
Tr
eb

al
lF

in
al

d
e

G
ra

u

GRAU D’ENGINYERIA INFORMÀTICA

Implementation and Verification of the
Slave Elementary Cycle Synchronization

Mechanism of the Flexible Time-Triggered
Replicated Star for Ethernet

INÉS ÁLVAREZ VADILLO

Tutors
Julián Proenza Manuel Barranco

Supervisor
Alberto Ballesteros

Escola Politècnica Superior
Universitat de les Illes Balears

Palma, September 24, 2014

CONTENTS

Contents i

List of Figures iii

List of Tables v

Acronyms vii

Abstract ix

1 Introduction 1
1.1 Background and motivation . 1
1.2 Goals of the project . 3
1.3 Work that has been carried out . 3
1.4 Document structure . 4

2 Previous work 7
2.1 The Flexible Time-Triggered paradigm (FTT) 7
2.2 FTT-Switched Ethernet (FTT-SE) . 8
2.3 The Slave Elementary Cycle Synchronization Mechanism (SECSM) spec-

ification . 10

3 Phases of the project 13

4 Study of the available FTT-SE prototype 17

5 Implementation and validation of the SECSM in the master 19
5.1 First iteration: preliminary version of the multiple TM transmission in

the master . 19
5.1.1 Solution proposal and implementation 19
5.1.2 Testing . 21

5.2 Second iteration: enhanced version of the multiple TM transmission in
the master . 23
5.2.1 Solution proposal and implementation 23
5.2.2 Testing . 24

6 Implementation and validation of the SECSM in the slaves 25

i

ii CONTENTS

6.1 First iteration: preliminary version of the redundancy management in
the slaves . 25
6.1.1 Solution proposal and implementation 25
6.1.2 Testing . 27

6.2 Second iteration: enhanced version of the redundancy management in
the slaves . 28
6.2.1 Solution proposal and implementation 28
6.2.2 Testing . 29

6.3 Third iteration: Turn Around Window (FTT-SE) implementation 30
6.3.1 Solution proposal and implementation 30
6.3.2 Testing . 31

7 Evaluation of the integrated prototype 33
7.1 TM replica transmission . 33
7.2 TM window duration in the slave nodes 35
7.3 Slaves synchronization in a non-faulty scenario 36
7.4 Slaves synchronization in scenarios involving transient faults 38

8 Conclusions 41
8.1 Summary . 41
8.2 Future work . 43
8.3 Considerations about the learning process 43

A Source Code 45
A.1 Master dispatcher . 45
A.2 Slave eth_filter . 52
A.3 Slave dispatcher . 61
A.4 Common ftt-global . 70
A.5 Ports . 78

B Published paper about the results of the project 85

Bibliography 91

LIST OF FIGURES

2.1 EC structure. Synchronous and asynchronous messages are labelled as SMi
and AMi respectively. 8

2.2 FTT-SE EC structure. 9
2.3 FTT-SE middleware architecture. 9
2.4 Aligment of TM arrival times. 10

3.1 Phases, activities and steps of the project. 14

4.1 Files affected by the implementation of the SECSM. 17

5.1 TM header including the information related to the SECSM. 20
5.2 IEEE 802.3 MAC Frame Format [16]. 22
5.3 Prototype architecture with a master process and a network analyser. . . . 23

6.1 Vision of the EC start moment in a slave. 27
6.2 Prototype architecture with a single slave process and a virtual switch. . . . 28
6.3 Prototype architecture with two slave processes and a virtual switch. 30
6.4 EC structure in the new FTTRS specification. 30
6.5 Prototype architecture with two slave processes and a COTS switch. 32

7.1 Wireshark capture of a TM in the master link. 34
7.2 Deviation in the TMW duration in µs. 35
7.3 Measured EC Offset with a TAW duration of 0 µs in absence of faults. 37
7.4 Measured EC Offset with a TAW duration of 50 µs in absence of faults. . . . 37
7.5 Measured EC Offset with virtual switch in presence of transient faults. The

horizontal axe shows the number of samples. The vertical axe shows the EC
Offset in microseconds. 38

7.6 Measured EC Offset with COTS switch in presence of transient faults. The
horizontal axe shows the number of samples. The vertical axe shows the EC
Offset in microseconds. 39

iii

LIST OF TABLES

7.1 Measured difference between the real and the expected τ. 34
7.2 Measured difference between the real and the expected TMW duration. . . 35
7.3 Measured EC offset values for TAW values of 0 and 50 µs in absence of faults. 37
7.4 Measured EC offset values for a virtual and a COTS switch in presence of

transient faults. 39

v

ACRONYMS

AW asynchronous window

COTS commercial off-the-shelf

DES distributed embedded system

EC elementary cycle

FT4FTT fault tolerance for flexible time-triggered

FTT flexible time-triggered

FTT-SE flexible time triggered-switched Ethernet

FTTRS flexible time-triggered replicated star

QoS quality of service

SECSM slave elementary cycle synchronization mechanism

SW synchronous window

TAW turn around window

TM trigger message

TMW trigger message window

vii

ABSTRACT

A distributed embedded system that must work in dynamic environments, where the
working conditions may change in an unpredictable way, must be flexible. Moreover, if
such system must operate continuously it must also be reliable. Therefore, its internal
communication network must support both attributes. Unfortunately, nowadays it
does not exist any communication network that completely fulfils both requirements.

The Flexible Time-Triggered (FTT) communication paradigm provides the system
with support for time-triggered and event-triggered communication, as well as adapt-
ability to environment changes. FTT can be deployed on top of any existing network
technology. Implementing FTT on top of the Ethernet communication protocol offers
a high bandwidth and a low cost of the components of the network. Nevertheless,
FTT-Ethernet lacks the necessary fault-tolerance mechanisms to provide adequate
dependability levels.

The Fault Tolerance for Flexible Time-Triggered Ethernet (FT4FTT) research project
faces the development of the required fault tolerance mechanisms in order to construct
a flexible and highly-dependable communication infrastructure based on FTT-Ethernet.

The Flexible Time-Triggered Replicated Star (FTTRS) was proposed as part of the
FT4FTT project to provide adequate fault-tolerance mechanisms for the communica-
tion infrastructure. Among other features, FTTRS provides tolerance in front of transient
faults in the channel. This is done by means of time and information redundancy. The
Slave Elementary Cycle Synchronization Mechanism (SECSM) is a proposal to manage
such redundancy that pays a special attention to achieve a proper synchronization
among the nodes of the system. In this way all nodes have a similar view, even in the
presence of faults, of when the different communication cycles start.

This project consisted in the implementation, validation and modification of the
SECSM; as well as the later evaluation of the complete prototype that was built. The
results of this project have been published in a conference paper that is attached as an
appendix.

ix

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Background and motivation

An embedded system is a computer system designed with the aim of controlling a
different system. The reduction in the cost of processors has facilitated the use of this
type of systems in many different fields, so that it is possible to find them integrated in
factories, buildings, vehicles and a wide variety of equipment.

Embedded systems are usually subjected to weight, size and energy constrains.
Moreover, because of their nature embedded systems are real-time systems [1], that is,
they have to react to the environment within a limited amount of time. This implies the
usage of specific scheduling policies [2]. Also, when the application is critical embedded
systems must provide high reliability. This can be achieved by adding fault tolerance
mechanisms which need to be carefully evaluated.

Environment restrictions frequently require that the system is distributed among
different nodes. When this happens the system is called a distributed embedded sys-
tem (DES). DESs require the usage of a communication network for information ex-
change. Traditionally DESs have been used in static environments, which means that
the operation conditions are known in advance and, thus, the use of offline scheduling
mechanisms is an adequate choice.

However, nowadays it is pursued the introduction of DESs in dynamic environments
where the operation conditions may change in an unpredictable way. In these cases
using static scheduling approaches is not a suitable solution, as it can present two
disadvantages [3]. On the one hand, it can lead to the waste of resources when assuming
worst case conditions. On the other hand, if average conditions are assumed some
components can become overloaded because of unpredicted situations, what can bring
violations of the real-time or the dependability requirements.

This new tendency has led to the appearance of the concept of adaptive embedded
systems. A system is said to be adaptive when it is capable of automatically adjusting its
behaviour to respond to changes in the environment. Thus, adaptive embedded sys-
tems must be both flexible and reconfigurable, and require support for such attributes

1

1. INTRODUCTION

at various levels of the architecture, including the operating system and, in the case of
DES, the communication network. However, nowadays it does not exist any network
technology that completely fulfils such requirements, as traditional networks support
either time-triggered or event-triggered communication [1] [4], and those that support
both paradigms, as is the case of FlexRay [5], do not provide mechanisms to manage
dynamic changes in the communication requirements.

The flexible time-triggered (FTT) [4] paradigm is a proposal for unifying time-
triggered and event-triggered communication into a single technology. Moreover, FTT
provides support for changing the communication parameters to satisfy the changing
traffic needs, while at the same time not violating the real-time requirements of the
application. It is based on a mechanism that schedules the communication online,
which supports changes in the traffic, and in a centralized manner, which facilitates the
implementation of the scheduling policies. The node that implements the scheduling
mechanism is called master, whereas the regular DES nodes –that is, the nodes that
implement regular applications of the DES– are called slaves. The communication is
divided in time slots of fixed duration called elementary cycle (EC). Each EC is divided in
a synchronous window, in which synchronous messages are transmitted, and an asyn-
chronous window, in which asynchronous messages are transmitted. In each EC the
master decides which slaves will transmit according to the scheduling policies and the
particular conditions. The master polls the slaves by broadcasting the so called trigger
message (TM), that is also used by the slaves to determine the start of the following EC.

In principle, FTT can be deployed on top of any network technology [4]. Imple-
menting FTT on top of Ethernet seems a suitable approach due to the low cost of the
components and the high bandwidth offered by said communication protocol. This
has been done in the form of the FTT-Ethernet protocol [6], one of whose fundamental
variants is flexible time triggered-switched Ethernet (FTT-SE) [7]. Unfortunately, FTT-
Ethernet still lacks the necessary fault tolerance mechanisms to guarantee that the
adequate dependability levels are achieved.

The fault tolerance for flexible time-triggered (FT4FTT) project [8] tackles the con-
struction of a highly-dependable and flexible communication infrastructure based on
the FTT-Ethernet protocol. Specifically, FT4FTT faces the development of the required
fault tolerance mechanisms and their later integration in order to build a complete
system architecture.

In particular, one of the problems of FTT-Ethernet is the lack of adequate mecha-
nisms for facing faults in the channel that affect the transmission of specific messages.
For this reason one of the tasks entailed in FT4FTT consists in introducing time and
information redundancy in order to tolerate transient faults in the communication
channel.

The flexible time-triggered replicated star (FTTRS) [9] was proposed as part of the
FT4FTT project to, among other things, tolerate said transient faults. The complete
architecture of FTTRS is not relevant for the development of this project. However,
what is important is that FTTRS includes mechanisms to provide time redundancy.
Specifically, FTTRS proposes that the master transmits the TM several times at the
beginning of each EC. Each of these TMs are called a replica. If the number of replicas is
sufficiently high, we can guarantee that at least one replica will reach the slaves, allowing
for synchronizing them even in presence of transient faults in the communication
channel.

2

1.2. Goals of the project

Nevertheless, transient faults do not necessarily affect to all the slaves in the same
way, which can cause time inconsistency in the reception of the TM replicas. That is,
each slave can receive a different replica of the TM. Since each TM replica is transmitted
in a different moment, slaves that receive different replicas will determine the start of
the following EC at different moments too. The slave elementary cycle synchronization
mechanism (SECSM) [10], which is part of the FTTRS architecture, was designed to
solve this problem.

Taking this as point of departure, the purpose of this project is to implement the
SECSM so as to obtain a prototype in order to make an experimental evaluation of the
design and the implementation. Specifically, we want to obtain experimental results in
order to measure the accuracy in the synchronization –meaning the deviation of the
EC start moment in each slave– achieved by the implementation when transient faults
in the channel do occur.

1.2 Goals of the project

The background and motivation previously described provides us with the bases to
understand the goals of this project.

This Bachelor Thesis has two specific goals:

• Implementing the slave elementary cycle synchronization mechanism in order
to build a functional prototype.

• Measuring the accuracy of the synchronization using fault injection in order
to evaluate the design and the implementation of the slave elementary cycle
synchronization mechanism.

1.3 Work that has been carried out

Even though in Chapter 3 we talk about the different phases and activities that conform
this project, in this section we want to give an overview of the work realized during this
project.

As previously said in Section 1.1, the SECSM [10] was proposed as part of the FT4FTT
project. That is, we already had the specification of the system. Moreover, the starting
point of the implementation was an already existing software implementation of the
FTT-SE protocol [7] [11]. That is, we were provided with a development platform to
which we integrated the SECSM.

Protocol study

In order to carry out this project we had to study the FTT communication paradigm, the
FTT-SE communication protocol and the SECSM mechanism. Also, it was necessary
to become familiar with the development platform in order to identify the files and
functions that would be modified during the implementation.

It is noteworthy that this study was carried out during the first semester of the
course 2013–2014.

3

1. INTRODUCTION

Implement the SECSM in the Master

As it is later explained in Section 2.3, in FTTRS the TM is sent by the master several
times in each elementary cycle. The slaves use the set of TM replicas that they receive to
synchronize. In order to allow for the slaves to synchronize it was necessary to modify
the TM header to convey some information. Moreover, the development platform was
also modified to implement the transmission of multiple TM in each EC.

