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Abstract

This paper proposes a straightforward but effective approach to per-
form visual SLAM, especially suitable for underwater vehicles. One of the
most important steps in this procedure is the image registration method,
since it reinforces the data association and thus makes it possible to close
loops reliably. Since the traditional EKF-SLAM approaches are usually
costly in terms of running time, the approach presented in this paper
strengthens this method by adopting a trajectory-based schema that re-
duces the computational requirements. The pose of the vehicle is esti-
mated using an Extended Kalman Filter (EKF), which predicts the vehi-
cle motion by means of a visual odometer and corrects these predictions
using the data associations (loop closures) between the current frame and
the previous ones. Since the use of standard EKFs entail linearization er-
rors that can distort the vehicle pose estimations, the approach was also
tested using an Iterated Kalman Filter (IEKF) instead. The approach
has been tested on real underwater vehicles, in controlled scenarios and in
shallow sea waters. The approach has shown an excellent performance in
diverse experiments, with very limited errors of the estimated trajectory.

1 INTRODUCTION

1.1 Problem Statement

Thanks to recent technological advances, the sub-aquatic world is more ac-
cessible for exploration, scientific research and industrial activity. At present,
Remotely Operated Vehicles (ROVs) are commonly used in a variety of appli-
cations, such as surveying, scientific sampling, rescue operations or industrial
infrastructure inspection and maintenance.

Trying to overcome some of the intrinsic limitations of ROVs, such as their
limited operative range or the need for a support vessel, Autonomous Under-

water Vehicles (AUVs) are progressively being introduced, especially in highly

1



repetitive, long or hazardous missions. Because they are untethered and self-
powered, AUVs offer a significant independence from support ships and weather
conditions. This can reduce notably the operational costs and the complexity
of human and material resources, comparing to operations conducted with teth-
ered ROVs.

Localization, which consists in determining and keeping track of the robot
location in the environment, becomes a crucial issue in AUVs. The mission
success depends, to a great extent, on the precision of the estimated vehicle
pose. Errors in orientation generate important drifts on the computed robot
trajectory thus hindering the accomplishment of the programmed mission.

There are several ways to estimate the robot motion in underwater vehicles,
for instance, (a) using inertial sensors, such as gyroscopes and accelerometers,
(b) with odometry computed via acoustic sensors (sonars or DVLs) or cam-
eras, and, (c) combining inertial sensors and odometers, fusing all the sensorial
data by means of navigation filters, such as EKFs or particle filters, to smooth
trajectories and errors ([15], [16], [13]).

Nevertheless, all these measurements are, to a greater or lesser extent, prone
to drift, being necessary to adjust periodically the pose of the vehicle to reduce,
as far as possible, the accumulated error. To this end, the so called Simultaneous

Localization And Mapping (SLAM) [7] techniques constitute the most common
and successful approach to perform precise localization. The principal aim of
SLAM is the reduction of errors present in odometry by localizing the robot with
respect to landmarks or significant points of the environment. This localization
process is reinforced by recognizing regions previously visited by the robot in a
process known as loop closing. Landmarks are incorporated to an incremental
map and their location is refined simultaneously with the vehicle pose.

In most of the sub-aquatic environments, the process of sensing the environ-
ment becomes particularly complex. When light propagates in water, it interacts
with molecules and dissolved particulate matter. As a consequence, the light
traveling distance underwater is dramatically reduced when compared to air.
Contrarily, sound propagates faster and it is able to travel larger distances in
water than in air. Consequently, acoustic sensors have been traditionally con-
sidered the best choice for AUVs [18, 24, 19, 5]. However, acoustic sensors have
low spatial and temporal resolutions compared to optical sensors. This means
that, in general, they capture less details and scan at lower frequencies than
modern cameras with high resolutions and fast frame rates. Thus, although the
quality of images in sub-aquatic environments is strongly limited by the water
and by the illumination conditions, in certain situations optical cameras offer
more advantages than acoustic sensors [4]. Visual platforms are not really ap-
propriate in the water column where it can be difficult to see the seabed or other
reference points. However, for surveying or intervention applications, where the
vehicle has to navigate relatively close to the sea bottom or it has to locate
itself near the object to be manipulated, the use of cameras can certainly be a
convenient option.

Lately, researchers are focusing their efforts on the enhancement of visual
SLAM techniques (the use of cameras to perform SLAM) to be applicable in
sub-aquatic environments and to be operative online, in missions conducted by
real underwater vehicles.
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1.2 Related Work

Visual SLAM in natural sub-aquatic scenarios has several inarguably difficulties
not present in land: the light attenuation, flickering, scattering, the special
nature of underwater environments with no man made structured frameworks,
and the subsequent difficulty to define, find and track, reliable features or natural
landmarks that can be used to match scenes visualized from different viewpoints
and time instants.

The key of a successful underwater visual SLAM lies in the data association
procedure to detect loop closings. This data association has to be robust un-
der different viewpoints and illumination conditions. In the context of visual
SLAM, the data association is also known as image registration. The image
registration is in charge of recognizing scenes visualized by the robot from dif-
ferent viewpoints, in frames that have certain overlapping, and to compute the
camera relative displacement between both views.

The literature is scarce in efficient visual SLAM solutions specially addressed
to underwater and tested in field robotic systems. Most of these solutions partic-
ularize the approach commonly known as EKF-SLAM [7], correcting the dead-
reckoning data with the results of an image registration process in a Extended

Kalman Filter (EKF) context. These systems normally incorporate newly ob-
served visual landmarks in a state vector that contains also the vehicle pose and
velocity. One of the positive issues of this approach is the continuous correction
of the vehicle and all the landmark poses contained in the filter at every itera-
tion, which involves a simultaneous refinement of the vehicle trajectory and of
the whole map. As a consequence, the filter running time increases with the
size of the map, making the system not applicable on-line for long routes.

The same idea is used to locate an AUV equipped with a stereo camera
with respect to a ship hull in [21]. In this work, 3D landmarks corresponding
to points on the hull are computed from the stereo images. Similarly to [7], the
filter state contains the vehicle pose and the observed landmarks.

