_tx_pending and
Id.tx_notification[this_ctrl]) {
ftx_-request(d.tx_-controller , read_driver_tx_buffer ());
enable_tx_timer ();
}
}
}

Listing 2: The qua routine.

void rx_routine (
t_ctrl_id this_ctrl,
t_ctrl_id other_ctrl
)
{
d.rx_notification[this_ctrl] « false;
if (d.comm_event_handled) {
d.comm_event_handled « false;

} else {
load_driver_rx_buffer(read(this_ctrl));
if (read._driver_rx_buffer() == read_driver_tx_buffer())

/« Self-reception, but no tx notification
« by other_ctrl =/
d.omission_count++;
} else {
if (d.is_trusted[this_ctrl]) {
deliver (d.rx_ftuple);
if (d.rx-notification[other_ctrl]) {
d.comm_event_handled « true;
}
}
}
}
empty_receive_fbuf(this_ctrl);
}

Listing 3: The rx routine.

10

void tx.routine (
t_ctrl_id this_ctrl ,
t_ctri_id other_ctrl
)
{
d.tx_notification[this_ctrl] «
false;
disable_tx_timer ();
if (d.rx_notification[other_ctrl]) {
/% Succesfull self-reception =/
d.comm_event_handled « true;
d.omission_count <« O0;
d.tx_success « true;
d.has_tx_pending « false;
else {
/% Self-reception failed x/

if (d.omission_count < OMISSION.DEGREE) {
d.omission_count++;

ftx_-request(d.tx_-controller , read_driver_tx_buffer ());
enable_tx_timer ();

else {

d.tx_success « true;

d.has_tx_pending « false;

Listing 4: The tx routine.

triggering its tracker ISR or it could omit the interrupt due to a CAN inconsistency
scenario. Thus, in order to make sure that it is not managing a frame transmitted by
the other controller, the rx routine reads into the driver’s rx buffer the frame contained
within the reception buffer of this_ctrl. Then it checks if that frame equals the one
located in the driver’s tx buffer.

If it does, the rx routine assumes that the other controller considered the transmis-
sion as failed and, thus, increases the omission counter (d.omission_count), which
indicates the number of times that a controller omitted a notification. If the other con-
troller omitted the notification of a transmission due to a transient fault, that controller
will attempt a retransmission by itself, as specified by CAN [9]. In case the omission
is due to a permanent fault, the tx timer will eventually expire and the qua routine will
carry out the actions needed to tolerate the fault.

If this_ctrl did not receive the frame in the driver’s tx buffer, then the controller
received a frame from another node. In that case it checks whether one of the alert
ISRs marked this_ctrl as having suffered a failure, which would be indicated by
the boolean variable d.is_trusted[this_ctrl] being false. If it is not false, the
frame, which is stored in the driver’s rx buffer, has not been corrupted and can therefore
be delivered to the application. In addition, if this_ctrl did not suffer a failure, the
routine checks if the other controller has also received the frame. If it has, the rx ISR
of the other controller will execute next and call the rx routine again. Therefore the
current rx routine execution sets the driver variable d.comm_event_handled to true
to indicate to the other rx routine execution that the reception of the frame has already
been managed. Finally, the rx routine empties the reception buffer of this_ctrl.

3.2.4. The tx routine

Regarding the tx routine, shown in Listing [4] it has the same parameters as the
other media management routines. The tx routine starts with the reset of both a track-

11

ing variable (d.tx-notification[this_ctrl]) and the tx timer. In contrast to the
rx routine, the tx routine does not check whether the communication event has already
been handled. This is so because a tx ISR does always execute before an also pend-
ing rx ISR since its interrupt is of higher priority than the one of the rx ISR. After
resetting the tracking variable and the timer, the tx routine checks the tracking vari-
able d.rxnotification[other_ctrl] to check if the other controller generated a
reception interrupt.

If it has, the routine sets d.comm_event_handled to true and resets the driver’s
omission counter to zero. Setting d.comm_event_handled to true informs the rx rou-
tine, which is expected to execute next, that the tx routine has already verified that
the non-tx controller received the transmitted frame. The rx routine will therefore not
have to verify it again. Finally, the tx routine also indicates to the application that the
frame has been successfully transmitted by setting to true the variable d. tx_success
and, moreover, resets the driver variable d.has_tx_pending, which indicated that the
frame was pending to be transmitted.

In contrast, if no reception interrupt was triggered, the tx routine checks if the omis-
sion counter is less than the maximum number of consecutive omission discrepancies
that are assumed to occur due to non-permanent faults (OMISSION_DEGREE). If the
omission counter has not reached that maximum, the tx routine attempts to prevent a
potential IMO. For this it increases the omission counter and requests a retransmission
of the frame through the tx controller. Otherwise, if the omission counter reached its
maximum, the tx routine assumes that the omission by the non-tx controller is not due
to an IMO scenario, but due to a permanent fault that prevents the non-tx controller
from communicating; thus, the tx routine gives up its attempt to prevent an IMO and
simply indicates to the application that the frame has been successfully transmitted and
resets the driver variable d.has_tx_pending.

Note that the retransmissions are a best-effort attempt to avoid data inconsistencies
between the nodes due to IMOs. When the tx routine detects that the non-tx controller
did not notify the reception of the frame transmitted by the tx controller, it instructs a
retransmission because of a possible IMO. This retransmission may cause the reception
of duplicated frames at some nodes, i.e., inconsistent message duplicates (IMDs); how-
ever, it is known that IMDs can occur in CAN anyway and applications should take that
into account, e.g., by only setting status variables upon the reception of a frame instead
of toggling their values. The retransmissions are best-effort since an IMO may mani-
fest itself in such a way that neither the driver nor the tx controller itself retransmits and
a data inconsistency between the nodes still occurs. For instance, both controllers of a
transmitting node may detect a communication event (the transmission or reception of
a frame) while both controllers of a receiving node may detect a communication error
(the abort of a frame).

4. Properties of a ReCANCcentrate node

Having described the basic functioning of reCANdrv in the previous sections, we
now proceed to explain the properties that reCANdrv provides to a ReCANcentrate
node. For this, we start by introducing the concepts of a correct controller and a correct
link.

A correct controller is one that is not affected by faults (transient or permanent)
and is in the error active state [9], i.e., in a state in which it can fully participate in
the communication—as opposed to the error passive state, in which it may not be
able to signal errors to other controllers, and the bus off state, in which it does not

12

communicate at all. A correct link is a link that is not affected by permanent faults and
whose transient faults have a frequency low enough to not trigger error warning at its
controller.

The goal of reCANdrv is to correctly manage the redundancy provided by Re-
CANCcentrate. Specifically, the goal is to allow an application using reCANdrv on a
ReCANCcentrate node to transmit information to other nodes and to correctly receive
information originating at other nodes. Moreover, this should be done while tolerating
all channel and controller faults as long as there is one correct controller with a correct
link. This goal can be specified as a series of properties, which are listed at the end
of this section. However, first a series of terms, notations, and assumptions need to be
introduced.

A message is a unit of information that an application executing on a node deals
with. A frame is a unit of information exchanged on the communication channel. It is
assumed that each message can be encapsulated in a single frame, i.e., that messages
are not fragmented into multiple frames. Nevertheless, multiple frames may contain
the same message. This occurs in the case of retransmissions. Moreover, frames do
not necessarily have to encapsulate messages because a frame may also serve control
functions on the communication channel. Examples are error frames, overload frames,
and remote frames [9]]. Despite the fact that in reality these frames do not encapsulate
any messages, the notation used in this paper, described shortly, can be made more
consistent by reserving dedicated messages for these frames. For instance, it is assumed
that an error frame always encapsulates an empty error-frame message.

The application and the driver deal with messages, not with frames; whereas the
channel only carries frames, but not messages directly. The boundary between mes-
sages and frames are the CAN controllers. They encapsulate into frames messages
whose transmission has been requested, and extract messages from frames received
from the channel.

All messages and frames are assumed to be identified uniquely. Specifically, it is
assumed that they have sequence numbers. The message sequence numbers are called
msns, and the ones for frames fsns. Both are monotonically increasing natural numbers.
Each time the application requests the transmission of a new message, that message
gets assigned a new msn. Similarly, each time a controller signals a new frame on the
channel, that frame gets a new fsn.

The following notation is used. F;(M;) designates a frame with fsn i encapsulating
a message M; with msn j. The term mzx-request is used for a message transmission
request performed by the application; whereas fix-request is used for a frame trans-
mission request from a CAN controller that is performed by the driver. When a frame
Fi(M)) is signaled completely, i.e., without being corrupted, then it is transmitted. A
frame is received by a controller when it is completely stored in that controller’s recep-
tion buffer. When the message M; encapsulated in a received frame F;(M;) is stored
in a buffer accessible by the application and the application is notified of this, the mes-
sage M is passed on. When the driver notifies the application that a message has been
transmitted, the driver notifies a tx-success. Figure[z_f] summarizes these terms. We also
introduce the notion of self-reception, which occurs when the non-tx controller receives
a frame transmitted by the tx controller. Finally, a retransmission of a frame F;(M}) is
defined as a new transmission of a frame F;, (M) that encapsulates the same message
M. Note that the retransmission does not need to be performed by the same controller
that did the initial transmission.