Implement the SECSM in the Slave

As it is later explained in Section 2.3, we have to program each slave to manage the
redundancy in the reception of the TMs, as well as synchronize the start moment of the
following EC among the slaves from the set of TM replicas received.

Propose the inclusion of the Turn Around Window in the specification

In a first specification of the SECSM, the time needed by the slaves to process the TM
replicas was not taken into account. In order to allow the slaves to decode and process
the TM replicas before the transmission of synchronous messages starts, we proposed
the adaptation of the SECSM specification so as to add the Turn Around Window. As
later explained in Section 2.2, the turn around window (TAW) is a specific amount of
time during which slaves process the last TM replica in case they receive it.

Evaluate the SECSM implementation

We also carried out an exhaustive verification of the SECSM implementation in order
to assess its correctness and measure the accuracy reached in the synchronization. In
order to do so we used software implemented fault injection, which required adding
some code to the slave software to inject transient faults in the channel.

Write a short paper

The results obtained in this project permitted the writing of a short paper, in which the
candidate participated as co-author together with David Gessner, Alberto Ballesteros,
Manuel Barranco and Julián Proenza. The reference of the mentioned paper is:

• Gessner, D., Álvarez, I., Ballesteros, A., Barranco, M., Proenza, J., Towards an
Experimental Assessment of the Slave Elementary Cycle Synchronization in the
Flexible Time-Triggered Replicated Star for Ethernet. In Proc. 19th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA),
September 16-19, 2014, Barcelona, Spain.

1.4 Document structure

The reminder of this document is divided in seven chapters. Chapter 2 briefly describes
the previous work that conforms the bases for this project, giving the necessary founda-
tions for the rest of the work. This chapter includes an overview of the FTT-SE protocol
on which FTTRS is based, as well as the design of the SECSM. Chapter 3 discusses the

4

1.4. Document structure

phases in which this project is divided and the organization of the work. Chapter 4
describes the results obtained from studying the FTT-SE prototype we used as starting
point of this project.

Chapter 5 and 6 report on the implementation and test of the SECSM in the master
and the slave respectively. Chapter 7 describes the results obtained from testing the
integration and the exhaustive verification of the whole implementation.

Chapter 8 contains a summary of the most relevant aspects of this project, as well as
some suggestions of future work and some considerations about the learning process
of the bachelor candidate.

Finally Appendix A contains the code of the implementation and Appendix B con-
tains the the published short paper, which was previously mentioned in Section 1.3.

5

C
H

A
P

T
E

R

2
PREVIOUS WORK

This chapter briefly explains the previous work that constitutes the starting point of
this project. It describes the basics of the Flexible Time-Triggered paradigm (FTT),
the FTT Switched Ethernet protocol (FTT-SE) and explains the design of the slave EC
synchronization mechanism.

2.1 The Flexible Time-Triggered paradigm (FTT)

The Flexible Time-Triggered paradigm (FTT) [4] is a communication paradigm pro-
posed at the University of Aveiro (Portugal) to support event and time-triggered com-
munication in a flexible manner. That is, FTT provides mechanisms for dynamically
change the communication requirements.

FTT follows a master/multi-slave scheme. As already explained in Section 1.1, the
communication is managed and coordinated by a special node called master. The rest
of the nodes of the DES are the slaves and they are regular nodes –they execute the
control application and communicate according to the instructions of the master–.

The master organises the communication in periods of constant duration called
elementary cycles (EC). The structure of the EC can be seen in Figure 2.1. The master
polls several slaves by means of a single message, called trigger message (TM), which
conveys the scheduling information of each EC. Note that the reception of the TM at
the beginning of the EC allows synchronizing the communication among the slaves.

The rest of the EC is divided into two different phases, the synchronous window
(SW), where the time-triggered communication is carried out; and the asynchronous
window (AW), where the event-triggered communication takes place. From now on,
we will refer to the time-triggered communication as synchronous, as the transmission
period each message is synchronized with the EC duration, and to the event-triggered
communication as asynchronous, as it happens asynchronously with the EC.

It is noteworthy that since the master schedules the communication at the begin-
ning of every EC, the communication requirements can not be changed within a given

7

2. PREVIOUS WORK

Figure 2.1: EC structure. Synchronous and asynchronous messages are labelled as SMi
and AMi respectively.

EC. Conversely, slaves can ask for changes in the communication requirements during
the asynchronous window of each EC. The master accepts or rejects the changes de-
pending on the availability of the resources. If the changes are accepted, the master
informs about the resources assigned to each kind of traffic during the asynchronous
window of the following EC. After notifying the changes to the slaves, the master also
take them into account when doing the schedule from then on.

Finally, FTT can be deployed on top of different existing communication protocols.
So far, the FTT paradigm has been implemented on top of CAN [4] and Ethernet. In par-
ticular, there are different FTT Ethernet realizations [12, 13, 14]. Both FT4FTT and this
bachelor thesis build upon FTT-Switched Ethernet, as it the topology that is currently
receiving more attention from the research community.

2.2 FTT-Switched Ethernet (FTT-SE)

FTT-Switched Ethernet (FTT-SE) is a realization of the FTT paradigm on top of Switched
Ethernet that presents several important advantages. Two of the main advantages
of Switched Ethernet are its high bandwidth and its extended application. This last
advantage is crucial, as it makes it easier to access to low cost components and facilitates
the integration of the FTT mechanisms within the rest of the system.

The FTT-SE architecture includes a commercial Ethernet full-duplex switch. Each
node is connected to the switch by means of two different links: the uplink, used for
transmitting, and the downlink, used for receiving. Since the communication is full-
duplex, each slave can receive and transmit information at the same time, and the
bandwidth utilization can be improved by transmitting in parallel through disjoint com-
munication paths. Moreover, as the switch provides a collision-free communication
domain, nodes no longer need to implement collision avoidance functionalities.

In FTT-SE the communication is still divided in ECs and the synchronous and
asynchronous traffic are separated in two different windows. Even though, the EC
structure has suffered various modifications with respect to the originally described in
FTT.

As depicted in Figure 2.2, each EC starts with the guard window, which is the time
used by the master to transmit the TM. Its duration corresponds to the maximum
length of the TM. The TM size varies depending on the synchronous traffic transmitted
each EC, which determines the size of the schedule.

Furthermore, FTT-SE includes the (TAW). This window is the time used by the
slaves to process the TM. Its duration corresponds to the time needed by the slave with

8

2.2. FTT-Switched Ethernet (FTT-SE)

Figure 2.2: FTT-SE EC structure.

less computational capacity to decode the TM. This means, it is the maximum amount
of time needed to decode the TM.

From the point of view of the nodes, FTT-SE is implemented as a middleware that
is deployed between the application and the Ethernet layers, giving a higher level of
abstraction as it offers a common application interface while the FTT features and
operations are hidden.

Figure 2.3: FTT-SE middleware architecture.

As shown in Figure 2.3, the FTT-SE middleware is divided into three layers: the
interface, the management and the core layers. Next we briefly outline the features and
functionalities of each of them.

• Interface layer: this layer provides the application software running on the nodes
with common communication and management services. It is used by the slaves
to setup and modify the communication and quality of service (QoS) parame-
ters [12].

• Management layer: this layer is only present in the master. It manages the
the resources devoted to each type of communication according to their QoS
requirements.

• Core layer: this layer implements the communication mechanisms of the FTT
protocol, i.e. in the master the core layer is the responsible of build up the
schedule conveyed in the TM and carries out the transmission control.

9

2. PREVIOUS WORK

2.3 The Slave Elementary Cycle Synchronization Mechanism
(SECSM) specification

The SECSM is a part of the FTTRS [9] architecture. FTTRS aims at constructing a highly-
dependable and flexible communication infrastructure based on FTT-SE by means of
fault-tolerance mechanisms.

Specifically, FTTRS introduces, among other features, time and information redun-
dancy in order to face transient faults in the communication channel. Specifically, the
master transmits the TM several times at the beginning of each EC. Therefore, each
EC starts with a trigger message window (TMW), where multiple TM replicas are sent.
During this window no more information can be transmitted.

One of the main functions of the TM is to synchronize the start of the EC among
all the slaves. The SECSM allows the slaves to synchronize using the new scheme. In
FTTRS slaves are synchronized when they all consistently predict the TMW expiration
time.

Each TM is transmitted k times in each EC, where k is a number that depends on
the channel bit error rate. From the k replicas transmitted by the master in each EC, a
slave can receive all of them or just a subset if transient errors do occur in the channel.
The SECSM can synchronize the slaves regardless of which replicas reach each slave
if the following requirements are accomplished: (a) each slave receives at least one
TM replica per TMW; (b) the TM replicas transmission is done such that every slave
that receives the same replica do so at the same time by each of their links; (c) the
TM replicas are broadcast with the same constant inter-transmission time τ; (d) the
amount of time by which the clock of non-faulty slaves can drift apart within one EC is
negligible.

s1

s2

m1,c

αs1 (1,c)

m2,c

αs1 (2,c)

m3,c

αs1 (3,c)

. . . mi ,c

αs1 (i ,c)

. . . mk,c

αs1 (k,c)

τ τ (k − i)τ

(k −2)τ

(k −1)τ

. . .

m1,c

αs2 (1,c)

m2,c

αs2 (2,c)

m3,c

αs2 (3,c)

. . . mi ,c

αs2 (i ,c)

. . . mk,c

αs2 (k,c)

time

TMTW

Figure 2.4: Aligment of TM arrival times.

Let c denote the sequence number of a certain EC and let Sc be the set of slaves
that remain non-faulty at the end of EC c. Also, let mi ,c denote the TM with sequence
number i belonging to EC c, where i ∈N and 1 ≤ i ≤ k. Moreover, let Ms,c be the TM
replicas received by slave s during EC c. Finally, let α(i ,c) denote the expected arrival
time of mi ,c ∈ Ms,c at slave s ∈ Sc .

Figure 2.4 shows the expected arrival times at salves s1, s2 ∈ Sc of the k replicas sent
in EC c.

10

2.3. The Slave Elementary Cycle Synchronization Mechanism (SECSM) specification

The expected arrival time of mk,c at slave s is:

αs(k,c) =αs(i ,c)+ (k − i)τ, (2.1)

which is the end of the TMW, as is depicted by Figure 2.4.
αs(k,c) can be calculated for all s ∈ Sc for each c if at least one TM replica mi ,c is

received by s in c. Moreover, because of requirement (b) we also have that:

αs1(i ,c) =αs2(i ,c). (2.2)

The SECSM can synchronize the TMW expiration time among s1 and s2 using as
synchronization event the expected moment of the k TM replica reception.

11

C
H

A
P

T
E

R

3
PHASES OF THE PROJECT

This project was organized into four phases, namely (1) the specification of the project,
(2) the study of the foundations and the available FTT-SE prototype, (3) the implementa-
tion and validation and (4) the documentation (see Figure 3.1).

The specification of the project was carried out by the tutors and supervisors before
the realization of the project itself. This phase comprises the design of the slave EC
synchronization mechanism (SECSM), the identification of the different elements and
modules of the FTTRS architecture related to the SECSM, and the proposal of the
activities that are necessary to implement and validate the SECSM.

The phase devoted to the study of the foundations and the available FTT-SE proto-
type encompasses the activities carried out by the candidate to become familiar with
the FTT-SE protocol and its available implementation, as well as with the SECSM. More
specifically, some of the most relevant activities of this phase are the following ones:

• Study the FTT paradigm.

• Thoroughly comprehend the implementation of the available FTT-SE implemen-
tation. At this point it is important to note again that the implementation and
validation of the SECSM has been carried out taking as a starting point an already
available software implementation (middleware) [7] [11] of the FTT-SE protocol.
Thus, it was necessary to study this middleware in detail to identify the different
functions that will be involved in the implementation of the SECSM (see Section
4).

• Study the design of the SECSM.

As concerns the activities of the implementation and validation phase, they are the
ones the candidate carried out to implement and validate the SECSM. These activities
are outlined next.

• Implement and validate the multiple TM transmission mechanism in the master
(see Section 1.3).

13

3. PHASES OF THE PROJECT

• Implement and validate the redundancy management mechanism in the slaves
(see Section 1.3).

• Implement and validate the Turn Around Window. As it will be explained later,
this activity was not foreseen in the specification of the project. It was a contribu-
tion of the candidate to propose this activity in order to tackle some issues that
were not previously identified by the tutors and supervisors (see Section 6.3).

• Integrate the just mentioned implementations to obtain a complete SECSM
prototype and, then validate it by means of fault injection.

It is noteworthy that these implementation and validation activities are organized
following an incremental and iterative strategy. As depicted in Figure 3.1, each one
of the three first activities of the Implementation and validation phase is divided into
three steps. These steps are iteratively executed until the activity is considered to be
fulfilled. The steps are the following ones:

• Specification: in this step the candidate studies the design of the mechanism
addressed in the activity and, then, proposes a viable solution to implement it.

• Implementation: in this step the candidate implements the solution she pro-
posed in the specification step.

