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An automatic classifier algorithm has been designed to assess the popula-
tion of Posidonia Oceanica over a set of underwater images taken at Palma
Bay. Laws’ energy filters and statistical descriptors of the Gray Level Co-
occurrence Matrix have been used to correctly classify the input image
patches in two classes: Posidonia Oceanica or not Posidonia Oceanica.
The input images have been first preprocessed and splitted in three dif-
ferent patch sizes in order to find the patch size to classify this seagrass.
From all the attributes obtained in these patches, a best subset algorithm
has been run to choose the optimal set of attributes. Then a decision tree
classifier has been trained. The classifier was made by training a Logis-
tic Model Tree from 125 pre-classified images. This classifier was finally
tested on 100 new images. The classifier outputs gray level images where
black color indicates Posidonia Oceanica presence and white no presence.
Intermediate values are obtained by overlapping the processed patches, re-
sulting in a smoother final result. This images can be merged in an offline
process to obtain population density maps.

Keywords: Image processing, Texture analysis, Data mining, Underwater
robotics

1. INTRODUCTION

Posidonia Oceanica (PO) is an endemic seagrass specie of the
Mediterranean sea that forms large meadows on seabeds up to
40m deep. The presence of PO is very important to the underwater
ecosystem and to the industry developed in the coastal areas, spe-
cially tourism and fishing activity, because its profusion is strongly
related to biodiversity and water quality of the environment. Un-
fortunately, the habitat of PO is declining due to anthropogenic
impacts (eutrophication, uncontrolled anchoring, trawling, shore-
line change) [González-Correa et al. 2005] and large-scale changes
(increased temperature, biological invasions, among others) [Diaz-
Almela et al. 2007]. Because of its slow growth and recovery,
losses may be irreversible. Thus, regular mapping of PO communi-
ties plays an important role in its conservation monitoring [Ardiz-
zone et al. 2006; Scaradozzi et al. 2009].

Traditionally, scuba divers in a process that is dangerous,
slow, tedious, expensive and imprecise, carry out the abovemen-
tioned survey task. More recent technologies, using sensorized and
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(a) No posidonia present, all sand. (b) All posidonia.

Fig. 1. Extract of photos.

equipped structures [Piazzi et al. 2000; Matarrese and Acquaro
2008; Siccardi et al. 1997] or even from satellites [Pasqualini et al.
2005], overcome these problems. One of these platforms has been
developed by the Instituto Mediterráneo de Estudios Avanzados
(IMEDEA) in the last years [March et al. 2013]. This underwa-
ter platform is equipped so it can take images at a fixed distance
from the seabed and with almost similar illumination conditions.
Moreover, the images are located using the GPS data of the supply
boat from where the platform is being deployed. Using this system,
more than 3.000 georeferenced images (some samples are shown in
figure 1), were taken in Palma Bay Marine Reserve (Mallorca, ES)
in 2009. These images were taken at different times and places, as
depicted in figure 2. They do not correspond to a continuous survey
or film.

Palma Bay Marine Reserve (PBMR) is delimited by the inter-
section of the coast with the parallel 39o28.6’N and 39o27.03’N,
and up to 30 m depth. Inside this area there is a 2 km2 Integral
Zone (IZ) area where all extractive activity or anchoring on the
PO prairies is forbidden, whilst in the rest PBMR lower fishing is
allowed. The reserve was founded with the objective of increas-
ing the natural resource regeneration and conserve representative
ecosystems. This scenario is the key to compare different PO com-
munities growth inside and outside the boundaries of the reserve.
More information on these images and on the site can be found in
[March et al. 2013].

Remotely Operated Vehicles (ROVs) have already been used to
achieve this task [Matarrese and Acquaro 2008]. Thus, the next
technological step would be to use Autonomous Underwater Ve-
hicles (AUVs) carrying the operation of surveying and classifying
the incoming data in their corresponding class or label. With as lit-
tle as an onboard camera and the needed thrusters to move, even
a simple robot could overcome the scuba divers problems above
mentioned.

