
Semi-Autonomous Visual Inspection of Vessels Assisted by an
Unmanned Micro Aerial Vehicle

Francisco Bonnin-Pascual, Emilio Garcia-Fidalgo and Alberto Ortiz

Abstract— Vessel maintenance entails periodic visual inspec-
tions of internal and external parts of the hull in order to detect
the typical defective situations affecting metallic structures,
such as cracks, coating breakdown, corrosion, etc. The main
goal of the EU-FP7 project MINOAS is the automation of the
inspection process, currently undertaken by human surveyors,
by means of a fleet of robotic agents. This paper overviews a
semi-autonomous approach to the inspection problem consisting
of an autonomous Micro Aerial Vehicle (MAV) to be used as
part of this fleet and which is in charge of regularly supplying
images that can effectively teleport the surveyor from a base
station to the areas of the hull to be inspected. Specific image
processing software to analyze those images and assist the
surveyor during the repair/no repair decision making process
is also contributed. The control software approach adopted for
the MAV, including self-localization and obstacle avoidance, is
described and discussed, and experimental results in this regard
are as well reported.

I. INTRODUCTION

Vessels constitute one of the most cost effective ways
of transporting goods around the world. However, despite
the efforts on reducing maritime accidents, they still occur
and, from time to time, have catastrophic consequences both
in personal, environmental and financial terms. Structural
failure is the major cause of shipwrecks and, as such,
Classification Societies impose extensive inspection schemes
for assessing the structural integrity of vessels.

An important part of the vessel maintenance has to do with
the visual inspection of the external and internal parts of the
vessel hull. They can be affected by different kinds of defects
typical of steel surfaces and structures, such as cracks and
corrosion. These two kinds of defects are indicators of the
state of the metallic surface and, as such, an early detection
prevents the structure from buckling and/or fracturing.

The goal of the EU-funded FP7 MINOAS project is to
develop a fleet of robots for automating the aforementioned
inspection (and maintenance) operations as much as pos-
sible. Within this general context, this work presents an
autonomous Micro Aerial Vehicle (MAV) to be adopted
as part of the MINOAS re-engineered inspection process.
As such, it is in charge of providing the surveyor with a
first overview of the state of the metallic structures of the
vessel, which requires a self-localized platform capable of

This work is partially supported by FP7 project SCP8-GA-2009-233715
and the European Social Found through grants FPI10-43175042V and
FPI11-43123621R (Conselleria d’Educacio, Cultura i Universitats, Govern
de les Illes Balears)

F. Bonnin-Pascual, E. Garcia-Fidalgo and A. Ortiz are with the
Department of Mathematics and Computer Science, University of
Balearic Islands, 07122 Palma de Mallorca, Spain. {xisco.bonnin,
emilio.garcia, alberto.ortiz} at uib.es

attaining a set of waypoints while avoids obstacles and takes
pictures of the specified views. After being conveniently
tagged with positioning information, those images are to
permit the same platform, or other platforms of the fleet, to
re-visit, under demand of the surveyor, the same places for
taking closer pictures that enable a more accurate assessment.
Due to its inherent properties for flying indoors and close to
other structures, quadrotors have resulted in the platform of
election for this application.

With regard to the vehicle, the main requirement is the
integration of a full navigation solution that covers the
different functional and safety aspects needed to implement
a typical inspection mission. Some recent navigational so-
lutions can be found in this regard in the related literature,
which particularly differ in the sensors used to solve the
involved navigation tasks —namely, platform stabilization,
self-localization, mapping and obstacle detection, using ei-
ther infrared/ultrasounds [1], [2], [3], [4], laser scanners [5],
[6], [7], or vision cameras [8], [9], [10], [11]—, and in the
amount of processing that is performed onboard/off-board
as well as in the assumptions made about the environment.
In our case, a laser-based solution has been adopted for
self-localization and obstacle avoidance, and all flight safety-
related processing is performed onboard in order to reduce
the use of wireless datalinks, which are not favoured within
vessel holds due to the surrounding metallic structures.