• Testing: in this step the candidate describes, performs and analyzes a series of
tests in order to assess the correctness of the implemented solution . Depending
on the results of this assessment, it is decided whether or not the solution is valid,
i.e. if it fulfils the requirements specified in the design of the mechanism. If not,
the activity is resumed from the specification step to refine the implementation.

Figure 3.1: Phases, activities and steps of the project.

When each one of the three first activities of the implementation and validation
is fulfilled, it is executed the fourth activity of this phase. As pointed out just before,
during this activity the candidate integrates and tests as a whole the mechanisms
she implemented in the other activities. In this way she obtains and validates the
correctness of the complete prototype of the SECSM.

14

The last phase of the project, i.e. the documentation, includes two activities, namely
the writing of the report that describes the project itself, and the submission (to an
international conference) of a paper that summarizes the work and the results of the
project.

The following Chapters and Sections describe in more detail the activities carried
out in the second and third phases, i.e. study of the foundations and the available
FTT-SE prototype and implementation and validation.

15

C
H

A
P

T
E

R

4
STUDY OF THE AVAILABLE FTT-SE

PROTOTYPE

The implementation of the SECSM has been carried out taking as starting point an
available software implementation (middleware) of the previously described FTT-SE
communication protocol (see Section 2.2). Thus, as said before, this available FTT-SE
middleware constitutes the development platform of this project.

In order to add the SECSM to the middleware it was necessary not only to study
in detail the FTT paradigm, but also to analyze and identify the different parts and
functions of the middleware itself that are affected by the SECSM implementation.

The result of this analysis is shown in Figure 4.1, where we can find the files (depicted
as circles) of the middleware which are relevant for this project.

Figure 4.1: Files affected by the implementation of the SECSM.

At this point please refer to Figure 2.3, which shows the FTT-SE middleware ar-
chitecture. As can be seen from this figure and Figure 4.1, the implementation of the

17

4. STUDY OF THE AVAILABLE FTT-SE PROTOTYPE

SECSM only affects specific files of the core layer of the FTT-SE middleware. Next we
explain the functionality of each one of these files and the modifications that were
necessary to carry out on them.

• Master dispatcher: this file contains the code responsible for the construction
and transmission of the TMs. This means that it had to be adapted to send
multiple TM replicas each EC with a given inter-transmission time τ.

• Slave eth_filter: when a message is received by a slave, this one is the file where
the code for identifying the type of the message and extracting the information
is placed. In this file we had to implement the management of the reception
of several TM replicas in each EC as well as the synchronization mechanism
according to what has been explained in Section 2.3 .

• Slave dispatcher: as it will be later explained in Section 6.3, some synchroniza-
tion issues during the implementation of the mechanism leaded to the addition
of the Turn Around Window –which has been previously explained in Section 2.2–
in the specification of the mechanism.

• ftt-global: this file contains the specification of all the elements that are com-
mon to the master and the slave. This is the case of the TM header, which had to
be modified to convey the information related to the mechanism.

Finally, the ports file, which is a library used by all the layers of the mechanism
had to be modified too. We added to this file all the functions that are not part of the
slave elementary cycle synchronization mechanism, but that are necessary to carry out
the implementation.

18

C
H

A
P

T
E

R

5
IMPLEMENTATION AND VALIDATION OF THE

SECSM IN THE MASTER

Across this chapter we will explain the iterations carried out to complete all the activities
related to the implementation and validation of the SECSM in the master.

5.1 First iteration: preliminary version of the multiple TM
transmission in the master

As previously seen in Section 2.3, the master is in charge of sending k replicas of the
TM each EC with a constant inter-transmission time τ. In order to add to the system
the new functionalities offered by the SECSM, we had to encapsulate some additional
information in the TM constructed by the master each EC. Moreover, the master code
had to be modified in order to implement the transmission of the TM replicas.

In this section we find the solutions proposed for solving both problems and their
implementation. Also we find the test setup used to verify the correctness of the imple-
mented solutions and the results obtained from its performance.

5.1.1 Solution proposal and implementation

In this first solution, we modified the ftt-global.h file in order to add to the TM the
corresponding information. Specifically, we added one byte to specify the number
of TM replicas per EC k, two bytes for the TM inter-transmission time τ in µs and an
additional byte that indicates the sequence number of each TM replica. Figure 5.1
shows the resulting TM header, where the highlighted fields correspond to the added
information.

In order to ease the utilization of the prototype, the user must be able to modify
k and τ without having to change the code. For this reason k and τ are previously
specified by the user as parameters of the master process. Since the FTT-SE middleware

19

5. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE MASTER

Figure 5.1: TM header including the information related to the SECSM.

is conformed by several layers, we had to modify all the functions that are built on the
top of the master dispatcher.

Since the EC duration is also a parameter specified by the user, it is necessary to
ensure that it will be possible to carry out the transmission of all of the TM replicas
within an EC. That is, it has to be accomplished that:

k ×τ< ECleng th . (5.1)

Moreover, as it is explained in Section 2.3, at least two TM replicas have to be sent in
each EC. Both conditions are checked during the initialization of the master dispatcher
and, in case any of them is not accomplished, the process finishes with an error message
with the adequate information.

Regarding the transmission of the TM replicas, the code had to be adapted in order
to make it possible to send every TM several times. Next we detail how the construction
and the transmission are performed.

All the TM replicas carry the exact same information except for the TM sequence
number, which is incremented every iteration and it can take values from 0 to k −1.
Nevertheless, each time a message is sent, first, it is necessary to reserve the buffer
where the message will be saved until its transmission. Once the message has been
transmitted, the buffer is emptied and its content is lost. Therefore, it is necessary to
construct the whole TM every time a replica has to be transmitted. For this reason, both
the construction and the transmission of each TM replica are now carried out in a loop
which is executed k times. Once the TM is constructed it has to be sent.

Let Mc denote the set of TM replicas belonging to the EC c. Let consider the trans-
mission of the TM replica with sequence number i in EC c , where i ∈N and 0 ≤ i < k−1,
denoted by mi ,c , and the one with sequence number j , where j ∈N and j = i +1, de-
noted by m j ,c , where mi ,c ,m j ,c ∈ Mc . Let t x(i ,c) be the transmission moment of mi ,c

and β(j ,c) be the estimated transmission moment of m j ,c .

When the master process transmits mi ,c it timestamps the moment of the transmis-
sion, t x(i ,c), and then τ is added to this moment in order to calculate β(j ,c):

β(j ,c) = t x(i ,c)+τ. (5.2)

Once the j th TM replica is constructed the process sleeps and it awakes when
β(j ,c) arrives. Next we find the pseudo-code for this implementation.

20

5.1. First iteration: preliminary version of the multiple TM transmission in the master

function dispatcher i s
loop

sleep_until_next_EC () ;
tx (i , c) = now;
c ++;
for i in k do

m(i , c) = construct_TM () ;
s leep_unti l (β (i , c)) ;
transmit (m(i , c)) ;
β (i +1 ,c) = tx (i , c) + τ ;

end for
end loop

end function

5.1.2 Testing

In order to assess the correctness of the implemented solution it is necessary to ensure
that each component involved in the mechanism operation works properly. For this
purpose we defined several tests, with their respective setups, to evaluate each part and
their integration.

All the setups have several features in common. On the one hand, all the tests are
executed in the same machine and under the same GNU/Linux instance. Even the
purpose of this mechanism is to work in an FTTRS [9] implementation with replicated
masters, the master synchronization was not implemented when this project started.
Therefore, and because of requirement (b) explained in Section 2.3, we considered
that using a single master to test the performance was a suitable solution for testing
the results of this implementation. Moreover, implementing the slaves in the same
machine provides the slaves with a common clock base for timestamping. On the other
hand, master and slaves processes are all attached to a 100 Mbps Ethernet switch.

The main differences between setups are the number of slaves involved and the
network configuration. The number of slaves varies depending on the state of the
implementation. Regarding the network construction, in the first setups we use Virtual
Distributed Ethernet (VDE) [15]. VDE allows for building completely software based
networks, distributed and Ethernet compliant. The prototypes used to carry out the
tests use two VDE components, the switch, which is a process executed in the same
machine as the master and slave processes, and virtual dedicated links that intercon-
nect each node to the switch. Using VDE networks allows for seeing how the SECSM
performs without taking into account the delays introduced by the network interfaces
and the switch.

We added some instrumentation code to both the master and the slave software in
order to be able to make measurements.

As concerns the test parameters, which are also shared by all the setups, we de-
cided to use values that could be used by a control application. Typically a control
application needs to transmit small amounts of information with small transmission
periods corresponding to the sampling periods of the application. For this reason, the
EC duration was set to 1 ms. Moreover, the inter-transmission time τ must be greater
than the transmission time of a TM, including the Ethernet interframe gap. In these

21

5. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE MASTER

tests the TMs do not carry any scheduling information, so as seen in Figure 5.1 the data
payload of a TM is 14 bytes. Therefore, TMs fit within the 46 bytes of data padding of
an Ethernet frame of minimum size. Figure 5.2 shows the format of the Ethernet MAC
frame.

Figure 5.2: IEEE 802.3 MAC Frame Format [16].

This means that with 100 Mbps Ethernet the transmission time of a TM is (72 ·
8)/100 = 6.72µs. Therefore, τ must be greater than 6.72µs. Given that during the TM
window only TMs can be exchanged, if τ is big enough the TMs will not be queued in
the switch output ports, reducing the jitter introduced by the transmission. This way,
not only the master will send the TM replicas with the adequate inter-transmission
time, but also the slaves will receive them with the right τ. In order to reduce the impact
of the non-determinism introduced by the OS and the software components and to
allow slaves to process the replicas, we decided to set τ to 100 µs to perform the tests.

Regarding the number of TM replicas k is a function of the bit error rate in the
channel which means k is implementation dependent. Assuming k is big enough
to guarantee that each slave will receive at least one TM replica in each EC, it is not
necessary to check the right functioning of the implementation for every value k can
take. Specifically, to carry out our tests the value of k chosen is 4. The reason to choose
this value is that a k of 4 allows us to study a significant number of scenarios without
having a too elevate number of retransmissions.

Specifically, in order to assess the correct functioning of the solution we used to

22

5.2. Second iteration: enhanced version of the multiple TM transmission in the master

implement the SECSM in the master we had to test two aspects.
First, we had to ensure that the information contained in the TM replicas was

correct. In order to do so, we needed to check that the information is correctly encap-
sulated in the TMs. To this aim we used a network analyser, Wireshark, that allows for
capturing the frames in the network.

The second part of the test consisted in measuring the time gone by between the
transmission of the TM replicas with sequence number i where 0 ≤ i < k −1 and the
one with sequence number j where j = i +1, both belonging to the EC c. In order to
do so, we saved the transmission instant of the TM replicas i and j , denoted as t x(i ,c)
and t x(j ,c) respectively. We obtained the real inter-transmission time by calculating
the difference between the transmission moments.

Figure 5.3 shows the prototype used to carry out this test. This prototype is con-
formed by a master process attached to a VDE link and a Wireshark process, all executed
in the same machine.

Master

Wireshark

Testbed machine

Figure 5.3: Prototype architecture with a master process and a network analyser.

As the master process is the only node in the configuration, having a switch was not
necessary. Therefore, the master was attached to a virtual link that drives the frames to
a sink.

The results of this test showed that the information is correctly encapsulated in the
TM. Regarding τ, the mean value of the difference between the measured τ and the
value of τ specified by the user, was of approximately 50 µs. Therefore, the deviation
in the TMW represented approximately the 50% of its duration. For this reason, it was
necessary to propose a new solution to implement the inter-transmission time.

5.2 Second iteration: enhanced version of the multiple TM
transmission in the master

In this section we find the solution proposed to solve the problems just identified for
the first implemented solution of the SECSM in the master. Also, we find the results
obtained from performing the corresponding test to evaluate its correctness.

5.2.1 Solution proposal and implementation

After studying the first implementation of the mechanism in the master, we concluded
that the difference between the measured τ and the desired one was caused by the

23

5. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE MASTER

function used to sleep the master between the transmission of the replicas. This was
due to the fact that the process had to be awoken by the OS when the transmission
moment was reached, which can introduce non-deterministic delays in the moment of
the transmission, causing τ to be greater than specified.

Since the system has to be reactive, it is important to avoid the usage of functions
that could prevent it from having such behaviour, as it is the case when the process
is asleep. For this reason, we decided to use busy wait to implement this part of the
mechanism. This way we can reduce the fluctuations of the real τ. Note that by using
a busy wait to carry out the implementation we force the CPU to be busy between
the replica transmissions. However, since during the TM window the master is only
in charge of sending the TM replicas, the busy wait does not prevent other tasks from
being executed.

Let consider the same scenario described in Section 5.1. Now after calculating
β(j ,c) and constructing the TM m j ,c , the process gets in a loop where it constantly
timestamps the current moment and compares it with β(j ,c). When the current mo-
ment is greater or equal to β(j ,c), m j ,c the TM is sent. Next we find the pseudo-code
for this implementation:

function dispatcher i s
loop

sleep_until_next_EC () ;
c ++;
for i in k do

m(i , c) = construct_TM () ;
now = timestamp () ;
while now < tx (i , c) do

now = timestamp () ;
end while
transmit (m(i , c)) ;
tx (i +1 ,c) = tx (i , c) + τ ;

end for
end loop

end function

5.2.2 Testing

To test the accuracy of the real inter-transmission time reached by this new solution
we used the test and the setup described in the previous Section. The results obtained
by the test in this case were suitable, as the mean deviation of the measured τ only
represented approximately the 0.5% of its desired duration.

