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Abstract

Effectiveness in loop closing detection is crucial to in-
crease accuracy in SLAM (Simultaneous Localization and
Mapping) for mobile robots. The most representative ap-
proaches to visual loop closing detection are based on fea-
ture matching or BOW (Bag of Words), being slow and
needing a lot of memory resources or a previously de-
fined vocabulary, which complicates and delays the whole
process. This paper present a new visual LSH (Locality
Sensitive Hashing)-based approach for loop closure de-
tection, where images are hashed to accelerate consider-
ably the whole comparison process. The algorithm is ap-
plied in AUV (Autonomous Underwater Vehicles), in sev-
eral aquatic scenarios, showing promising results and the
validity of this proposal to be applied online.

1. Introduction

The key of a successful visual SLAM lies in the data
association procedure to detect loop closings, which is the
difficulty of recognizing already mapped areas. The pro-
cess of image registration (visual data association) usually
entails the matching of visual features between the current
and all the previously gathered images (or at least, all im-
ages taken inside a region of interest) and the application
of any kind of recursive algorithm to eliminate outliers
and to calculate the transformation between each image
pair [9], [3]. In some cases, this process is too slow to be
used in systems that operate at high frame rates. Other au-
thors approach the loop-closing detection problem using
BOW in a context of topological maps [2], but they need
to define a vocabulary for node identification.

One alternative to accelerate and simplify considerably
the loop-closing detection is to run the registration pro-
cess only with those images that present evident simi-
larities and are most likely to overlap. In this context,
LSH (Locality Sensitive Hashing) has been used to hash
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features/descriptors into tables, reducing significantlythe
matching time [7], [8].

This paper presents a new fast method to find the im-
ages of a sequence that have a great probability to present
a certain overlap or match with a query image, indicating
a possible loop-closing. The algorithm is based on LSH
and, in contrast to other LSH-based algorithms that hash
descriptors, ours hashes complete images: every candi-
date image is characterized as a set of just 5 vectors, and 5
indexes (integers) in 5 hash tables. The image registration
process is limited, only, to those images very close to the
query image, according to their corresponding indexes in
the hash tables. This process leads to a drastic reduction
of the running time of the loop-closing detection, at every
iteration of the SLAM process.

2. Locality Sensitive Hashing

LSH [4] (and in particularE2LSH [1] which is the
version used in this work) is a class of hashing algorithms
for probabilistic approximate of the K-NNS (K-Nearest
Neighbor Search) problem, which means, the ability to
return theK points of a database that are closest to a cer-
tain query point. The idea behind is to use a set of hashing
functions that generate similar values (i.e. collisions) for
vectors that are close to each other.

A family of points H with a defined function fam-
ily g is locality sensitiveif the probability of collision of
points q and v (q, v ∈ H) increases if the distance be-
tween them decreases. The problem, indeed, consists on
finding all candidate pointsvj that have a hight degree
of probability to collide with the query pointq. For a
given pointv that ∈ H , the algorithm maps it to a set
of bucketsgki (v) = (a1, ...ak), ∀gi ∈ H . Afterwards,
each bucket is hashed, generating an indexh(a1, ..., ak
in its corresponding hash table:h(a1, ..., ak) =

[(
∑k

i=1
riai)mod(prime)]mod(tableSize), where ri

are random numbers that∈ ℜ andtableSize is the size of
the hash tables (equal to the number of candidate points).
Points that present similar indexes in the hash tables are
considered to collide.

In our context, points are images, and the problem con-
sists in usingE2LSH to detect all candidate images of a



Figure 1. The E2LSH-based algorithm for
loop closing detection

sequence that are very likely to collide with a query image.
In the context of visual SLAM, the query image will be
the image grabbed at the current robot pose, and the can-
didates will be all those images grabbed previously during
the vehicle motion.