A second contribution of this paper is an integrated
algorithm for corrosion and crack detection. It runs on a
separated (base) station, processing images from the platform
as they arrive in order to assist the surveyor in almost real-
time. The corrosion detector adopts a weak-classifier-based
approach which learns from the texture and colour of image
areas corresponding to corroded metallic surfaces. Besides,
the corrosion detector guides the crack detection process
by triggering a geometry-based crack detection scheme at
those image areas where cracks can be expected, which
reduces considerably false positives and running time. To the
best of the authors’ knowledge, no similar solution can be
found in the related literature, apart from general detectors
of anomalies in non-metallic materials (see [12]).

The rest of the paper is organized as follows: Section II
describes in a more detailed manner the inspection prob-
lem and derives requirements for the platform, the MAV
hardware and control software are presented in, respectively,
Sections III and IV, experimental results are provided in
Section V, Section VI describes the corrosion/crack detection
solution adopted, as well as reports on its performance, and,
finally, Section VII reviews the paper contributions.

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 3955

Fig. 1. (left) Typical structure of a bulk carrier. (right) Oil tanker in shipyard
during construction.

II. INSPECTION PROBLEM AND PLATFORM
REQUIREMENTS

To illustrate the enormity of the inspection task, the
surveying of a central cargo tank on a Very Large Crude
Carrier (VLCC) involves checking over 860m of web frames
(primary stiffening members) and approximately 3.2km of
longitudinal stiffeners, while the total inspection of a medium
size cargo vessel can mean visually assessing more than
600,000m2 of steel. Moreover, this often has to be carried
out by a single surveyor within a short amount of time
(generally a few days) in order to return the ship to service.
Furthermore, this surveying is performed in a potentially haz-
ardous environment with both flammable and toxic gases and
significant heights involved. As a result, although accidents
are extremely rare, when they do arise they can have serious
consequences.

To perform a complete hull inspection, the vessel has
to be emptied and situated in a dockyard, where typically
temporary staging, lifts, movable platforms, etc. need to be
installed to allow the workers for close-up inspection of the
different metallic surfaces and structures (and for their repair
if needed). Due to these complications, the total cost of a sin-
gle surveying can exceed $1M once you factor in the vessel’s
preparation, use of yard’s facilities, cleaning, ventilation, and
provision of access arrangements. In addition, the owners
experience significant lost opportunity costs while the ship
is inoperable.

For those ships where there is a real cost saving [13],
the main goal of the MINOAS project is to allow the
surveyor to be teleported to those parts of the hull that require
inspection as indicated above. To this end, the surveyor must
be provided with imagery detailed enough so as to remotely
enable the visual assessment of the state of the hull, so as to
allow him to make proper repair/no repair decisions. As part
of this general framework, the aerial platform is intended
to provide detailed surveys of vertical structures such as
the ones that are shown in Fig. 1. The main requirements
stem, thus, from the very nature of the inspection process:
the vehicle must be able to perform vertical, stationary and
low speed flight, as well as permit indoor navigation. These
requirements rapidly discard fixed-wing aircrafts and focus
the search on helicopter-type MAVs, naturally capable of
manoeuvres such as hovering and Vertical Take-Off and
Landing (VTOL).

More precisely, the MAV is expected to implement phase 1
of the inspection missions. In this phase, the platform sweeps
the relevant metallic surfaces and grabs pictures at a rate
compatible with its speed, so that the surveyor can have an
overall view of the vessel’s condition. Those images must as
well be tagged with pose information, so that, on demand
of the surveyor, the areas suspected of being defective can
be re-visited for acquiring close-up images, taking thickness
measurements (by means of other platforms of the robot
fleet), or even be compared in a posterior inspection.