24

C
H

A
P

T
E

R

6
IMPLEMENTATION AND VALIDATION OF THE

SECSM IN THE SLAVES

6.1 First iteration: preliminary version of the redundancy
management in the slaves

As explained in Section2.3, in FTTRS the slaves have to manage the TM redundancy
and determine the start of the SW. More specifically, the goal of this management is
that all the slaves attached to the network have the same vision of the EC –that is, that
all slaves consistently calculate the beginning of the following EC–, even in presence of
transient faults in the channel.

This management is the part of the SECSM to be implemented at the slaves. In this
section we explain the solutions proposed to implement it, as well as the setup and the
results of the tests carried out to assess their correctness.

6.1.1 Solution proposal and implementation

In FTTRS the SW does not start when a TM is received, but when the TM window
ends. This instant is called TMW expiration time and it is the moment when the slave
dispatcher has to be launched. When a slave s receives a TM replica with sequence
number i in EC c it has to calculate the TM window expiration time as it is indicated
in Equation 2.1. In order to do so, when a TM is received, the process timestamps the
moment of the reception and τ and the TM sequence number are extracted from its
header.

In FTTRS masters also use the TM window to synchronize themselves [17]. Thus,
since the masters are more synchronized at the end of the TM window than they are
at the beginning, the later the TM is received, the most accurate the synchronization
between slaves will be. For this reason, the TM window expiration time, αs(k,c) (Sec-
tion 2.3), is recalculated every time the slave receives a new TM replica within the EC
c.

25

6. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE SLAVES

As has been said, in a non-faulty scenario, every slave will receive several TM
replicas in each TM window. For this reason the eth_filter function can not be
blocked when a TM replica is received, otherwise just the first TM replica received by a
slave in each EC would be processed and the rest would be lost.

We first considered the possibility of using a timer that would expire when reaching
the TMW expiration time. We decided that the API that we would use for implementing
would be POSIX Timers. POSIX implements per-process interval timers which use
signals to notify to the caller when they expire. We use a signal handler, which is a
function described by the programmer, to define the actions that have to be carried out
when the timer expires. POSIX also defines a series of async-signal-safe functions to
handle signals. When an async-signal-safe functions is invoked by a signal handler the
program shall behave as it is defined. This is the case of the function recv() used by
the slave when receiving a message. Nevertheless, if an async-signal-safe function is
interrupted by a signal handler then the function can either restart the call when the
signal handler finishes its execution or fail with the error EINTR. This last one is the
case for recv(), which fails with the error EINTR if it is interrupted by a signal handler
before any data is available. For this reason, it was not possible to use timers to perform
the implementation.

We finally decided to use a new thread to implement a busy wait. When the first
TM replica of each EC is received by each one of the slaves, each slave creates a thread
where it carries out the busy wait. If a slave receives a later TM replica within the
same EC, the thread implementing the busy wait is cancelled and destroyed, the TM
window expiration time is recalculated as seen before in Equation 2.1 and a new thread
implementing the busy wait is created.

Next we find the pseudo-code for said solution :

function e t h _ f i l t e r i s
switch (type_of_msg)

case TM:
thread_cancel (dispatcher_launcher ()) ;
thread_destroy (dispatcher_launcher ()) ;
process_TM (m(i , c)) ;
calculate_EC_end () ;
α (k , c) = now + (k − i) *τ ;
create_thread (dispatcher_launcher ()) ;
break ;

case . . .
default :

error_msg (incorrect_msg_type) ;
break ;

end switch
end function

Next we detail the dispatcher_launcher() function code, which is the function in
charge of starting the SW:

function dipatcher_launcher i s
busy_wait (α (k , c)) ;
launch_dispatcher () ;

26

6.1. First iteration: preliminary version of the redundancy management in the slaves

end function

Nevertheless, calculating the start of the synchronous window is not enough, in
order to have the same vision of the EC slaves must consistently calculate when the
EC ends. To this aim, each time a slave receives a TM replica it calculates the moment
when the EC started.

s m0,c

αs (0,c)

m1,c

αs (1,c)

m2,c

αs (2,c)

. . . mi ,c

αs (i ,c)

. . . mk−1,c

αs (k −1,c)

τ τ (k − i)τ

(3−1)τ

(i −1)τ

(k −1)τ

Figure 6.1: Vision of the EC start moment in a slave.

Figure 6.1 shows how the arrival of a TM replica in a certain EC is related to the start
of that EC. We can see that, from the slave point of view, the start of an EC c coincides
with the expected arrival time of the first TM replica belonging to that EC, this is, the
start of EC c in slave s is αs(1,c). Let consider that slave s receives the TM replica with
sequence number i , where i ∈N and 0 ≤ i ≤ k −1 during EC c and let αs(i ,c) denote
the expected arrival time of such replica, then the expected EC start moment would be
calculated as follows:

αs(1,c) =αs(i ,c)− i ·τ (6.1)

Once calculated the expected EC start moment the slave can calculate the end by
adding the EC duration to that value. The EC duration is extracted from the TM header.

6.1.2 Testing

To assess the correctness of this implemented solution first we had to check whether
the TMW expiration time was correctly calculated by the slaves or not. To this aim we
designed a test that consisted in measuring the duration of the TMW in a non-faulty
scenario. The expected duration for the TM window can be calculated as (k−1) ·τ.

To measure the TM window duration in a given slave we calculate the time that
elapses between the reception of the first TM replica and the moment when the slave
launches the dispatcher, i.e. the moment when the TM window is considered to be
finished. The instant when the TM is received is provided by the lower level reception
primitives, while the moment when the dispatcher is launched is timestamped by the
slave to latter calculate the difference.

Figure 6.2 shows the prototype used to perform this test. This prototype is con-
formed by a master and a slave node, both connected to a VDE switch by means of
dedicated virtual links.

The duration of the TM window in a slave depends on the moment when it receives
the different TM replicas from the master. The master sends the TM replicas with a
constant inter-transmission time τ regardless of the number of nodes attached to the
network. Thus, one slave is sufficient to carry out this test.

27

6. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE SLAVES

Virtual
Switch

Master process

Slave process

Testbed machine

Figure 6.2: Prototype architecture with a single slave process and a virtual switch.

The results of the test revealed a lack of accuracy in this solution, which suffered
from a lot of jitter, reaching values of the 30% of the EC duration. For this reason, we
reconsidered the solution used. The description of the new solution can be found in
the following Section.

6.2 Second iteration: enhanced version of the redundancy
management in the slaves

In this section we describe the solution proposed to solve the problems of the previous
solution. Also, we find the setup of the test carried out to assess the correctness of this
new solution, as well as the results obtained from them.

6.2.1 Solution proposal and implementation

The imprecision of the first solution just explained was due to the fact that the thread
that implemented the busy wait was created, cancelled and destroyed every time a TM
replica was received by the slave.

Since POSIX threads are OS functions they can cause non-deterministic delays.
In order to reduce as much as possible the jitter introduced by the thread usage, now
the thread used to implement the busy wait is not cancelled, destroyed and created
again every time a TM replica is received. Instead, only one thread is created in each
EC. When a slave receives a TM replica it has to check if it is the first TM received in a
certain EC c and, if so, the slave cancels and destroys the thread created in the EC c −1
and creates a new one after calculating the TM window expiration time. Thus, only one
thread is created each EC for implementing the busy wait.

On the other hand, as seen in Section 2.3 slaves consider the TM window of a certain
EC c to finish when the kth TM replica is received, so when a slave receives a TM this
calculates the expected arrival time of the kth replica αs(k,c). Nevertheless, the jitter in
the transmission can cause the kth replica to reach the slave after αs(k,c) has expired,
that is, when the TM window is already over. When this happens, the slave must ignore
the last replica as the dispatcher will have already been launched. This is done by
checking the dispatcher status when a TM replica is received.

Next we find the pseudo-code of the new solution:

28

6.2. Second iteration: enhanced version of the redundancy management in the slaves

function e t h _ f i l t e r i s
switch (type_of_msg)

case TM:
i f (c 6= l a s t _ e c) then

thread_cancel (dispatcher_launcher ()) ;
thread_destroy (dispatcher_launcher ()) ;

end i f
i f not_dispatcher_launched then

process_TM (m(i , c)) ;
calculate_EC_end () ;
α (k , c) = now + (k − i) *τ ;
i f (c 6= l a s t _ e c) then

create_thread (dispatcher_launcher ()) ;
l a s t _ e c =c ;

end i f
end i f
break ;

case . . .
default :

error_msg (incorrect_msg_type) ;
break ;

end switch
end function

The function dispatcher_launcher() is the same as the one described in the previous
Section.

6.2.2 Testing

In order to ensure that the TMW duration is correct, we performed the test described
in Subsection 6.1.2. The results obtained from the performance of such test –which
measures the real TMW duration in a slave in a non-faulty scenario– show that this
new solution reaches a suitable level of accuracy, as the deviation in the TMW is on the
order of the 0.7% of the TMW duration.

On the other hand, in order to test the synchronization among the slaves reached
by this solution it was necessary to describe a new test.

As previously discussed in Section 2.3, the reception of the TM replicas is the event
used by the slaves to synchronize the start of the EC. The EC offset is a measure of
how much the EC end moment differs between the slaves. As the synchronous and
asynchronous windows duration is constant and is also the same for all the nodes in
the network within each EC, we can calculate the EC offset as the difference between
the Synchronous window start instants timestamped by two different slaves.

The prototype used to perform this test is the one shown in Figure 6.3. It is con-
formed by a master process and two slave processes attached to a VDE switch by means
of virtual links.

As each node is connected to the switch through a dedicated link, the loss of a
certain message in a slave does not necessarily affect to the reception of the same
message in a different slave. Thus, we considered that using two slaves to test the slave

29

6. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE SLAVES

Virtual
Switch

Master process

Slave process s1

Slave process s2

Testbed machine

Figure 6.3: Prototype architecture with two slave processes and a virtual switch.

was a suitable solution, since the moment when a slave determines the EC to start
depends on the master and not on the number of slaves.

The results obtained by performing this test revealed a lack of precision in the
synchronization achieved by this strategy. Therefore, it was necessary to propose a
further solution.

6.3 Third iteration: Turn Around Window (FTT-SE)
implementation

It is important to note that the synchronization problems just explained are caused by a
deficiency in the first specification/design of the SECSM. This means that the detection
of this specification flaw is a contribution of this project. Moreover, in order to solve it,
we proposed a modification of the specification, which is a novel contribution of this
work.

In the following sections we describe the solution proposed by the candidate and
its implementation, as well as the results of the test carried out to assess its correctness.

6.3.1 Solution proposal and implementation

The imprecision in the slave synchronization was due to the fact that slaves had no time
to process the last TM replica, as the processing time of the TMs was not considered in
the first specification of the mechanism when estimating the start of the SW. Therefore,
we decided to include an idle time between the TMW and the SW, so that the nodes
that receive the kth replica within the TMW have enough time to process it. FTT-SE
uses a similar solution and calls this idle time the TAW, as can be seen in Section 2.2, so
we decided to keep this terminology.

Figure 6.4 shows the new structure of the FTTRS EC.

Figure 6.4: EC structure in the new FTTRS specification.

30

6.3. Third iteration: Turn Around Window (FTT-SE) implementation

Note that now the expected arrival time of the kth replica does not coincide with
the start of the SW, but with the start of the TAW. Next we will describe in detail how
the TAW has been implemented.

When a slave receives a TM replica with sequence number i it estimates the EC start
moment as seen in Equation 6.1 and saves it in a database to which the slave dispatcher
is able to access in order to read it and determine the end of the EC. This same value
is also used by the slave dispatcher to estimate the SW start. Let αs(1,c) denote the
expected arrival time of the first TM replica to slave s in EC c. From the slave point of
view this moment coincides with the start of EC c . To this moment the slave dispatcher
must add the TMW and the TAW length to estimate the EC end.

T MWleng th = (k −1) ·τ (6.2)

Since the slave dispatcher has not direct access to the information carried in the
TMs, the TMW length is calculated in the eth_filter file as seen in Equation 6.2 and then
this value is passed to the dispatcher as a parameter of the function used to launch
the TAW. Finally, the estimated SW start is calculated in the dispatcher as specified in
Equation 6.3.

SWst ar t =αs(1,c)+T MWleng th +T AWleng th (6.3)

The TAW length is a configuration parameter that can be changed depending on
the dynamic of the system. Therefore, its duration can be set to 0, eliminating the TAW
if it is considered to be not necessary.

6.3.2 Testing

Once finished the implementation of the TAW it was necessary to ensure that it was a
suitable solution to the problems in the slaves synchronization. First, we performed
a test to measure the accuracy in the synchronization among slaves in a non-faulty
scenario for different TAW lengths. This test was performed using the test setup de-
scribed in the previous Section. As it is later discussed in Section 7.3 the TAW improves
the accuracy of the synchronization and, therefore, we considered it to be a suitable
solution.

