
Appropriate consistent replicated voting for increased
reliability in a node replication scheme over FTT

Sinisa Derasevic, Manuel Barranco, Julián Proenza
DMI, Universitat de les Illes Balears, Spain

sinishadj@gmail.com, manuel.barranco@uib.es, julian.proenza@uib.es

Abstract—In the context of critical applications there is an
increasing interest in having Distributed Embedded Systems
(DESs) that are able to operate in dynamic environments, while
at the same time reaching a high reliability. The Flexible Time-
Triggered communication paradigm (FTT) is designed to support
the QoS and real-time requirements of the traffic of these systems.
However, FTT does not provide fault tolerance. This paper
explains our on-going work towards designing a consistent and
highly-reliable voting protocol which supports node replication
on DESs that use FTT switched Ethernet. In particular, we
propose a protocol for the node replicas to vote consistently on
messages exchanged through an FTT Ethernet network that uses
time redundancy, while trying to maximize the reliability that
can be achieved thanks to the redundancy of the nodes and the
communication subsystem itself.

I. INTRODUCTION

This work is a part of the ongoing FT4FTT project. The
aim of the project is to provide fault tolerance mechanisms
for adaptive DES that use the Flexible Time Triggered (FTT)
communication paradigm [1] in order to increase reliability,
i.e. the ability of the system to provide continuous operation.

A widely accepted technique for dealing with permanent
faults in the nodes is node replication. Our design uses active
replication [2] where each node replica executes the same
code, thus tolerating hardware faults in the nodes, but not
software ones. Yet, we will generally follow the terminology
of N-Version Programming (NVP) [3], despite NVP assuming
replicas with design diversity. Each replica, after some partial
execution, called segment, produces an output, called cc-
vector. Cc-vectors are then exchanged among replicas and the
voting procedure in each node replica obtains the result, called
consensus cc-vector, which each node uses in the computations
of the next segment.

The voting procedure in each node replica needs to have
the same input values (cc-vectors), so each voting produces
the same result. The problem of providing the same input
values to all replicas is called external replica determinism
enforcement [4]. One possibility to achieve external replica
determinism for cc-vectors in FTT is to enforce full consistency
when exchanging them, i.e. to enforce that each cc-vector sent
from one of the replicas to the rest, either is received by all
of them or by none. A protocol well suited for this purpose is
the one proposed in [5].

However, although external replica determinism could be
achieved in that way, to require full consistency is too restric-
tive, since for voting it is enough that a majority number of
replicas have consistently exchanged a sufficient number of cc-
vectors. In fact, to require full consistency can unnecessarily
hinder the voting procedure and even provoke a quick attrition
of the available node redundancy. For instance, a fault prevent-
ing a single replica from receiving cc-vectors will be enough
to impede the completion of the voting from then on, as full

Node

1

…

Switch

Node

2

Node

N

Fig. 1. System Architecture.

consistency will not be achieved any longer for any cc-vector.
Moreover, since [5] was not specifically designed to support
a voting mechanism, it presents some features that makes it
more difficult to fully exploit node redundancy in this context.

Thus, the objective of this paper is to propose a protocol for
voting in FTT that fully exploits the available node redundancy
thus increasing the system reliability. This work takes [5]
as a starting point and, then, modifies and extends it in
several aspects. First, it changes [5] to improve the reliability
with which messages are exchanged. Second, it eliminates
the requirement of achieving full consistency for accepting a
message (cc-vector) for voting. Third, it proposes what we
call the Voting Set-Up Algorithm (VSUA), i.e. an algorithm
for the replicas to consistently decide which cc-vectors should
be accepted and which replicas should vote using them.

The paper emphasizes the criteria that VSUA uses to select
the cc-vectors and to select the voting replicas, and the way
in which it finds an appropriate trade-off between these two
criteria. This is an important issue as it is not always possible
to simultaneously maximize both, the number of cc-vectors
and replicas that vote on them. On the one hand, to maximize
the number of cc-vectors used for voting increases the quality
of the voting itself. On the other hand, to maximize the number
of replicas is a key point for preventing redundancy attrition,
as only the replicas that vote in a given segment can continue
voting in the subsequent one.

Section II presents the architecture of the system, its fault
model, its fault tolerance mechanisms, and the protocol [5].
Section III proposes a sub(protocol) that modifies and extends
[5], and describes the algorithm for choosing the cc-vectors
and the replicas for voting. Finally, Section IV concludes the
paper and points out future work.