Hence, the motion capabilities of the MINOAS flying
robot comprise vertical take-off and landing, flying through
waypoints and obstacle avoidance. Since the vertical struc-
tures that are found in vessel holds are quite similar along
their full extent, 3D mapping does not result to be a critical
requirement. Finally, the platform should not rely on GPS
since the signal reception can not be ensured inside the
vessel.

III. THE MICRO AERIAL VEHICLE

Among the different kinds of helicopter designs that have
been proposed so far, multi-rotor configurations present sev-
eral advantages over comparably scale helicopters (see, for
instance, [14]): (1) they do not require mechanical linkages
to vary rotor angle of attack as they spin, which simplifies the
design of the vehicle and reduces maintenance time and cost;
(2) the use of several rotors allows each individual rotor to
have a smaller diameter than the equivalent helicopter rotor,
for a given vehicle size; and (3) flight is safer than for other
helicopters because the small rotor size make them store less
kinetic energy during flight, which reduces the damage in
case the rotors hit any object.

Among other multi-rotor UAVs, the four-rotor, or quadro-
tor, is emerging as the most popular multi-rotor configu-
ration. Our MAV prototype is based on the well-known
Pelican quadrotor from Ascending Technologies (see Fig. 2).
This is a 50 cm-diameter platform with 25.4 cm propellers,
able to carry a payload of 500 g, and equipped with a
barometric pressure sensor for height estimation, a GPS
receiver and an inertial measuring unit (IMU), comprising
a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis
magnetometer. Attitude stabilization control loops making
use of those sensors run over an ARM7 microcontroller as
part of the platform firmware; the manufacturer leaves almost
free an additional secondary ARM7 microcontroller, so that
higher-level control loops (e.g. a position controller) can also
be run onboard.

Furthermore, the MAV has been furnished with a
lightweight laser scanning range finder. Platform motion
is estimated by computing the roto-translation that makes
consecutive laser scans match, and obstacle detection and
avoidance is also implemented by means of this sensor.
(Fig. 2 shows the MAV carrying a Hokuyo URG-04LX-
UG01, 5.60 m range device, although, for increased oper-
ation range, it is replaced by a Hokuyo URG-UTM-30LX
—up to 30 m range.)

3956

Fig. 2. The Micro Aerial Vehicle.

The laser device is also used, by deflection of lateral beams
using mirrors, to estimate distance to the floor as well as to
the ceiling (see Fig. 2). This method has been found more
adequate for the application at hand (the accuracy is around
1-3% of the distance travelled by the beam), instead of using
the barometric pressure sensor or the GPS, which tend to
show large variations around the true height, making height
stabilization difficult when the platform navigates indoors or
relatively close to other objects.

Visual information is collected by means of a flexible
vision system devised around an appropriate structure for
supporting one bottom-looking camera and two additional
units, which can be tailored for the particular inspection
mission to be performed as: two forward-facing cameras
forming a stereo vision system, one camera facing forward
and the other facing up, or, to save weight, a single camera
facing forward (Fig. 2 depicts a configuration consisting of
two forward-facing uEye 1226-LE-C cameras organized as a
stereo vision system, and a third uEye 1226-LE-C oriented to
the bottom). All three cameras are intended to provide visual
information about the state of the surfaces under inspection
(either being at the front –e.g. web frames and walls in
general–, at the bottom –the floor– or above the platform
–e.g. cross-decks).

Finally, the vehicle carries an additional processing board
which avoids sending sensor data to a base station, but
process it onboard and, thus, avoid communications latency
inside critical control loops. This processor will be referred
to as the high-level processor from now on. (The current
configuration includes a Kontron pITX-SP board equipped
with an Intel Atom 1.6GHz processor and 2GB RAM.)