Also we performed an exhaustive verification of the mechanism and its implemen-
tation. We used this test to assess the robustness of the SECSM in front of TM losses.
We also wanted to assess the correctness of the implementation. We used software
implemented fault injection (SWIFI) to inject the transient faults in the channel. The
SWIFI code has been added to the eth_filter file. This code forces the slaves to ignore
some TM replicas in order to simulate every possible combination where up to k−1 TM
are lost. Thus, we test every possible scenario where the mechanism is capable of syn-
chronizing the slaves in front of transient faults. The number of TM loss combinations
is given by (

k−1∑
e=0

(
k

e

))n

, (6.4)

where k is the number of TMs per EC, e is the number of lost TMs, and n is the
number of slaves attached to the network.

31

6. IMPLEMENTATION AND VALIDATION OF THE SECSM IN THE SLAVES

The SWIFI code uses a function that returns every possible combination as an array
of booleans. When a TM replica is received its sequence number is used to index the
array position where it is indicated whether the TM must be processed, ’1’, or ignored,
’0’.

Two different setups were used to carry out this test. The first one was performed
with the prototype explained in Subsection 6.2.2. It is conformed by a master and two
slave processes attached to a VDE switch. This configuration allowed us for comparing
the results obtained from this test to the ones obtained in a non-faulty scenario.

The second setup is the one seen in Figure 6.5 and differs from the first one in
the network configuration. This setup is conformed by a master process and two
slave processes, all executed in the same machine, attached to a commercial off-the-
shelf (COTS) switch through physical Ethernet interfaces. Each process is attached to a
different Ethernet interface of the machine where the test is executed. This prototype
allowed us for testing the functioning of the implementation when using physical
network components.

COTS
Switch

Master process

Slave process s1

Slave process s2

Eth1

Eth0

Eth2

Testbed machine

Figure 6.5: Prototype architecture with two slave processes and a COTS switch.

The results obtained by performing these tests were considered to be suitable in
terms of synchronization and showed a right behaviour of the mechanism in front of
transient faults. A deeper discussion of the results can be found in Chapter 7.

32

C
H

A
P

T
E

R

7
EVALUATION OF THE INTEGRATED

PROTOTYPE

In this section we describe the results obtained from the tests carried out on the com-
plete prototype of the SECSM, i.e. on the prototype that results from integrating the
different mechanisms implemented during the implementation and validation phase.

Concretely, we have tested the behaviour of each part of the mechanism when
working together in the integrated prototypes. Note that part of the integration was
actually done in the implementation and validation phase, since in order to validate the
SECSM mechanisms located in the slaves it was necessary to test them in conjunction
with the SECSM mechanisms of the master. This also means that the test setups used
in the current section are the two last ones presented in Chapter 6, namely the one that
uses a virtual switch (Figure 6.5) and the one that uses a COTS-based one (Figure 6.3.

7.1 TM replica transmission

The first tests we conducted were devoted to checking that the content of the TM is
correct, as well as to measuring the time that elapses between the transmission of the
different TM replicas that belong to the same EC. We used the prototype with the virtual
switch to carry out this test (Figure 6.5).

In order to verify the content of the TM we captured the traffic in the master link
with Wireshark. We observed that the content of the TM was correct, as shown in the
frame example of Figure 7.1. This frame corresponds to the first TM replica in the EC
with sequence number 188, with a k of 4, a value of τ of 100 µs and an EC duration of 1
ms.

The content of the frame is shown as a stream of bytes expressed as hexadecimal
values, thus two digits represent one byte of information. As it can be seen, a frame is
divided in four different parts:

33

7. EVALUATION OF THE INTEGRATED PROTOTYPE

Figure 7.1: Wireshark capture of a TM in the master link.

• First, the Ethernet header which contains the destination and source addresses,
as well as the Ethernet frame type which is 8ff0 for FTT frames.

• Next, the FTT message type, the value of which is 0 corresponding to a TM.

• The reliable TM header, which contains the information related to the SECSM,
namely:

– 1 byte for k. In this case its value is 4.

– 1 byte for the TM sequence number, the value of which is 0, corresponding
to the first TM replica of the EC.

– 2 bytes for τ. The byte ordering schema of the machine causes that the fields
of two or more bytes are reverted. For this reason τ is coded as 64 00, which
corresponds to 6416, 10010.

• Finally, the TM header contains five fields. First the EC sequence number, which
is BC16 and corresponds to 18810. Next the EC duration in ms that, as said before,
is 1. Finally the number of synchronous, asynchronous and signalling messages.
Note that, this last 6 bytes are 0 due to the fact that the TM does not carry any
scheduling information.

As concerns the part of the tests devoted to assessing the time between the trans-
mission of different TM replicas of an EC, we measured the real duration of the TM
inter-transmission time. This is done by timestamping the moment of the transmis-
sion of one replica and the following one and calculating the difference between both
transmissions. Then, we calculated the difference with respect to the specified τ.

This test was executed 1000 times, which corresponds to 225000 ECs. Thus the
number of samples of this test was 675000 since the number of inter-transmissions
in each EC is 3. The following table shows the maximum, the mean and the standard
deviation of the measured differences with respect to τ.

Specified τ (µs)
Real τ

max (µs) mean (µs) Std. dev. (µs)
100 5.984 0.349 0.125

Table 7.1: Measured difference between the real and the expected τ.

Note that the maximum deviation of the real inter-transmission time just represents
the 5.98% of the desired τ and only the 0.59% of the EC size. Moreover, the value of

34

7.2. TM window duration in the slave nodes

Expected TM window (µs)
Measured difference

max (µs) mean (µs) Std. dev. (µs)
300 61.408 0.89 2.789

Table 7.2: Measured difference between the real and the expected TMW duration.

the mean and the standard deviation show that there is a reduced number of peaks,
this is, the values close to the maximum deviation are not common. The results of
this test demonstrate that the design and implementation of the part of the SECSM
located in the master are suitable for the EC sizes considered in this project, which are
representative of a wide range of control applications.

7.2 TM window duration in the slave nodes

The second set of tests we carried out were aimed at measuring the real duration of
the TMW observed in the slaves and, then, to compare them with the expected TMW
duration. For that we used the setup with the virtual switch (Figure 6.5).

Theoretically, the TMW lasts (k −1) ·τ time units. Thus, for a k of 4 and a τ of 100
µs, the expected duration of the window is 300 µs. Table 7.2 shows the maximum, the
mean and the standard deviation of the measured differences between the expected
TMW duration and the observed one.

As can be seen there, the maximum difference between the expected TMW duration
and the real one is 61.408 µs. This value just represents the 6.1% of the EC duration and,
thus, it is considered to be a suitable result. Moreover, the mean and standard deviation
show that in most cases the results obtained by the implementation are good.

Additionally, Figure 7.2 shows the TMW duration for the different samples. Positive
and negative values respectively correspond to samples in which the TMW is greater
and lower than the expected value.

Figure 7.2: Deviation in the TMW duration in µs.

As observed in this figure, the greater peaks correspond to cases in which the TMW
duration is less than it should. This is due to the fact that the reception of the first

35

7. EVALUATION OF THE INTEGRATED PROTOTYPE

TM replica is sometimes delayed, while the other replicas reach the slave in the right
moment. The reception delay of the first TM is caused by the indeterministic behaviour
of the underlaying software components and, therefore, solving this issue is out of the
scope of this work.

Fortunately, the mean and the standard deviation of the results (Table 7.2) indicate
that this behaviour is very unlikely. Furthermore, the maximum measured difference
just represents the 6.1% of the EC duration. In any case, it is noteworthy that the
reception of any TM replica forces the slave to recalculate the TMW end moment.
This means that a delay in the first TM can only negatively affect the synchronization
among the slaves when a subset of slaves do receive just the first TM replica and do
not receive the other ones. Therefore, the probability with which slaves can lose the
synchronism because of the reception delay of a TM is very low, or even negligible
when an appropriate value of k is used. In conclusion, the results of these tests are
considered acceptable for a wide range of control applications.

7.3 Slaves synchronization in a non-faulty scenario

The last set of tests we carried out were devoted to measure the divergence in the
predicted SW start among two slaves, that is, the EC Offset. Note that these test are
the ones we pointed out in Section 6.3.2 when explaining the validation of the TAW
mechanism. Particularly, in the current section we show the results of the measured EC
Offset when faults do not occur and all TM replicas are received by the slaves. We used
the virtual switch prototype to carry out these tests.

In order to be as general as possible we defined different values for the TAW duration.
Specifically we performed the tests with TAW values of 0 µs and 50 µs.

Figure 7.3 shows the results obtained from measuring the EC Offset with a TAW
duration value of 0 µs. As it can be seen, the SW start suffers from a lot of jitter. This
effect is caused by the jitter with which the master itself transmits different TM replicas
(variations in the transmission times are due to the indeterministic behaviour of the
master underlaying software components). To better understand why this transmission
jitter provokes jitter in the SW start, note that the transmission jitter can cause that the
last TM replica, i.e. the kth replica, reaches some slaves within the TMW and other
slaves when the TMW has already expired. If this happens, only the slaves that do
receive the replica within the TMW need extra time to process it and, thus, they delay
the SW start with respect to the other slaves.

Figure 7.4 shows the results obtained when performing the same test with a TAW
length of 50 µs. It can be observed that increasing the TAW in such a way leads to a
more accurate synchronization.

The difference in the results of both configurations is due to the fact that in the
second one all the slaves have enough time to process the kth TM replica.

Table 7.3 shows the maximum, the mean and the standard deviation of the mea-
sured EC Offset for both configurations.

The mean shows that the EC synchronization achieved is good for both configu-
rations, just the 2% and 2.5% of the EC duration. In any case, results also show the
advantages of the second configuration (the one in which TAW = 50). On the one hand,
we can see that the standard deviation is five times smaller when TAW = 50 µs than

36

7.3. Slaves synchronization in a non-faulty scenario

Figure 7.3: Measured EC Offset with a TAW duration of 0 µs in absence of faults.

Figure 7.4: Measured EC Offset with a TAW duration of 50 µs in absence of faults.

Turn Around window (µs)
Measured EC Offset

max (µs) mean (µs) Std. dev. (µs)
0 22.967 2.561 1.607

50 17.499 2.044 0.313

Table 7.3: Measured EC offset values for TAW values of 0 and 50 µs in absence of faults.

when TAW = 0 µs. This shows that values of TAW greater than 0 helps in mitigating the
effects derived from the jitter in the transmission of the TM. On the other hand, we can
observe that the second configuration reduces the maximum EC Offset, from 22.967 to
17.499 µs.

37

7. EVALUATION OF THE INTEGRATED PROTOTYPE

7.4 Slaves synchronization in scenarios involving transient
faults

Next we describe the results of the test we performed to assess the EC Offset in scenarios
involving faults that provoke the loss of TM replicas. As already pointed out in Section
6.3.2 in order to exhaustively check the correctness of the SECSM in these scenarios, we
included within the slaves a software code that leads them to ignore some TM replicas
in every possible combination.

To perform this tests we used both setups, the one with a virtual switch (Figure 6.5)
and the one with a COTS switch (Figure 6.3).

Figure 7.5: Measured EC Offset with virtual switch in presence of transient faults. The
horizontal axe shows the number of samples. The vertical axe shows the EC Offset in
microseconds.

Figure 7.5 shows the results obtained when using the virtual switch. If we compare
these results with the ones shown in Figure 7.3, which were obtained in a non-faulty
scenario with a virtual switch, we can see that the loss of some TM replicas causes the
EC synchronization to be less accurate.

To better understand this loss of accuracy, recall that in Section 7.2 we explained
that in some cases the reception of the first TM replica of an EC is delayed (due to
the non-deterministic behaviour of software components). In principle, slaves can
solve this problem by recalculating the SW start with the reception of later TM replicas.
However, the omission of some TMs prevents the slaves from recalculating the SW start.
If this occurs the slaves cannot resynchronize, which leads to a higher deviation in the
EC synchronization.

Figure 7.6 shows the measured EC Offset obtained when using a COTS switch. It
should be noted that not only the maximum EC Offset is greater than in the logical
implementation, but also that there are more peaks with values over 50 µs. This can be
explained by the fact that physical COTS switches present a non-constant forwarding

38

7.4. Slaves synchronization in scenarios involving transient faults

Figure 7.6: Measured EC Offset with COTS switch in presence of transient faults. The
horizontal axe shows the number of samples. The vertical axe shows the EC Offset in
microseconds.

delay greater than the one of virtual switches. In fact, since during the TMW the TM
replicas sent by the master are the only traffic in the network, they are not queued in
the output ports of the switch. Thus, the non-constant delay is a characteristic of the
switching physical mechanisms themselves.

Configuration
Measured EC Offset

max (µs) mean (µs) Std. dev. (µs)
Viratual Switch 47.62 1.94 0.84

COTS Switch 91.37 0.69 1.36

Table 7.4: Measured EC offset values for a virtual and a COTS switch in presence of
transient faults.

Table 7.4 show the maximum, mean and standard deviation of the measured EC
Offset for a virtual and a COTS switch. As discussed in Section 7.3, the first TM replica
is sometimes delayed as a consequence of the non-deterministic behaviour of the
software components that constitute the virtual network. For this reason, the mean
of the measured EC offset is worse when using the virtual switch than when using the
COTS one.

In principle, the mean and the standard deviation are acceptable for both config-
urations. Nevertheless, we can observe that the maximum value of the measured EC
offset is significant, i.e. the 5% and 10% of the EC duration respectively. Since in FTTRS
the end of the EC is the deadline for the round-base communication, this deviation in
the synchronization can prevent the slaves from sending some messages in the right
EC.