The motivation of this work is to provide an automatic way to
assess the presence of PO in the mentioned images. Thanks to that,
the monitoring process can be extended to consider denser sam-
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Fig. 2. Map of the study area showing the sampled locations. Palma Bay
Marine Reserve (PBMR) boundaries enclose the Integral Zone (IZ) and the
Buffer Zone (BZ). The location of the zones of artificial reefs in PBMR are
presented. From [March et al. 2013].

pling of the PO meadows and longer temporal series. Thus, map
generation [Fornes et al. 2006] and recovery studies [González-
Correa et al. 2005] could be guided by the results of our proposal.

This work is presented as follows: in section 2 the input image
characteristics are presented, and the image preprocessing is ex-
plained detailing how the images are labelled for posterior training.
There, the different obtainable attributes from the Laws’ Texture
Energy Measurements and the Grey Level Co-occurence matrix
are presented. In section 3 the best suited classifier is chosen, lo-
gistic model trees in the case of this study, then the most suitable
attributes are chosen following a best subset selection criteria to fi-
nally train the model, which is tested in section 4. Finally, in section
5 conclusions and further work are presented.

2. PREPROCESS

The images used in this study were provided by IMEDEA, and
were captured using a analogic RGB camera housed in a watertight
case. The original image size is 720 × 576 pixel and presents vi-
gnetting and a color calibration pattern that was physically placed
when the photos were taken (see figure 4). Even with the presence
of the color calibration pattern, the photographs lack a correct color
balance and contrast. Moreover, to prevent possible errors in the
algorithms caused by the presence of the calibration pattern, the
process has been restricted to the higher part of the image. This re-
striction is made to avoid the external elements interference in the
image processing and in the classifier training processes.

Finally, the useful resolution of the images became 650 × 300
pixels. The preprocess involves also the conversion of the input
photos to black and white. For instance, the resultant preprocess
of image 3 is image 5, where in 4 is shown the region of interest.

Fig. 3. Original size input image. Note the color calibration pattern and
the plumb, as well as the left and right black frame and the vignetting.

Fig. 4. Region of interest of the original image. The top, left and right bor-
ders have been also removed to reduce vignetting. The bottom part where
the calibration pattern usually appears has been totaly removed.

Fig. 5. Preprocessed input image. The image is converted to black and
white because the color information of the images is not relevant for the
classification process.

Next, each image is split in several non-overlapping subimages
or patches. These subimages are later used to calculate several va-
lues to train the classifier. As the optimal size of the subimage is
not known, three different sizes have been chosen and all three will
be tested, using them to train three different classifiers. The size
of these subimages has been chosen to be 25 × 25, 50 × 50 and
75×75 pixels, generating three different subimage databases. Some
patches can be seen in figure 6. These sets will be referenced from
now on as A, B and C. Note that the A set will have more examples
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(a) 25x25. (b) 50x50. (c) 75x75.

(d) 25x25. (e) 50x50. (f) 75x75.

Fig. 6. Sand and posidonia patch sizes.

than the C because the amount of 75×75 subimages present in one
whole image is lower than the number of 25× 25 subimages.

In order to describe these images, Laws’ Texture Energy Mea-
surements and Grey Level Co-occurrence Matrix [Haralick et al.
1973] will be used to identify the differences in texture. These
patches will be classified in a binary class: a patch will be either
PO or not PO. In the case of Palma Bay photographs, not PO is
sand and little pebbles. The identification of other types of seabed
(rocks, other algae) is out of the focus of this work.

As each image is split in subimages, each patch can be classified
in one or another class, leading to a resultant global classified image
that is not binary. The patches can also overlap, leading to smoother
details on the output image. The result classification measure of the
whole image is

s =

∑
P
ki∑

P∪N ki
(1)

where ki is the classification of the i-th patch of the image, P
is the subset of patches classified as PO and N is the subset of
patches classified as not PO. Note that P ∪N are all the patches in
the image. The classification is done at patch level, but the results
can be interpreted at both image level and patch level. In section 4
both interpretations are discussed.