The ReCANCcentrate node properties are based on the following assumptions:

o the channel provides a single broadcast domain, i.e., it cannot be broken up into

13

mtx-request(M) l, Mtg;:?gz(sz/[k)
ftx-request(M ;)—, 1 | 1

transmit(F,»(M_/-))—\ Lreceive(Fl(Mk))

Figure 4: Terminology.

two or more independent subchannels and thus the two CAN controllers of each
node cannot receive different frames simultaneously;

e there is no unicast or multicast addressing of messages, but only broadcast ad-
dressing to the applications, and thus any message from a remote node that was
encapsulated in a received frame should be passed on to the application;

¢ the application does not mtx-request a new message until it was notified by the
driver of a tx-success of the previous mtx-request;

e as soon as a controller is no longer correct, it generates an alert interrupt and
immediately stops generating interrupts and traffic on the channel;

e at least one CAN controller remains correct and has a correct link at all times;

e the CAN controllers are BasicCAN [19], i.e., they only have a single transmis-
sion buffer.

Having introduced these terms, notations, and assumptions, the properties that re-

CANdrv provides to a ReCANcentrate node can be formalized as follows:

P1 - Pass on integrity: any message M passed on to the application was received
in a frame F;(M;) by at least one controller.

P2 - Double reception implies single pass on: each message M; originated in a
remote node and received in a frame F;(M;) by both controllers is passed on to the
application exactly once.

P3 - Pass on validity: each message M; originated in a remote node and received
in a frame F;(M;) by at least one correct controller is passed on to the application,
unless a single controller received F;(M;) and that controller alerted of its failure.

P4 - No duplicate pass on: each message M; originated in a remote node and
received in a frame F;(M;) by at least one controller is passed on to the application at
most once.

P5 - No pass on of self-received messages: no message M; is passed on to the
application when it was self-received in a frame F;(M;).

P6 - Ordered pass on: if messages M; and M are passed on to the application,
then M; is passed on before M; only if M; was received by any one correct controller
before M, was received by any one correct controller.

P7 - Guaranteed transmission: if the application mtx-requests a message M,
one of the controllers transmits a frame F;(M}).

P8 - Bounded retransmissions: the controllers perform a bounded number of re-
transmissions of frames F;(M) encapsulating a message M.

P9 - FIFO transmission: if the application mtx-requests M; and M, then M; is
transmitted before M only if the application mtx-requested M ; before M;.

14

P10 - Bounded time to satisfy an mtx-request: if the application mtx-requests
a message M, the driver notifies the application within a finite amount of time of a
tx-success.

5. The UPPAAL model checker

To check whether reCANdrv actually provides the above properties to a ReCAN-
centrate node we used UPPAAL. UPPAAL [8]] is a model checking tool that integrates
three components: a graphical user interface (GUI) to design a model as a network
of timed automata, a simulator that allows an interactive traversal of the state space,
and a model checker for the automated verification of properties to be satisfied by the
model. This section introduces the concepts necessary to understand how we imple-
mented a model in UPPAAL to verify the ReCANcentrate node properties. Section|[8.1]
complements this section by introducing the UPPAAL query language, which is the
language used to specify the properties as queries to be satisfied by the model. A more
exhaustive introduction to UPPAAL can be found in the UPPAAL tutorial [8].

Timed automata are finite state machines with clocks. Clocks are variables to model
the progress of time. They evaluate to a non-negative real number and progress syn-
chronously. Their value can be tested or reset to a specific value. The timed automata in
UPPAAL are comprised of locations and edges that connect the locations. Moreover,
the timed automata are extended with discrete variables (such as integers and booleans),
which can also be grouped into structures and arrays. The state of the network of timed
automata is defined by the currently active location in each of the automata, and the
values assigned to the clocks and variables.

The variables can be read or modified when an edge is taken. The reading and
modification of variables can also be encapsulated into functions that are called when
an edge is taken. The firing of an edge can depend on a guard and/or synchronization.

A guard is an expression that evaluates to a boolean value and that can use variables
and clocks of the model, as well as side-effect free functions, i.e., functions that do not
alter the state by, for instance, changing the value of a variable.

Synchronizations (also known as channel&{ﬂ) are a mechanism used to force differ-
ent automata to take edges at the same time. There are different types of synchroniza-
tions. As described in the UPPAAL tutorial [8]]

Binary synchronization channels are declared as chan c. Anedge labelled
with ¢! synchronises with another labelled c?. A synchronisation pair is
chosen non-deterministically if several combinations are enabled.

Broadcast channels are declared as broadcast chan c. In a broadcast
synchronisation one sender c! can synchronise with an arbitrary number
of receivers c?. Any receiver that can synchronise in the current state
must do so. If there are no receivers, then the sender can still execute the
c! action, i.e. broadcast sending is never blocking.

Urgent synchronization channels are declared by prefixing the channel
declaration with the keyword urgent. Delays must not occur if a syn-
chronisation transition on an urgent channel is enabled. Edges using ur-
gent channels for synchronisation cannot have time constraints, i.e., no
clock guards.

INot to be confused with the CAN communication channel of our model, see Section

15

Locations in UPPAAL can also be of different types. We will only describe the two
that we used in our model: normal locations and committed locations. In normal loca-
tions the clocks of the model are allowed to progress and, unless there is an outgoing
edge with an enabled synchronization, an automaton can stay in such a location indefi-
nitely. In committed locations the clocks are not allowed to progress and the next state
transition must involve at least one edge of the currently active committed locations.
Normal locations are graphically represented as empty circles and committed locations
as circles containing an uppercase ‘C’.

Normal locations can have invariants. These are side-effect free expressions that
compare a clock with an integer constant or variable. Valid comparison operators are
less than (<), and less than or equals (<=). Invariants are used to assign an upper bound
to the time that an automaton can stay at a given location.

Another feature of UPPAAL required to understand the implementation of our
model is the concept of an automata template. This feature allows the definition of
a parameterized automaton from which then particular automata can be instantiated.
During the instantiation concrete values are assigned to the parameters.

6. A model of reCANdrv

This section introduces the model used to verify the properties that a ReCANcen-
trate node achieves thanks to reCANdrv. Although the model was implemented using
the UPPAAL model checker [8]], which uses timed automata, to make the model easier
to understand, the model is described in a more abstract way first.

6.1. Model components

The model is basically comprised of a communication channel and a single node
with two CAN controllers, an application executing on it, a tx timer, and the reCANdrv
driver. We only consider a single node because the properties that the driver provides
to a ReCANcentrate node are local properties of a node. Moreover, all the other nodes
are represented abstractly by the channel because from a single node’s perspective
there is no difference between the channel itself transmitting and receiving frames, and
other nodes transmitting and receiving frames through the channel. Figure [5] shows
the model’s components, which will be described shortly. Before that, however, it is
necessary to understand how messages and frames are modeled.

Messages are modeled as non-zero positive integers, which correspond to the msns
of the messages. Frames are modeled as tuples, called f-fuples, of two non-zero positive
integers. One integer represents the encapsulated message and its value is the msn
of that message. The other integer represents the frame and its value corresponds to
the frame’s fsn. For convenience at the time of verifying the model (see Section [§),
the integers used for the msns take values from a subset S, of consecutive non-zero
positive integers, while the fsns take values from another non-overlapping subset S s of
consecutive non-zero positive integers, i.€., §,, N Sy = <.

The modeled CAN controllers generate f-tuples to model frames transmitted by the
node. Similarly, the channel generates f-tuples to model frames received by the node.
The fsns assigned to the f-tuples generated by the node’s controllers take values of the
non-empty integer set S s, whereas the fsns of f-tuples generated by the channel take
values of the non-empty integer set S >, suchthat Sy =S USpand S NSy = 3.

For f-tuples generated by one of the controllers, the msn is the one of the message
encapsulated in a frame that is modeled as being transmitted. For example, if we

16

app g timeout) (rx0 ew0
5| |2 b 1) Driver
e
S t
:

J—)

ctrl0 ctri1

c0.tx_-msn |€=
c0.rx_fouf
c1.rx_fouf

‘ cl.tx_.msn |«

channel = cha.ftuple | &=——
cha.rx_fouf ftuple_generator

Figure 5: Model overview.

model a controller to transmit the frame F;(M), the f-tuple is (i, j). On the other hand,
the msns used in the f-tuples created by the channel can have arbitrary values since
the specific messages that are passed on to the application are irrelevant to verify the
ReCANCcentrate node properties. However, for convenience again, the msns used in
the f-tuples generated by the channel do not overlap with the ones used in the f-tuples
generated by the node’s controllers.

As indicated at the beginning of this section, Figure [5|shows the main components
of the model. The bottom of the figure shows the modeled communication channel,
which corresponds to everything beyond the node’s CAN controllers. The channel can
generate new f-tuples and contains a single-slot f-tuple buffer (cha.ftuple) to store
the f-tuple that models the currently being signaled frame and a multi-slot f-tuple buffer
(cha.rx_fbuf) that stores all the f-tuples that have been transmitted. Everything above
is part of the node.