Salvi et al [20] proposed a new method for underwater SLAM where the
vector state is composed of the pose and the velocity of the vehicle given by
a DVL, and the 3D pose of the successive detected landmarks computed with
a stereo camera. The image registration process is used for the filter update
and it is obtained by comparing new 3D landmarks with all those that are
stored in the filter state. Previously to the filter execution, images are pre-
processed to enhance their contrast and increase their brightness. proposed
a new method for underwater SLAM where the vector state is composed of
the pose and the velocity of the vehicle given by a DVL, and the 3D pose of
the successive detected landmarks computed with a stereo camera. The image
registration process is used for the filter update and it is obtained by comparing
new 3D landmarks with all those that are stored in the filter state. Previously
to the filter execution, images are pre-processed to enhance their contrast and
increase their brightness.

Another concern for researchers has been how to make their approaches ro-
bust or immune to linearization errors inherent to EKF-based methods. To solve
this problem, Aulinas et al implemented a submapping EKF-SLAM approach
and tested it on an AUV, with highly convincing results [1].

A different alternative was proposed by Eustice et al with the Delayed State

Filtering [10] approach: the state vector only contains the current vehicle pose,
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its linear velocity, acceleration and the angular rate. The successive poses of the
vehicle are predicted by dead reckoning and incorporated to the filter state. Im-
ages are taken at every position. Imagery overlapping provides pose constraints
and image registration, which are used to define the observation function of
the update stage. Since landmarks are not included in the filter state vector,
the computational resources needed for every iteration are minor than in other
approaches. However, the image registration process is still costly in time.

Other authors have focused the underwater visual SLAM problem from the
graph-optimization or bundle adjustment point of view. Using these methods,
the successive odometric poses of the vehicle, and, in some cases, the position
of landmarks constitute the subsequent nodes of a graph linked by edges, which
usually represent the distance from node to node. When a loop is closed, the
complete graph is optimized, which means a complete graph adjustment entail-
ing nodes (their labels) and distances between them [3]. This approach eludes
the linearization errors, but graphs grow hugely with the amount of landmarks
incorporated to the map thus increasing the computational resources needed.

Accordingly, this study presents a vision-based approach to perform under-
water SLAM to accurately estimate the pose of an AUV. The proposal of this
work is to integrate information coming from a monocular bottom-looking visual
system, an altimeter, and a dead reckoning sensor.

While our research is close to that presented in [10], several distinctions
with this inspiring work should be emphasised, mainly addressed to decrease
the running time and the errors in the EKF results.

To reduce the error associated to the Kalman filtering process, we use a
trajectory-based schema that includes in the filter state the successive vehicle
displacements and rotations, instead of referring them to the global frame [6, 5].

Furthermore, the optimization of time and resources in the image registra-
tion process is tackled twofold. First, a unique and simple RANSAC-based
algorithm filters out outlier correspondences and simultaneously computes the
relative roto-translation between the evaluated frames. Second, we execute this
image registration process only between images corresponding to locations that
are within a fixed search radius, skipping the overlapping verification process
proposed in [10]. Results exposed in forthcoming sections are aimed to validate
the benefits of these design decisions.

The main advantages and contributions of our proposal are summarized
next:

1. It is simple and fast, and requires less computational resources than pre-
vious solutions. The state vector does not include the landmarks, so the
complexity of the image registration process is reduced without loosing
robustness and accuracy in the loop closing determination procedure.

2. Detecting loop closings properly is extremely important as they provide
valuable information to the SLAM process. Since the proposal presented
here uses external altitude information, it is not constrained to constant
altitude missions. In this way, the proposed image registration method is
able to deal with translation, rotation and scale changes.

3. Our approach to SLAM adopts a Trajectory Based schema [6], in order to
reduce estimation errors and computational complexity.

4



4. Finally, the approach has been assessed with an EKF and with an Iterated

Extended Kalman Filter (IEKF) [2] to evaluate the convenience of using
IEKFs instead of EKFs to reduce the linearization errors.

The system implementation has been tested on real underwater robots in
aquatic environments, giving conclusive results.

The paper is structured as follows: section 2 explains the data association
and image registration procedure used to detect loop closings; section 3 details
the design and the structure of the EKF used to perform the visual SLAM;
section 4 shows extensive experimentation that validates our approach and,
finally, section 5 concludes the paper and outlines some forthcoming work.

2 IMAGE REGISTRATION

In SLAM, data association refers to the registration of current sensory input
to previously gathered data. This process permits to identify parts of the en-
vironment already visited by the robot. Registering successfully such pieces
of information is essential to perform loop closures, which impose several pose
constraints that increase accuracy in the incremental localization process.

When using vision sensors, data association is tightly related to image reg-
istration. Image registration consists in overlaying several images of the same
scene or part of the scene, taken at different times, and from different view
points. The goal of the image registration process is to verify if there exists
total or partial frame coincidence, and in case there is, to measure the relative
motion of the camera between the two points at which both frames were taken.

Image registration usually relies on the detection and matching of image fea-
tures. If two frames represent, totally or partially, the same scene, features corre-
sponding to coincident parts of that scene, should present, to a certain extend,
similar descriptors. This statement depends on multiple conditions, mainly:
changes on view point, scale or position, illumination conditions, brightness or
contrast.

In consequence, applying special attention to the image registration process
is fundamental to get accurate pose estimates underwater.

Given two images, our proposal to data association starts by searching their
features and descriptors according to Scale Invariant Feature Transform (SIFT)
[17]. Although other feature detectors and matchers can also be used, SIFT has
been choosen for the first set of experiments because its invariance to changes
on translation, rotation, scale and to illumination conditions. Furthermore,
they provide sufficient number of putative correspondences for loop closing,
increasing the robustness of the registration process [10].