IV. CONTROL SOFTWARE ARCHITECTURE AND
ORGANIZATION

As on similar platforms, the control software architecture
comprises at least two physically separated agents: the MAV
itself and a base/ground station. More specifically, the differ-
ent computational resources of the MAV run the control algo-
rithms as detailed next (either as firmware or as software): (1)
as it is well known in the Pelican, the main ARM7 controller
essentially runs the low-level software taking care of attitude
stabilization and direct motor control [15] (in Fig. 3, it
appears as the low-level controller); (2) the secondary ARM7
controller runs the position controller described in [11] (in

Fig. 3. Vehicle control architecture.

Fig. 3, it appears as the high-level controller); and (3) the
high-level processor executes, on top of the Robot Operating
System (ROS [16]) running over Linux Ubuntu, ROS nodes
providing platform motion estimation as well as platform
safety, interaction with the onboard platform controllers
and WiFi communication with the base station. Apart from
this, the base station supporting the MAV also runs ROS
over Linux Ubuntu. For this configuration, ROS becomes
particularly relevant as it supplies the middleware function-
ality for transparent messages exchange between processes.
Those that can tolerate latency in the communications are
executed on the base station, while critical control loops run
onboard the vehicle in the form of ROS nodelets in order to
ensure minimum delay, a requirement also reported by other
authors [4] to permit autonomous flying.

As well as the self-localization and mapping solution de-
scribed in [17], our MAV control software has been designed
around open-source components and following modularity
and software reutilization principles. In this way, adapting the
platform for different missions involving different payloads,
or the selective activation of software modules, can be
performed in a fast and reliable way. In this regard, ROS has
also proved to be specially useful and, in fact, has guided
the control software modularization.

Next sections comment on the details of the control archi-
tecture, whose top-level logical components are enumerated
in Fig. 3.

A. Pose Estimation

Fig. 4 depicts the pose estimation system. It receives scan
data and attitude angles (φ , θ , ψ) from, respectively, laser
and IMU sensors and estimates the 3D pose of the vehicle.

Within this system, the Laser Pre-processing module
prepares raw laser scans for the rest of the system. More
precisely, it is in charge of: (1) filtering the laser beams
that are of no interest; (2) projecting the scans comprising
the beams of interest onto the ground, using the attitude
information provided by the IMU; and (3) splitting the
laser scans into several categories, so that beams reflected
by the lateral mirrors are separated from beams providing
information on detected obstacles ahead.

The Vertical Position module estimates the distance of the
robot to the ground and to the ceiling. It uses, respectively,

3957

Fig. 4. Pose estimation.

the laser beams which are deflected by the down-looking
and up-looking mirrors. Apart from being useful for obstacle
detection above and below the platform, depending on the
mission and the environment, one or the other measurement
feeds the vehicle height controller while flying, keeping
constant the desired altitude or distance to the ceiling.

The Odometry component estimates the MAV 3D pose.
First, the projected laser data is passed onto a scan matcher,
which computes the platform roto-translation between con-
secutive scans and estimates a new 2D pose (x, y, ψ), using
the yaw angle provided by the IMU as initial estimate for ψ.
The 2D pose so obtained is then combined with the height
and the roll and pitch angles (φ , θ), provided by, respectively,
the laser altimeter and the IMU, to obtain a 3D pose for the
vehicle. Robot speed is also estimated by this module.

In order to compensate the drift in the estimations pro-
duced by the scan matcher, a Simultaneous Localization
and Mapping process is executed as part of the SLAM
module. It receives projected laser scans and provides 2D
corrections of the robot position and the environment map.
Due to its high computational needs, this process runs on
the base station. A further component within the SLAM
module, responsible for monitoring the corrections provided
by the SLAM, is executed onboard. This component limits
the SLAM corrections to prevent the robot from moving
too aggressively in tight environments. Furthermore, if the
connection with the base station is suddenly lost, it keeps
the platform operating with the last correction received. The
public ROS package gmapping, based on [18], provides the
SLAM functionality.

B. Generation of Control Commands

This system generates the control commands to be exe-
cuted by the robot in accordance with the actions described
in a mission specification file. See Fig. 5 for an overview.