The node is comprised of the following. A model of the node’s application (labeled
app in the figure), which can generate new msns and contains a multi-slot f-tuple buffer
(app.rx_fbuf). A modelled hardware timer (shown to the right of app) that corre-
sponds to the tx timer. A model of the reCANdrv driver (top-right of the figure), which
contains models of the driver’s software components (shown as boxes with rounded
corners), i.e., the media management ISRs, the tracker ISRs, the alert ISRs, and the
routine called during an mtx-request (mtxreq routine). Moreover, the model of the
driver has a single-slot msn buffer (d.tx_msn) that models the driver’s tx buffer and a
single-slot f-tuple buffer (d.rx_ftuple) that models the driver’s rx buffer. The CAN
controllers are modeled by two entities (labeled ctrl0 and ctrl1), each of which contains
a single-slot msn buffer (cO.tx_msn and c1.tx_msn) modeling a hardware transmis-
sion buffer, and a multi-slot f-tuple buffer (cO.rx_fbuf and cl1.rx_fbuf) modeling
a hardware reception buffer. By default ctrlO is marked as the tx controller and ctrll
as the non-tx controller. The reason for some buffers being multi-slot is to remember

17

what f-tuples had been inserted into them over time.

Although Section [4] claims that the boundary between messages and frames is at
the CAN controllers, the model stores f-tuples, which correspond to frames, instead of
msns, which correspond to messages, in the app.rx_fbuf. In other words, the msns
received by one of the modeled controllers are left encapsulated in their f-tuples when
they are passed on to the modeled application. This is convenient since it allows the
model to relate each msn passed on to the application with the f-tuple in which it was
received. Keeping track of this relationship is necessary in order to verify some of the
properties introduced in Section 4]

Finally, there are a series of arrows between the components of the model. The
thick white arrows between the msn buffers show the flow of msns representing mes-
sages; the thick black arrows between the f-tuple buffers show the flow of f-tuples; the
dotted arrows incoming to the node’s ISRs represent hardware interrupts generated by
the timer and the controllers, or software interrupts generated by the tracker ISRs; and
the dashed arrows represent notifications and requests between the different entities of
the model.

6.2. Model behavior

Initially the channel is free. In the model this means that the channel’s cha. f_tuple
buffer initially contains a special empty f-tuple representing an idle channel. The
signaling of a frame on the channel is modeled as the corresponding f-tuple being
stored in the cha.f_tuple buffer. Once the signaling is finished, the channel over-
rides the cha.f_tuple buffer with a special f-tuple modeling the intermission between
frames [9]]. Shortly after that the channel becomes free again, that is, the channel over-
writes the intermission f-tuple with the empty f-tuple.

The modeling of an mtx-request by the app begins with the app generating a new
msn and invoking the model of the mtxreq routine with that msn as a parameter. The
modeled mtxreq routine copies the msn to the d.tx_msn buffer. It then models the
issuing of an ftx-request to the tx controller as follows. It copies the msn from the
d.tx_msn buffer to the modeled tx controller’s tx_msn buffer and sets a boolean vari-
able to indicate to the modeled tx controller that a transmission is pending. Meanwhile,
the app waits until it receives a signal that the mtx-request was completed successfully.

The subsequent transmission is modeled when the channel is free, which it indicates
by overwriting the cha.f_tuple buffer with an empty f-tuple, as described above.
When this occurs, and assuming that the channel does not initiate the signaling first by
copying its own f-tuple to cha.f_tuple, the transmission is modeled by having the tx
controller create an f-tuple from the msn in its tx_msn buffer and the next fsn from the
integer subset S r; shared with the other controller model. The modeled tx controller
then writes into the cha.f_tuple buffer the created f-tuple and signals to the channel
and the other controller that it is transmitting a message. This causes the channel to
store a copy of the f-tuple in the cha.rx_fbuf buffer and both controllers to wait until
the channel notifies that the signaling of the message is finished. This waiting models
the controllers being busy receiving or transmitting the frame. Note that this means that
the frames are modeled as always being transmitted fully, i.e., that they are not aborted
by errors. Aborted frames are not modeled because the fact that a frame is aborted
does not trigger the driver’s execution. However, the errors that caused the frames to
be aborted can generate error warning, alert, and timeout interrupts, all of which invoke
the driver. Thus, errors need to be modeled at some level.

Specifically, the model allows errors to only occur before or after the signaling of
a frame. This is justified because of two reasons. First, if the error is assumed to

18

have aborted a frame, it is as if the error had occurred when no frame is signaled at
all. Second, if the error is assumed to not have aborted a frame, the error must have
occurred during the signaling of the frame. The worst-case occurs at the two extremes:
when the error occurs immediately before the signaling of the frame or if it occurs
immediately after the signaling. These are the two cases that are modeled.

An f-tuple reception begins with the channel generating an f-tuple and then copying
it to the cha.f_tuple buffer. Next, the channel indicates that it is signaling a frame,
upon which the modeled controllers wait until the channel notifies that the signaling
finished.

The channel’s notification that the signaling of a frame finished can be of two types.
It can be either a communication event or a communication error notification. For a
transmitting controller a communication event means that the controller did not detect
any error up to, and including, the last bit of the frame; whereas for a receiving con-
troller it either means that the controller did not detect any error up to, and including,
the last bit or, alternatively, that it detected an error at the last bit of the frame—in this
latter case it would accept the frame due to CAN’s last bit behavior [9]. Regarding a
communication error, it means that the corresponding controller detected an error dur-
ing the transmission or reception of the frame, but that, nevertheless, the error detection
did not lead to the abort of the frame.

Note that a controller that detects a communication event accepts the transmission
or reception of the frame; whereas a controller that suffers a communication error re-
jects it. This means that the communication event and error notifications allow to model
omission discrepancies between the controllers of the modeled node. Modeling these
omission discrepancies is important to test the driver’s best-effort attempt to reduce the
number of IMOs. The model does not signal a communication error to both controllers
because that would represent the case where both controllers reject a frame, which does
not invoke the driver.

The controllers that received a communication event notification from the channel
each model the generation of an interrupt, which is then handled by the modeled tracker
ISRs and media management ISRs such that they model the behavior described in
Section[3

Specifically, if the communication event notification occurs while a reception is
modeled, the f-tuple is copied from the cha.f_tuple buffer to the rx_fbuf f-tuple
buffer of each controller notified of the communication event. The result of the sub-
sequent invocation of the modeled ISRs is that the received f-tuple ends up in the
d.rx_ftuple buffer and that a message pass on is modeled next. The message pass on
is modeled by having the modeled media management ISRs copy the f-tuple from the
d.rx_ftuple buffer to the app.rx_fbuf.

If the notification occurs while a transmission is modeled, what happens next de-
pends on the type of notification. If a communication event is signaled to each modeled
controller, this represents a successful self-reception. In this case the modeled media
management ISRs set the boolean variable d.tx_success to true. This represents the
completion of a successful transmission and allows the modeled app to generate a new
msn and to mtx-request it. If a communication error is signaled to one of the mod-
eled controllers, a retransmission may need to be modeled. This is done by having the
modeled tx controller create a new f-tuple using as the f-tuple’s fsn the next integer
of subset S r; and using as the f-tuple’s msn the one stored in the controller’s tx_msn
buffer. The created f-tuple is then written into the cha.f_tuple buffer and the mod-
eled transmitting controller indicates to the channel and the other controller that it is
transmitting.

19

7. Model implementation

This section gives an overview of how the abstract model described in the previous
section has actually been implemented using timed automata. Note that the fact that the
driver has real-time constraints means that it is important to not only model the system
from a functional point of view, but also to model the timing of the system. This makes
our choice to implement the model using a model checker based on timed automata,
namely UPPAAL, especially appropriate.

7.1. The timed automata of the model

The communication channel is modeled by a single automaton. Specifically, the
communication channel is modeled by the channel automaton, which is an instantia-
tion of the channelP automata template (shown in Figure 6)).

The node, on the other hand, is not modeled by a single automaton. Instead, it is
modeled by several automata, each of which models a hardware or a software com-
ponent of the node. Specifically, the automata are the following: the app automaton,
which is an instantiation of the applicationP automata template (shown in Figure[7)
and models the application running on the node; the ctr10 and ctr1l1 automata, which
are instantiations of the ctr1P automata template (shown in Figure [8) and model the
two CAN controllers of the representative node; the trackerO and trackerl au-
tomata, which are instantiations of the trackerP0 and trackerP1 automata templates
respectively (shown in Figure [0] and [I0) and model the two CAN event tracker ISRs;
the rx0 and rx1 automata, which are instantiations of the rx_ISR automata template
(shown in Figure and model the two rx ISRs; the tx0 and tx1 automata, which
are instantiations of the tx_ISR automata template (shown in Figure and model
the two tx ISRs; the ew0 and ewl automata, which are instantiations of the ew_ISR
automata template (shown in Figure [I3) and model the two ew ISRs; the timeout
automata, which is an instantiation of the timeout_ISR automata template (shown in
Figure @]) and models the timeout ISR; the alert0 and alert1 automata, which are
instantiations of the alert_ISR automata template (shown in Figure[I5)) and model the
two alert ISRs; and the timer automaton, which is an instantiation of the transmission
timerP automata template (shown in Figure [I6) and models the hardware timer that
is used as the tx timer. Note that there is no automata that corresponds to the mtxreq
routine. Instead, that routine is directly called in an edge of the app automaton. In the
following sections these automata will be described in more detail.