II. SYSTEM & INITIAL CONSISTENCY PROTOCOL BASICS

A. System architecture

The system consists of N nodes, some of which are replicas
of the same node, interconnected by a switched Ethernet
network (Fig. 1). The protocol used is a version of FTT [1]
called Hard Real Time Ethernet Switch (HaRTES) [6]. FTT
is a master/multi-slave protocol where a single node, called
FTT Master, controls the communication of multiple slaves.
In HaRTES the master is integrated within the switch.

The communication is divided into fixed-size cycles called
Elementary Cycles (ECs). Each cycle starts by the FTT Master

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.



broadcasting a special control message called Trigger Message
(TM) which conveys information about which messages should
be transmitted, and by whom in the current EC. The remainder
of the EC is divided into two consecutive windows. The first
one, called synchronous window, is used for the transmission
of periodic messages, and the second one, called asynchronous
window, is used for the transmission of aperiodic ones.
B. Fault model and fault tolerance mechanisms

Although the HaRTES switch already includes some error-
containment mechanisms [7], in the context of the FT4FTT
project the switch and the rest of the system is provided
with additional mechanisms to tolerate permanent and transient
faults in the nodes and in the network.

Nodes can fail in arbitrary manners. To prevent error propa-
gation from a faulty node to the rest of the system an enhanced
HaRTES switch is used. The enhanced switch contains the
errors coming from the nodes by policing the traffic coming
to its ports and dropping any message it deems incorrect.
This enforces incorrect computational failure semantics of each
node from the point of view of the other nodes as needed by
the voting procedure. Since this switch is crucial in our system,
it is enforced to exhibit restricted (crash) failure semantics by
duplicating and comparing its internal circuitry.

We have designed FT4FTT for tolerating both permanent
and transient node faults by means of active node replication
[2] with majority voting, which corresponds to an error com-
pensation approach. Permanent faults affecting the network
itself, i.e. the switch and the links, are tolerated by replicating
the switch and the links as a part of an ongoing work [8].
Finally, in order to tolerate transient faults affecting the links,
in FT4FTT the unused bandwidth is exploited for temporal
redundancy, i.e. critical messages are sent multiple times in the
same (or in different ECs) in order to increase the probability
with which they are eventually received.
C. Initial consistency protocol

As said in Section I, we extended and modified the con-
sistency protocol proposed in [5] to make it suitable for the
voting protocol proposed here. Thus the basic aspects of [5]
are explained next.

[5] is based on the publisher-subscriber model and consists
of 4 phases, whose position within the EC can be seen
in Fig. 2. The Schedule phase starts with the FTT master
broadcasting a TM containing the traffic schedule, which is
the list of messages that the publishers have to transmit in the
next synchronous window. Next, in the Broadcast phase, each
publisher transmits in the synchronous window the messages
indicated by the TM. In the Acknowledge phase each subscriber
sends in the asynchronous window a notification (ACK) for
each message that it has correctly received. Finally, in the
Accept phase, each message is either accepted or rejected in a
consistent manner depending on whether or not all the ACKs
for that message have been received or not.

This last phase has two critical points. The first one, called
Accept Point, occurs at the end of the asynchronous window.
At that point the FTT master has all the information, i.e. all the
ACKs, and makes a decision on whether each specific message
must be accepted or rejected. Then, it generates a vector, the
EC-Status vector, that includes the information about each

Fig. 2. EC Schedule.

message delivery. Specifically, this vector includes 1 bit per
message indicating whether that message must be accepted
(the bit is set to true), or it must be rejected (the bit is set to
false). This vector is a part of the TM and is populated by the
FTT master at the beginning of the incoming EC. The second
point, called Delivery Point, happens after the TM contained
within the EC-Status vector has been received and decoded
by all of the slaves. The TM is sent multiple times at the
beginning of the EC to ensure that all nodes receive it.

In order to make this consistency protocol resilient to the
lost of messages and ACKs, a retransmission of each message
that has not been acknowledged is scheduled by the FTT
master, at least, in the next EC [5].