Due to the nature of the aquatic environments where our robots have to
operate, an image preprocessing algorithm is recommended to enhance contrast
and thus to improve the feature detection and matching. Here, images are
filtered in the frequency domain using a Butterworth low pass filter. See in
figure 1 two examples of underwater scenes, unfiltered ((a),(c)) and filtered
with the low pass filter ((b),(d)). The image of figure 1-(a) was taken in a pool
and the one on figure 1-(c) was taken in the sea. Section 4 shows a comparison
of the SLAM results with and without filtering.

Feature coordinates, which are found in pixels, are then converted to meters,
assuming a locally flat floor and that the distance to the bottom and the camera
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(a) (b) (c) (d)

Figure 1: Image processing previous to the image registration. (a) and (c) original
images, (b) and (d) filtered images

(a) (b)

Figure 2: Feature matching using underwater images. Yellow lines represent corre-
spondences between features. (a) Overlapping images (b) Non overlapping images.

focal length are known. The former can be measured with an altimeter and the
latter through a camera calibration process. Thanks to this, changes on the
vehicle altitude which are responsible for scale changes between images, can be
properly taken into account.

The next step towards the image registration is to compute feature matchings
between the two images currently involved. In underwater scenarios it is very
likely to obtain wrong correspondences due to problems inherent to this media,
for instance: bad illumination, blur, scatter, untextured seafloor or excessive
texture in the bottom, or the fact that, in certain scenes most of the gathered
images look similar.

Figure 2-a exemplifies a common situation where there exists overlapping
between two images. The majority of the features are matched correctly, but
there are still some wrong associations. Although they represent a small per-
centage of the total number of matchings, these outliers distort the registration
result. Also, SIFT, as well as many other feature matchers, are likely to de-
tect matchings even between images corresponding to non overlapping areas,
as illustrated in Figure 2-b. Wrong image associations can cause wrong loop
closings and, as a consequence, unrecoverable errors in the SLAM process.

In order to find a model where inliers fit and outliers are discarded, a method
based on RANSAC([11]) has been used for image registration. The key aspect
of the data association is to determine whether two images overlap or not and,
if they do, compute the roto-translation that better explains the correct overlay
between them. Our proposal is based on the following premise: correct match-
ings tend to propose a single roto-translation whilst incorrect matchings do not
and thus can be considered outliers.

Algorithm 1 shows the proposed procedure to compute the roto-translation
between two underwater images using RANSAC. The symbol ⊕ denotes the
compounding operator, as described in [22]. Roughly speaking, this algorithm
randomly selects a subset C of feature matchings M and then computes the
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Algorithm 1: RANSAC Image Registration
Input:

Fref : Features {p1, p2, · · · , pm} in the first image
Fcur: Features {q1, q2, · · · , qn} in the second image
M : Matchings M = {(i, j)|visual matching(pi, qj)}
nIter: Number of iterations to perform
N : Number of matchings to be randomly selected
α: Maximum allowable error per matching
β: Min. number of selected matches to consider a model

Output:

Xbest: The estimated roto-translation
εbest: The error of the estimated roto-translation
found: Boolean stating if reliable matching found

Algorithm:

begin

k ←0 ; εbest ←∞ ; found← false;
while k < nIter do

C ← random selection of N items from M ;
(X, ε) ← find motion(Fref , Fcur, C);
foreach (i, j) ∈ (M − C) do

if ‖pi −X ⊕ qj‖ < α then

C ← C ∪ {(i, j)};

if |C| > β then

(X, ε) ← find motion(Fref , Fcur, C);
if ε < εbest then

εbest ← ε ; Xbest ← X ; found← true;

k ← k + 1;
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Figure 3: RANSAC underwater image registration

roto-translation X = [x, y, θ]T that better explains them, under the assumption
of a local planar motion. This assumption is perfectly acceptable in many
common surveying missions where AUVs have to move parallel to the seabed
which is formed by sand, rocks, algae and with no relevant relief. In this case,
image points will not correspond exactly to coplanar points on the scene, but
in practice they can be considered to do, if the lens axis is perpendicular to
the bottom and height of the camera is much greater than the height of the
elements lying on the seabed.

Next, each of the non-selected matchings is tested to check if it fits X with
an acceptable error level. If so, it is selected too. Finally, if the number of
selected matchings |C| exceeds a certain threshold, the roto-translation that
better explains all the selected matchings is computed. After a fixed number
of iterations, the best of the computed roto-translations constitutes the output
of the algorithm, and those correspondences that can not be related through
this transformation with an acceptable error are considered to be outliers. If
not enough matchings have been selected in any of the iterations, the algorithm
assumes that the two images do not overlap.

Compared to other methods where the camera motion between two images
is computed after the filtering of outliers, this algorithm is able to discriminate
outliers from inliers while it computes the camera transformation, simplifying
and speeding up the whole process

The algorithm relies on the so called find motion function, which takes a
set of feature matchings C and their coordinates in the first (Fref ) and in the
second image (Fcur) as inputs. This function provides the roto-translation X
that better explains the overlap between the images by searching the values of
x, y, and θ that minimize the sum of squared distances between the matchings
in C. More specifically, the roto-translation X and the associated error ε are
computed as follows:

X = argmin
x

f(x) (1)

ε = f(X) (2)

being

f(x) =
∑

∀(i,j)∈C

||pi − x⊕ qj ||
2 (3)

where pi and qj are feature coordinates in Fref and Fcur respectively.
As an example, figure 3 shows the feature correspondences after applying

our proposal to the images previously shown in figure 2-a. It can be seen how
the wrong correspondences have been rejected and only those explaining the
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true motion remain. Our proposal has also been applied to the images in figure
2-b, determining correctly the lack of overlap.

3 VISUAL SLAM

Being based on EKF-SLAM, our approach performs three main steps: predic-
tion, state augmentation and update. During the prediction, the robot pose is
estimated by means of dead reckoning. The state augmentation is in charge of
storing the newly acquired information. Finally, the measurement step updates
the prediction by associating the current image to previously stored data using
the data association algorithm described in section 2.

