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Abstract— We propose an appearance-based approach for
topological visual mapping and localization using local invariant
features. To optimize running times, matchings between the
current image and previously visited places are determined
using an index based on a set of randomized kd-trees. We
use a discrete Bayes filter for predicting loop candidates,
whose observation model is a novel approach based on an
efficient matching scheme between features. We assess our
approach with several datasets obtained from indoor and
outdoor environments under different weather conditions.

I. INTRODUCTION

In Simultaneous Localization and Mapping (SLAM), loop
closure detection is a key problem to overcome. It entails the
correct detection of previously seen places from sensor data.
In the last decades, there has been a significant increase in
the number of visual solutions for SLAM and loop closure
detection because of the low cost of the cameras and the
richness of the sensor data provided. This naturally guides
us to an appearance-based SLAM, where the environment is
represented using a topological map.

One of the most used techniques in appearance-based
SLAM is the Bag-Of-Words (BoW) approach [1], [2], [3].
However, this method presents some drawbacks: it is more
affected by the perceptual aliasing effect and typically an off-
line training phase is needed. Other approaches make use of
global descriptors, such as Gist [4], [5], [6], BRIEF-Gist [7]
or WGOH [8]. The main drawback of these descriptors is
that they are not descriptive enough, and thus they are more
sensitive to noise, which leads to a larger number of incorrect
detections. Rather than BoW or global descriptors, some
authors used local invariant features for visual localization
and mapping as well as for loop closure detection.

In this paper we present a complete visual mapping and
localization framework based on raw local invariant features.
Our framework was assessed using multiple indoor and
outdoor datasets captured under different weather conditions
and illumination changes. As main contributions, we present
a Bayesian framework for visual loop closure detection
which uses constellations of local invariant features as image
descriptors. It comprises a novel observation model which al-
lows us to succeed in challenging loop closure situations such
as camera rotations, occlusions and changes in illumination.
Using this algorithm as a key component, we also propose
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a topological mapping and localization framework. Our ap-
proach is independent of the robotic platform and can be
used in several kinds of vehicles, e.g. ground, underwater or
aerial vehicles. For further information about our approach,
please see [9].

II. TOPOLOGICAL MAPPING

Given an input image sequence, our approach is based
on a subset of these images called keyframes. In our map,
each node represents a keyframe image, and each keyframe is
represented by its corresponding SIFT [10] features. In order
to select these keyframes, we discard: (a) images similar to
the current location of the robot (keyframe); and (b) robot
camera turns. For the first case, SIFT features of the current
image are matched applying the ratio test [10] to the features
of the current location keyframe. If the number of matched
features is higher than a threshold, the image is considered
similar to the current location. The same matching step is
applied between the current image and the last received
image in the sequence: if it is not possible to match a certain
number of features, the image is classified as a turn. In
these two cases, the image is discarded. Otherwise, it is
considered useful and needs to be processed in order to
determine whether it is a loop closure or a new keyframe
to be added to the map. Our loop closure approach makes
use of a discrete Bayes filter. This filter is updated with every
image irrespective of whether the image has been discarded
or not. If a loop closure is not found, the current image is
considered as a new keyframe and is added to the map as a
new node. Otherwise, we create a link between the current
location of the robot and the loop closure candidate and, then,
a map refinement process is performed. The topological robot
position within the map is updated accordingly. In order
to avoid false loop closure detections between the current
image and its neighbours in the sequence, new keyframes
are not inserted directly as loop closure hypotheses in the
filter. They are instead stored in a temporarily cache list and
pushed into the filter once a certain number of images have
been considered. Our approach is outlined in Fig. 1. The
image description and matching process and the loop closure
detection algorithm are detailed in the following sections.