Even though, the problems that affect the correct operation of the implementation
are a consequence of the software-implemented platform and, therefore, they are out
of the scope of this project.

39

C
H

A
P

T
E

R

8
CONCLUSIONS

In this chapter we first present a summary of the work that has been carried out in
this bachelor project, as well as of the conclusions reached during its development.
Moreover, for future work, we suggest some task that could be carried out within the
FT4FTT project [8]. Finally, we include a series of considerations about the learning
process of the author of this bachelor thesis.

8.1 Summary

This project consisted in the implementation and validation of the slave elementary
cycle synchronization mechanism (SECSM), proposed as part of the FT4FTT project.
FT4FTT faces the construction of a highly-dependable and flexible communication
infrastructure based on the FTT-Ethernet protocol.

For this implementation we had as point of departure a first specification of the
system [10]. Moreover, we also had a software implementation (middleware) of the
FTT-SE communication protocol [7] [11], which has been used as the development
platform for this project. Specifically, we placed the SECSM within the core layer of
the FTT-SE middleware in the master and in the slaves. Figure 4.1 shows as circles the
specific parts of the middleware that have been modified.

Regarding the dispatcher of the master, we performed various modifications. First,
since both the duration of the TMW and the duration of the EC are parameters decided
by the user, our implementation has to ensure that the TMW fits within the EC, i.e.,
the slave did not make any mistakes. Also, we added the code to perform several
transmissions of the TM in each EC.

Concerning the slave software, the Ethernet filter was modified in order to manage
the redundancy of the TM, as well as to enable each slave to calculate the start moments
of the synchronous window and the following EC from the set of TM replicas received.
Moreover, we wanted to inject transient faults in the channel to make an exhaustive
verification of the mechanism. In order to do that, we chose a software implemented

41

8. CONCLUSIONS

approach and we added some code so as to omit the processing of some TM replicas.

Also, in order to determine the start of the synchronous window and the following
EC the slaves need information regarding the number of TM replicas transmitted and
the time between their transmissions. Thus, since this information is set in the master,
the TM header had to be modified in order to convey said information.

Once finished the implementation of the original specification of the slave EC
synchronization mechanism, we carried out a series of tests in order to assess the cor-
rectness of the specification and the implementation. The results of these tests showed
that the implementation offers a low level of accuracy in the synchronization. That is,
the difference between the EC start moment predicted by each slave was significant.

Note that the first specification of the slave EC synchronization mechanism con-
sidered the reception of the last TM replica to be the start moment of the synchronous
window. Thus, as the time that the slaves need to process the TM is not negligible, the
calculation of the synchronous window start moment was incorrect.

To solve this problem we proposed the inclusion of the TAW in the specification
of the slave EC synchronization mechanism. This way the nodes have enough time to
process the TM before the synchronous window starts. The TAW was not implemented
in the initial development platform even though it was part of the FTT-SE protocol
specification. Therefore, we modified the slave dispatcher in order to add it.

After finishing the integration of all the parts of the mechanism we carried out
various tests. We measure how different aspects related to imprecision of the imple-
mentation of the mechanisms affect the synchronization among the slaves. Basically,
we assessed the precision with which the slaves have the same view of the start of the
synchronous window within the EC, depending on aspects like the variation in the size
of the window in which the TM is transmitted (TMW), variation in the amount of time
during which the slaves process the TMs (TAW), the loss of any combination of TMs
due to transient faults, and the jitter introduced by the non-deterministic behaviour of
software and the switching logic.

The results obtained in this assessment indicate that the SECSM implementation is
suitable for most control applications, even though it could be problematic for control
applications in which high sampling rates demand ECs of 1 ms or less.

Finally, it is important to highlight that the author of this work has co-authored a
published short paper which describes the main results of this bachelor thesis. The
other co-authors of said paper were David Gessner, Alberto Ballesteros, Manuel Bar-
ranco and Julián Proenza. Next we find the citation of this publication:

• Gessner, D., Álvarez, I., Ballesteros, A., Barranco, M., Proenza, J., Towards an
Experimental Assessment of the Slave Elementary Cycle Synchronization in the
Flexible Time-Triggered Replicated Star for Ethernet. In Proc. 19th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA),
September 16-19, 2014, Barcelona, Spain.

The complete article can be found in Annex B of this document.

42

8.2. Future work

8.2 Future work

This bachelor thesis achieves the goals that we established at the beginning of its
development. Nevertheless, during the project we faced a series of time and material
restrictions that prevented us from implementing a completely realistic prototype of
the slave elementary cycle synchronization mechanism (SECSM).

Although the prototype allowed us to assess how the precision of the SECSM is
affected by several relevant causes, there are still some sources of desynchronization
that could not be tested. For example, all the slaves in our prototypes are processes
executed in the same machine and, thus, we could not assess the impact produced by
the deviation of the slave clocks during the EC.

Also, note that the prototype proposed in this project uses one master, whereas the
FTTRS[9] specification includes two of them. Moreover, although we used Xenomai
–which is a Linux kernel that offers real-time features– the existing software implemen-
tation of FTT-SE we were provided with was not adapted to work with this kernel. Thus,
we could not take full advantage of the real-time features offered by Xenomai.

This project constitutes a relevant first step towards a complete verification of the
SECSM for the FTTRS infrastructure. In this sense, given the limitations just pointed
out, we still need to carry out a series of tasks as future work within the FT4FTT project
in order to construct a completely realistic prototype of the SECSM within the FTTRS
architecture. Some of the most relevant task are the following ones:

• Implement each slave of the distributed embedded system in a different machine.

• Integrate the SECSM proposed in the current bachelor project with the mecha-
nism that synchronizes the replicated masters [17].

• Adapt the FTT-SE code to work with the real-time features offered by Xenomai.

8.3 Considerations about the learning process

The development of this project also contributed to increase the personal knowledge,
experiences and skills of the author of this work. Next we mention the most remarkable
benefits that were obtained along this project:

• Increase the knowledge achieved during these studies, e.g., regarding real-time
systems and the Ethernet protocol, among other subjects. Also, learn new con-
cepts and work in new fields of study, such as fault tolerance and real time com-
munications.

• Increase the understanding of the working environment and the practical knowl-
edge of the programming language. Moreover, working with an unknown de-
velopment platform required studying and using new components, e.g., virtual
distributed Ethernet switches.

• Plan and develop a project with a size considerably larger than those carried out
during these bachelor studies..

43

8. CONCLUSIONS

• Acquire of skills related to the writing of scientific articles during the participation
in the creation of a short paper[18].

44

A
P

P
E

N
D

I
X

A
SOURCE CODE

In this chapter we can find the code of the different files that have been modified
during this project. These files correspond to the ones that were previously identified in
Chapter 4. As previously highlighted, we took as starting point of this project a software
implementation of the FTT-SE protocol [7] [11]. This means we did not develop the
complete code shown in the following sections. Therefore, we decided to differentiate
both codes by putting the code written during this project in a frame.

A.1 Master dispatcher

/***
* M_Dispatcher.c:

* Copyright (C) 2006-2012 the FTT-SE team.

*
* Author: Ricardo Marau <marau at fe.up.pt>

*
* FTT-SE is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*
* FTT-SE is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with FTT-SE. If not, see <http://www.gnu.org/licenses/>.

***/

#include "Ports.h"

#include "ftt-global.h"
//#include "SRDB.h"
#include "M_ECreg.h"
#include "M_Scheduler.h"

45

A. SOURCE CODE

//#include "math_tools.h"
#include "ethernet.layer.h"
#include "M_SW_add_table.h"
//
#include "S_ftt-core.layer_embed.h"

//#define TRIGGER_DECODE
//#define BE_POLITE
////#define DISABLE_TX

static rtl_pthread_t ftt_dispatcher_th;
static FTT_SEMAPHORE start_dispatcher;

static unsigned char M_MAC[6];
static unsigned long M_ec_period=0; //us

static unsigned char k;
static unsigned short tm_interarrival;

void *ftt_dispatcher(void *t)
/**/
/*!
\brief This task is invoqued periodically (at the beginning of each EC)

This task is invoqued periodically (at the beginning of each EC).\n

- scans current EC (sched_ec),\n
- builds respective master message and,\n
- send it to the bus.

***/
{

unsigned short i;

unsigned char *tmsg;

FTT_PKT_TM_HEADERS *tm_pkt; /* Pointer to TM contents */
TM_SYNC_MSG_INDEX *tm_sm_element;
TM_ASYNC_MSG_INDEX *tm_am_element;
TM_SIG_ACK_INDEX *tm_sig_ack_element;

unsigned short tm_datalength; /* Data lenght of the TM frame */

struct rtl_timespec next_activation; //used to time activations

unsigned char EC_seqno_temp; //EC sequence number
unsigned char tm_trans_seq_number = 0; //TM sequence number within the same EC
int ret;

struct rtl_timespec next_tm_activation; //used to time activations of the TM
struct rtl_timespec temp;
struct rtl_timespec start;
struct rtl_timespec resul;

unsigned short ret_node_id;
unsigned char ret_seq_no;
unsigned short num_sig_acks;

/* Wait for start */
if (FTT_SEMAPHORE_wait(&start_dispatcher) < 0)
return NULL;

46

A.1. Master dispatcher

// PRINT_MSG("Dispatcher Started");

/* get the current time and setup for the first tick */
rtl_clock_gettime(RTL_CLOCK_REALTIME, &next_activation);
while (1)
{

/* set the period */
rtl_timespec_add_ns(&next_activation, 1000*M_ec_period);

/* sleep */
rtl_clock_nanosleep(RTL_CLOCK_REALTIME, RTL_TIMER_ABSTIME,

&next_activation, NULL);
// {
// struct rtl_timespec timestamp;
// rtl_clock_gettime(RTL_CLOCK_REALTIME, ×tamp);
// PRINT_MSG("Dispatcher end: %lld", (timestamp.tv_sec*1000 +

(timestamp.tv_nsec/1000000)));
// }

ECreg_SwapPlans();
EC_seqno_temp = (unsigned char)EC_Get_and_Inc_seqno();

#ifdef BE_POLITE
PRINT_MSG("ftt_dispatcher: Hello...!");

#endif

for (tm_trans_seq_number = 0; tm_trans_seq_number < k;
tm_trans_seq_number++){

/* Check EC status */
switch(disp_ec->status){
case OUT_OF_DATE: /* Starting up : do nothing */
case UPDATED: /* OK. Follow down to normal plan dispatching

*/
//PRINT_MSG("ftt_dispatcher fine");
break;

case MISSED_DEADLINE: /* Missed deadline detected by scheduler,
terminate */

PRINT_MSG("ftt_dispatcher Fatal error: missed deadline in synchronous
message");

return NULL;
break;

case BUSY_SCHED: /* Scheduler did not build plan in time,
terminate */

PRINT_MSG("BUSY");
case DISPATCHED: /* Scheduler has not been started

*/
PRINT_MSG("ftt_dispatcher Fatal error: Scheduler has not finished in

time");
return NULL;
break;

default:
PRINT_MSG("ftt_dispatcher Fatal error: Invalid EC Status (Strange

error!)");
break;

}

if (ETH_L_tx_reserve_buffer(&tmsg) < 0){
ERROR_MSG("Problems getting a new Tx buffer - Progamming error ");

}

tm_pkt = (FTT_PKT_TM_HEADERS *)tmsg;

/* The source and destination address */
ETH_L_Str2Addr((unsigned char *)"FF:FF:FF:FF:FF:FF",

tm_pkt->eth_header.eth_dest);

47

A. SOURCE CODE

ETH_L_CopyMAC_to_from(tm_pkt->eth_header.eth_src, M_MAC);

/* The frame type */
tm_pkt->eth_header.eth_type = htons (ETH_FTT_TYPE);
tm_pkt->pkt_header.type = htons (FTT_MST_MSG);

/*The reliable TM data*/
tm_pkt->tm_reliable_header.num_tms_per_ec = k;
tm_pkt->tm_reliable_header.tm_sequence_number = tm_trans_seq_number;
tm_pkt->tm_reliable_header.tm_interarrival_time = tm_interarrival;

/* Given disp_ec, we can translate it into the TM */
tm_pkt->tm_header.seq_no = EC_seqno_temp;
tm_pkt->tm_header.ec_time_ms = M_ec_period/1000;
tm_pkt->tm_header.nsm = htons((unsigned short)disp_ec->sm.n_mesgs);
tm_pkt->tm_header.nam = htons((unsigned short)disp_ec->am.n_mesgs);

#ifdef TRIGGER_DECODE
PRINT_MSG("TM: nsm=%2d nam=%2d",disp_ec->sm.n_mesgs,disp_ec->am.n_mesgs);

#endif
/* Synchronous message data */
tm_sm_element = (TM_SYNC_MSG_INDEX *)(tm_pkt->data);
for(i=0; i < disp_ec->sm.n_mesgs; i++){
tm_sm_element[i].SMesgId = htons((unsigned

short)(disp_ec->sm.msgs[i].id));
tm_sm_element[i].SMesg_frag_no = htons(

disp_ec->sm.msgs[i].n_fragmentation);
tm_sm_element[i].source_nodeID = disp_ec->sm.msgs[i].source_nodeID;