Apart from the automata mentioned above, there are also three helper automata
that do not correspond to hardware or software entities. These are the init_sys au-
tomaton, which is an instantiation of the init_systemP automata template (shown in
Figure and is used to initialize the system; the isr_scheduler automaton, which
is an instantiation of the isr_schedulerP automata template (shown in Figure [18)
and is used to schedule the execution of the automata that model the node’s ISRs (see
Section [7.1.T); and the observer automata template observerP that has a single edge
from its initial location to a location finished. The observer automaton transitions
to finished once the model has finished modeling the transmission and reception of
all frames, and the execution of the driver. An instantiation of it is used during the
verification of the model, specifically, by the queries of Section[8.3]

Some of the automata templates have parameters. These are shown at the top of
their respective figures. Specifically, the automata templates modeling media manage-
ment ISRs (figures[T1] [I2] and[T3) have as a first parameter the controller that originated

20

-9je[dud) BlRWOINE JToUURYD :Q INJI

a|dnyAidwsa = sjdnyeyo JNIL NOISSINEILNI == awi eyd

uolss|wId)ul

a|dny~wiel = ajdnyBYo ‘0 = swil eyo

JNIL INVHL "Hodd3
=> 3w} eyo

JNIL FNVHS HOdd3 == awn eyod

X} awely 10449

JNIL ZO_WHWV_ it ;ouwel] 10119 a|dny ewele = ajdnyeyd
a1dnyy~wuelul = ajdnyyeyo ‘o = awil eyo 0 =2own eyo S
payiou” S0 ooﬂ:mt&oﬁo
[T TdLONUSAS WoS ¢
i[F 191070118 wwoo [0 191D]i0118 Wwod _
WIwo9 ™ JUa)SISU0d UOISSIWO ™ L1410 uoISsIWO’ Q1 w_%zu wﬂw&ﬂ:o
Aouedealosip uoissIwo ‘0 = awin eyd
[0 T9IONUSAS WoD Tr TaIONUsAs Wwod ¢owel) Jole
B ++Usw Ixau-eyo
(1774.LD)1004100” S| pUB (0 7HL1D)1081100 S| pue usw Jxeueyo = cmE.w_Q::”mco
334533 NOISSINO > JUN0J UOISSIWOBYD o sy ﬂoc.m%
FFUNGO UOISSIUIO B0 US} xeuByo = usysjanyeyo
s jlwsueu]
NS4 Xd 1SV1
paysiuly Buijeubis buyjeubis 0 = Wi By => USJ Ixau'eyo snwsuen
i[04 1L DNUSAS WD JNIL 1SvOdvOodg == swh mco’ (eidmyeyd
ANIL LSYOAavOoHg => awn eyd awy jesal ‘jngyx1"eyo)ejdny~puadde

()dTeuueyd ssesoid

21

process applicationP()
d.tx success hurry!

idle

Isome_interrupt_pending() and
d.controller_available and
app.next_msn <= LAST_TX_MSN and|
ld.has_tx_pending
hurry!
mtx_request(app.next msn)
aap{) next msn++

wait_tx_success

Figure 7: applicationP automata template.

the hardware interrupt that was dispatched to them by the tracker. As a second parame-
ter they have the other controller. Finally, as the third parameter they have the software
interrupt that they are handling and that was used by the tracker ISRs to dispatch the
original hardware interrupt to them.

The ctrlP automata template (Figure [8)) also has parameters. These are the fol-
lowing. First, the controller that a given instantiation of the template models. Second,
the other controller of the modeled node. Finally, the four hardware interrupts that
the modeled controller can generate: the error warning interrupt, the frame reception
interrupt, the frame transmission interrupt, and the alert interrupt.

Listing [5] shows how the automata of our model are instantiated from the au-
tomata templates. The instantiations have the form automaton < template (), where
automaton specifies the name given to the automaton instantiation, ’«’ is the assign-
ment operator, and template is the template used to create the automaton instantiation,
which may have parameters.

Regarding the parameters passed to those automata templates that require them,
they are globally defined constants. Specifically, the following constants are used:
CTRL_0 and CTRL_1, which are used to access data structures that store status variables
and buffers corresponding to the first and second controller respectively; and a series
of constants whose name matches the name of the different interrupts (see Table|l)) and
are used to model interrupts, as described in the next section.

Finally, the system keyword in Listing[5]is used to define that all of the instantiated
automata should comprise the network of timed automata used for the model.

7.1.1. Modeling interrupts and ISRs in UPPAAL

A typical microprocessor implements interrupts using an interrupt vector table
(IVT). In our model the IVT is an array data structure where each entry indicates
whether a given interrupt is pending or not. The order of the entries reflects the priority
of the interrupts: an interrupt with a lower index in the IVT has a higher priority than
one with a higher index. When no ISR is executing, the next interrupt to be handled
is always the one that is pending and has the highest priority. When an ISR is execut-
ing, the highest priority pending interrupt will be handled as soon as that ISR finishes.
Except for one exception, namely the rx ISRs (as explained at the end of this section),
there is no preemption between ISRs in our model.

We defined the following functions on the IVT: a function is_next_interrupt
that returns true if a given interrupt is the next interrupt to be handled; a
function set_interrupt that marks a given interrupt as pending; a function
clear_interrupt that marks a given interrupt as no longer pending; and a function
some_interrupt_pending that returns true if at least one interrupt is pending—this

22

-ore[dwe) BleWOINE 41190 1§ 9IS

(BUo)oWEl} erep SUIejuod] pue (10 Sigqyamuw s Q awlely 10419 Mels

2110 SIJoI8 Wwod

2710 SIIJoI8 Wwwod

— —(5)
(1dnusur xi~ siyy)idnusiul 188 paiou X} Jainur s
‘(197 s1yybuipuad x3 Jes|o - papiou x4
¢lmo siyiuens wwoo jowelt Joi1o

++US) 410 1Xeu

(1dnusiur x4~ siypidnueiul 1es
‘(e1dmy ey ‘1o siyy)ajdn)y 81808 PEO]
&[0 sIyiiuena wwod

‘Usy” 410 Ixau = usy'ajdnyyeyo
m\ (70 SIUYXT 0} UsW Jab = usw a|dny eyo o101
jHwsuesy P!

JUBA® X1 Jlem a|dny Aidwe == s|dnyeyo

JHuisuen
(1o siup)yeap S|

pue (110 siyl)buipuad x3 sey
pue (119 siyy)yeap_sij

pue ([0 siypanw sij

siybuluiem 10119~ payoeal;

(13

(1dnusur peje sy}
)idnuisjul jes

JUBAD X4 JilEM
Qm:mm._u
‘(30” sIyp)payselso jes
(4107 18Y10)1084109 S|

pue (]41918Y10)1081100” S|

1dnhasdul Buluiem 1043

Bujuiem io4i9

O
4 (130 siyy)Buiusem o 18s

(107 s1y1)Buipuad 18sal sey

ERE)] O _
9sal”sI

Hne} jesp

(idnus m3 siupidnusiul 1es TLTRLT

(TSRS TSR 2
(1197 18Y10)1004109” S|

(RS VERISES

(P30 siupamnw 19s
(1197 18Y10)1084100” S|
pUE (130~ sIyp)aInw slj

210 SIIJoMI8 Wwod
(1197 18Y10)1004100” S|

(14107 18Y10)1001100 S|
pue (110° siyy)yeap” sij

(M0 _sigyjamu 18s

(130 siyysesp 188

2110 SIUII0S WwWod
(14107 18Y10)1001109 S|

(adnizequr-aaeTe sTyl 3dnixesut 3 ‘3dnirejur x3 sTyl 3dnirejur 1 ‘3dniIelur XI STIY3
jdnxzsjut 1 ‘3dnirequr M STY3 3dnIIsquUT-3 ‘TIFO ISYI0 PI-ISTTOIFU0D] ‘IO STY3} PT ISTTOIIUOD 3)dTI3D ssedoid

23

process trackerP0()

is_next_interrupt(EWOcurrent_interrupt = HW_INT_EWO,
HW_INT_EWO0) _ @\ set_interrupt(SW_INT_EWO0)

i ?
Isr_execute” current_interrupt = HW_INT_RXO0,

is_next_interrupt(RX0 d.rx_notification[CTRL_0] = true,

HW_INT _RX0) _ @\ set_interrupt(SW_INT_RXO0) int set
if_execute? &/

idle current_interrupt = HW_INT_TXO0,
is_next_interrupt(Tx0d-tx_notification[CTRL_0] = true,
QJW_INT_TXO0) _ =\ set_interrupt(SW_INT_TX0)
isr_execute? &

exec_time = 0
exec_time == TRACKER_TIME exec_time <=
isr_stop! TRACKER_TIME
clear_interrupt(current_interrupt) executing

Figure 9: trackerP0 automata template.

process trackerP1()

is_next_interrupt(HW_INT_EW1) EW1 current_interrupt = HW_INT_EWT1,
isr_execute? (™ set_interrupt(SW_INT_EW1)

current_interrupt = HW_INT_RX1,
is_next_interrupt(HW_INT_RX1) ~ RX1 d.rx_nofification[CTRL_1] = true,
isr execute? = set interrupt(SW_INT_RX1)

idle

current_interrupt = HW_INT_TX1,
is_next_interrupt(HW_INT_TX1) Tx1 d.tx_notification[CTRL_1] = true,
isr execute? = set_interrupt(SW_INT_TX1)

int_set

exec_time = 0f

exec_time == TRACKER_TIME exec_time <=
isr_stop! TRACKER_TIME
clear_interrupt(current_interrupt) executing

Figure 10: trackerP1 automata template.

process rx_ISR(t_controller_id this_ctrl, t_controller_id
other_ctrl, t_interrupt this_interrupt)

idle is_next_interrupt(this_interrupt) exec_time <= RX_TIME_TH preempted
isr_execute? M exec time == RX TIME TH
rx_routine_th(this_ctrl, other_ctrl), U executing_th

exec_time =0 . hurry!
exec_time == RX_TIME_BH e"g)c(—"m?:BH not is_next_interrupt(HW_INT_FAILO) and
clear interrupt(this interrupt) /‘I\ — notis_next_interrupt(HW_INT_FAIL1)
isr_stop! executing_bh~/ rx_routine_bh(this_ctrl, other_ctrl), exec_time = 0

Figure 11: rx_ISR automata template.

process tx_ISR(t_controller_id this_ctrl, t_controller_id
other_ctrl, t_interrupt this_interrupt)

is_next_interrupt(this_interrupt)
idle isr_execute?
tx_routine(this ctrl, other ctrl

exec_time =0

executing

exec_time k=

exec_time == TX_TIME TX_TIME

isr_stop!
clear_interrupt(this_interrupt)

Figure 12: tx_ISR automata template.