2.1 Laws’ Texture Energy Measurements

Texture filters like Laws’ Texture Energy Measurements (TEM)
can be applied to the input images to create filtered images from
which texture features are computed.

The Laws’ algorithm first filters the input image using texture fil-
ters that will be explained later. Then it computes the texture energy
by summing the absolute value of filtering results in local neigh-
bourhoods around each pixel. To obtain rotational invariance, two
filters can be combined by applying one filter on the other’s result.

Laws’ texture filters are made from three different vectors con-
voluted with themselves to create five different new vectors. These
vectors are simple feature detectors commonly named as level,
edge, spot, wave and ripple. The convolution of these feature de-
tectors with the input images outputs five gray images where, the
darker a pixel is, the more sensitive it is to that particular detector.

(a) Level (b) Edge (c) Spot

(d) Wave (e) Ripple

Fig. 7. Laws’ TEM features searched in the images.

L5 = [ 1, 4, 6, 4, 1] (Level)
E5 = [ −1, −2, 0, 2, 1] (Edge)
S5 = [ −1, 0, 2, 0, −1] (Spot)
W5 = [ −1, 2, 0, −2, 1] (Wave)
R5 = [ 1, −4, 6, −4, 1] (Ripple)

(2)

L5 returns a local centred average by convolving the neighbour pix-
els with a Gaussian, E5 responds to edges by applying a gradient
mask, S5 responds to spots, W5 responds to wave-like shapes and
R5 to ripples in the texture. The plot of these features can be seen
in figure 7, where the different shapes give an overall idea of how
the image value must look like in order to be more responsive to a
particular TEM.

Convolving different 5-pixel long vectors, other lengths can be
obtained. In this paper, 5 pixel, 9-pixel and 17-pixel have been con-
sidered due to the different subimage size. Depending on the size
of the texture to study, a determined vector size is preferred. For
example, L9 can be created as stated in equation 3.

L9 = conv(L5, L5)
= [1, 8, 28, 56, 70, 56, 28, 8, 1]

(3)

Then, if every 1D-vector is multiplied with another one, 25 5 ×
5 kernels or 2D-masks can be obtained (L5L5, L5E5, L5S5, . . .).
For instance, matrix (4) looks like a gaussian kernel, with its anchor
point centered.

L5L5 = LT5 · L5 =


1 4 6 4 1
1 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (4)

The same procedure is made with 9 × 9 and 17 × 17 sizes, ob-
taining a total of 25 + 25 + 25 different matrices.

These 75 matrices will be convolved with the subimages. In ap-
pendix A the same two patches from figures 6(c) and 6(f) are pro-
cessed with all the different Laws’ TEM to provide better insight.
From each of these resulting matrices the average (µ), standard de-
viation (σ), average of positives (µ+) and average of negatives (µ−)
are calculated, generating a total of 4 · 75 = 300 descriptors per
subimage. These descriptors are then the input attributes for the
classification model that will be explained later.
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2.2 Grey Level Co-occurrence Matrix

On the other hand, Grey Level Co-occurrence Matrix (GLCM) is a
tabulation of how often different combinations of pixel brightness
values (grey levels) occur in an image.

This matrix is calculated as follows: given the number of bins
and the co-occurence direction, the image is labelled to its corre-
sponding bin. Then the frequency of each combination of neigh-
bour bin labels is annotated in a matrix whose row index is the ref-
erence bin value and the column index is the neighbour bin value.

For instance, given a 4× 4 image labeled in 4 bins, 0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

 (5)

and considering only right direction, two times a zero is left to
a zero, two times a zero is left to a one, one time a zero is left to
a two, and never a zero is left to a three. This is the first row of its
corresponding GLCM.

0 1 2 3
0 2 2 1 0
1 0 2 0 0
2 0 0 3 1
3 0 0 0 1

(6)

Finally, this matrix is normalized to [0, 1] space, transforming
it into a close approximation of a probability table. It is only an
approximation because the values come from integer values and
therefore their values will still be discrete whilst a true probability
would require continuous values. The normalization is made by

Pi,j =
Vi,j∑N−1
i,j=0

Vi,j
.

where Vi,j is the value of the bin (i, j).
GLCM is obtained from each of the subimages by calculating the

frequency rate of neighbour pixel values. In this paper, GLCM has
been computed considering 8 bins. From that matrix the attributes
listed in table I are obtained, generating a total of 17 descriptors per
instance.

