
Using FTT-Ethernet for the coordinated dispatching
of tasks and messages for node replication

Sinisa Derasevic, Julián Proenza, Manuel Barranco
DMI, Universitat de les Illes Balears, Spain

sinishadj@gmail.com, julian.proenza@uib.es, manuel.barranco@uib.es

Abstract—The Flexible Time Triggered (FTT) paradigm pro-
vides online flexible scheduling for distributed embedded systems
but it does not present adequate fault tolerance mechanisms so
as to reach a very high reliability. Adding the adequate fault
tolerance mechanisms to FTT-based architectures would open
room for adaptive yet highly dependable systems. In this work we
present a fault-tolerant system architecture for control applica-
tions that adds a node replication scheme with voting on top of an
FTT-based system. Using a previously proposed network-centric
approach we show how to coordinate the execution of the different
phases for a typical control application in our system architecture,
i.e. we show how to trigger the execution of tasks in node replicas
and the transmission of messages in the communication channel,
using the underlying FTT protocol. At the end, we demonstrate
how to apply this idea of coordinated dispatching to one concrete
control application, ball-on-plate.

I. INTRODUCTION

This work is done within the scope of the project called
FT4FTT. The aim of the project is to provide fault tolerance
to Distributed Embedded Systems (DES) that use the FTT-
Ethernet communication paradigm [1]. Doing so would allow
to combine the flexible scheduling features of FTT with
the high reliability provided by fault tolerance mechanisms,
thereby opening room for adaptive yet highly dependable
systems. In this project we take advantage of the features
provided by FTT to simplify the design of the fault tolerant
mechanisms we are devising.

Node replication is widely used for tolerating permanent
hardware faults in the nodes. We use active replication [2],
i.e. all replicas of a specific node are identical hardware
components executing identical software, thus, if these node
replicas receive the same input data, they will produce the
same output data. The same input data is provided by a
consistency protocol based on [3]. The voting, performed on
the outputs, compensates for the erroneous output values if at
most a minority of node replicas are faulty and produce these
errors. This is known as error compensation [4]. Our scheme
treats transient hardware faults as if they were permanent ones.
We make no attempt to tolerate software (design) faults, even
though there is no obstacle preventing us form using design
diversity for the nodes’ software instead of active replication.

In this paper our target are control applications. A concep-
tual control system executes 3 phases carried out by a Sensory
subsystem that collects data from the plant; a Controller
subsystem that processes collected data and calculates, by
means of a control law, the action needed to be taken; and
an Actuation subsystem that performs the action set by the
controller subsystem. In our fault-tolerant system architecture

the nodes of the controller subsystem are replicated. Therefore
the sensory subsystem consists of replicated sensors, each
of which is connected to one of the node replicas, whereas
the actuator subsystem is composed of one or more actuators
connected to all node replicas. We will assume that actuators
execute an additional output consolidation [5] phase, i.e. that
each actuator collects the actuation commands from the node
replicas and then typically vote to obtain the final actuation
command. Actuator replication has not been considered for
this work, but our system architecture does not impede its use.

For a control application running on a system based on
node replication, it is necessary to coordinate through the
different control phases the dispatching of the tasks to be
executed and the messages they need to exchange. A possible
approach to do so on top of FTT was presented in [6] for the
CAMBADA robots [7]. However, it uses FTT-CAN [8] and
not FTT-Ethernet, and presents the following limitations: (1)
it does not support a node replication scheme with voting for
tolerating faults; and (2) the network subsystem is aware of the
application (FTT was modified to convey application-specific
knowledge), which provokes an undesirable interdependence
between both of them. Thus, the current paper proposes how
to take advantage from FTT-Ethernet specific features in order
to jointly dispatch tasks and messages in a fault-tolerant control
system that uses node redundancy, while keeping the indepen-
dence of the communication subsystem from the application.