Five different visual descriptors-dependent bucketing
functions have been defined. Let us denotem as the num-
ber of visual features in one image, andgNi , i ∈ N, 1 ≤

i ≤ 5, as each bucketing function, beingN the output
vector size:

a) Similarly than [6],gN
1

accounts for the number of
descriptors located at each region delimited byN ran-
domizedm-dimensional hyperplanes that share a com-
mon centroid.

b) gN2 andgN3 return, respectively, the module and ori-
entation of each local centroid (the centroid of each group
of descriptors located at each region) with respect to the
global hyperplanes centroid.gN4 returns the dispersion
(variance) of each group of descriptors with respect to
their local centroid.

c) gL
5

returns the normalized histogram of the descrip-
tors [5], where each descriptor component is quantized ac-
cording toL quantization levels.

In summary, visual features are extracted from the
query and all candidate images. The set of descriptors of
each image gives rise to 5 vectors (buckets) and their cor-
responding indexes on the respective hash tables. Those
candidate images that present indexes in any table close
to the indexes of the query are considered to close a loop.
The idea is illustrated in figure 1, where the query image
collides with the candidate image according to the close-
ness of their indexes in the fifth hash table.

3. Experimental Results

Some image sequences where grabbed in several un-
derwater scenarios with the low-cost micro-AUV Fugu-C
(see fig. 2). Fugu-C was developed at the University of the
Balearic Islands, and it is equipped with two stereo rigs
(one looking downwards), an IMU and a pressure sensor.

Figure 2. The micro-AUV Fugu-C.

(a) (b)
Figure 3. Experiment in the pool: 2 queries.

For each sequence, several query images have been se-
lected to find the candidates that most likely present over-
laps. In all the experiments, the robot navigated at a con-
stant distance to the bottom.

In the present implementation, and according to [1],
prime = 232 − 5, 1 ≤ ri ≤ 229. 7 hyperplanes
gave the best results in terms of success rate, SIFT fea-
tures/descriptors were used due to their robustness in front
of changes in rotation, illumination conditions and scale,
and 2 was the maximum difference between the indexes
of the query and the candidates to consider a collision.

Figure 3 shows two queries, captured during one of the
experiments in a pool located in the University. The robot
moved in a zig-zag trajectory. The pool bottom was cov-
ered by a printed digital posters of a real marine context.
Each query image was compared with all the images of the
sequence (2686 candidates). Figure 4 shows in (a) to (h)
eight images that were selected as collisions with figures
3-(a) and 3-(b),

Notice how all of them have a common area with the
corresponding query, regardless they present rotations and
translations.

Figure 5 shows two queries corresponding to one of the
experiments in the sea, in the port of Valldemossa (Mal-
lorca). In this experiment the robot ended at the same
starting point identified with an artificial marker. Now,
each query image was compared only with all the other
images preceding in time (2635 for 5-(a) and 584 for 5-
(b), which makes a total of 3219 comparisons), simulating
a real SLAM process, where, to search for loop-closings,
each current image is compared with the images previ-
ously captured during the route. Figure 6 shows in (a) to
(h) eight images selected by the algorithm as collisions
with figures 5-(a) and 5-(b).

Table 1 shows some data of these collisions: a) the can-
didate image shown in Figure 6, b) the index difference
between the candidate and the query (D.H.I.), c) the hash
table where this difference is less than 2, d) the number
of feature matchings between the candidate and the query
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Figure 4. (a) to (d): Collisions with figure 3-
(a); (e) to (h): Collisions with figure 3-(b).

(Nbr of F.M.) and, e) their geometrical overlap (G.O.).
The geometrical overlap is calculated taking into ac-

count: a) that the robot is moving at a constant distance
to the bottom and that this distance is known, b) the reso-
lution of the rectangular images and the relation pixel/m,
c) the pose and the orientation of the vehicle, calculated
using the SLAM algorithm of [3], applied off line. The
considerable number of feature matchings and the geo-
metrical overlap show a good correlation with the exis-
tence of loop-closings, validating the results given by the
LSH procedure.