#ifdef TRIGGER_DECODE
PRINT_MSG(" S_id:%04x frag:%d src:%d", disp_ec->sm.msgs[i].id,

disp_ec->sm.msgs[i].n_fragmentation,
disp_ec->sm.msgs[i].source_nodeID);

#endif
}

/* Asynchronous message data */
tm_am_element = (TM_ASYNC_MSG_INDEX *)(tm_pkt->data + (

disp_ec->sm.n_mesgs*sizeof(TM_SYNC_MSG_INDEX)));
for(i=0; i < disp_ec->am.n_mesgs; i++){
tm_am_element[i].AMesgId = htons((unsigned

short)(disp_ec->am.msgs[i].id));
tm_am_element[i].AMesg_frag_no =

htons(disp_ec->am.msgs[i].n_fragmentation);
tm_am_element[i].source_nodeID = disp_ec->am.msgs[i].source_nodeID;

#ifdef TRIGGER_DECODE
PRINT_MSG(" A_id:%04x frag:%d src:%d", disp_ec->am.msgs[i].id,

disp_ec->am.msgs[i].n_fragmentation,
disp_ec->am.msgs[i].source_nodeID);

#endif

}

/* Notify Signaling !ack */
num_sig_acks = 0;

tm_sig_ack_element = (TM_SIG_ACK_INDEX *)(tm_pkt->data +
(disp_ec->sm.n_mesgs*sizeof(TM_SYNC_MSG_INDEX)) +
(disp_ec->am.n_mesgs*sizeof(TM_ASYNC_MSG_INDEX)));

tm_pkt->tm_header.nsa = 0;

while (EC_pull_Signaling_notification(&ret_node_id, &ret_seq_no) == 0)
{

tm_sig_ack_element->nodeID = htons (ret_node_id);
tm_sig_ack_element->sig_seqno = ret_seq_no;
tm_sig_ack_element++;

48

A.1. Master dispatcher

num_sig_acks++;
}
tm_pkt->tm_header.nsa = htons((unsigned short)num_sig_acks);

/****************************/
/* Prepare the transmission */
/****************************/
tm_datalength = FTT_PKT_TM_LOGICALSIZE_B_from_no(disp_ec->sm.n_mesgs,

disp_ec->am.n_mesgs, num_sig_acks);
// PRINT_MSG(" TM size:%d", tm_datalength);
//#define TRIGGER_PERIODIC
#ifdef TRIGGER_PERIODIC
#error hi

/* set absolute delay to reduce the system jitter */

struct rtl_timespec temp_activation; //used to time activations
temp_activation = next_activation;

timespec_add_ns(&temp_activation, 1000*30);

/* sleep */
rtl_clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &temp_activation,

NULL);

#endif
#ifndef DISABLE_TX

/* Send the message */
if (tm_trans_seq_number > 0){

/* Sleep until next TM transmission */
rtl_clock_gettime(RTL_CLOCK_REALTIME, &temp);
while (rtl_timespec_gt(next_tm_activation,temp)){

rtl_clock_gettime(RTL_CLOCK_REALTIME, &temp);
}

}

rtl_clock_gettime(RTL_CLOCK_REALTIME, &next_tm_activation);
temp = next_tm_activation;

if ((ret = ETH_L_tx_send_messagebuffer(NULL, tm_datalength)) < 0){
ERROR_MSG("Message not sent. ETH_L_tx_send_messagebuffer returned: %d",

ret);
}

/* set the period */
rtl_timespec_add_ns(&next_tm_activation, tm_interarrival*1000);

if (tm_trans_seq_number > 0){
resul = rtl_timespec_sub(start, temp);
printf("EC: %3d TM: %6llu\n", EC_seqno_temp, rtl_timespec_getns(resul));

}
start = temp;

}

#endif
/* Declare the table as dispatched */
disp_ec->status = DISPATCHED;

/* We will simulate that the TM was received, right now. So, it has to be
decoded and the

* varibles that are produced here transmitted */
struct rtl_timespec TM_tx_time;

49

A. SOURCE CODE

rtl_clock_gettime(RTL_CLOCK_REALTIME, &TM_tx_time);
S_eth_filter(tmsg, tm_datalength, TM_tx_time);

/* Activate scheduler() */
WakeSheduler();

/* Let’s now downgrade the Node’s connection aging time */
M_SW_downall_lease_time();

}//while 1
}

signed char M_DispatcherInit(unsigned char *mac_reg, unsigned long
ec_period_reg, unsigned char tm_per_ec, unsigned short tm_inter_time)

{

rtl_pthread_attr_t attr;
struct rtl_sched_param sched_param;
int ret;

/* Store the MAC and EC_period in this module */
ETH_L_CopyMAC_to_from(M_MAC, mac_reg);
M_ec_period = ec_period_reg;

/* Store Number of TM_per_EC and TM_interarrival_time */
k = tm_per_ec;
tm_interarrival = tm_inter_time;

/*Check if k is at least 2 */
if (k < 2){
ERROR_MSG("The number of transmissions of the TM must be at least two");
return -3;

}

/*Check if there are too many transmissions of the TM */
if ((k*tm_interarrival) > M_ec_period){
ERROR_MSG("The elementary cycle duration is too short for the given trigger

message transmission window");
return -3;

}

/* Init semaphore to start periodic dispatch task */
if ((ret=FTT_SEMAPHORE_init(&start_dispatcher, 0)) < 0){ //Initialization

locked
ERROR_MSG("Couldn’t initialize semaphore");
return -1;

}

/******************************/
/* Create ftt_dispatcher task */
/******************************/
rtl_pthread_attr_init(&attr);
sched_param.sched_priority = rtl_sched_get_priority_max(RTL_SCHED_FIFO);
rtl_pthread_attr_setschedparam(&attr, &sched_param);

#ifdef RTL_PRO
rtl_pthread_attr_setfp_np(&attr, 1);

#endif
if ((ret=rtl_pthread_create(&ftt_dispatcher_th, &attr, ftt_dispatcher,

(void *)0))){
ERROR_MSG("Init Fatal Error: pthread_create returned %d", ret);
return -2;

}
#ifdef PRINT_THREAD_ID
#ifdef RTL_PRO

ERROR_MSG("New thread id: %d", ftt_dispatcher_th);

50

A.1. Master dispatcher

#else
ERROR_MSG("New thread id: %lu", ftt_dispatcher_th);

#endif
#endif

#ifdef PRINT_MODULES_INIT
PRINT_MSG(" -M_DispatcherInit Ok");

#endif
return 0;

}

void M_DispatcherClose(void)
{

/* Clean up the semaphore */
FTT_SEMAPHORE_destroy(&start_dispatcher);

/* cancel the ftt_dispatcher thread */
rtl_pthread_cancel(ftt_dispatcher_th);
rtl_pthread_join(ftt_dispatcher_th, NULL);

#ifdef PRINT_MODULES_INIT
PRINT_MSG(" -M_DispatcherClose Ok");

#endif
}

void M_DispatcherStartSystem(void)
{

FTT_SEMAPHORE_post(&start_dispatcher);
return ;

}

51

A. SOURCE CODE

A.2 Slave eth_filter

/***
* S_eth_filter.c:

* Copyright (C) 2006-2012 the FTT-SE team.

*
* Author: Ricardo Marau <marau at fe.up.pt>

*
* FTT-SE is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*
* FTT-SE is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with FTT-SE. If not, see <http://www.gnu.org/licenses/>.

***/

#include "Ports.h"
#include "ftt-global.h"

#include "ethernet.layer.h"

#include "S_ECscheduled.h"
#include "S_Dispatch.h"
#include "S_nodeID.h"
#include "S_db.h"

//#define SLAVE_TM_DECODE /* cfg define */
//#define SLAVE_WATCH_DOG /* cfg define */

#ifndef FTT_SLAVE_COMPILE
#undef SLAVE_WATCH_DOG
#endif

#if defined(L26) & defined(SLAVE_WATCH_DOG)
#include <unistd.h>
#include <signal.h>
#endif

extern void S_NRDB_enter(void);
extern void S_NRDB_leave(void);

static rtl_pthread_t synchronous_window_start_th;
struct rtl_timespec synchronous_window_activation;

static FTT_SEMAPHORE time_to_turn_around_semaph;
static FTT_SEMAPHORE dispatch_is_awake_semaph;
static char dispatch_is_awake;
struct rtl_timespec start;

/* Fault injection */
static unsigned char combination_index;
static unsigned char trigger_message_index;
static unsigned char fault_simulation;
static unsigned char num_errors;
static unsigned char combination_counter;
static unsigned char total_combinations;
struct rtl_errors faults;

52

A.2. Slave eth_filter

#ifdef SLAVE_WATCH_DOG
#define SLAVE_WATCH_DOG_START_VALUE 20 /*20=19ECs*/
static unsigned long watch_ec_len=50; //ms
static int watch_dog_counter=0;
static rtl_pthread_t watch_dog_th;

static void *watch_dog(void *t)
{

struct rtl_timespec next_activation; //used to time activations

rtl_clock_gettime(RTL_CLOCK_REALTIME, &next_activation);
while (1) {

rtl_timespec_add_ns(&next_activation, watch_ec_len*1000000);
rtl_clock_nanosleep(RTL_CLOCK_REALTIME, RTL_TIMER_ABSTIME,

&next_activation, NULL);
if (watch_dog_counter)

watch_dog_counter--;
if (watch_dog_counter == 1){

#ifdef L26
PRINT_MSG("Watch dog detected on my pid:%d", getpid());
kill(getpid(),SIGINT);

#else
PRINT_MSG("Watch dog detected. Doing nothing for now.");

#endif
}

}
return NULL;

}

#endif

static void *synchronous_window_start(void *t)
{

struct rtl_timespec temp;
unsigned char diff = 1;

while (diff) {
rtl_clock_gettime(RTL_CLOCK_REALTIME, &temp);

/** CS **/
FTT_SEMAPHORE_wait(&time_to_turn_around_semaph);

if (rtl_timespec_gt(temp, synchronous_window_activation)){
diff = 0;

}

FTT_SEMAPHORE_post(&time_to_turn_around_semaph);
/** CS **/

}

rtl_clock_gettime(RTL_CLOCK_REALTIME, &temp);

if (!dispatch_is_awake){

/** CS **/
FTT_SEMAPHORE_wait(&dispatch_is_awake_semaph);

dispatch_is_awake = 1;
S_Dispatch_Wake();

FTT_SEMAPHORE_post(&dispatch_is_awake_semaph);
/** CS **/

53

A. SOURCE CODE

#ifdef FTT_SLAVE_COMPILE
printf("Turn Around window activation: %llu\n", rtl_timespec_getns(temp));

#endif
}

return NULL;
}

void S_eth_filter(unsigned char *rmsg, unsigned short size, struct rtl_timespec
rx_timestamp)

{

FTT_PKT_GENERIC_HEADERS *ftt_rmsg_pointer= (FTT_PKT_GENERIC_HEADERS *)rmsg;
int i; /* General counters */

//PRINT_MSG("S_eth_filter in");
//PRINT_MSG("Slave_ethernet_pkt_rx called at %ld",

rx_timestamp.tv_sec*1000000 + rx_timestamp.tv_nsec/1000);

if (ntohs(ftt_rmsg_pointer->eth_header.eth_type) != ETH_FTT_TYPE) {
//ERROR_MSG("Rx_event Warnning: Frame is not ETH_FTT_TYPE ");
return;

}

/* Get ftt frame type */
switch(ntohs(ftt_rmsg_pointer->pkt_header.type))
{
case FTT_MST_MSG: /* TM received */

{

FTT_PKT_TM_HEADERS *ftt_tm_pkt = (FTT_PKT_TM_HEADERS *)ftt_rmsg_pointer;
TM_SYNC_MSG_INDEX *tm_sm_element;
TM_ASYNC_MSG_INDEX *tm_am_element;
TM_SIG_ACK_INDEX *tm_sig_ack_element;

unsigned short nsm,nam,nsa;
static unsigned char EC_last_seq_no=255;
static unsigned char first_run = 1;

unsigned char num_tms_per_ec;
unsigned char tm_seq_no;
unsigned short tm_interarrival_time;

unsigned short time_to_synchronous_window;
unsigned short time_from_EC_start;

tm_seq_no = ftt_tm_pkt->tm_reliable_header.tm_sequence_number;
tm_interarrival_time =

ftt_tm_pkt->tm_reliable_header.tm_interarrival_time;
num_tms_per_ec = ftt_tm_pkt->tm_reliable_header.num_tms_per_ec;

/* Fault injection simulation */

if (fault_simulation) {
if (!total_combinations){

int i;
for (i = 0; i < num_tms_per_ec; i++){
total_combinations += number_combinations(num_tms_per_ec, i);

}
}
if (!combination_index && !trigger_message_index){

/* Return 0 in the array position corresponding to the TM that must
fail */

54

A.2. Slave eth_filter

combinations (num_tms_per_ec, num_errors, &faults);
int i;
int j;
for (i = 0; i<faults.num_combinations; i++){
printf("Combinaci??n %d es : (", i);
for (j = 0; j < num_tms_per_ec; j++){
printf("%d, ", faults.combinations[i][j]);

}
printf(")\n");