Our proposal is to perform the measurement update using only one every N
frames and thus reducing the computational cost. Henceforth, the used frame
will be called a keyframe and N will be referred to as the keyframe separation.

In this study, similarly to the Trajectory-Based schema, the state vector Xk

is defined as follows:

Xk = [x0
1, x

1
2, x

2
3, · · · , x

k−1
k ]T (4)

where each xi−1
i (2 ≤ i ≤ k) denotes a roto-translation from keyframe Fi−1

to keyframe Fi and x0
1 represents the initial robot pose relative to a world

fixed coordinate frame. Let us assume, without loss of generality, that x0
1 =

[0, 0, 0]T . Thus, contrarily to other EKF Visual SLAM methods where the
visual features themselves are stored in the state vector, our proposal requires
much less computational resources because it stores only the motion estimates
between keyframes.

The pose of the most recent keyframe with respect to the world fixed coordi-
nate frame can be computed as x0

k = x0
1⊕x1

2⊕x2
3⊕· · ·⊕xk−1

k . Also, the current
robot pose can be computed by composing the last keyframe pose estimate and
the dead reckoning information.

3.1 Prediction and state augmentation

Under the assumption of static environment, the state vector does not change
during the EKF prediction step. However, it has to be augmented as follows
when a new keyframe is available.

X−

k = [X−

k−1, x
k−1
k ]T (5)

,whereX−

k is the predicted state vector and xk−1
k is the motion estimate provided

by the dead reckoning sensors. From a practical point of view and in order to
take advantage of the cameras, a visual odometer was used in the experiments
conducted with the robot. Details are given further in section 4.

Keyframes are also stored outside the state vector.

3.2 The update step

3.2.1 Image Overlapping

In order to detect loop closings, every time a new keyframe is gathered, it could
be compared with all the previous ones using the image registration algorithm
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Figure 4: Simple camera model to determine whether two images overlap or not. Given
two images gathered at times ti and tj and heights Ai and Aj using a camera with
an angle of vision of α degrees, the observed regions have a diameter of wi and wj

respectively. The term d denotes the distance between the image acquisition points.

proposed in section 2. However, performing such exhaustive test at every filter
iteration can be extremely time consuming.

Therefore, computing the image registration process only on images that
really present an acceptable overlap and discarding those that do not, would
save time and resources and increase the accuracy in the matching process.
Different approaches can be found in the literature concerning this issue [8].

One way to evaluate the degree of overlapping between two images is con-
sidering only pure geometrical issues. Similarly to [10], the camera field of view
can be modeled as a cone. Under this assumption, the region of the sea bottom
observed by the camera is a circle whose radius depends on the lens field of view
and the height at which the image is gathered.

Being the field of view constant, the observed region basically depends on
the camera’s height when the image is obtained. Accordingly, it can be decided
whether two images overlap or not using the height information and the position
at which they were gathered. This idea is illustrated in Figure 4.

It is easy to see that the diameter of the observed region is as follows:

wk = 2 · Ak · tan(
α

2
) (k = i, j) (6)

Two images gathered at times ti and tj can overlap if the following condition
is satisfied:

||pi − pj || ≤ dmax =
wi

2
+

wj

2
(7)

where pi and pj denote the camera position at times ti and tj respectively, and
can be taken from the state vector.

In consequence, the image registration process between the current image
and all the previous ones can be done only in case the condition of equation 7
is fulfilled.

As Equation 7 only depends on the positions and does not involve any image
analysis, it is fast to compute.

Notice that dmax should be modified depending on the position uncertainties.
Although doing so will lead to a more accurate search radius, it would increase
the computation time while the corrective effects would be almost negligible.
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If the robot is moving at a constant height An, then dmax is constant: dmax =
An · tan(α2 ), and equation 7 can be reformulated as:

||pi − pj || = df ≤ dmax (8)

where df denotes a distance threshold, always smaller than dmax, used to decide
whether there is image overlapping or not.

Missions like ours, where robots have to survey an area for mapping, object
detection or intervention are quite common to be performed at constant height.
Although, in practice, controllers do not keep the vehicle at exactly the same
altitude, for all practical purposes, it can be considered that they do, if the
mean altitude at which the camera is working is much higher than the altitude
oscillations and the mean height of the seabed relief. This is valid in all the
environments where our system has to operate, that is in enclosed environments,
shallow waters or coastal areas where the sea bottom is formed by small rocks,
algae and sand.

Using a threshold for ||pi − pj || simplifies the approach since, it permits to
do the registration of the current image directly with all the rest of images that
are closer than df , thus avoiding the process of evaluating unlikely overlaps.
The challenging point now is to determine the optimum value for df to get the
maximum number of loop closings with the minimum quantity of outliers in the
majority of the compared image pairs. As this value depends on the height and
on the lens field of view, it has to be adjusted in every mission and at every
different environment. Section 4 details the experimental process followed to
find the optimum value of df and a quantification of the saved computational
resources.

3.2.2 Data Associations as Measurement Vector

The data association procedure is in charge of evaluating if two images contain
elements of the same scene, although they have been taken from different points
of view. Scene coincidence normally entails coincidence in some set of features.
If two images overlap, the data association procedure provides an estimate of
the roto-translation between them.

This information is used to build our measurement vector Zk:

Zk = [(zC1
k )T , (zC2

k )T , · · · , (zCn
k )T ]T (9)

where C1, C2, · · · , Cn denote the keyframes that match the current one and
zCi
k represents the motion estimated by our RANSAC based approach from the
keyframe Ci to the most recent one.

In EKF-SLAM, the observation function hi is in charge of telling how zCi
k

is expected to be according to the state vector X−

k . Because of the state vector
format, this can be computed as follows:

hi(X
−

k ) = xCi
Ci+1 ⊕ xCi+1

Ci+2 ⊕ ...⊕ xk−1
k (10)

Figure 5 illustrates the idea of a measurement zCi
k and the associated obser-

vation function hi.