These basic statistic descriptors give significant information on
how the shape of the GLCM is. If this matrix has almost all va-
lues in a small neighbourhood means that pixel values are close to-
gether, and therefore means that the image contrast is poor and its
standard deviation is high. Different configurations exist on these
descriptors chosen. What is more interesting is seeing which va-
lues will the classifier finally choose as the best ones to classify. To
show these differences, two images have been chosen as examples,
one containing sand in figure 8(a) and the other containing PO in
figure 8(b). The differences between the two GLCM are evident,
and easy to identify with these simple statistical attributes.

2.3 Labelling

From the whole set of images, those that only have posidonia have
been labeled as class 1, and the images where there’s only sand
and little pebles have been labeled as class 0. However, there are
images that have both posidonia and sand. These images have to be
classified manually and then binarized to the corresponding patch
size in order to train with them.

Table I. Values calculated for each patch.

Attribute Formula

Average µ = 1
NM

∑N,M

i,j=0
Pi,j

Variance σ2 =
∑N,M

i,j=0
(Pi,j − µ)2

Standard deviation σ =
√
σ2

Contrast Con =
∑N,M

i,j=0
Pi,j(i− j)2

Entropy Ent =
∑N,M

i,j=0
Pi,j(− ln (Pi,j))

Homogeneity Hom =
∑N,M

i,j=0

Pi,j

(i−j)2

Angular Second Moment ASM =
∑N,M

i,j=0
P 2
i,j

Energy E =
√

(ASM)

Skew Ske =
∑N,M

i,j=0

(Pi,j−µ)3

σ3

Kurtosis Kur =
∑N,M

i,j=0

(Pi,j−µ)4

σ2

Maximum probability maxi = maxi∈N (Pi,j)

maxj = maxj∈M (Pi,j)

GLCM Mean µi =
∑N,M

i,j=0
i(Pi,j)

µj =
∑N,M

i,j=0
j(Pi,j)

GLCM Variance σ2
i =

∑N,M

i,j=0
Pi,j(i− µi)2

σ2
j =

∑N,M

i,j=0
Pi,j(j − µj)2

GLCM Correlation σ2
ij =

∑N,M

i,j=0
Pi,j

(i−µi)(j−µj)√
(σ2

i
)(σ2

j
)

 

 

2 4 6 8

2

4

6

8
0

2

4

6

x 10
4

(a) From figure 1(a).
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(b) From figure 1(b).

Fig. 8. Different GLCM.

As an example, the prior labelling of the mixed image in figure
5 is shown in figure 9(a). This hand-labelled image has been bi-
narized in the tree different patch sizes in order to correctly train
the classifier. These three binarized training images can be seen in
figure 9.

Some of these mixed images will therefore be not perfectly la-
beled, due to binarization. Many of them will present both posi-
donia and sand in the same patch, introducing little errors in the
training process.

3. TRAINING

The method proposed to assess the population of PO in an image is
based on texture analysis and machine learning algorithms. Several
models can be trained from different classifier types (trees, percep-
tron, Bayes, etc.) In this master thesis, C4.5 decision tree, Logis-
tic Model Tree (LMT), Random forest tree (RF), and Multilayer
Perceptron classifiers (MP) have been compared to select the best
suited classifier for the task.

The comparison has been made by considering all the attributes
in 12 images, six containing PO and six containing sand. The huge
number of attributes make the model training to be time consum-
ing. This has been an important reason not to incorporate a large
number of images into this training process. These images are used
to train the four models using 10 fold cross-validation with Weka
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(a) Labeled imaged from figure 5 used to train the classifier.

(b) Binarized labeled image at 25x25.

(c) Binarized labeled image at 50x50.

(d) Binarized labeled image at 75x75.

Fig. 9. Hand labeled mixed image and its corersponding binarization de-
pending on subimage size.