The Mission Control component is executed on the base
station and it is in charge of the accomplishment of the
mission. The mission is described in an XML file as a
sequence of actions. These actions can be: (1) go-to, which
specifies a 3D pose to be attained by the vehicle, together
with maximum speeds; (2) navigate-to, similar to the go-
to action, but avoiding obstacles; and (3) take-photo, which

Fig. 5. Generation of control commands.

requests for a picture to be taken by the robot using one of
the attached cameras.

A client program, which is inside the Mission Control
module, parses the mission specification file and invokes the
corresponding tasks. A new action is sent if the previous one
succeeds before a specified timeout. Otherwise, the mission
is aborted and the vehicle hovers at the attained position. This
module is also responsible for handling go-to and take-photo
actions. Actions of the first kind are directly processed by the
Safety Manager module, which filters out motion commands
towards the high-level controller, while actions of the second
kind are sent to the camera driver for image grabbing.

Navigate-to actions are handled by the 2D Navigation
module, which includes functionalities such as reactive ob-
stacle avoidance and path planning. Given a two-dimensional
map and a waypoint, it generates the velocity commands
needed to achieve the waypoint preventing collisions. These
commands are also sent to the Safety Manager module. The
Navigation module is a public ROS stack [19] that has been
configured for using a Dynamic Window Approach local
planner [20].

Finally, the Safety Manager is in charge of filtering
all control commands before sending them to the Control
Interface. Currently, it implements three safety behaviors:
(1) it prevents the robot from flying too high or too close
to the ceiling, (2) it monitors the battery voltage and sends
commands for landing when this is lower than a safety
threshold, and (3) it sends commands to make the robot hover
when the wireless connection with the base station is lost.

V. MAV NAVIGATION RESULTS

This section reports on the execution of a number of
missions to demonstrate the navigation capabilities of the
MAV.

The first experiment, whose results are shown in Fig. 6,
assesses the ability of the vehicle for navigating within an
environment involving obstacles. It consists of reaching four
waypoints in a room with a column in the middle that has
to be avoided. At each location, the robot gets an image and
stores it in the base station. The experiment was performed
several times in order to check the repeatability of the task
regarding waypoint achievement. In this regard, the small

3958

Fig. 6. (left) A map of the scenario for the first experiment. The red point
indicates the beginning and the end of the experiment, the blue points show
the locations to be reached by the vehicle, and arrows represent the direction
of the robot. (right) Paths of three executions of the experiment in different
colours. The MAV is able to avoid obstacles during mission execution.

Fig. 7. Three executions of a sweeping mission, shown in different colours.
The robot keeps the x coordinate almost constant during all the mission.

differences which can be observed are due to, among other
factors, the accuracy parameter that determines when an
action has succeeded or not (set to 0.1m in this experiment).
The similarity between images taken at the same place can
also be used as a measure of repeatability. Due to lack of
space, this proof will only be given for the last experiment.

The second experiment corresponds to an inspection mis-
sion, which, at the scale of our laboratory, represents the
kind of mission to be performed by the MAV onboard a
real ship for providing the surveyor with an overall view of
the state of a certain hull area. More precisely, the mission
describes a sweeping task, consisting in achieving a total
of thirteen waypoints along a zig-zag-like path. Again, the
experiment was executed several times to compare results
between consecutive executions. The resulting paths can be
found in Fig. 7.

The last experiment combines the two previous missions
in order to put together the different complexities the MAV
will have to face in a real situation. To this end, a number
of obstacles were spread throughout the room to make the
global and local planners take part and produce safe paths
towards the targets. The scenario is shown in Fig. 8, while
a graphical description of the mission can be found in
Fig. 9(left). As can be observed: first, the vehicle is instructed
to reach a point at the other end of the room; then, a
sweeping task is performed, and the corresponding images

Fig. 8. Images of the environment used to perform the last experiment.
There are several obstacles which the vehicle has to avoid in order to, first,
reach the initial point of the sweeping, and then reach the home location
again, once the inspection has finished.