A. Image Description and Matching

As commented above, in our approach, each image is
described using the SIFT [10] algorithm. The loop closure
detection algorithm, as we will see shortly, needs to match
efficiently the features of the current image with features of
all previously considered keyframes, in order to determine
whether it is a revisited place. Therefore, a method for



Fig. 1. Overall algorithm diagram. See text for details.

an efficient nearest neighbour search is needed in order to
match these high-dimensional descriptors. Tree structures
have been widely used to this end, since they reduce the
search complexity from linear to logarithmic. To the same
purpose, we maintain a set of randomized kd-trees containing
all the SIFT descriptors of previously detected keyframes.
An inverted index structure, which maps each feature to the
keyframe where it was found, is also created. Given a query
descriptor, these structures allow us to obtain, traversing
the tree just once, the top K nearest keypoints among all
keyframes in an efficient way.

B. Probabilistic Loop Closure Detection

A discrete Bayes filter is used to detect loop closure can-
didates. This filter estimates the probability that the current
image closes a loop with previously seen locations, allowing
us to deal with noisy measurements and uncertainty in the
robot location and helping us to discard false recognitions.
The Bayesian framework is also used for ensuring temporal
coherency between consecutive predictions, integrating past
estimations over time.

Given the current image It at time t, we denote zt as the
set of SIFT descriptors extracted from this image. These are
the observations in our filter. We also denote Lti as the event
that image It closes a loop with image Ii, where i < t. Using
these definitions, we want to detect the image of the map Ic
whose index satisfies:

c = argmax
i=0,...,t−p

{P
(
Lti|z0:t

)
} , (1)

where P (Lti|z0:t) is the full posterior probability at time
t given all previous observations up to time t. As in [3],
the most recent p images are not included as hypotheses
in the computation of the posterior since It is expected
to be very similar to its neighbours and then false loop
closure detections will be found. This parameter p delays
the publication of hypotheses and needs to be set according
to the frame rate or the velocity of the camera. The posterior

can be derived as:

P
(
Lti|z0:t

)
= ηP

(
zt|Lti

) t−p∑
j=0

P
(
Lti|Lt−1j

)
P
(
Lt−1j |z0:t−1

)
,

(2)
where η represents the normalizing factor, P (zt|Lti) is
the observation likelihood, P

(
Lt−1j |z0:t−1

)
is the poste-

rior distribution computed at the previous time instant and
P
(
Lti|L

t−1
j

)
is the transition model. See [9] for a detailed

decomposition of the posterior.
1) Transition Model: Before updating the filter using the

current observation, the loop closure probability at time t
is predicted from P

(
Lt−1j |z0:t−1

)
according to an evolution

model. The probability of loop closure with an image Ij
at time t − 1 is diffused over its neighbours following a
discretized Gaussian-like function centered at j. In more
detail, 90% of the total probability is distributed among j
and exactly four of its neighbours. The remaining 10% is
shared uniformly across the rest of loop closure hypotheses
according to 0.1

max{0,t−p−5}+1 . This implies that there is
always a small probability of jumping between hypotheses
far away in time, improving the sensitivity of the filter when
the robot revisits old places.

2) Observation Model: Once the prediction step is per-
formed, the current observation needs to be included in the
filter. We have to compute the most likely locations given
the current image It and its keypoint descriptors zt, but we
want to avoid comparing It with each previous keyframe,
since this is not tractable. To this end, we use the structures
described in section II-A.

For each hypothesis i in the filter, a score s (zt, zi) is
computed. Initially, these scores are set to 0 for all frames
from 0 to t− p. For each descriptor in zt, the K closest de-
scriptors among the previous keyframe images are retrieved;
next, each of them, denoted by n, adds a weight wn to the
score of the image where it appears. This value is normalized
using the total distance of the K candidates retrieved:

wn = 1− dn∑
k∈K

dk
,∀n = 1, . . . ,K , (3)

where d is the Euclidean distance between the considered
query descriptor in zt and the nearest neighbour descriptor
found in the tree structure. This value is accumulated onto a
score according to:

s
(
zt, zj(n)

)
= s

(
zt, zj(n)