Table 2 shows the number of candidate images that are
close to the query (index difference< 2 in any table) and
the number of candidate images that present more than 30
feature matchings (Nbr of F.M.) with the query. It was
experimentally verified that 30 feature matchings was the
minimum to compute a reliable registration between two
images, using for example, an algorithm based on mini-
mizing the 3D-2D re-projection error. Furthermore, it was
also verified experimentally that candidates with less than
30 feature matchings with respect to the query had mini-
mum geometrical overlaps or no overlap at all.

Thereafter, the feature matching process is executed
solely between the query image and those images that
have a hash matching smaller than 2. All the images that

(a) (b)
Figure 5. Experiment in the sea: queries.

Candidate D.H.I. Table Nbr of F.M % G.O.

query: Fig. 5-(b)
fig. 6-(e) 1 2 132 0.3515
fig. 6-(f) 2 5 353 0.4628
fig. 6-(g) 1 2 407 0.8016
fig. 6-(h) 2 1,2 516 1

query: Fig. 5-(a)
fig. 6-(a) 2 1 195 1
fig. 6-(b) 2 4 97 0.3334
fig. 6-(c) 2 5 324 0.4431
fig. 6-(d) 2 5 369 0.4431

Table 1. Hash and Feature Matching Data.

present a hash matching smaller than 2 but less than 30
feature matches with respect to the query are considered
as false positives. All the images with a hash matching
smaller than two and with more than 30 feature match-
ings, are considered to be, in principle, as true positives.

It is important to remark that LSH is a method designed
to find the nearest neighbor of a query point, which means
that, it can miss some points close to the query and it can
hit points that are far from the query, even if the number
of hash tables is incremented. However, it is always able
to retrieve one or several elements very close to the query.

Let us define TFMET (Total Feature Matching Execu-
tion Time) as the time employed to match features between
one query image and all the candidates, and THMET (To-
tal Hash Matching Execution Time) as the the time to per-
form theE2LSH matching between the query and all the
candidates. THMET includes: the time to compute the
5 buckets and their corresponding indexes of all the can-
didates and the query, plus the time to compare the 5 in-
dexes of each candidate with the query indexes, and the
time to compute the feature matchings between the query
and those images that have been selected as collisions.

Table 3 shows the TFMET and the THMET for the two
query images of the experiment in the pool and for the ex-
periment in the sea. It is evident that the running time em-

Query Image index diff. < 2 Nbr of F.M.> 30

Fig. 3-(a) 29 5
Fig. 3-(b) 41 12
Fig. 5-(a) 20 10
Fig. 5-(b) 29 19

Table 2. Feature Matchings vs Hash Match-
ings.
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Figure 6. Collisions with figures 5-(a) and 5-(b).

Query Image TFMET THMET

Experiment 1, in the pool; fig. 3
Fig. 3-(a) 98 seconds 16 seconds
Fig. 3-(b) 113 seconds 15 seconds

Experiment 2, in the sea; fig. 5
Fig.5-(a) 798 seconds 38 seconds
Fig. 5-(b) 191 seconds 9 seconds

Table 3. Total execution times.

ployed by LSH to select the most probable candidates for
loop-closing is much lower than the same time but mea-
sured when using feature matching.

4. Conclusions and Future Work

This paper introduces the application ofE2LSH for
visual loop-closing detection with the main particularity
that each candidate image and the query image are char-
acterized by 5 small vectors and 5 indexes which posi-
tion each image in five different hash tables. Since im-
ages are characterized by simple data structures, they need
few memory resources and their comparison is much eas-
ier and faster. The proposed algorithm applied in diverse
visual datasets grabbed from an AUV moving in differ-
ent aquatic environments shows to last much less than a
standard loop closing detector based on feature matching,
although this is applied only on images captured at a cer-
tain maximum distance from the current robot pose. Im-
ages that match according to LSH also have a considerable
number of feature matchings and present a remarkable ge-
ometrical overlap.

Although the system still presents a considerable per-
centage of false positives, the remaining true positives are
sufficient to determine several loop closures useful for the
SLAM.

Forthcoming work includes the refinement of the al-
gorithm to increase the number of true positives and its
comparison, in terms of running time, with other systems
based LSH or BOW.
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