24

process ew_ISR(t_controller_id this_ctrl, t_controller_id
other_ctrl, t_interrupt this_interrupt)

is_next_interrupt(this_interrupt) exec_time <=
isr_execute? QUA_TIME
idle qua_routine(this_ctrl, other_ctrl), executing

O exec_time =0

exec_time == QUA_TIME
isr_stop!
clear_interrupt(this interrupt)

Figure 13: ew_ISR automata template.

process timeout_ISR()

exec_time <=
d.tx_controller == CTRL_0 T
ua routine(CTRL 0, CTRL 1) QUA_TIMI?
executing

call_qua

d.tx_controller == CTRL_1

ua routine(CTRL 1, CTRL 0)
is_next_interrupt(HW_INT_TIMEOUT)
isr_execute?

exec_time =0

exec_time == QUA_TIME

isr_stop!
clear_interrupt(HW_INT_TIMEOUT)

idle

Figure 14: timeout_ISR automata template.

process alert_ISR(t_controller_id this_ctrl, t_interrupt
this_interrupt)

executing
idle is_next_interrupt(this_interrupt) ex‘ea‘cithn_lre TIME
O hurry! -

d.is_trusted[this_ctrl] = false,
exec_time =0

exec_time == ALERT_TIME
clear interrupt(this interrupt)

Figure 15: alert_ISR automata template.

process timerP ()

(is_crashed(d.tx_controller) or
. is_mute(d.tx_controller) or
idle is_deaf(d.tx_controller)) and
O tx_timer enabled()
hurry!

set_interrupt(HW_INT_TIMEOUT) tx_timed_out

Figure 16: timerP automata template.

process init_systemP ()

. init system() 5 .

initialize initialized

Figure 17: init_systemP automata template.

25

process isr_schedulerP()
idle
isr

bxecute!

isr_executing

Figure 18: isr_schedulerP automata template.

process observerP()

.. Isome_interrupt_pending() and
not_finished not (has_tx_pending(CTRL_0) and
is_correct(CTRL_0)) and
not (has_tx_pending(CTRL_1) and

hurry!
is_correct(CTRL_1)) and
cha.ftuple == empty_ftuple and
cha.next_msn == END_RX_MSN and
finished app.next_msn == END_TX_MSN and

not tx_timer_enabled()

Figure 19: observerP automata template.

application « applicationP ();
tx0 « tx_ISR(CTRL.O, CTRL.1, SW_INT_TX0

tx1 « tx_ISR(CTRL.-1, CTRL.0, SW.INT_TX1);
rx0 « rx-ISR(CTRL.0, CTRL.-1, SW.INT_RXO0);
rx1 « (

ew0 « ew_ISR(CTRL.0O, CTRL.1, SW_.INT_.EWO0);

ewl « ew_ISR(CTRL.1, CTRL.0, SW_INT_EW1
alert0 « alert.ISR(CTRL.0, HW_INT_FAILO
alert1 « alert.ISR(CTRL-1, HW_INT_FAIL1
timeout « timeout_ISR();

tracker0 « trackerPO();

tracker1 « trackerP1();

ctrl_.0 « ctrlP (CTRL.O, CTRL.-1, HW.INT_EWO,
HW_INT_.RX0, HW_INT_TX0, HW_INT_FAILO);
ctrl_-1 « ctrlP (CTRL-1, CTRL-0, HW.NT.EW1,
HW_INT_RX1, HW_INT_TX1, HW_INT_FAIL1);
timer « timerP ();

isr_scheduler « isr_schedulerP ();

channel « channelP ();

init_.sys « init_systemP ();

obs « observerP ();

)
)
rx_ISR(CTRL.1, CTRL.O, SW._INT_RX1);
)
)
)
)

system channel, application, tracker0,
tracker1, ctrl_.0, ctrl_1, tx0, tx1,
rx0, rx1, ew0, ewl, timer,
isr_scheduler, init_sys, timeout,

obs, alert0, alerti;

Listing 5: Automata instantiations.

26

last function is used by the app automaton to ensure that it does not perform an mtx-
request while an ISR is executing, thereby modeling the fact that the application is
preempted by the ISRs.

In our model interrupts can be generated by one of the two ctr1P automata, by
the timer automaton, or by the two trackerP automata. The interrupts generated
by the ctrlP automata correspond to the hardware interrupts of a CAN controller:
the successful transmission of a frame (HW_INT_TXO and HW_INT_TX1), the successful
reception of a frame (HW_INT_RXO and HW_INT_RX1), error warning (HW_INT_EWO and
HW_INT_EW1), or a controller failure (HW_INT_FAILO and HW_INT_FAIL1). The timer
automaton generates the transmission timeout interrupt (HW_INT_TIMEOUT). Finally,
the two trackerP automata each generates a different software interrupt to invoke a
transition in each of the media management ISR automata (SW_INT_TXO or SW_INT_TX1
to invoke a transition at the corresponding tx automata, SW_INT_RXO or SW_INT_RX1 to
invoke a transition at the corresponding rx automata, and SW_INT_EWO and SW_INT_EW1
to invoke a transition at the corresponding ew automata).

The order in which the priorities have been assigned to the interrupts is the one
from Table [T}

To model the occurrence of an interrupt, an edge of an interrupt generating automa-
ton (ctrlO, ctrll, timer, trackerO, or trackerl) invokes the set_interrupt
function, passing to it as a parameter the interrupt that we want to be modeled by the
edge. This marks the given interrupt as pending in the IVT. Pending interrupts are then
handled by the ISR automata, i.e., the trackerP automata, the alert_ISR automata,
and the media management ISR automata.

The invocation of an ISR is modeled as follows. Each ISR automaton has an idle
and an executing location. The edges that lead from the idle to the executing
locations are all protected by guards that are simple calls to the is_next_interrupt
function with a specific interrupt as a parameter. Note that there can be more than
one edge from the idle location if the given automaton models an ISR that handles
more than one interrupt; specifically, the two trackerP automata templates have three
edges outgoing from their idle location because each modeled tracker handles three
different CAN interrupts from the corresponding controller.

There are no two is next_interrupt guards that have the same interrupt as a
parameter. This means that, at any given instant, only one single edge exiting any of
the idle locations of all the ISR automata is enabled—namely, the one correspond-
ing to the highest priority pending interrupt. However, just having the edge enabled
does not cause the ISR automaton to enter the corresponding executing location.
This is so because the model checker could decide to keep the automaton in the idle
location indefinitely. So, to force an ISR automaton to enter the executing loca-
tion as soon as the guard becomes true, we need to use an urgent synchronization
(isr_execute). This urgent synchronization is signaled by the isr_scheduler au-
tomaton (Figure . Once it has been signaled, the isr_scheduler automaton re-
mains in the isr_executing location until the ISR automaton that received the urgent
synchronization leaves its executing location. When this occurs, the ISR automaton
synchronizes with the isr_scheduler automaton using the isr_stop synchroniza-
tion. This returns the isr_scheduler automaton to its idle location, from which
another isr_execute synchronization can be signaled. In this manner, whenever an
interrupt is pending and no ISR is executing, the ISR automaton that is modeled to
handle the currently highest priority pending interrupt enters its executing location.

The time spent at each executing location corresponds to the worst-case execution
time of the modeled ISR. To ensure that the appropriate time passes at each executing

27

location a combination of a local clock variable (exec_time), an invariant, and a guard
that involves the clock variable and a constant is used.

Regarding the function that the ISRs implement, each ISR automata models that
function when it takes its corresponding edge to the executing location. Specifi-
cally, the trackerP automaton models the tracker’s function by setting the appropri-
ate software interrupts and, if necessary, by setting the appropriate tracking variables;
the alertO and alertl ISRs simply set the booleans d.is_trusted [CTRL_0] and
d.is_trusted[CTRL_1] to false to mark the corresponding controller as no longer
trustworthy; and the automata modeling the media management ISRs call the appro-
priate routine when transitioning to the executing location: the tx_ISR automata call
the tx routine, the rx_ISR automata call the rx routine, and the timeout and ew_ISR
automata call the qua routine. Finally, all ISR automata clear their respective interrupt
before returning to their idle location.

Note that, as can be seen in Figure there are two executing locations
(executing_th and executing_bh), two constants (RX_TIME_TH and TX_TIME_BH),
and two function calls (rx_routine_th and rx_routine_bh) for the rx ISR automata
template. This is so because in the model the rx routine has been split into two parts:
a top half and a bottom half. The top half corresponds to the rx routine’s instructions
that appear before the deliver () function call. The bottom half corresponds to that
function call and the instructions that follow it in the rx routine. The reason for splitting
the rx ISR in two is to model the preemption of an rx ISR by an alert ISR.