III. CONSISTENT MAJORITY VOTING PROTOCOL

A. Cc-vector exchange protocol

The (sub)protocol we propose for exchanging cc-vectors
modifies and extends [5]. The modifications are devoted to im-
prove the reliability with which those messages are exchanged.

a) [5] does not specify how many times an inconsistent
message should be retransmitted. Thus, we propose to dedicate
an exchange round, constituted by k ECs, to try to consistently
exchange the cc-vectors. In each one of the round’s ECs
the switch orders the retransmission of the cc-vectors (which
then triggers the retransmission of the ACKs) that have not
been consistently received yet. Moreover, each replica sends n
copies of each cc-vector it is requested to re/transmit. Also, in
case of using a duplicated star topology (as proposed in [8]),
we advocate increasing reliability further by forcing replicas
and switches to send each copy of every message through
each replicated link. Finally, to tolerate transient faults and
distinguish them from permanent ones, k and n must be
selected to ensure that a message is not consistently exchanged
in a given round only if a permanent fault occurred.

b) [5] does not either specify who should retransmit the
messages. We consider that to rely on the publishers for
retransmitting is not reliable, since a faulty publisher could
retransmit a message different from the one that is expected,
thereby violating replica determinism. In contrast, the switch
cannot carry out incorrect retransmissions as it presents crash
failure semantics. Thus, we propose that the switch retransmits
any message it has correctly received and that has not been
consistently acknowledged. The only messages that publishers
should retransmit are those that the switch has never received.
Note that if a publisher retransmits an incorrect version of
a message the switch never received, replica determinism will
not be violated as neither the switch nor any of the subscribers
would have received the original message.

c) [5] specifies that, in each (re)transmission trial of a
message, the subscribers that correctly receive the message
have to discard it if the message is not consistently received
by all the subscribers. This has the disadvantage of decreasing



Node

Replica 1

Node

Replica 2

Node

Replica 3

C

A

BB

Fig. 3. Message exchange between 3 replicas.

the chances of a message being eventually received by all
subscribers, as correct but inconsistent receptions are wasted in
each trial. Thus, we propose that the subscribers keep during
all the ECs of the round each message they correctly receive.

d) Finally, [5] establishes that a message can only be
accepted if all replicas have consistently acknowledged it (full
consistency). Nevertheless, as explained in Section I, to apply
this strategy for deciding when a cc-vector must be accepted
makes the voting mechanism very sensible to transient or
permanent faults. Thus, we propose to change the acceptance
criterion for whether a cc-vector is accepted.

Since this criterion is part of the Voting Set-Up Algorithm
(VSUA), it will be explained in the next section. However, it
is important to highlight here that to support this algorithm
we needed to substitute the EC-Status vector of [5] by what
we call the Messages Status vector (MS-vector). Since the
VSUA allows voting as long as a majority of cc-vectors has
been consistently exchanged by a majority of replicas, the MS-
vector includes information about which replicas sent its cc-
vector and which replicas acknowledged each one of them.

The master populates the MS-vector and includes it in the
TM. For instance, consider the system constituted by 3 replicas
depicted in Fig. 3, in which each replica sends a cc-vector to
the others. Fig. 4 shows a matrix that represents the content of
the corresponding MS-vector. The first row specifies if replica
1 has sent its message, A, and received the other two, B and
C. More specifically, the first cell (1, A) is set to true if the
switch has received message A sent from replica 1. The other
cells of this row are respectively set to true if (1) replica 1 has
sent ACKs for messages B and C previously received by the
switch from replica 2 and 3, and (2) the switch has received
these ACKs. The meaning of the other rows is analogous.

Although nodes can fail in arbitrary manners, the switch
drops all messages that are incorrect in order to enforce
incorrect computational failure semantics for the nodes. In
particular, the faults that affect the messages used to build
up the MS-vector are treated as follows. An out-of-time cc-
vector/ACK will be dropped by the switch and will hence
manifest as a false within the corresponding cell/s of the
MS-vector. A cc-vector conveying an erroneous value will
be tolerated by the voting mechanism itself. An ACK with
an incorrect value will normally manifest as a false within
the MS-vector. Nevertheless, if the ACK’s content refers to a
wrong but existing publisher, it will manifest as a false true
(impersonation) in the vector. This last case can be tolerated by
forcing subscribers to piggyback within the ACK some kind of
redundant code based on the content of the original cc-vector,
so that the switch can check the correspondence between the
ACK and the original message.