Fig. 9. (left) A map of the scenario for the third experiment. The red
point indicates the beginning and the end of the experiment, the blue points
show the locations to be reached by the vehicle, and arrows represent the
direction of the robot. (right) Paths of three executions in different colours.

are taken; after the finalization of the inspection, the robot
must return to the home position. Fig. 9(right) shows, for this
experiment, the different paths followed by the vehicle during
three executions of the experiment, while examples of the
photos taken at the same location for two of the executions
of the mission can be found in Fig. 10. The slight viewpoint
changes that can be observed in the pictures are again due
to the accuracy parameter, set to 6 degrees on this occasion.

A video corresponding to the third experiment is avail-
able at http://www.youtube.com/watch?v=L-m1Ey40OpQ&
feature=plcp.

VI. INTEGRATED SOLUTION FOR CORROSION
AND CRACK DETECTION

A Defect Inspection Assistant has been developed as
another tool at the service of the surveyor while making
repair/no repair decisions. This software can receive im-
ages taken by the platform and processes them looking for
evidences of corrosion and cracks almost in real-time. The
details can be found next.

A. Corrosion detection

The corrosion detector has been built around a supervised
classification scheme implemented as two stages running
a weak classifier each, following a cascading approach by
which fast classifiers with poor performance alone lead to a
global classifier of better performance [21]. This algorithm
will be referred to as WCCD (Weak-classifier Colour-based
Corrosion Detector) from now on.

3959

Fig. 10. Pairs of images taken at the same location in two different
executions of the last experiment. The slight deviations in viewpoint are
due to the orientation accuracy parameter, set to 6 degrees in the mission
specification file. The drawing at the bottom shows the positions where
the photos are to be taken during the inspection mission. The pairs above
correspond to, respectively, locations 2, 4 and 6.

The first stage of the classifier is based on the premise that
a corroded area exhibits a rough texture, where roughness
is measured as the energy of the symmetric gray-level co-
occurrence matrix (GLCM), calculated for downsampled
intensity values between 0 and 31, for a given direction
α and distance d [21]. The energy of an image patch is
then obtained by means of E =

∑31
i=0

∑31
j=0 p(i, j)

2, where
p(i, j) is the probability of the co-occurrence of gray levels
i and j at distance d and orientations α and α+ π. Patches
with an energy lower than a given threshold τE , i.e. exhibit
a rough texture, are candidates to be more deeply inspected.

Unlike the first stage, the second stage makes use of the
colour information that can be observed from corroded areas.
More precisely, the classifier works over the Hue-Saturation-
Value (HSV) space after the realization that pixels from
corroded areas are confined in a bounded subspace of the
HS plane. Although the V component has been observed
neither significant nor necessary to describe the colour of
corrosion, it is used to prevent the well-known instabilities
when computing hue and saturation values for colours close
to white or black. In those cases, the pixel is classified as
non-corroded. In order to learn the HS values for image
pixels known to correspond to corroded surfaces, a two-
dimensional histogram is built in a previous training step.

In order to generalize the HS histogram [12] to cases out
of the training set, different standard techniques have been
considered, such as downsampling and/or Parzen windows
for different two-dimensional kernels [21]. Although consid-
erable improvements can be observed for those methods, best
results have been obtained following a smoothing approach
by means of a bilateral filter [22], which combines two
Gaussians, one that operates at the spatial domain and the
other at the intensity domain.

B. Corrosion-guided crack detection

A crack detector guided by the output of WCCD has
been implemented after the observation that most cracks
in metallic surfaces coincide, at least partly, with corroded
areas. This algorithm will be referred to as GPCD (Guided
Percolation-based Crack Detector) from now on.