7.1.2. Transmission timeouts

To model the expiration of the tx timer we assume that the timer’s timeout has been
set appropriately, i.e., that it only expires if the tx controller crashes or suffers a per-
manent fault—which can be a mute fault, i.e., a fault that prevents the controller from
transmitting, or a deaf fault, i.e., a fault that prevents the controller from receiving. This
is then the condition we use to protect the transition to the tx_timed_out location in
the timerP automata template (see Figure[I6). In that transition the automaton models
the generation of a timeout interrupt. This interrupt is then handled by the timeout ISR
automaton. Note that after a timeout has once occurred, no further timeouts occur. This
is so because of the modeling hypothesis that at most one controller of the node will
fail. Thus, an edge returning from the tx_timed_out location to the idle location is
unnecessary.

7.1.3. Transmission and reception of frames through the channel

The transmission of a frame by a transmitter, which can be either the channel or
one of the two controllers, is modeled as follows. First, a new f-tuple is assigned to the
cha.f_tuple buffer. This happens in the channel automaton in the bottom edge from
the idle to the reset_time location (see Figure[6) and in the ctrlP automata in the
edge from the idle to the wait_tx_event location (see Figure[§). At the same time,
the automaton modeling the transmitter signals a synchronization using the transmit
synchronization. This synchronization forces any ctrlP automaton in the idle loca-
tion to transition from that location to the wait_rx_event location—unless that au-
tomaton had previously transitioned to the deaf_fault location, which models a con-
troller becoming deaf, i.e., unable to receive. Moreover, the transmit synchronization
causes the channel automaton, if it was in the idle location, to take the edge to the
reset_time location, from which it proceeds to the signaling location, thereby re-
setting to zero the cha_time clock variable. The channel automaton then remains in

28

the signaling location for 44 units of time (BROADCAST_TIME = 44) due to the com-
bination of the clock invariant at that location and the guard protecting the edge exiting
that location. Meanwhile, the ctrlP automata remain in the wait_rx_event location
(if the automaton models a currently receiving controller) or the wait_tx_event lo-
cation (if the automaton models a currently transmitting controller) until the 44 units
of time have passed and they exit their current location due to a synchronization from
the channel automaton. The automata waiting in their respective locations models the
controllers, and the channel being busy with the signaling for 44 units of time.

These 44 units of time are to be interpreted as 44 bit times, which is the time to
signal the shortest possible frame (a CAN 2.0A remote frame or data frame with zero
bytes of data, both without any bit stuffing [9]). We chose this value because of the
driver’s real-time constraints: as described in Section [3.1] the deadline for handling a
frame transmission or reception is the instant at which the next frame has been signaled.
The worst-case occurs when the time to the next finished signaling is the shortest and
the ISRs that must cooperate take the longest amount of time to finish. To ensure that
our driver works correctly under these conditions, we model the time to signal any
frame to always be the shortest possible (44 bits). Specific values can then be assigned
to the constants used in the invariants of the executing locations to check if these
values satisfy the real-time constraints. If they do not, at least some of the queries (see
Section[8.3)) will not be satisfied.

After this amount of time has passed, the signaling of the message is finished and
the channel automaton takes the transition to the signaling finished location.

From the signaling finished location either an omission discrepancy or a con-
sistent communication is modeled. As described earlier, an omission discrepancy
occurs when one of the modeled node’s controllers accepts a frame while the other
rejects it. On the other hand, we say that a consistent communication occurs when
both controllers accept the signaling of the frame. Both omission discrepancies and
consistent communications are modeled using two types of synchronization generated
by the channel automaton and received by the ctrlP automata. These two types
are communication event (comm_event) synchronizations and communication error
(comm_error) synchronizations.

A comm_event synchronization causes the corresponding ctrlP automaton to take
an edge that models the invocation of a reception or transmission interrupt (see the in-
coming edges to the rx_notified and tx_notified locations in Figure[§)). Moreover,
the transition models a receiving controller loading its reception buffer or a transmit-
ting controller clearing its transmission pending flag. After the communication event,
the modeled controller may detect an error (transition to start_error_frame) or not
(transition to idle).

A comm_error synchronization, on the other hand, causes the corresponding ctr1P
automaton to take a transition that models the controller having detected an error in the
frame, which, however, did not lead the frame to be aborted. There are two ways
this can occur: the controller was not able to abort the frame because it became mute
(location mute_fault) or the controller signaled an error that was mistaken for an
overload signaling because of additional errors (the transition from wait_rx_event to
start_error_frame).

To avoid a sequence of infinite frames with communication errors we limit the num-
ber of consecutive communication errors to less than OMISSION_DEGREE. This way the
number of consecutive omission discrepancies is lower than the number of consecutive
retransmissions the driver executes due to receive notification omissions (which is less
than or equals OMISSION_DEGREE, see Listing). This is justified if we assume that

29

the driver parameter OMISSION_DEGREE has been set appropriately, so that it is always
greater than the number of consecutive IMO scenarios that can occur. If it was not set
appropriately, the number of consecutive omission discrepancies due to IMOs could be
greater than the retransmissions and the driver’s retransmissions may not avoid IMOs
between the nodes.

An overload/error signaling is initiated by means of the error_frame synchro-
nization. This synchronization forces the channel automaton to transition to its
error_frame_tx location. The channel automaton then remains at that location for
at least 14 bit times (ERROR_FRAME _TIME = 14), which is the minimum length of an
error frame (6 error flag bits + 8 error delimiter bits) [9]. The channel automaton
may remain longer at that location if an additional error_frame synchronization is
signaled by one of the ctr1P automata. After the error frame, the channel automaton
returns to its intermission location for the 3 intermission bits that follow any error
frame [9]. If no additional error occurs, the channel automaton models the channel
becoming free again after the 3 intermission bits by returning to its idle location. If
an additional error frame is initiated during the intermission, the channel automaton
takes another pass through the error_frame_tx location.

The modeling of permanent faults is accomplished by the ctrlP automata. The
crash of a controller is modeled by a transition to the crashed location, which does
not have any outgoing edges and thus models the crash as being permanent. Regarding
link faults, we distinguish two different types, each modeled differently. A fault in a
link may manifest itself in such a way that it does not allow the controller to transmit
anything, but it still allows it to receive frames from others. Such a fault is modeled
by a transition to the mute_fault location. A fault may also manifest itself in a way
that it prevents the controller from receiving frames. If such a fault occurs during an
idle channel, intermission, end of frame, or ACK delimiter [9], the controller may not
detect any fault as long as it does not attempt to transmit a frame itself, but simply see
the communication channel as idle even when some other controller is transmitting.
This is modeled by a transition to the deaf_fault location. Once this transition is
taken, and the ctrlP automaton is back at the idle location, that automaton can no
longer take transitions that model the reception and transmission of frames. However,
the automaton can still take a transition modeling a crash, a reset, or an error warning.
Specifically, the transition to the error_warning location after a transition through
the deaf _fault location models, among other things, the attempt of the controller to
transmit a frame after it has become deaf. Note that a deaf controller can still transmit
error flags.

All edges to a location modeling a permanent fault are protected by a guard that
checks that the other ctrlP automaton has not already modeled a permanent fault at
the other controller. This is so because of the modeling hypothesis that at all times at
least one of the two controllers will be correct and has a correct link.

When a given ctrlP automaton transitions to the error_warning
location, that automaton generates an error warning interrupt
[set_interrupt (this_EW_interrupt)] and marks an error warning as having
occurred at the corresponding controller [set_error_warning(this_ctrl)]. This
marking, once set, is never cleared and in combination with an appropriate guard
[!reached error_warning(this_ctrl)] ensures that a given ctrlP automaton
can take the transition to the error_warning location only once. Note that we
cannot use the error warning interrupt for this because that interrupt is cleared
by the tracker automaton. After the error warning interrupt has been generated,
the controller can initiate the transmission of an error frame (transition from the

30

error_warning_interrupt location to the start_error_frame location) as long as
the controller had not suffered a mute fault and, since we do not model aborted frames,
as long as no one is currently transmitting a data (or remote) frame. It is also possible
for the controller to suffer a mute fault immediately after the error warning interrupt.
In that case, also no error frame is initiated.

8. Model verification

The purpose of the model is to verify that a ReCANcentrate node using the re-
CANdrv driver satisfies the properties of Sectiond] Since the model was implemented
using UPPAAL, we used the UPPAAL query language, described next, to perform this
verification.

8.1. The UPPAAL query language

Using UPPAAL’s query language [8]], a user can define a series of properties, called
queries, to be tested by the UPPAAL model checker. During a verification, the model
checker automatically generates all the execution paths of the model that are required
in order to verify each property. In case the specific property has to hold in all the
execution paths, the model checker generates all of them.

The following classes of properties that can be expressed in the UPPAAL query
language are relevant to the queries that verify the ReCANcentrate node properties.

Reachability properties: these test if a specific condition (a boolean expression
over locations, variables, and clocks [8] of the model’s timed automata) holds in some
state of the potential behaviors of the model. These properties are expressed as E ¢ p,
which tests if there exists an execution path in which the condition p eventually (in
some state of the path) holds.