[Hall et al. 2009]. This validation method is based on removing a
10% (one fold out of ten) of the training samples to test it later on
the model trained with the remaining 90%. Shifting the removed
10% to another location in the training dataset and testing it with
the results returns 10 different classifications. The result of the val-
idation is the average of these classification tests.

The labelled images are first preprocessed as stated in Section
2 to obtain a valid text file input for Weka. The best classifier
was chosen by selecting the one with the best number of correctly
classified instances and the least number of attributes in the three
datasets. The different configurations for the models are as follows:

◦ C4.5 has been trained with a confidence factor of 0.25 and a
minimum number of instances per leaf of 2.

Table II. Correctly classified instances and (number of
attributes used).

Classifier Dataset A Dataset B Dataset C

C4.5 98,12% (8) 98,61% (2) 99,54% (1)
Logistic Model Tree 98,71% (7) 99,40% (2) 99,07% (2)
Random Forest 97,02% (2) 95,83% (2) 99,07% (1)
Multilayer Perceptron 98,86% (8) 99,40% (3) 99,07% (2)

◦ LMT has been trained using the same C4.5 splitting criterion that
uses information gain on the class variable and with a minimum
number of instances per leaf of 15.
◦ RF has been trained with 10 trees, unlimited depth and number

of attributes to be used.
◦ MP has been trained by backpropagation with 158 hidden layers,

a learning rate of 0.3, a momentum of 0.2 and 500 epochs.

The results of these tests are shown in table II. In that table, Ran-
dom Forest classifier is shown as the classifier that used the least
number of attributes, whilst Multilayer Perceptron and C4.5 the
ones that used the most. Logistic Model Tree classifier used almost
the same number of attributes as Random Forest in datasets B and
C, but its classification rate is better than the latter.

Therefore, the work has been focused in one classifier. The Lo-
gistic Model Tree (LMT) classifier [Landwehr et al. 2005] has been
chosen for its simplicity and good classification rate. With only one
classifier, it is easier to find the best subset of attributes for the
whole datasets. Although for dataset C, model C4.5 has better clas-
sification rate, LMT achieves better rates in A and B datasets, and
is also faster classifying than Multilayer Perceptron. Future works
could also explore C4.5 in C dataset.

3.1 Logistic Model Tree

This model tree is a combination of a linear logistic regression and
decision trees. These trees are built by implementing a logistic re-
gression at their leaf nodes.

The basis of the logistic regression is the logistic function (eq. 7)
and its inverse, the logit function (eq. 8).

f(X) =
1

1 + exp(−βX)
(7)

g(X) = ln
f(x)

1− f(x)
(8)

= βX (9)
= β0 + β1x1 + β2x2 + · · ·+ βNxN (10)

where X = (1, x1, x2, . . . , xN ) are the dependent variables,
β = (β0, β1, β2, . . . , βN ) are the regression coefficients and N
is the number of dependent variables.

Given that the logit function ranges through the interval (0, 1),
it provides an adequate criterion to conduct linear regression to a
two class variable. Furthermore, it’s input extends from −∞ to∞,
which makes it convenient for continuous range input values.

Once the best model has been chosen, the best attribute subset
for that model will be determined.

3.2 Selection of the best attributes

The next step is the selection of the best attributes. These attributes
have to correctly describe the texture without overfitting the model.
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Table III. List of attributes selected as the best subset of LMT
classification model.

Attributes selected in List of attributes

All subsets Entropy, µL5L5, µE9L9, σE5R5, σR9L9

Five subsets σ, µL9L9, µL17S17, σE17W17

Four subsets maxi, µL17L17, µL5W5, µL17W17,
σL9R9, σE17S17, µE5W5, µW5L5

Six different training datasets have been used to test the different
attributes, grouped in pairs. The first three datasets contain 50 full
posidonia and 50 full sand images in three subimage sizes. The
other three training datasets contain the abovementioned datasets
with an addition of 25 mixed sand and posidonia images in the
same subimage sizes. These new 25 images have been previously
classified and labelled by a human operator. The dataset pairs are
then the dataset with or without these 25 new images, which will be
referenced as Training set A for the A-sized training set with 100
images, and Training set A’ for the A-sized training set with 125
images.