The crack detection algorithm is based on a percolation
model, similarly to the detector described in [23], which
takes into account the crack geometry within a region-
growing scheme. The region-growing procedure starts from
an edge pixel suspected from being affected by corrosion.
Additionally, it is required to be darker than a threshold
γs and must not belong to an already detected crack. The
propagation proceeds over the dark neighboring pixels till
reaching an N × N boundary. Then, the elongation of the
percolated area is checked to be larger than εN . If that is
the case, the percolation process continues until reaching an
M × M boundary. The final percolated area is classified
as a crack if: (1) its average gray level is darker than a
threshold γavg , and (2) its elongation is larger than εM .
The elongation is computed by means of the normalized
second central moments of the region µxx, µyy and µxy as

ε =

√
1− µxx+µyy−

√
4µ2

xy+(µ2
xx−µ2

yy)

µxx+µyy+
√

4µ2
xy+(µ2

xx−µ2
yy)

[24].

C. Performance assessment

The performance of WCCD depends on the performance
of its different stages. Regarding the roughness stage, sev-
eral experiments have been performed considering different
values for d and α when computing the GLCM and, conse-
quently, its energy level.The energy threshold τE affects the
algorithm performance in terms of computation time as well
as reducing the number of false positives, since all patches
with a high energy level are discarded and only those with
a low value become input for the colour checking step.

Examples of classification outputs for WCCD are provided
in Fig. 11. In these experiments the following values have
been used: α = 0 (horitzontal direction), d = 5 pixels
and τE = 0.05. The corrosion detected is colour-marked
depending on the probability of being a successful detection:
the warmer is the colour the higher is the probability. For a
test set comprising a total of 7384 patches, global WCCD
performance has been measured as 9.80% for the false
positive percentage (FP / #pixels) and 5.86% for the false
negative percentage (FN / #pixels).

Regarding GPCD, its performance was assessed after a
proper configuration of its different parameters. The param-
eters related with the expected elongation of cracks, εN
and εM , and the gray level thresholds γs and γavg, were
all tuned so as to reduce as much as possible the number
of false positives over the test set, while the values for N
and M, related with the size of the percolation boundaries,
were determined using the mean value of Pratt’s FOM
measure [25] calculated for all the test images. Fig. 12 shows
some results of crack detections, where the following values
have been used: N = M = 41, εN = εM = 0.3, γs = 0.5
and γavg = 0.4. The global performance was measured as

3960

Fig. 11. Corroded areas detected by WCCD.

Fig. 12. Cracks detected by GPCD.

0.72% and 0.57% for, respectively, the false positive and
false negative percentages.

To finish, execution times for WCCD ranged between 7
and 15 ms for images comprising from 120.000 to 172.800
pixels, while GPCD took between 30 and 150 ms for images
of similar size. Tests were performed on an Intel Core2 Duo
@2.2 GHz processor with 4 GB of RAM.

VII. CONCLUSIONS

A Micro Aerial Vehicle intended to assist human surveyors
during visual inspections of vessels has been described. It is
based on a commercial platform which integrates a control
architecture intended to cover the requirements imposed by
the inspection missions. The details and organization of the
control software have been described and discussed. Results
for a number of experiments have as well been reported,
showing the suitability of the platform for the problem
at hand. An integrated solution for corrosion and crack
detection has been described, as well.

Videos showing the performance of the different parts
of the solution described in this paper can be found in
http://www.youtube.com/user/MINOASProject.

ACKNOWLEDGMENT

The authors of this paper would like to thank Markus
Achtelik for his support on the use of the ROS Asctec MAV
framework.

REFERENCES

[1] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Towards Autonomous
Indoor Micro VTOL,” Autonomous Robots, vol. 18, pp. 171–183,
2005.

[2] A. Matsue, W. Hirosue, H. Tokutake, S. Sunada, and A. Ohkura,
“Navigation of Small and Lightweight Helicopter,” Transactions of the
Japan Society for Aeronautical and Space Sciences, vol. 48, no. 161,
pp. 177–179, 2005.