Safety properties: these test if a specific condition holds in all the states of an
execution path. They can be expressed in two forms. First, EO p, which tests if there
exists an execution path in which p holds for all the states in the path. Second, AO p,
which tests if for every execution path, p holds for all the states in the path.

Liveness properties: these test if a specific condition is guaranteed to hold even-
tually. They can also be expressed in two forms. First, A ¢ p, which tests if for every
execution path, p holds for at least one of the states in the path. Second, ¢ ~ p, which
tests if every execution path that starts from a state satisfying ¢ reaches later on a state
in which p holds.

The UPPAAL query language also provides a forall quantifier, expressed as

VO £, b

The quantifier returns frue if for all values v of type ¢ in the range [f,], both inclu-
sive, the boolean expression b is true.

Finally, another feature of the UPPAAL query language used in this paper is the
notation a./, where a indicates one of the automata of the UPPAAL model used during
the verification and [indicates a location of that automaton. This notation indicates an
expression that is frue when the automaton a is in the location /.

31

8.2. Query helper functions and helper automata

The queries used to verify the properties use the following helper functions:

e fsns_in_range(b, f, 1), returns true if all f-tuples of buffer b have an fsn in the
integer range [f, [], both inclusive.

o msns_in_range(b, f,), returns true if all f-tuples of buffer b have an msn in the
integer range [f, /], both inclusive.

e fsns_in_range2(b, f1, 11, f2, 12), returns true if each f-tuple of buffer b has an fsn
in the integer range [f1, /1], both inclusive, or in the integer range [f2, /2], both
inclusive.

o msns_in_range2(b, fl, 11, f2, I12), returns true if each f-tuple of buffer b has an
msn in the integer range [f1, /1], both inclusive, or in the integer range [/2, [2].

e has_fsn(b, f), returns true if there is an f-tuple with fsn f in the f-tuple buffer b.

o has_msn_fbuf(b, m), returns true if there is an f-tuple with msn m in the f-tuple
buffer b.

e count_fsn(b, f), returns the number of times that an f-tuple with fsn f is stored in
the f-tuple buffer b.

o is_sorted_by_fsn_fbuf(b), returns true if the f-tuples of f-tuple buffer b are sorted
by increasing fsns.

o is_sorted_by_msn_fbuf(b), returns true if the f-tuples of f-tuple buffer b are sorted
by increasing msns.

The queries also make use of an instantiation obs of the observer automaton
observerP and they use the boolean array d.is_trusted, which indicates for each
controller whether it has alerted of its failure or not.

8.3. Queries

To verify the ReCANcentrate node properties we used a series of preliminary
queries to check that the elements of the different buffers of the model can only have
values within a specific range. As an example, for the cha.rxbuf buffer and the
app . rxbuf buffer the queries are the following:

AD fsns_in_range (cha.rx_fbuf,
FIRST_-TX-FSN, LAST_TX_FSN)

AD msns_in_range (cha.rx_fbuf ,
FIRST_-TX_.MSN, LAST_TX_MSN)

AD fsns_in_range2(ctrls [CTRL-1]. rx_fbuf,
FIRST_RX_FSN, LAST-RX_FSN,
FIRST_TX_FSN, LAST_TX_.FSN)

AD msns_in_range2(ctrls [CTRL.1]. rx_fbuf ,
FIRST_RX_.MSN, LAST_RX_MSN,
FIRST_.TX.MSN, LAST_TX.MSN)

32

Where FIRST_TX_FSN and LAST_TX_FSN are the fsn of the first and last f-tuple
generated by the controllers, respectively; FIRST_TX_MSN and LAST_TX_MSN are the
first and last msn generated by app, respectively; FIRST RX_FSN and LAST RX_FSN
are the fsn of the first and last f-tuple generated by the channel, respectively; and
FIRST RX_MSN and LAST_RX_MSN are the msn of the first and last f-tuple generated
by the channel, respectively. Regarding the specific values of these constants, they
are adjusted such that, for each pair, the range of integers in-between each pair does
not overlap with any other pair of these constants. Moreover, they are adjusted such
that the number of messages (msns) to be mtx-requested by the app and the number of
frames (f-tuples) to be transmitted by the channel are both three. The chosen value is
three since with a value of one the model checker will let the model evolve to the set I;
of all possible states reachable after an mtx-request and a reception. This set /; is the
set of all possible states from which a new mtx-request or reception could occur. Thus,
with a value of three the model checker will verify the queries for two mtx-requests
and two receptions from all states in I, i.e., from all possible initial states. Note that
two additional mtx-requests and receptions are required to verify the properties related
to the relative order between msns and fsns.

The range-checking queries for the remaining buffers are analogous to the above.
Since all range-checking queries are satisfied, the remaining queries only need to con-
sider the verified range of values for the different buffers. These queries are, grouped
by property, the following:

P1 - Pass on integrity

The following query checks that for all reachable states, having an fsn generated
by the channel in the app’s reception f-tuple buffer implies that the f-tuple is in
either one of the controllers’ reception buffers. Since in the model an f-tuple is
only inserted in a controller’s reception buffer when a reception is modeled, the

query proves property HT}

AO ¥V (F: int[FIRST.-RX.FSN, LAST_.RX.FSN])
has_fsn(app.rx-fbuf, F) imply
(has-fsn(ctrls [CTRL.O]. rx_fbuf, F) or
has_fsn(ctrls [CTRL.1]. rx_fbuf, F))

P2 - Double reception implies single pass on

As described above, an f-tuple is only inserted in a controller’s reception buffer
when a reception is modeled. Moreover, once the automaton obs reaches the
finished location, no more pass-ons occur. Thus, the following query proves

property F2]

AO ¥V (F: int[FIRST.RX_.FSN, LAST_.RX.FSN])
obs.finished and

has_fsn(ctrls [CTRL.O]. rx_fbuf, F) and
has_fsn(ctrls [CTRL-1]. rx_fbuf, F) imply
count_fsn(app.rx_-fbuf, F) == 1

P3 - Pass on validity

Property P3| has the form P unless Q. This is equivalent to =Q — P, where ‘=’
indicates negation and ‘—’ material implication. This form is the one used by the
query that proves the property:

33

P4 -

PS5 -

P6 -

P7 -

P8 -

P9 -

AO Y (F: int[FIRST.RX.FSN, LAST_.RX.FSN])
obs.finished and

not (

(has_fsn(ctrls [CTRL.O]. rx_fbuf, F) and
not d.is-trusted [CTRL-0] and

not has_fsn(ctrls [CTRL.1].rx_fbuf, F)) or
(has_fsn(ctrls [CTRL.1]. rx_fbuf, F) and
not d.is_trusted [CTRL_1] and

not has_fsn(ctrls [CTRL.O]. rx_fbuf, F))
) imply

has_fsn(app.rx_fbuf, F)

No duplicate pass on

Since by hypothesis one controller is always correct and has a correct link, all
f-tuples generated by the channel are received by at least one controller. This
makes the verification of this property straightforward:

AO ¥V (F: int[FIRST.RX.FSN, LAST_.RX.FSN])
count_fsn(app.rx-fbuf, F) < 1

No pass on of self-received messages

This is already proved by one of the in-range queries. Specifically, the following
query proves that all f-tuples stored in app . rx_fbuf originated from the channel,
and were therefore not self-received.

AD fsns_in_range (app.rx_fouf,
FIRST_RX_FSN, LAST_.RX_.FSN)

Ordered pass on

Since the f-tuples generated by the channel have monotonically increasing inte-
gers as fsns, and f-tuples are appended to app.rx_fbuf one after the other, the
following query proves property Fo}

AD is_sorted_by_fsn_fbuf(app.rx_fbuf)

Guaranteed transmission

By construction the modeled application mtx-requests an msn for each value in
the range [FIRST_TX_MSN, LAST_TX_MSN], both inclusive. Moreover, to model
a transmission, one of the modeled controllers encapsulates an msn in an f-tuple
and then adds that f-tuple to the cha.rx_fbuf buffer. Thus, the following query

proves property H7}

AJ VY (M: int[FIRST.TX.MSN, LAST.TX.MSN])
obs.finished imply
has_msn_fbuf(cha. rx_fbuf, M)

Bounded retransmissions

This property can be verified, for instance, with the following query:

AC obs. finished

FIFO transmission

The query for this property follows a similar logic to the one of property Fo}

34

A0 is_sorted_by_msn_fbuf(cha.rx_fbuf)

P10 - Bounded time to satisfy an mtx-request

The automaton modeling the application has only two locations, called idle and
wait_tx_success. The automaton can only transition from the idle location
to the wait_tx_success location if an mtx-request is modeled. Similarly, it
can only transition from wait_tx_success back to idle if an mtx-request is
satisfied, i.e. when a boolean variable indicates a tx-success. Moreover, from
the query of property it is known that the automaton modeling the appli-
cation cycles to the wait_tx_success for every modeled mtx-request. Thus,
it must only be shown that the automaton does not remain indefinitely in the
wait_tx_success location. This is accomplished with the following query:

application.wait-tx_.success ~» application.idle

9. Conclusion

The paper presents the design and verification of reCANdrv, a media redundancy
management driver for the nodes of a ReCANcentrate network. ReCANcentrate is a
CAN-compliant replicated star topology with enhanced error-containment and fault-
tolerance mechanisms. The goal of reCANdrv is to allow a CAN application executing
on a ReCANcentrate node to correctly exchange information through the ReCANcen-
trate network as long as a correct link with a correct controller remains available to the
application’s node. Since ReCANcentrate has been designed for safety-critical appli-
cations, it must be verified that this goal is achieved. To this end, the goal is formalized
as a series of properties based on a few realistic assumptions. The properties are then
verified by means of model checking. For this, a model of a ReCANcentrate node is
created as a network of timed automata using UPPAAL. Afterwards, a series of queries,
written in the UPPAAL query language, are presented. These show that the model in-
deed satisfies the properties.