Greedy Stepwise method was used to find the best subset of at-
tributes for a given classifier. This method is based on the greedy
algorithm, which follows the problem solving heuristic of making
the locally optimal choice at each stage with the hope of finding a
global optimum. In particular, the method starts with no attributes
and adds attributes depending on an evaluation criteria.The individ-
ual predictive ability of each feature along with the degree of redun-
dancy between them have been chosen as the evaluation criteria, so
that subsets of features or attributes that are highly correlated with
the class are preferred.

The best attribute subset has been obtained for each of the six
sets with a best subset attribute selection algorithm [Hall 1999].
By comparing the common and non common selected attributes,
the correlated attributes can be rejected and the most important are
kept. The list of the selected attributes is shown in table III.

The most important attributes are: entropy, L5L5 average
(µL5L5

), E9L9 average (µE9L9) and R9L9 standard deviation
(σR9L9). Entropy is high in an homogeneous scene and low in an
inhomogeneous scene, L5L5 is similar to a Gaussian kernel, so the
convolution of a patch with this kernel blurs the input subimage,
mixing the corresponding gray values. Moreover, E9L9 and R9L9

kernels compute texture filters that react to texture in different ways
so that the PO is easier to identify.

From these attributes, six LMT models for the six datasets are
trained. The pairs are used to validate the models by testing one
dataset in the trained model pair. The results of these tests are
shown in tables IV, V and VI. Notice that in these tables the num-
ber of correctly classified instances is almost the same when the test
datasets are changed for the same train set. The addition of exam-
ples also drops about a 5% the result, as the mixed images are more
difficult to classify, as mentioned in section 2.3. But these numbers
confirm that the addition of mixed images, where posidonia and
sand appear together, does not cause an important misclassification
error. So the chosen models are A’, B’ and C’, as they contain more
examples with the same ability to classify correctly. The results of
the 10 fold cross-validation for A’, B’ and C’ models can be seen
in table VII.

4. EXPERIMENTAL RESULTS

Once the three models have been trained, test datasets can be used
to verify the classification rates. These datasets are composed of

Table IV. Model A cross training
results. Number of correctly

classified instances.
Train \ Test A A’

A 97,07% 93,73%
A’ 97,10% 93,74%

Table V. Model B cross training
results. Number of correctly

classified instances.
Train \ Test B B’

B 98,87% 95,94%
B’ 98,70% 95,77%

Table VI. Model C cross training
results. Number of correctly

classified instances.
Train \ Test C C’

C 99,30% 96,75%
C’ 99,30% 96,58%

new images which will also be preprocessed like the training im-
ages. However the patches will overlap in order to obtain a refined
classification result. For A’ the patch size was 25× 25 px, and the
overlap has been defined as half the size of the patch: 12 px. The
same operation is made with the other two sizes. For instance, the
classification results of figure 5 are the three images in figure 10.

An image cannot be classified entirely as belonging exclusively
to one class (100% or 0% PO) since there may be intermediate
levels of posidonia in there. Also, it is interesting to consider this
approach as the classifier could be used to generate PO maps of the
surveyed area. To this end, the overlapping results in a new kind
of output classification. The classified images have light grey col-
ored patches where the classification has resolved that this particu-
lar patch is PO. In the case that the classifier resolves that it is not
PO, the resulting image remains white. As the patches overlap, the
color becomes darker until it is totally black. For a central patch,
up to four overlaps can occur. This results in four levels of PO in
a quarter patch: 0%, 33%, 66% and 100% PO confidence. In case
the overlap was defined in a different size (for example, instead of
taking subimages each 12 pixels when 25 × 25 patch size is used,
the subimages were taken at each pixel) the resulting gray levels
would be smoother than only with four.

This overlap is different at the corners of the image, where there
are parts of the resultant classification image that are only looked
up by one patch. In these cases, the full patch has been considered
to be all PO if the corresponding patch was classified in PO class
or 0% PO if it belonged to the other class. This way the corners are
either white or black, with no gray levels laying between them.