The observation matrix Hi is as follows:
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Figure 5: Illustration of a measurement (thick red arrow) and the corresponding ob-
servation function (dashed blue arrows)
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It is straightforward to see that

Hi =




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

000
000
000
︸︷︷︸
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
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(12)

By applying the chain rule, the non-zero terms of this Equation are as follows:

∂hi

∂xj−1
j

∣
∣
∣
∣
∣
X

−

k

=
∂hi

∂xCi
Ci+1 ⊕ xCi+1

Ci+2 ⊕ ...⊕ xj−1
j

∣
∣
∣
∣
∣
X

−

k

·

·
∂xCi

Ci+1 ⊕ xCi+1
Ci+2 ⊕ ...⊕ xj−1

j

∂xj−1
j

∣
∣
∣
∣
∣
X

−

k

(13)

According to [9] this can be computed as follows:

∂hi

∂xj−1
j

∣
∣
∣
∣
∣
X

−

k

= J1⊕{gj,⊖gj ⊕ hi}|X−

k

· J2⊕{gj ⊖ xj , xj}|X−

k

(14)

where J1⊕ and J2⊕ are the Jacobians of the composition of transformations [22]
and

gj = xCi
Ci+1 ⊕ xCi+1

Ci+2 ⊕ ...⊕ xj−1
j (15)

At this point, the full observation function h and the full observation matrix
H considering all the matched keyframes are as follows:

h(X−

k ) =







h1

h2

...
hn







H =







H1

H2

...
Hn







(16)

In few words, the observation function estimates the relative position be-
tween two overlapping frames composing all the intermediate displacements
stored in the state vector in successive iterations. Also, the measurement vec-
tor stores the relative position between the same overlapped frames directly
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obtained from the image registration algorithm. The difference between both
values, which is the so called filter innovation, is the measure used by the Kalman
filter to improve the trajectory.

It is worth to emphasize that, for each pair of registered images, the whole
portion of the trajectory that connects them is explicitly corrected, contrarily to
traditional methods that only explicitly correct the endpoints. For example, all
the robot motions depicted as dashed blue arrows in figure 5 will be corrected
by the single measurement zCi

k .
At this point, the standard EKF update equations, which basically depend

on the observation function and the measurement vector, can be used.
In order to reduce the linearization errors an IEKF [6] [2] can be used instead

a classic EKF. Roughly speaking, the IEKF consists on iterating an EKF and
relinearizing the system at each iteration until convergence is achieved. When
the IEKF achieves convergence, the state vector in the last iteration constitutes
the updated state X+

k .
Section 4 shows and analyzes the results obtained by an implementation of

this SLAM approach using an EKF and an IEKF.

4 EXPERIMENTAL RESULTS

In order to show the validity of our proposal, some image sequences were
recorded in diverse conditions using a simulated and a real robot. Later our
algorithms were run off-line on these recordings.

4.1 Experiments with a Simulated Environment

For the simulated experiments the underwater robot simulator UWSim [23] was
used. The environment where the simulated robot was deployed consisted of a
mosaic of a real sub-sea environment. Pictures shown in Figure 2 are examples
of the imagery gathered by the simulated underwater camera.

The simulated mission consisted in performing a sweeping task. During the
mission execution, images obtained from a monocular bottom looking camera
were gathered. The robot pose was also recorded but solely used as ground
truth. Altitude was constant in these simulations. The visual odometry was
computed in 2D through the homography that transforms image features inter
frames.

Tests were performed with two different keyframe separations, 5 and 10
and using an IEKF instead of an EKF, to minimize linearization errors. With
the configuration of the simulated environment particularly set for these tests,
running the algorithm with a separation of 5 frames means, in the straight parts
of the trajectory, an overlap between consecutive keyframes of 55% of the image.
A separation of 10 frames leads to an overlap close to a 10%.

In order to test the robustness of our approach in front of the drift accu-
mulated in the visual odometry estimations, we added synthetic noise to the
odometry data. Five noise levels were tested for each keyframe separation. The
noise used is additive zero mean Gaussian and the covariance ranges from a
[Σx,Σy,Σθ] = [0, 0, 0] (noise level 1) to [Σx,Σy,Σθ] = [4 · 10−5, 4 · 10−5, 5 · 10−4]
(noise level 5). The random noise was added to each visual odometry estimate.
For each configuration (5 or 10 frames of separation between keyframes) and
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Figure 7: Example of the results obtained with noise level 2 and keyframe separation
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noise level, 100 trials have been performed in order to obtain significant statisti-
cal results. The resulting SLAM trajectories have been compared to the ground
truth in order to quantitatively measure their error. The error of a SLAM tra-
jectory is computed as the mean distance between each of the SLAM estimates
and the corresponding ground truth pose.

The results obtained when using a keyframe separation of 5 are shown in
Figure 6-a and those obtained using a keyframe separation of 10 are depicted
in Figure 6-b. It can be observed that the SLAM error is significantly below
the error in dead reckoning. It is clear that the differences due to the keyframe
separation and the noise level are very small. Thus, these experiments suggest
that our proposal leads to pose estimates whose quality is nearly unrelated to
the dead reckoning noise and to the keyframe separation, as long as the overlap
between consecutive keyframes is sufficient.

Also, it is remarkable that the error covariances, which are shown as 2σ
bounds in Figure 6, are small and significantly lower than those of dead reck-
oning. That is, even if very different dead reckoning trajectories are used, the
SLAM results are very close to the ground truth.

Figure 7-a shows an example of the results obtained with noise level 2 and
a keyframe separation of 10. The figure shows the resulting SLAM trajectory,
which is almost identical to the ground truth. This is especially remarkable
taking into account that the starting dead reckoning data, as it can be seen, is
strongly disturbed by noise. Figure 7-b depicts the data associations that have
been performed during the SLAM operation.
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Figure 8: The Fugu-C

4.2 Experiments in a Water Tank

4.2.1 Experimental Setup

Experiments in aquatic environments were conducted with the Fugu-C plat-
form (Figure 8). Fugu-C is a low-cost mini-AUV developed at the University
of the Balearic Islands. The sensor suit for this vehicle includes two stereo rigs,
one looking forward and another one looking downward, a MEMS-based Iner-
tial Measurement Unit and a pressure sensor. Even so, only the information
gathered by the down-looking camera was used for the experiments described
below.