Section II presents the system architecture and organiza-
tion. Section III identifies all the tasks and messages for a
typical control application in our system architecture. Section
IV shows how to dispatch the identified tasks in the node
replicas and the messages in the communication channel using
the FTT-Ethernet specific features. Section V discusses how
to apply the joint dispatching approach for the ball-on-plate
control application [9]. Finally, section VI concludes the paper.

II. SYSTEM ARCHITECTURE AND ORGANIZATION

As shown in Figure 1, our system architecture consists of:

• Nodes. The nodes are the processing units, they can
be used for different purposes and some of them can be
replicated. Among all replicated nodes this work focuses on the
ones that execute tasks related to the control application and
the fault-tolerance actions, i.e. the ones whose tasks interact
with the sensors and actuators, carry out the control law and
do the different voting actions. Nodes communicate among
themselves using FTT, which is a master/multi-slave communi-
cation paradigm where one node, called the FTT-Master, con-
trols the communication of multiple slaves. Communication is

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.



Plant

Node 2

Replica 1

Node 2

Replica 2

Node 2

Replica N

S R

1

S R

2

S R

N

A

HaRTES

…

S R – Sensor Replica

A – Actuator

Node 1 Node N…

Fig. 1. System Architecture.

divided into fixed-size rounds called Elementary Cycles (ECs).
Each EC is further divided into a synchronous window, which
conveys periodic messages, and an asynchronous window for
conveying aperiodic messages. Each EC is initiated by the
FTT-Master that broadcasts a special control message, called
Trigger Message (TM), which instructs which slave should
transmit which message, if any, in the current EC.

• HaRTES. Nodes are connected to a special switch with the
FTT-Master integrated inside, called Hard Real Time Etherent
Switch (HaRTES) [10]. This switch is enhanced for preventing
error propagation and for enforcing incorrect computation
failure semantics of the node replicas from the point of view
of the other node replicas as needed by the voting procedure.
This switch transforms wrong values in the time domain into
omissions and prevents wrong values in the value domain
only in some cases (two-faced behaviours and impersonations).
More details of how these enhancements are done can be found
in [11]. According to this, the voting procedure will receive
from each replica either no value, incorrect value, or correct
value. Then, it will compensate faults of a minority of replicas
that produce incorrect or no values. The switch is a single
point of failure in our system. How to to solve this problem
by replicating the switch is described in [12] and is out of the
scope of this paper. Therefore, in this work we show only one
switch, but assume it is replicated.

• Plant. The plant includes the entities of the controlled
system which interact with the node replicas and vice versa.
These entities are: a) the sensor replicas, each of which is
connected to one of the node replicas b) and the actuator
subsystem, which includes one or more actuators connected to
all of the node replicas.

III. CONTROL APPLICATION PHASES

Classic control applications repeat the sequential cycle
sense-control-actuate periodically with a period called sam-
pling period. However, our system architecture with replication
scheme and voting adds some additional complexity, and
therefore we divide this periodic cycle further phases. As
shown in Figure 2, these phases are the following ones.

• Sense. Each sensor replica produces a value showing the
current plant state and transfers it to the linked node replica.

• Message exchange of sensor values. Each node replica
sends, by means of FTT-Ethernet, the value it obtains from
its sensor to the other node replicas. Note that, as explained
later, it is expected that all replicas provide exactly the same
output. Thus, it is necessary that replicas exchange the sensor

Sense Exchange S. Vote S. Control Exchange A. Vote A. Actuate

C1 C2 C3 C4 C5 C6 C7

Fig. 2. Phases of the Control Application Cycle.