[3] J. F. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano, “Quadrotor
Using Minimal Sensing For Autonomous Indoor Flight,” in Proc.
European Micro Air Vehicle Conf. and Flight Competition, 2007.

[4] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Au-
tonomous Navigation and Exploration of a Quadrotor Helicopter
in GPS-denied Indoor Environments,” International Aerial Robotics
Competition, pp. 582–586, 2009.

[5] A. Bachrach, A. de Winter, R. He, G. Hemann, S. Prentice, and
N. Roy, “RANGE - robust autonomous navigation in GPS-denied
environments,” in Proc. IEEE Intl. Conf. on Robotics and Automation,
pp. 1096–1097, 2010.

[6] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in Proc. IEEE Intl. Conf. on Robotics
and Automation, pp. 2878–2883, 2009.

[7] R. He, S. Prentice, and N. Roy, “Planning in information space for
a quadrotor helicopter in a GPS-denied environment,” in Proc. IEEE
Intl. Conf. on Robotics and Automation, pp. 1814–1820, 2008.

[8] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based
MAV navigation in unknown and unstructured environments,” in Proc.
IEEE Intl. Conf. on Robotics and Automation, pp. 21–28, 2010.

[9] G. Buskey, J. Roberts, P. Corke, and G. Wyeth, “Helicopter automation
using a low-cost sensing system,” Computing Control Engineering
Journal, vol. 15, no. 2, pp. 8–9, 2004.

[10] S. Hrabar and G. Sukhatme, “Vision-based navigation through urban
canyons,” Journal of Field Robotics, vol. 26, no. 5, pp. 431–452, 2009.

[11] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard IMU
and Monocular Vision Based Control for MAVs in Unknown In- and
Outdoor Environments,” in Proc. IEEE Intl. Conf. on Robotics and
Automation, pp. 3056–3063, 2011.

[12] F. Bonnin-Pascual, “Detection of Cracks and Corrosion for Automated
Vessels Visual Inspection,” Master’s thesis, University of Balearic
Islands (Spain), 2010.

[13] A. Ortiz, F. Bonnin, A. Gibbins, P. Apostolopoulou, W. Bateman,
M. Eich, F. Spadoni, M. Caccia, and L. Drikos, “First steps towards a
roboticized visual inspection system for vessels,” in Proc. IEEE Intl.
Conf. on Emerging Technologies and Factory Automation, pp. 1–6,
2010.

[14] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a
large quadrotor robot,” Control Engineering Practice, vol. 18, no. 7,
pp. 691–699, 2010.

[15] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger,
and D. Rus, “Energy-efficient autonomous four-rotor flying robot
controlled at 1 khz,” in Proc. IEEE Intl. Conf. on Robotics and
Automation, pp. 361–366, 2007.

[16] “ROS: an open-source Robot Operating System,” in Proc. of ICRA
Workshop on Open Source Software, 2009.

[17] I. Dryanovski, W. Morris, and J. Xiao, “An Open-Source Pose
Estimation System for Micro-Air Vehicles,” in Proc. IEEE Int. Conf.
on Robotics and Automation, pp. 4449–4454, 2011.

[18] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[19] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Kono-
lige, “The office marathon: Robust navigation in an indoor office en-
vironment,” in Proc. of IEEE Intl. Conf. on Robotics and Automation,
2010.

[20] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” Robotics Automation Magazine, vol. 4, no. 1,
pp. 23–33, 1997.

[21] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 3rd Edition.
Academic Press, 2006.

[22] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color
Images,” in Proc. IEEE Intl. Conf. on Computer Vision, pp. 839 – 846,
1998.

[23] T. Yamaguchi and S. Hashimoto, “Fast crack detection method for
large-size concrete surface images using percolation-based image
processing,” Machine Vision and Applications, vol. 21, no. 5, pp. 797–
809, 2010.

[24] B. Horn, Robot Vision. MIT Press, 1986.
[25] W. Pratt, Digital Image Processing. John Wiley and Sons, 1991.

3961