These models are now tested on a new dataset containing 50 PO
images and 50 non PO images from the same photography database
of Palma Bay. The results will be first presented in terms of image
classification, and then in terms of subimage classification. This
way, the correctly classified ratio as well as the false positive or the
false negative rate will be different, but will allow the lecturer to
appreciate how the classification process works.

The test images are known a priori, there are 50 which contain
PO exclusively and 50 that do not. This particular knowledge al-
lows the classification process to test not only the behaviour and the
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Table VII. Evaluation of the trained models by 10 fold
cross-validation.

Properties A’ Model B’ Model C’ Model

Instances 39000 9750 4000
Corr. Class. Instances 93,84% 95,68% 96,33%
FP rate 5,69% 5,42% 5,10%
FN rate 6,74% 3,44% 2,55%

(a) Model A’.

(b) Model B’.

(c) Model C’.

Fig. 10. Classification results of the different models.

Table VIII. Evaluation of the tested models.

Properties A’ Model B’ Model C’ Model

Instances 107800 27500 9600
Corr. Class. Instances 98,71% 99,36% 99,55%
FP rate 2,21% 1,24% 0,88%
FN rate 0,38% 0,04% 0,02%

correctness of the classifier at a subimage level but also to have a
global perspective at the whole image. The results of the classifica-
tion of this database with the three models can be seen in table VIII.
Note that the correctly classified instance percentage increases with
the patch size, like the original model did when it was trained. This
indicates that the C ′ model classifies better thanA′. The results can
be also seen at each image. In figure 11 the different classification
result is plotted for each non PO image and for the different models,
and in figure 12 the remaining 50 PO images are also shown.

In the figure 11 the classification results for all class 0 (not PO)
images are presented, and in figure 12 there are the classification
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Fig. 11. Classification results of 50 non PO images.
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Fig. 12. Classification results of 50 PO images.

results for class 1 (PO). Those classification results lead directly
to a clear classification in PO or in not PO, but when it comes to
patch classification, the rates are different. In fact, the classification
results shown in table VIII are patch results.

5. CONCLUSION & FUTURE WORK

The results presented in section 4 show that the classifier not only
classifies correctly but also with a low false positive and false posi-
tive rate. The FP and FN rates in the experimental results are lower
than in the training process. This could be due to the mixed im-
ages, where the PO and the sand are both often captured in a patch.
The classifier has been trained to output a binary value when the
input image is not posidonia (Class 1) or not posidonia (Class 0).
Although this is a mistake, the final error in terms of classification
is low, as has been seen in the table VII, and the classification is
faster and simpler than if a lineal output model had been consid-
ered. Furthermore, the overlapping patches have allowed to output
a set of four values of PO presence in the image.

Also the best classifier model has been chosen given the partic-
ularities of these images using Greedy stepwise method [Cormen
et al. 2001] in Weka, where LMT has been chosen. Moreover, the
314 possible attributes provided have been reduced up to four of
them, fast and easy to calculate given an input image. The reduc-
tion has been done using a best subset algorithm provided also by
Weka.

As future work, more than two classes should be considered, tak-
ing into account different algae species, rocks, and sand. Also, the
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acquisition of new images with better quality is necessary, as the
ones used have noise coming from the analog readings transmitted
through the underwater cable to the PC.

This work has been submitted in April 10th, accepted in May 6th,
and presented in OCEANS’13 MTS/IEEE Conference in Bergen,
Norway in June 13th, 2013.

APPENDIX

A. LAWS’ TEXTURE ENERGY MEASUREMENTS

The figures 6(c) and 6(f) are convolved with the 25 different Laws’
TEM and shown in figures 13 and 14. Dark blue is zero and dark
red is one. As the value grows, the colors turns light blue, yellow,
and finally red.
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Fig. 13. Result of the convolution of the 25 different Laws’ TEM with the image in the figure 6(c).
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Fig. 14. Result of the convolution of the 25 different Laws’ TEM with the image in the figure 6(f).
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