values (and then vote on them) in order to provide the control
algorithm executed in each replica with the same input.
• Voting on sensor values. Each node replica votes on

all sensor values, i.e. the sensor values received from the
other replicas and the local sensor value obtained from the
attached sensor replica. As a result, replicas produce a con-
sensus sensor value. Depending on the value measured by the
sensors, different kinds of matchings are possible by the voting
procedure [13]. Among them the most relevant ones for control
applications are the exact match, when bit-by-bit identical data
is expected, and the numeric match, when small differences are
acceptable.
• Control. Each node replica uses the consensus sensor

value and calculates an actuation value. In our case study we
consider that a PID controller [14] is used as control algorithm.
• Message exchange of actuation values. Each node replica

sends its obtained actuation value to the other node replicas
by means of FTT-Ethernet.
• Voting on actuation values. Each node replica votes on

all actuation values, i.e. the actuation values received from the
other node replicas and the locally calculated actuation value.
As a result, replicas produce a consensus actuation value. For
this case the match used by the voting procedure is exact
match, since all of the node replicas are expected to produce
exactly the same value (active replication).
• Actuate. Each node replica sends its actuation value to

an actuator device. Typically an output consolidation of the
received values [5] is done in the actuator afterwards, and
finally the actuator device performs its actuation.

Note that the sum of the Worst Case Execution Time
(WCET) of each phase (Ci in Figure 2) has to be less than
or equal to the sampling period (T ), in order not to have a
negative impact on the control performance, i.e.

∑7
i=1 Ci < T .

IV. USING FTT-ETHERNET FOR COORDINATED
DISPATCHING OF TASKS AND MESSAGES

In this work we propose how to jointly dispatch both tasks
related to the control application and the voting mechanism,
and the periodic messages related to these tasks, i.e. the
messages used in the message exchange of sensor values and
the message exchange of actuation values phases.

Specifically, to trigger the periodic messages we propose
using the service already provided by the Trigger Message
(TM). For that, it is necessary to build a static off-line schedule
of these messages and, then, to include the results of this
schedule within the Synchronous Requirements Table (SRT).
Figure 3 shows an example of the SRT after including these
results. Note that all messages’ time parameters, i.e. period,
deadline and offset (release instant delay) have to be expressed
in EC multiples. Also note that for these periodic messages we
do not use the main feature of FTT, which is flexibility, i.e.



Fig. 3. Synchronous Requirements Table (SRT).

the ability to change the communication parameters on the fly.
This is because we need to guarantee that the messages related
to the fault-tolerant execution of the control application are
schedulable. However, this does not prevent us from including
in SRT other traffic that uses the flexibility features of FTT.

For dispatching the tasks we also propose to use the TM,
but unlike the previous works [6] and [7], we do not modify
the TM to contain the information about the dispatching of
tasks. This is because we do not want the network subsystem
to be aware of the application executed on top of it, but
only to know which messages are transmitted and when, thus
being consistent with the FTT protocol. Instead, we include
an internal counter, IC, in each node replica for this purpose.
This counter increases each time a TM is received, counting
elementary cycles (ECs). When it reaches the sampling period
number of ECs it is reset. Specific values of this counter
are used for dispatching different tasks in the node replicas.
Additionally, note that the TM includes a sequence number the
Master increases with each newly sent TM. Thus, we propose
to provide each replica with a function that establishes a
correspondence between the IC and the TM sequence number.
In such a way, if the IC value is affected by a fault, the replica
can use the TM sequence number for correcting it.

Note that how to enforce that each replica (node) actually
dispatches a given task once it receives the corresponding TM
is already solved in [6]. Thus, here we advocate using the same
strategy for this specific issue. Similarly, the way in which the
tasks that are not related to control/fault-tolerance must be
scheduled to accommodate the tasks triggered by the TM is
an issue that is out of the scope of this paper.

Figure 4 shows a possible specification for dispatching
tasks, within a replica, based on the IC (the internal counter).
Each node replica starts the sense phase when its own counter
reaches the value 0, starts the vote on sensor values phase
when the counter reaches the value C1+C2, and so on. Note
that each IC is expressed in EC multiples.

One important aspect of our system that has to be taken
into account is the EC length, as it determines the system time
granularity. The smaller the EC length, the bigger the time
granularity is and, then, message and task temporal properties
can be expressed more precisely. However, shortening the EC
increases the communication and computing overhead, since
more TMs are going to be sent per unit of time.

Configuring the appropriate EC length depends on the

Fig. 4. Node Replicas Execution Specification.