The driver provides a virtual CAN controller interface to the CAN application ex-
ecuting on the nodes. Thus, it makes the existence of the underlying replicated com-
munication medium transparent to the application. It is possible, therefore, to execute
standard CAN applications and higher-layer protocols based on CAN on ReCANcen-
trate nodes.

Moreover, since the only requirement put on the channel is that it provides a single
logical broadcast domain, reCANdrv works on any node connected by means of two
CAN controllers, each with its own link, to a CAN channel that provides a single
logical broadcast domain. Thus, the ReCANcentrate node architecture and reCANdrv
do not only work with a replicated star topology (Figure 20d). Instead, reCANdrv
can also be used with a simplex bus topology where each node is connected to that
bus through two links (Figure [20a)), a replicated bus topology where the two buses are
coupled (Figure [20b), or a simplex star topology where each node is connected to the
single star through two links (Figure [20c). Note that to best benefit from the driver, it
is recommended that the channel provides error containment between the two links of
each node.

Also note that if controller failures are considered negligible with respect to channel
and link failures, then reCANdrv can be used on nodes implemented with low-cost off-
the-shelf microcontrollers that provide dual on-chip CAN controllers, instead of nodes

35

RN RN RN
RN RN RN
U1 g
N e i 2
(a) Simplex bus (b) Replicated bus

w5 (frup) P e
00 [l 1
u N LX
s
CD P C] C
[=i <R kc <[]

(c) Simplex star (d) Replicated star

Figure 20: Example topologies for reCANdrv.

with two self-diagnosing controllers. In that case the reCANdrv design could remain
the same, with the only change that it would not handle alert interrupts. However, the
implication of not using self-diagnosing controllers would be that, if a controller starts
to fail, the driver would no longer be able to provide to a ReCANcentrate node all
the properties described in Section [} For instance, property HI| would not be satisfied
because a bogus frame could be read from a controller’s reception buffer and be passed
on to the application. As another example, property B4 may not be satisfied because a
controller may generate a spurious reception interrupt.

References

(1]

(2]

(3]

(4]

(5]

Manuel Barranco and Julidn Proenza. Towards Understanding the Sensitivity of
the Reliability Achievable by Simplex and Replicated Star Topologies in CAN. In
IEEE International Conference on Emerging Technologies and Factory Automa-
tion, 2011. in press.

Manuel Barranco, Luis Almeida, and Julidn Proenza. ReCANcentrate: a repli-
cated star topology for CAN networks. In /0th IEEE International Conference
on Emerging Technologies and Factory Automation, 2005. ETFA 2005., volume 2,
Catania, Italy, Sept. 2005. doi: 10.1109/ETFA.2005.1612714.

Manuel Barranco, Julidn Proenza, Guillermo Rodriguez-Navas, and Luis
Almeida. An active star topology for improving fault confinement in CAN net-
works. IEEE Transactions on Industrial Informatics, 2(2):78-85, May 2006.

Manuel Barranco, Julidn Proenza, and Luis Almeida. Boosting the Robustness of
Controller Area Networks: CANcentrate and ReCANcentrate. Computer, 42(5):
66-73, May 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.145.

Manuel Barranco, David Gessner, Julidn Proenza, and Luifs Almeida. First pro-
totype and experimental assessment of media management in ReCANcentrate. In
ETFA 2010. 15" IEEE International Conference on Emerging Technologies and
Factory Automation, Bilbao, Spain, 2010.

36

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Manuel Barranco, Julidn Proenza, and Luis Almeida. Reliability improvement
achievable in CAN-based systems by means of the ReCANcentrate replicated
star topology. In 8" IEEE International Workshop on Factory Communication
Systems, pages 99-108, May 2010.

Manuel Barranco, Julidn Proenza, and Luis Almeida. Quantitative Comparison
of the Error-Containment Capabilities of a Bus and a Star Topology in CAN
Networks. IEEE Transactions on Industrial Electronics, 58(3):802-813, March
2011. ISSN 0278-0046. doi: 10.1109/TIE.2009.2036642.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal.
November 2004. URL http://www.it.uu.se/research/group/darts/
papers/texts/new-tutorial.pdf|

Robert Bosch GmbH. CAN specification version 2.0. Technical report, Robert
Bosch GmbH, 1991.

Giuseppe Buja, Juan R Pimentel, and Alberto Zuccollo. Overcoming Babbling-
Idiot Failures in CAN Networks : A Simple and Effective Bus Guardian Solution
for the FlexCAN Architecture. IEEE Transactions on Industrial Informatics, 3
(3):225-233, 2007.

Daniela Cancila, Roberto Passerone, Tullio Vardanega, and Marco Panunzio.
Toward Correctness in the Specification and Handling of Non-Functional At-
tributes of High-Integrity Real-Time Embedded Systems. IEEE Transactions
on Industrial Informatics, 6(2):181-194, May 2010. ISSN 1551-3203. doi:
10.1109/TI1.2010.2043741.

Goran Cengic and Knut Akesson. On Formal Analysis of IEC 61499 Applica-
tions, Part B: Execution Semantics. IEEE Transactions on Industrial Informatics,
6(2):145-154, May 2010. ISSN 1551-3203. doi: 10.1109/T11.2010.2040393.

Goran Cengic and Knut Akesson. On Formal Analysis of IEC 61499 Appli-
cations, Part A: Modeling. [EEE Transactions on Industrial Informatics, 6(2):
136-144, May 2010. ISSN 1551-3203. doi: 10.1109/TI1.2010.2040392.

Robert Davis, Alan Burns, Reinder Bril, and Johan Lukkien. Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised. Real-
Time Systems, 35:239-272, 2007.

L.-B. Fredriksson. CAN for critical embedded automotive networks. IEEE Micro,
22(4):28-35, July 2002. ISSN 0272-1732. doi: 10.1109/MM.2002.1028473.

David Gomez-Gutierrez, Guillermo Ramirez-Prado, Antonio Ramirez-Trevio,
and Javier Ruiz-Leon. Observability of Switched Linear Systems. IEEE Transac-
tions on Industrial Informatics, 6(2):127-135, May 2010. ISSN 1551-3203. doi:
10.1109/TI1.2009.2034737.

D Herrero-Perez and H Martinez-Barbera. Modeling Distributed Transportation
Systems Composed of Flexible Automated Guided Vehicles in Flexible Manu-
facturing Systems. [EEE Transactions on Industrial Informatics, 6(2):166—180,
May 2010. ISSN 1551-3203. doi: 10.1109/T11.2009.2038691.

37

http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

[18] M Kloetzer, C Mahulea, C Belta, and M Silva. An Automated Framework
for Formal Verification of Timed Continuous Petri Nets. [IEEE Transactions
on Industrial Informatics, 6(3):460-471, August 2010. ISSN 1551-3203. doi:
10.1109/TI1.2010.2050001.

[19] Wolfhard Lawrenz. CAN System Engineering. From Theory to Practical Appli-
cations. Springer, 1997.

[20] Microchip. dsPIC30F Family Reference Manual, 2006.

[21] Julidn Proenza and José Miro-Julia. MajorCAN: A modification to the Controller
Area Network protocol to achieve atomic broadcast. [EEE International Work-
shop on Group Communication and Computations, Taipei, Taiwan, 2000.

[22] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant
broadcasts in CAN. In FTCS ’98: Proceedings of the The Twenty-Eighth Annual
International Symposium on Fault-Tolerant Computing, page 150, Washington,
DC, USA, 1998. IEEE Computer Society.

[23] J. Rufino, P. Verissimo, and G. Arroz. A Columbus’ egg idea for CAN media
redundancy. In Digest of Papers, The 29th International Symposium on Fault-
Tolerant Computing Systems. IEEE, June 1999.

[24] Jose Rufino, Carlos Almeida, Paulo Verissimo, and Guilherme Arroz. Enforc-
ing Dependability and Timeliness in Controller Area Networks. In IECON
2006 - 32nd Annual Conference on IEEE Industrial Electronics, pages 3755—
3760. IEEE, November 2006. ISBN 1-4244-0390-1. doi: 10.1109/IECON.2006.
348102.

[25] Michael Short and Michael J. Pont. Fault-Tolerant Time-Triggered Communi-
cation Using CAN. [EEE Transactions on Industrial Informatics, 3(2):131-142,
May 2007. ISSN 1551-3203. doi: 10.1109/T11.2007.898477.

38

	Introduction
	Fault model
	Media management
	The architecture of reCANdrv
	The routines of reCANdrv
	The mtxreq routine
	The qua routine
	The rx routine
	The tx routine

	Properties of a ReCANcentrate node
	The UPPAAL model checker
	A model of reCANdrv
	Model components
	Model behavior

	Model implementation
	The timed automata of the model
	Modeling interrupts and ISRs in UPPAAL
	Transmission timeouts
	Transmission and reception of frames through the channel

	Model verification
	The UPPAAL query language
	Query helper functions and helper automata
	Queries

	Conclusion