In order to feed our SLAM approach with odometric visual information, and
considering that the robot moves in 3D and its visual equipment, two off-the-
shelf stereo visual odometers, LibViso2 [12] and Fovis [14] were assessed and
compared to be used in our experiments with the robot.

These two approaches were initially selected because of three main reasons:

1. Both systems are based on similar principles and are perfectly suitable
for real-time stereo vision-based applications. They simplify the feature
detection and tracking process, accelerating the overall procedure and min-
imizing the number of failures. Both algorithms have been tested in real
platforms with high dynamics, such as cars and aerial vehicles.

2. A pure stereo-3D process is used to estimate motion in 6DOF.

3. The large amount of feature matchings makes it possible to deal with high
resolution images, which is especially important for an stereo odometer.

By experimentally evaluating both odometers in undersea conditions, we ob-
served that LibViso2 translation errors were smaller than those of Fovis. Also,
both odometers provided rotation errors below 0.008o/m [25]. As a consequence
of these assessment, LibViso2 was used as the visual odometer in these exper-
iments. The LibViso2 motion estimates in the x-y plane constitute our 2D
odometric data and the z position estimates provide the height information.
Furthermore, the pressure sensor was used to correct the drift in z caused by
the odometry. Both odometric data and corrected height were provided at 10Hz.

It is worth to emphasize that we use stereo odometry due to the limited sen-
sor suit of our robot. Of course, the described methodology can be reproduced
using other odometers such as a DVL, if available.

The first experiments with the robot were conducted in a pool 7 meters
long, 4 meters wide and 1.5 meters depth, whose bottom was covered with a
printed digital image of a real seabed. In order to obtain a ground truth in this

15



Figure 9: Examples of images obtained during the experiments
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Figure 10: Ground truth and odometry corresponding to (a) first mission, (b) second
mission and (c) third mission.

environment, each gathered image was registered to the whole printed digital
image, which was previously known.

In this environment, three missions were executed. The first mission con-
sisted in a single loop, the second mission was a sweeping trajectory and the
third one was also a single loop. However, prior to the execution of the third
mission, several objects such as amphoras and rock replicas were deployed inside
the pool in order to simulate a realistic, non flat, sea floor. Figure 9 shows some
examples of the imagery gathered during the third mission. Figures 10-a, 10-b
and 10-c show the ground truth and the visual odometry corresponding to the
first, second and third missions, respectively. It can be observed that, although
visual odometry properly approximates the overall trajectory, there is also a
significant drift error.

4.2.2 Tuning the Search Radius

As stated in Section 3.2.1, deciding which of the gathered images may over-
lap with the current one is a crucial issue to save execution time. Although
RANSAC would reject two non-overlapping images, such rejection is time con-
suming. Thus, it is important to feed RANSAC only with images that are likely
to overlap and avoid unnecessary computation.

According to Equation 8, the selection of candidate overlapping images can
be performed using a fixed search radius df . In this way, given the current
image, only those whose estimated position is within the search radius are sub-
sequently tested using RANSAC. As it was explained in Section 3.2.1, using a
constant value is reasonable in surveying missions as they tend to be executed
at a constant altitude.

In order to tune df for our experiments we computed the theoretical radius
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Mission min max mean std

1 2.33 2.64 2.51 0.03
2 4.02 4.47 4.27 0.05
3 2.06 2.62 2.36 0.1

Table 1: Minimum, maximum, mean and standard deviation of dmax for each of the
three missions. Data are expressed in meters.
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Figure 11: Count of RANSAC failures and successes depending on the search radius
for (a) mission 1, (b) mission 2 and (c) mission 3.

dmax of Equation 7 for every image pair that could be matched during the
SLAM execution. This data was recorded for each of the three aforementioned
missions. To do so the height information provided by the visual odometer and
the pressure sensor was used.

Table 1 summarizes the results by showing the minimum and maximum
values of dmax, as well as the mean and the standard deviation. Since in those
experiments the robot navigated at an altitude with low variations, dmax values
computed for all the possible image pairs are always in a very narrow range,
reflected in a small standard deviation. The differences between missions are
due to the differences in altitude between them.

According to this data, a good criteria to select a fixed search radius is to
use the mean values. Thus, a first approximation is to set df = 2.51m in the
first mission, df = 4.27m in the second mission and df = 2.36m in the third
one. However, this criteria tends to be too optimistic. In particular, even if two
images actually overlap, the overlapping region may be too small or produce
too few features for RANSAC to match them properly.

In order to obtain a more adequate value for df , we proceeded as follows.
First, the three missions were performed using our SLAM proposal with the
obtained mean values as df . Thus, the mean values constitute our initial guess.
Every time RANSAC was executed, the estimated distance between the two
compared images was recorded and labeled as a success or a failure depending
on the RANSAC output: if RANSAC was able to find a roto-translation between
the images we considered it a success whilst those cases in which RANSAC could
not find such roto-translation were considered a failure. Failures are, precisely,
the situations we want to avoid as they correspond to non overlapping images
rejected by RANSAC, which is time consuming.

Using this information, the amount of successes and failures can be computed
as a function of the distance between images. Also, it is clear that the number of
failures and successes that will appear if a certain search radius is selected is the
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Mission True positive False positive

1 64.03% 14.89%
2 77.13% 9.76%
3 56.49% 18%

Table 2: True and false positives for the three mission when using the proposed search
radius df .

Mission df dmax Improvement

1 186.58 s 726.84 s 74.33%
2 416.35 s 2243.74 s 81.44%
3 143.54 s 479.57 s 70.07%

Table 3: Execution times using the proposed search radius (df ) and the theoretical
one (dmax).

sum of failures and successes corresponding to all the distances lower or equal
to the selected radius. Figure 11-a, 11-b and 11-c summarize this information
for the first, second and third mission respectively. It can be observed how
the number of failures increases with the search radius whilst the number of
successes seems to stabilize from a certain search radius onward.