)
+ wn ,∀n = 1, . . . ,K , (4)

being j(n) the index of the image where the candidate
descriptor n was extracted. The computation of the scores
is finished when all descriptors in zt have been processed.
Then, the likelihood function is calculated according to the
following rule [3]:

P
(
zt|Lti

)
=

{
s(zt,zi)−sσ

sµ
if s (zt, zi) ≥ sµ + sσ

1 otherwise
, (5)

being respectively sµ and sσ the mean and the standard devi-
ation of the set of scores. After incorporating the observation



Fig. 2. Example of loop closure detection visiting several times the same
place and with changes in the environment in the Lip6Indoor dataset. Image
331 (Top, Left) closes a loop with image 189 (Bottom, Left) and image 48
(not shown). As can be seen in (Top, Right), the current likelihood presents
two strong peaks despite a person in the current image occludes part of the
same. Peaks correspond to loop candidates. After the normalization step, the
posterior (Bottom, Right), shows a single peak in the last candidate frame.
Red and green lines show respectively sµ and sµ + sσ values.

to our filter, the full posterior is normalized in order to obtain
a probability distribution.

3) Selection of a Loop Closure Candidate: In order to
select a final candidate, we do not search for high peaks in the
posterior distribution, because loop closure probabilities are
usually diffused between neighbouring images. Instead, for
each location in the filter, we sum the probabilities along the
same neighbourhood as defined in section II-B.1. The image
Ij with the highest sum of probabilities in its neighbourhood
is selected as a loop closure candidate. If this probability is
below a threshold Tloop, the loop is not accepted. Otherwise,
an epipolarity analysis between It and Ij is performed in
order to validate the candidate. Matchings that do not fulfill
the epipolar constraint are discarded by means of RANSAC.
If the number of surviving matchings is above a threshold
Tep, the loop closure hypothesis is accepted; otherwise, it is
definitely rejected. Finally, we define another threshold Thyp
to ensure a minimum number of hypotheses in the filter, so
that loop closure candidates are meaningful.

III. EXPERIMENTAL RESULTS

Our approach has been assessed using five datasets con-
forming more than 3000 images. These datasets were ob-
tained from indoor and outdoor environments, under different
environmental conditions. Fig. 2 shows the suitability of the
Bayes framework in a loop closure detection situation. In
this case, the camera visited twice the same place. When it
returns to this place again, two high peaks corresponding
to the previous visits can be observed in the likelihood,
representing possible loop candidates for the current im-
age. After the prediction, update and normalization steps,
the posterior presents only one single peak at the second
candidate image, i.e. the filter ensures temporal coherency
between predictions. This figure also shows an example of
situation where a loop is detected despite there is a person in
the image who was not in the previous visit, what proves the
ability of the filter for detecting loops when the appearance
of the environment changes. Our approach accepts the loop
closure since the epipolar constraint between the two images
is satisfied.

In order to obtain global performance measures, each
dataset was provided with a ground truth, which indicates, for
each image in the sequence, which images can be considered
as a loop closure with it. The assessment against this ground
truth has been performed counting for each sequence the
number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), where positive is
meant for detection of loop closure. Then, the two following
metrics were computed:
• Precision. Ratio between real loop closures and total

amount of loop closures detected
(

TP
TP+FP

)
.

• Recall. Ratio between real loop closures and total
amount of loop closures existing in the sequence(

TP
TP+FN

)
.