Anyway, a false within the MS-vector compels the FTT-
master to schedule in the next round’s EC the retransmission of

Fig. 4. Messages Status vector.

the corresponding cc-vector. Note that a false within the MS-
vector can change to true after a successful retransmission;
whereas a value true remains true once it is set.
B. Voting Set-Up Algorithm (VSUA)

The Voting Set-Up Algorithm (VSUA) is devoted to de-
ciding which cc-vectors should be used for voting and which
replicas should vote on them. On the one hand, it must
provide the voting of the current segment with at least a
majority of cc-vectors. On the other hand, it has to ensure
that the voting of the current segment takes place in at least
a majority of node replicas, which will thereby be able to
produce sufficient number of inputs (cc-vectors) for the voting
of the next segment. Note that majority = bX/2c+1, where X
is the number of cc-vectors/nodes replicas. Recovery of nodes
once they are excluded from voting is still an on-going work.

Transient faults that provoke that messages are not trans-
mitted/received are tolerated by the spatial and temporal redun-
dancy explained in Section III-A. Thus, the VSUA is designed
to tolerate transient faults that provoke that a node produces
an erroneous cc-vector value for the whole round and, also,
permanent faults that provoke so or that prevent messages
from being transmitted/received. The guaranteed number of
faults the VSUA can tolerate is X − majority, but in some
particular cases, as will be shown later, even more. The VSUA
is designed for any number of replicas. However, for the sake
of clarity, in this section we illustrate it for just 3; which is
in fact the number of replicas in most highly-reliable systems
due to cost restrictions.

Recall that any false in the MS-vector can only be the
consequence of a permanent fault preventing a replica from
re/transmitting its cc-vector or ACK. Also note that the VSUA
assumes that no more than one permanent fault occurs during
a round of the cc-vector exchange protocol.

The criteria for selecting the cc-vectors and replicas could
be to maximize the number of both of them. However, as
already said, there can be a conflict when trying to do so
and, thus, the VSUA must find a compromise. To illustrate
this conflict consider that the final MS-vector at the end of a
round in the system of Fig. 3 is as shown in Fig. 5. Replica
2 has not acknowledged the cc-vector sent from replica 3, C.
In such a case the VSUA has two options. The first one is to
maximize the number of cc-vectors and, then, use the three
messages (A, B, C) for voting in replicas 1 and 3. The second
one is to maximize the number of replicas, so that all replicas
should vote using the messages A and B.

The key point to choose the most reliable option is to
elucidate which replica is affected by the permanent fault,
3 or 2. To diagnose this, note that replica 3 succeeded in
transmitting C to the switch, i.e. (3, C) = true. Thus, even
if replica 3 had permanently failed after the switch received
C, replica 2 should have acknowledged C, as the switch is
the responsible for retransmitting any message it receives and,



Fig. 5. An example of Messages Status Vector.

hence, from the point of view of replica 2, the switch has
enforced that C has been retransmitted k · n times. Therefore,
replica 2 is the one affected by the permanent fault.

In fact, independently of the number of replicas, N , it can
be concluded that the VSUA has to prioritize the number of
cc-vectors over the number of replicas. This is because if a
subscriber does not acknowledge a cc-vector the switch has
successfully received, then the subscriber is certainly affected
by a permanent fault and it should be excluded from the
voting. Moreover, as shown in the example, this criteria allows
tolerating more than the guaranteed limit of number of faults.
Specifically, the VSUA tolerates 1 permanent fault (node 2)
and can tolerate an additional transient fault that corrupts the
value of a cc-vector since it uses 3 cc-vectors to vote.

This criteria is reflected in Algorithm 1, which outlines
the pseudo JAVA code of the VSUA. First, the MS-vector is
populated by random values (line 2). Then if some cell in the
diagonal, (i,Messagei), is false the VSUA populates the whole
column Messagei with false values (line 3), since no subscriber
can acknowledge a cc-vector the switch has not correctly
received. Then, the VSUA inspects whether a majority of cc-
vectors have been consistently acknowledged by a majority of
replicas, i.e. it checks if a majority of columns are set to true
in a majority of rows (lines 4-15). In order to prioritize cc-
vectors over replicas, the VSUA starts by considering that the
majority of cc-vectors equals the total number of cc-vectors,
M = S (line 1). Then, if it does not find a majority of replicas
for this majority of cc-vectors, it decreases by one the number
of cc-vectors that are considered as a majority, i.e. M−1 (line
4). The VSUA does this iteratively until it finds a majority of
replicas that has consistently acknowledged the majority of cc-
vectors, or until the number of cc-vectors that is considered
as a majority is M < bS/2c + 1 (line 4). Note that for a
given majority of cc-vectors there are several permutations
of cc-vectors that could be consistently acknowledged by a
majority of replicas, e.g. with N = 3 and M = 2 the possible
permutations of majority cc-vectors are AB, AC and BC.
However, as only one permanent fault can occur per round, the
replicas are able to consistently acknowledge the cc-vectors of
just one permutation, i.e. the one that VSUA eventually finds.