Our goal is to select a search radius for each mission so that the number
of failures is reduced whilst the number of successes is as large as possible.
According to the obtained data, the optimal search radius is 0.6m during the
first mission and 0.7m during the second and third missions. Figure 11 shows
clearly how these values correspond to the region where the number of failures
is very low and the number of successes has reached a highly acceptable local
maximum. Thus, henceforth during the first mission only those images whose
distance to the current one is below df = 0.6m will be analyzed by RANSAC.
The same criteria will be applied during the second and third missions using
df = 0.7m in both cases.

In order to evaluate the selected values for df , we measured the number of
true and false positives they produce. In this context, a true positive appears
when a couple of images that RANSAC would not be able to match is discarded
because of the search radius prior to the RANSAC execution. A false positive
corresponds to the situation in which two images that RANSAC actually could
match are discarded because of the search radius. In other words, a true positive
appears when discarding a RANSAC fail and a false positive appears when
discarding a RANSAC success. Table 2 summarizes the results.

For example, in the second mission the number of RANSAC executions is
reduced a 86.89% (77.13 + 9.76). That is, for both, true and false positives,
RANSAC is not executed, and only a 9.76% correspond to discarded images
that should have been registered.

Table 3 shows the improvements in the execution time when performing
SLAM using the proposed search radius df compared with the execution time
when using the purely geometrical criteria dmax. The time was computed ex-
ecuting a Matlab implementation on an Intel Centrino 2 at 2.4GHz, with only
one CPU kernel used, and running Ubuntu 10.04. The separation between
keyframes was 30 frames.
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It can be seen that the reduction in the running time is related to the per-
centage of skipped RANSAC executions shown in table 2.

It should be noticed that, although the process has been tested using a
non optimized codification running on a regular computer, the execution time
obtained for each mission, when df is used, is close (slightly above) to the
real mission duration. For instance, the navigation time for mission 1 was 169
seconds while the whole SLAM process took 186.58 seconds. Thus, obtaining
an on-line version is straightforward.

Although the experimental method to tune the search radius requires a train-
ing work each time the robot is deployed in an unknown environment, it is
worthwhile performing the proposed approach taking into account the huge re-
duction in computation time.

Further experiments will analyze the accuracy of the pose estimates based
on the df values obtained here.

4.2.3 Quantitative evaluation

As stated in section 4.2.1, three different missions have been conducted in a
water tank. The first mission consisted in a single loop, the second one consisted
in a sweeping trajectory and the third mission consisted in a single loop over a
non-flat terrain. Both ground truth and visual odometry have been shown in
Figure 10. In the three cases, a significant odometric error appears.

In order to provide a complete evaluation, the goal was to compare the
quality of every main component of the present approach.

In our implementation, all the following combinations were easily config-
urable and interchangeable, allowing the achievement of the different results
exposed later.

First, for each of the three missions, our approach has been tested using
both, IEKF and EKF, in the update step. For each filter update method, the
system has been tested using both, the images as they are provided by the
camera and filtering them using a Butterworth low pass filter as suggested in
section 2. For each of these configurations, three different keyframe separations
have been tested: 20 and 30 frames to show the SLAM behavior in a realistic
operation and 90 frames to push the system to its limits.

In addition, for each filter update, image treatment and keyframe separation,
the visual odometry was corrupted with 5 different levels of additive zero mean
Gaussian error. The covariance of this noise ranged from [Σx,Σy,Σθ] = [0, 0, 0]
in noise level 1 to [Σx,Σy,Σθ] = [4 · 10−5, 4 · 10−5, 4 · 10−4] in noise level 5. For
each of these cases, 50 trials were executed. This leads to a total of 9000 trials.

The error of each SLAM estimate in each trial was computed by comparing
it to the corresponding ground truth pose. The error of each trial is defined as
the mean error of the corresponding SLAM estimates. This error was finally
divided by the true trajectory length of the corresponding mission, provided by
the ground truth. In this way, the error units are meters of error per traveled
meter. Thanks to this, the errors obtained for each of the three missions can be
compared and also joined in order to obtain an overall measure of quality.

The first relevant observed results is that, in all cases, the statistical differ-
ences between keyframe separations of 20 and 30 are barely appreciable. This
leads to a similar conclusion to the one obtained under simulation: as long as
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Figure 12: Mean and standard deviation of the errors corresponding to 30 and 90
keyframe separations for (a) raw images and EKF update, (b) raw images and IEKF
update, (c) filtered images and EKF update and (d) filtered images and IEKF update.
The standard deviation is depicted as 0.1σ to provide a clear representation.

sufficient overlap between consecutive images is provided, the quality of our
proposal is scarcely influenced by the keyframe separation.

The results comparing keyframe separations of 30 and 90 are shown in Fig-
ure 12. All the aforedescribed test cases are shown. In all four cases it can be
seen a significant improvement when using 30 frames instead of 90. Also, as the
noise level increases, the error when using a separation of 30 frames barely in-
creases, whilst using 90 frames leads to a growing error. Moreover, the standard
deviation of the error remains almost constant when using 30 frames between
SLAM executions, suggesting that even large differences between initial esti-
mates, reflected by the large odometric covariance, lead to SLAM results close
to the ground truth. Thus, using 30 frames instead of 90 provides a signifi-
cant improvement in the pose estimates. Accordingly, henceforth the keyframe
separation used during this quantitative evaluation will be 30 frames. How-
ever, either using 30 or 90 frames, the SLAM estimates provide an important
improvement with respect to the stereo visual odometer.

Figure 12 also provides some insights regarding the other proposed SLAM
components. For example, it can be observed in Figures 12-a and 12-b how the
IEKF update and the EKF update provide similar results. The same can be
observed when comparing Figures 12-c and 12-d. This suggests that, at least in
these missions, the reduction of linearization errors thank’s to the use of IEKF
is nearly unobservable. Additionally, when comparing the results corresponding
to filtered and non filtered images it becomes clear that image filtering actually
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Figure 13: Comparison between pose errors using raw images and filtered images,
combined with an (a) EKF and (b) IEKF. The standard deviation is depicted as 0.1σ
to provide a clear representation.