Fig. 5. ReTiS Ball-on-Plate.

number of phases, their WCETs and the sampling period. It has
to be ensured that the sum of the phases’ WCETs, expressed
in EC multiples, is less than or equal to the sampling period.
The ideal EC length would be the greatest common divisor of
the phases’ WCETs.

Finally, it is worth noting that since the TM is used
for dispatching tasks and messages, our system relies on a
successful transmission/reception of this message. Indications
of how the transmission/reception of the TM can be guaranteed
are given in [12].

V. BALL-ON-PLATE EXAMPLE

Next we present a feasibility study on how to configure the
control application called Ball-on-Plate in our system archi-
tecture. The main element of this application is a touchscreen
panel that serves as a plate for a ball. This panel is mounted
on two servo-motors, one for moving the panel in the x axis
and the other for moving it in the y axis. The node, which
can be a PC, controls the plant by reading the ball position
coordinates from the sensory subsystem (touchscreen) and
sending a command to the actuation subsystem (servo-motors).
The goal of the system is to keep the ball in the center of the
touchscreen. One of these systems developed by the The Real-
Time Systems Laboratory (ReTiS) is shown in Figure 5.

In order to configure this application we use the data
gathered from the (unfortunately unpublished) experiments
conducted at the University of Aveiro on both a ball-on-plate
demonstrator and a current HaRTES switch implementation.
For this study we assume we have the minimum number of
node replicas required for being able to perform a majority
voting, which is 3. Likewise we assume that we have 3 replicas



of the sensor, despite the technological problems in order to
triplicate the sensors providing the position information in a
touchscreen. Such a triplication would be easier to achieve if
the position of the ball was obtained from a (redundant) vision
system, but we abstract away this technological aspects here.

Current technology used for implementing the HaRTES
switch restricts the minimum size for the EC to 1ms, which
is what we decided to use in this study. The sampling period
of the ball-on-plate demonstrator is 20ms. The restriction that
we defined in Section III has to hold, i.e. the sum of all the
phases has to be less than or equal to 20 ECs (

∑7
i=1 Ci ≤ 20).

Now, according to the data gathered from the experiments we
present WCETs of all the control phases and express each
control phase in EC multiples:

• Sense. This phase lasts between 1 and 2 ms (C1 = 2).
• Message exchange of sensor values. This phase lasts 1

elementary cycle (C2 = 1).
• Voting on sensor values + Control. These two phases last

less than 1ms (C3+C4=1). Since both of these phases are tasks
needed to be dispatched in the node replicas and can fit in one
EC, we have decided to merge them into a single task (phase).

• Message exchange of actuation values. This phase lasts 1
elementary cycle (C5=1).

• Voting on actuation values + Actuate. These two phases
last more than 2 and less than 3ms (C6+C7=3). Again, we
merge these two phases into one for the same reasons used for
merging control with voting on sensor values phases. Output
consolidation and actuation action will be finished before
the next actuation command arrives, and will be performed
immediately after receiving the actuation command.

Each message exchange phase fits into a single EC, and we
only use a very small percentage of this EC, since the number
and the payload of the messages we are exchanging in each
phase is very low. This unused space can be utilized by the
message exchange for other applications that can coexist with
our control application. This also applies to all the ECs we
are not using for exchanging messages, i.e. for the phases in
which the tasks are executed in the node replicas.

We have calculated that the maximum communication
overhead is less than 10%. The computing overhead is assumed
to be low since decoding of TM is not a so demanding oper-
ation. This means that our EC duration choice is admissible.
Also, the sum of all the phases

∑7
i=1 Ci = 8 ≤ 20, thus

satisfying the main requirement that we imposed at Section
III. This example illustrates the feasibility of our approach,
showing how to define all the parameters in our fault tolerant
system architecture for a concrete control application example.

VI. CONCLUSION

Distributed embedded control systems based on the Flexi-
ble Time Triggered (FTT) paradigm are provided with flexible
scheduling, but they lack of appropriate fault-tolerance mecha-
nisms to reach a very high reliability. In particular, since nodes
are one of the most unreliable parts of a system, we advocate
using a system architecture that includes node replication.