IV. CONCLUSION AND FUTURE WORK

Although FTT switched Ethernet is specially well suited to
support QoS and real-time flexible communication in DESs in
dynamic environments, it lacks of fault tolerance mechanisms.
This paper presents our work towards providing a highly-
reliable voting protocol supporting node replication in FTT
switched Ethernet. It includes a (sub)protocol for the replicas
to exchange the messages that are needed for voting, and which
is more reliable than an approach previously proposed for
consistently exchanging messages in FTT. On the other hand,

Algorithm 1: Pseudo JAVA code for simulating the VSUA
1 M = S = N = number of messages = number of nodes;
2 msgStVect[N][S] = populateRandValues();
3 inpectAndPopulateDiagonalFalse(msgStVect);
4 while M-- ≥ S/2+1 do
5 nodeList = empty;
6 for i=0; i<N; i++ do
7 nodeHasAllMessages=true;
8 for j=0; j< S; j++ do
9 if not msgStVect[i][j] then

10 nodeHasAllMessages=false;
11 break;

12 if nodeHasAllMessages then
13 nodeList.add(i);

14 if size(nodeList) ≥ N/2+1 then
15 Exit and vote;

it includes an algorithm that does not require full consistency,
but that allows replicas to vote as long as a majority of them
has consistently exchanged a majority of the messages needed
for voting. This strategy allows to better exploit the available
spatial and time redundancy.

The paper explains the algorithm for 3 replicas, but was
implemented in JAVA and successfully simulated for up to 7
nodes and an arbitrary number of faults. We plan to formally
verify the correctness of the algorithm and quantitatively
evaluate the system reliability that can be achieved when using
node replication and the proposed protocol.

V. ACKNOWLEDGEMENTS

This work was supported by project DPI2011-22992 (Span-
ish Ministerio de Economı́a y Competividad), by FEDER
funding, and by the Portuguese government through FCT
grant Serv-CPS PTDC/EEA-AUT/122362/2010. Sinisa Dera-
sevic was supported by a scholarship of the EUROWEB
Project (http://www.mrtc.mdh.se/euroweb), which is funded by
the Erasmus Mundus Action II programme of the European
Commission.

REFERENCES

[1] P. Pedreiras and A. L, “The Flexible Time-Triggered (FTT) paradigm:
An approach to qos management in distributed real-time systems,” in
IPDPS, Proceedings. IEEE, 2003.

[2] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in
Distributed Computing Sys., Proc. 20th Int. Conf., 2000, pp. 464–474.

[3] A. Avizienis et al., “The n-version approach to fault-tolerant software,”
IEEE Trans. Software Eng., vol. 11, no. 12, pp. 1491–1501, 1985.

[4] S. Poledna, Fault-tolerant real-time systems: The problem of replica
determinism. Springer, 1996.

[5] G. Rodriguez-Navas and J. Proenza, “A proposal for flexible, real-time
and consistent multicast in FTT/HaRTES switched ethernet,” in Emerging
Technologies Factory Automation (ETFA), 2013 IEEE 18th Conference.

[6] R. Santos, “Enhanced Ethernet Switching Tecnology for Adaptibe Hard
Real-Time Applications,” Ph.D. dissertation, Universidade Aveiro, 2010.

[7] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and P. Pedreiras,
“Towards preventing error propagation in a real-time ethernet switch,” in
Emerging Technologies Factory Automation, 2013 IEEE 18th Conf.

[8] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a flexible
time-triggered replicated star for ethernet,” in Emerging Technologies
Factory Automation (ETFA), 2013 IEEE 18th Conference on, 2013.