Noise level 1 2 3 4 5

Visual odometry 0.023 0.033 0.037 0.043 0.049
SLAM 0.008 0.009 0.01 0.011 0.013

Improvement 62.8% 71.0% 72.1% 74.0% 74.0%

Table 4: Comparison of errors in visual odometry and SLAM using a keyframe sepa-
ration of 30, EKF update and filtered images. Errors are expressed in meters of error
per travelled meter.

leads to an appreciable improvement in the accuracy of the pose estimation.
Figure 13 compares explicitly the errors obtained using raw images and fil-

tered images combined with both, an EKF and an IEKF. It can be observed
that filtering the images actually provides a significant improvement in terms
of error reduction with respect to the results obtained using raw images. Com-
paring Figures 13-a and 13-b confirms that the use of an IEKF barely changes
the results. Also, the error standard deviation corresponding to tests conducted
with filtered images are smaller than those resulting from the use of non-filtered
images.

In summary, the option that combines important reductions in running time
with smallest errors in the pose estimates is using a keyframe separation of 30
frames, an EKF for the update step and a previous image filtering to enhance
image contrast.

Table 4 summarizes the results by comparing the initial guess provided by
the visual odometer and the SLAM output. The percentage of improvement is
also shown.

4.2.4 Qualitative evaluation

Figures 14, 15 and 16 show some representative examples of the SLAM operation
under different conditions for the three missions. In all cases, EKF update and
filtered images were used.

Each figure shows, for its particular mission, the robot trajectory, estimated
composing the odometry and the SLAM pose estimates of executions with 30
and 90 keyframes of separation with noise levels 1, 3 and 5. All plots show the
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Figure 14: Example results corresponding to the first mission. The first row compares
visual odometry and ground truth. Next rows correspond to different keyframe sep-
arations. First, second and third columns are related to noise levels of 1, 3 and 5 ,
respectively.

positive image registrations in blue and also incorporate the ground truth to
facilitate its comparison with the resulting path. The robot is included in the
representation as a triangle pointing towards the direction of motion.

It can be observed that, in the three missions, the final results are scarcely
influenced by the initial conditions (i.e. the noise level).

4.3 Subsea Experiments

A final experiment was conducted in real undersea conditions, in Port de Vallde-
mossa (Mallorca, Spain). Being a real environment, the floor was non flat, fully
covered by stones and algae, and the robot motion was influenced by small cur-
rents and waves. Also, due to the small waves and the sun light, some minor
flickering and shadows appeared in the images. Figure 17 shows some examples
of the imagery gathered during this experiment.

Ground truth was not available. However, the desired mission was to perform
an approximately eight shaped trajectory with the second loop larger than the
first one, and ending at the same starting point. One artificial marker was
placed on the seabed to assure that the endpoint of the trajectory corresponded
with the initial point. The search radius was experimentally tuned to 1.4m.

Figure 18-a shows the obtained results using a keyframe separation of 20
frames. All plots show the positive image registrations in blue, the trajectory
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Figure 15: Example results corresponding to the second mission. The first row com-
pares visual odometry and ground truth. Next rows correspond to different keyframe
separations. First, second and third columns are related to noise levels of 1, 3 and 5,
respectively.
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Figure 16: Example results corresponding to the third mission. The first row com-
pares visual odometry and ground truth. Next rows correspond to different keyframe
separations. First, second and third columns are related to noise levels of 1, 3 and 5,
respectively.

Figure 17: Some images gathered during the experiment in the sea, in Port de Vallde-
mossa. The image on the first row-first column corresponds to the start of the tra-
jectory and the image on the third row-third column corresponds to the end. The
trajectory was performed at a constant depth.
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Figure 18: Visual odometry (dashed red line) and SLAM (continuous black like) pose
estimates in Port de Valldemossa using keyframe separations of (a) 20 frames, (b) 30
frames and (c) 60 frames

computed from the visual odometry in red and the SLAM trajectory in black.
Notice how loop closings are found not only in the origin-end of the trajectory
but also along it. Again, the robot is represented as a triangle, with one of its
vertex pointing towards the direction of motion.

It can be observed how visual odometry presents an important drift in this
scenario. To the contrary, the SLAM estimates are much closer to the real eight
shaped trajectory and, thanks to the several loop closings established during
the mission execution, the trajectory is considerably correct, ending at the same
point where it started.

The same applies to Figure 18-b and Figure 18-c, where the results for
separations of 30 frames and 60 frames are shown.

5 CONCLUSION AND FUTURE WORK

This paper proposes a simple and practical approach to perform underwater
visual SLAM, which improves the traditional EKF-SLAM by reducing both the
computational requirements and the linearization errors. Moreover, the focus of
this paper is the image registration, which is used in the SLAM data association
step, making it possible to close loops robustly. Thanks to that, as shown in
the experiments, the presented approach provides accurate pose estimates both
using a simulated robot and a real one, in controlled and in real underwater
scenarios.

Nonetheless, the presented approach makes two assumptions that limit the
environments where the robot can be deployed. On the one hand, it is assumed
that the camera is always pointing downwards. Although this may seem a hard
requirement, the experiments with the real robot show that the small oscillations
in roll and pitch inherent to the robot motion are not significantly influencing
the results of our approach. However, avoiding this requirement is one of our
future research lines. The simplest way to solve this problem is to use the roll
and pitch provided by the gyroscopes in the IMU and use this information to re-
project the feature coordinates. On the other hand, the proposal presented here
assumes a locally flat floor. Some experiments included in this paper show that
real oceanic floors with no significant relief are well tolerated by the proposal
presented here. However, incoming work is currently focused on using stereo
data to overcome this restriction and to perform 3D SLAM.
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