In this paper we propose such an architecture on top
of FTT. The main focus of this work is our mechanism
for coordinating throughout the different control phases the

dispatching of both the tasks to be executed and the messages
to be exchanged. We take as a basis a network-centric approach
previously proposed to dispatch tasks in a non node-replicated
architecture based on FTT-CAN. In our approach, however, we
use FTT-Ethernet as the underlying communication technology
and, then, we overcome some limitations of that previous
work, in order to support node redundancy and keep the
independence of the communication subsystem from the appli-
cation. Finally, we demonstrate the feasibility of our approach
showing how to configure a control application on top of it.

In future work we plan to provide a more detailed and
formal explanation of how to configure an application that
uses this approach. Also we are currently working on how
to integrate it with the solutions being proposed in the context
of the FT4FTT project.

VII. ACKNOWLEDGEMENTS

This work was supported by project DPI2011-22992 (Span-
ish Ministerio de Economı́a y Competividad), by FEDER
funding, and by the Portuguese government through FCT
grant Serv-CPS PTDC/EEA-AUT/122362/2010. Sinisa Dera-
sevic was supported by a scholarship of the EUROWEB
Project (http://www.mrtc.mdh.se/euroweb), which is funded by
the Erasmus Mundus Action II programme of the European
Commission.

REFERENCES

[1] P. Pedreiras and A. L, “The Flexible Time-Triggered (FTT) paradigm:
An approach to qos management in distributed real-time systems,” in
Parallel and Distributed Processing Symposium, Proceedings. Interna-
tional. IEEE, 2003.

[2] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in
Distributed Computing Sys., Proc. 20th Int. Conf., 2000, pp. 464–474.

[3] G. Rodriguez-Navas and J. Proenza, “A proposal for flexible, real-
time and consistent multicast in FTT/HaRTES switched ethernet,” in
Emerging Technologies Factory Automation (ETFA), 2013 IEEE 18th
Conference on, Sept 2013, pp. 1–4.

[4] P. A. Lee and T. Anderson, “Fault tolerance principles and practice,
volume 3 of dependable computing and fault-tolerant systems,” 1990.

[5] D. Powell et al., A generic fault-tolerant architecture for real-time
dependable systems. Springer, 2001.

[6] M. Calha and J. Fonseca, “Adapting FTT-CAN for the joint dispatching
of tasks and messages,” in Factory Communication Systems, 2002. 4th
IEEE International Workshop on, pp. 117–124.

[7] V. Silva, R. Marau, L. Almeida, J. Ferreira, M. Calha, P. Pedreiras, and
J. Fonseca, “Implementing a distributed sensing and actuation system:
The CAMBADA robots case study,” in Emerging Technologies and
Factory Automation, ETFA 2005. 10th IEEE Conference on.

[8] L. Almeida, P. Pedreiras, and J. Fonseca, “The FTT-CAN protocol: why
and how,” Industrial Electronics, IEEE Transactions on, 2002.

[9] S. Awtar, C. Bernard, N. Boklund, A. Master, D. Ueda, and K. Craig,
“Mechatronic design of a ball-on-plate balancing system,” Mechatron-
ics, vol. 12, no. 2, pp. 217–228, Mar. 2002.

[10] R. Santos, “Enhanced Ethernet Switching Tecnology for Adaptibe Hard
Real-Time Applications,” Ph.D. dissertation, Universida Aveiro, 2010.

[11] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco, and P. Pedreiras,
“Towards preventing error propagation in a real-time ethernet switch,”
in ETFA, 2013 IEEE 18th Conference on.

[12] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards
a flexible time-triggered replicated star for ethernet,” in Emerging
Technologies Factory Automation (ETFA), 2013 IEEE 18th Conf. on.

[13] W. Torres-Pomales et al., “Software fault tolerance: A tutorial,” 2000.
[14] W. S. Levine, The control handbook. CRC press, 1996.