The results for each sequence are shown in Table I.
As can be seen, no false positives resulted in any case.
This is essential, since false positives can induce errors
in mapping and localization tasks. As a consequence, the
classifier always reaches 100% in precision for all datasets.
The best recall rates for 100% precision are shown in the
table. A high rate of correct detections were obtained from
all experiments. False negatives are due to, on the one hand,
the sensitivity of the filter. In effect, when an old place is
revisited, the likelihood associated to that hypothesis needs
to be higher than the other likelihood values during several
consecutive images in order to increase the posterior for
this hypothesis. This introduces a delay in the loop closure
detection, which derives in false negatives. This sensitivity
can be tuned by modifying the transition model of the filter,
although a higher sensitivity can introduce loop detection
errors, i.e. false positives. On the other hand, false negatives
can also be due to camera rotations. When the camera is
turning around a corner, it is difficult to find and match
features in the images, which prevents the hypothesis from
satisfying the epipolar constraint and leads to the loop closure
hypothesis to be rejected, despite the posterior for this image
is higher than Tloop. However, in spite of the difficulties of
the UIBIndoor dataset, our approach is able to succeed, as
can be seen in Table I.

The path followed by the camera in one of the datasets is
shown in Fig 3. Whenever the camera explores new places,
no loop closures are found. When a place is revisited, the
algorithm starts to find loop closures. Several images are
usually needed until closing the loop, due to the filter inertia.
These images correspond to the false negatives found.

We also validate our framework for mapping and localiza-
tion. To this end, the loop closure detection algorithm was
adapted to be used with the detected keyframes. An example
of these maps is shown in Fig. 4. The main zones of this
map were labelled with letters to simplify the identification
of each part in the topological structure, since the resulting
topological map do not preserve the shape.

IV. CONCLUSIONS
A complete appearance-based mapping and localization

framework based on local invariant features is presented here.



TABLE I
RESULTS FOR THE FIVE DATASETS. aAVERAGE FOR ALL SEQUENCES.

Dataset #Imgs Size TP TN FP FN Pr Re
Lip6Indoor 388 240×192 191 151 0 31 100 86

Lip6Outdoor 1063 240×192 551 435 0 52 100 91
UIBSmallLoop 388 300×240 194 172 0 2 100 99
UIBLargeLoop 997 300×240 439 491 0 47 100 90

UIBIndoor 384 300×240 157 177 0 30 100 84
3220 1532 1426 0 162 100a 90a

Fig. 3. Path followed by the camera during the UIBLargeLoop experiment.
Green and blue points indicate respectively the beginning and the end of the
sequence; the black lines show no loop closure detections (highest posterior
probability is under Tloop), the red lines show rejected hypoteses (no
epipolar geometry is satisfied) and the yellow lines represent loop closure
detections (highest probability is above Tloop and the epipolar constraint is
satisfied). Notice that the camera passes through the same place in successive
loops, but the lines are drawn in parallel for visualization purposes.

When a new useful image is acquired, a discrete Bayes filter
is used to select a loop closure candidate and decide whether
this frame is a loop closure or a new node to be added to
the map. This probabilistic filter presents a novel observation
model based on an efficient matching scheme between the
current image and the features of the current nodes in the
map, using an index based on a set of randomized kd-trees.
As a result, a topological map of the environment is obtained,
which represents the scenario of the robot as a graph.

In order to validate our solution, results from an extensive
set of experiments, using datasets from different environ-
ments, have been reported. These results are very promising,
showing that our mapping and localization approach can be
employed for generating topological maps of the environ-
ment that, if they are provided with odometry information,
can also be used for navigating in the current scenario in an
efficient way.

Referring to future work, we intend to explore: (a) the use
of other kinds of image descriptors based on local invariant
features, such as binary descriptors, since they can improve
our approach in computational terms; (b) the execution of
the Bayes filter in a Graphics Processing Unit (GPU) to
further speed up the loop closure detection; and (c) the use
of the full algorithm for mapping larger environments, since
unused descriptors in the tree structures should be purged
to maintain a reasonable response time of the loop closure

Fig. 4. (Top) Reference map for the Lip6Indoor dataset. (Bottom)
Topological map generated using our approach. Each part of the map is
identified with a letter in both maps. The red node identifies the beginning
of the sequence. Maps locations are visited in the following order: A-B-I-
H-A-B-C-D-E-F-G-H-A-B-C-D-E-F-G-H-A-B-I.

detection algorithm.
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