}
}

}

/* Fault injection simulation */

if (!first_run){
if (abs (EC_last_seq_no - ftt_tm_pkt->tm_header.seq_no) > 1 &&

(EC_last_seq_no != 255 || ftt_tm_pkt->tm_header.seq_no != 0)){
printf("TM: rx bad seq_no. Expected %d but received %d \n",

EC_last_seq_no, ftt_tm_pkt->tm_header.seq_no);
}

}
first_run = 0;

if (EC_last_seq_no != ftt_tm_pkt->tm_header.seq_no && (
!fault_simulation ||

(fault_simulation &&
faults.combinations[combination_index][tm_seq_no]))) {

rtl_pthread_join(synchronous_window_start_th, NULL);
dispatch_is_awake = 0;

}

if ((fault_simulation &&
faults.combinations[combination_index][tm_seq_no])
|| !fault_simulation){

#ifdef FTT_SLAVE_COMPILE
printf("TM: %d arrival: %llu\n", tm_seq_no,

rtl_timespec_getns(rx_timestamp));
#endif

}

/** CS **/
FTT_SEMAPHORE_wait(&dispatch_is_awake_semaph);

if (!dispatch_is_awake && (!fault_simulation ||
(fault_simulation &&

faults.combinations[combination_index][tm_seq_no]))){

if (S_Dispatcher_is_running()){
printf("Analysing a new TM while S_Dispatcher still running\n");
/* This means that the dispatcher is taking too much time to encode

and notify Tx */
while (S_Dispatcher_is_running()) PRINTF("=");

}

//TODO get the TM size and post the time of TM transmission to avoid jitter

/* Time to Turn Around window */
time_to_synchronous_window = (num_tms_per_ec -

(tm_seq_no+1))*tm_interarrival_time;

55

A. SOURCE CODE

/** CS **/
FTT_SEMAPHORE_wait(&time_to_turn_around_semaph);

/* Update the synchronous window start moment */
synchronous_window_activation = rx_timestamp;
rtl_timespec_add_ns(&synchronous_window_activation,

time_to_synchronous_window*1000);

FTT_SEMAPHORE_post(&time_to_turn_around_semaph);
/** CS **/

S_ECScheduled_StoreTimestamp(&synchronous_window_activation);

if (EC_last_seq_no != ftt_tm_pkt->tm_header.seq_no){

S_Set_Master_mac (ftt_tm_pkt->eth_header.eth_src);

/* Let us store the TM contents in the internal EC table */
S_ECScheduled_CleanTables();

/* Get number of sync. and asynch. messages in the EC */
nsm = ntohs(ftt_tm_pkt->tm_header.nsm);
nam = ntohs(ftt_tm_pkt->tm_header.nam);
nsa = ntohs(ftt_tm_pkt->tm_header.nsa);

S_Dispatch_Set_ec_time(ftt_tm_pkt->tm_header.ec_time_ms);
#ifdef SLAVE_WATCH_DOG

watch_ec_len = ftt_tm_pkt->tm_header.ec_time_ms;
#endif

#ifdef SLAVE_TM_DECODE
PRINT_MSG("TM:");

#endif

/* Store messages to produce in ECSchedule table */
/* 1: First synchronous messages (and asynchronous via aperiodic

server) */

tm_sm_element = (TM_SYNC_MSG_INDEX *)(ftt_tm_pkt->data);
tm_am_element = (TM_ASYNC_MSG_INDEX *)(ftt_tm_pkt->data +

nsm*sizeof(TM_SYNC_MSG_INDEX));
tm_sig_ack_element = (TM_SIG_ACK_INDEX *)(ftt_tm_pkt->data +

nsm*sizeof(TM_SYNC_MSG_INDEX) + nam*sizeof(TM_ASYNC_MSG_INDEX)
);

for(i=(nsm-1); i>=0; i--){
/* add to table in reverse sort */
S_ECScheduled_PutSMessage(ntohs(tm_sm_element[i].SMesgId),

tm_sm_element[i].source_nodeID,
ntohs(tm_sm_element[i].SMesg_frag_no));

#ifdef SLAVE_TM_DECODE
PRINTF(" S%x-%d", ntohs(tm_sm_element[i].SMesgId),

ntohs(tm_sm_element[i].SMesg_frag_no));
#endif

}

for(i=(nam-1); i>=0; i--){
S_ECScheduled_PutAMessage(ntohs (tm_am_element[i].AMesgId),

tm_am_element[i].source_nodeID,
ntohs(tm_am_element[i].AMesg_frag_no));

#ifdef SLAVE_TM_DECODE
PRINTF(" A%x", ntohs(tm_am_element[i].AMesgId));

#endif
}

56

A.2. Slave eth_filter

for(i=(nsa-1); i>=0; i--){
if (ntohs (tm_sig_ack_element[i].nodeID) == S_nodeID_read()){
PRINT_MSG ("Have to re-transmit seq_no: %d ",

tm_sig_ack_element[i].sig_seqno);
S_ECScheduled_PutSigRequest(ntohs

(tm_sig_ack_element[i].nodeID),
tm_sig_ack_element[i].sig_seqno);

}
}

}

/* Activate the task that will send the messages (at appropriate time
instants) to the ETh bus */

// NDB_printmesg();

/* Only create the thread if it’s the first TM received in the EC */
if (EC_last_seq_no != ftt_tm_pkt->tm_header.seq_no){

if (rtl_pthread_create(&synchronous_window_start_th, NULL,
synchronous_window_start , NULL) < 0){

ERROR_MSG("Init Fatal Error: pthread_create");
return;

}
}

EC_last_seq_no = ftt_tm_pkt->tm_header.seq_no;

#ifdef SLAVE_WATCH_DOG
watch_dog_counter = SLAVE_WATCH_DOG_START_VALUE;

#endif

}

FTT_SEMAPHORE_post(&dispatch_is_awake_semaph);
/** CS **/

/* Fault injection simulation */

if (fault_simulation){
trigger_message_index++;
if (trigger_message_index == num_tms_per_ec){

trigger_message_index = 0;

/*Esclavo 1*/

if (S_nodeID_read() == 1){
combination_counter++;
if (combination_counter == total_combinations){
combination_counter = 0;
combination_index++;
if (combination_index == faults.num_combinations){

combination_index = 0;
num_errors++;
if (num_errors == num_tms_per_ec){
exit(0);

}
}

}

57

A. SOURCE CODE

/*Esclavo 2*/

} else if (S_nodeID_read() == 2){
combination_index++;
if (combination_index == faults.num_combinations){
combination_index = 0;
num_errors++;
if (num_errors == num_tms_per_ec){

num_errors = 0;
combination_counter++;
if (combination_counter == total_combinations){
exit(0);

}
}

}
}

}
}

/* Fault injection simulation */
}

break;

case FTT_SDATA_MSG: /* Synchronous Data Message received */
{
FTT_PKT_SDM_HEADERS *ftt_sdm_pointer = (FTT_PKT_SDM_HEADERS

*)ftt_rmsg_pointer;

// PRINT_MSG("Received SDATA_MESG %x %d", ntohs(
ftt_sdm_pointer->sdm_header.id), ntohs(
ftt_sdm_pointer->sdm_header.frag_seqno));

//PRINTF("s");

if(NDB_test_consume_and_bind(ntohs(ftt_sdm_pointer->sdm_header.id)
) < 0) {

//PRINT_MSG("This SM is not a consumer or not bound of this...");
break;

}
//PRINT_MSG("Is a consumer of this SM");

S_NRDB_enter();
NDB_set_data2rx(

ntohs(ftt_sdm_pointer->sdm_header.id),
ftt_sdm_pointer->sdm_header.source_nodeID,
ntohs(ftt_sdm_pointer->sdm_header.frag_seqno),
ftt_sdm_pointer->data,
(ftt_sdm_pointer->sdm_header.flag_s & TXNEWDAT_MASK),

#ifdef QNX_TAGGING
ntohi(ftt_sdm_pointer->sdm_header.tagging),

#endif
rx_timestamp);

S_NRDB_leave();
}
break;

case FTT_ADATA_MSG: /* Asynchronous Data Message received */
{
FTT_PKT_ADM_HEADERS *ftt_adm_pointer = (FTT_PKT_ADM_HEADERS

*)ftt_rmsg_pointer;

// PRINT_MSG("Received ADATA_MESG %x", ntohs(
ftt_adm_pointer->adm_header.id));

58

A.2. Slave eth_filter

if(NDB_test_consume_and_bind(ntohs(ftt_adm_pointer->adm_header.id)
) < 0) {

// PRINTF(" will NOT consume or not ready to consume");
break;

}
//PRINTF(" will consume");

S_NRDB_enter();
NDB_set_data2rx(

ntohs(ftt_adm_pointer->adm_header.id),
ftt_adm_pointer->adm_header.source_nodeID,
ntohs(ftt_adm_pointer->adm_header.frag_seqno),
ftt_adm_pointer->data,
(ftt_adm_pointer->adm_header.flag_s & TXNEWDAT_MASK),

#ifdef QNX_TAGGING
ntohi(ftt_adm_pointer->adm_header.tagging),

#endif
rx_timestamp);

S_NRDB_leave();
}
break;

case FTT_PLUGnPLAY:
case FTT_ASTATUS_MSG: /* Asynchronous Data Message received */

//PRINT_MSG("Received ASTATUS_MESG_ID");
break;

case FTT_IDLE:
{

FTT_PKT_IDLE_HEADERS *ftt_idle_pointer = (FTT_PKT_IDLE_HEADERS

*)ftt_rmsg_pointer;
PRINT_MSG("IDDLE time AM message: %x", ntohs(

ftt_idle_pointer->idle_header.id));
}
break;

default:
ERROR_MSG(" Received an ilegal message id");
break;

} /* Switch(frametype) */
return ;

}

signed char S_eth_filter_Init(void)
{

/* Fault simulation */
fault_simulation = 1;
combination_counter = 0;
total_combinations = 0;
combination_index = 0;
trigger_message_index = 0;
num_errors = 0;
/* Init semaphores */
if (FTT_SEMAPHORE_init(&time_to_turn_around_semaph, 1) < 0){

//Initialization locked
ERROR_MSG("Couldn’t initialize semaphore");
return -1;

}
if (FTT_SEMAPHORE_init(&dispatch_is_awake_semaph, 1) < 0){

//Initialization locked
ERROR_MSG("Couldn’t initialize semaphore");
return -1;

}

59

A. SOURCE CODE

#ifdef FTT_SLAVE_COMPILE
PRINT_MSG("Initializing the S_eth_filter as the main receiver");
ETH_L_rx_fun_register(S_eth_filter);

#ifdef SLAVE_WATCH_DOG
if (rtl_pthread_create(&watch_dog_th, NULL, watch_dog, NULL)<0){
ERROR_MSG("Init Fatal Error: pthread_create");
return -1;

}
#endif

#else //FTT_MASTER_COMPILE

#endif

#ifdef PRINT_MODULES_INIT
PRINT_MSG(" -S_eth_filter_Init Ok");

#endif

return 0;

}

void S_eth_filter_Close(void)
{

FTT_SEMAPHORE_destroy(&time_to_turn_around_semaph);
FTT_SEMAPHORE_destroy(&dispatch_is_awake_semaph);

#ifdef FTT_SLAVE_COMPILE
#ifdef SLAVE_WATCH_DOG

rtl_pthread_cancel(watch_dog_th);
rtl_pthread_join(watch_dog_th, NULL);

#endif
ETH_L_rx_fun_unregister();

#endif

#ifdef PRINT_MODULES_INIT
PRINT_MSG(" -S_eth_filter_Close Ok");

#endif
}

60

A.3. Slave dispatcher

A.3 Slave dispatcher

/***
* S_Dispatch.c:

* Copyright (C) 2006-2012 the FTT-SE team.

*
* Author: Ricardo Marau <marau at fe.up.pt>

*
* FTT-SE is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*
* FTT-SE is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with FTT-SE. If not, see <http://www.gnu.org/licenses/>.

***/

#include "Ports.h"

#include "ftt-global.h"
#include "ethernet.layer.h"
#include "S_ECscheduled.h"
#include "S_db.h"
#include "S_nodeID.h"
#include "S_igmp_queue.h"
#include "S_appPnP.h"
#include "S_sig_backup.h"

#include <unistd.h>

//#define DISABLE_DISPATCHING
//#define DISPATCHING_DECODE
//#define BE_POLITE
//#define DISABLE_AM_SM_TX
//#define DISABLE_ASM_TX
//#define DISABLE_TURNAROUND_WAIT
#define DISABLE_SIGNALING_SYNCH_DELAY /*removed because of some signaling

messages were being lost... in L26*/

/*!
\brief Process ID of scheduler task

*/
static rtl_pthread_t ftt_sdispatcher_th;
static FTT_SEMAPHORE sdisp_wake_semaph;

static unsigned int S_ec_period=0; //us

void *ftt_sdispatcher(void *t);

signed char S_Dispatch_Init(void)
{

rtl_pthread_attr_t attr;
struct rtl_sched_param sched_param;

int ret;

61

A. SOURCE CODE

/* Init semaphore to wake the sDispatcher */
if (FTT_SEMAPHORE_init(&sdisp_wake_semaph, 0) < 0){ //Initialization locked
ERROR_MSG("Couldn’t initialize semaphore");
return -1;

}

/* Create ftt_sDispatcher task */
rtl_pthread_attr_init(&attr);
sched_param.sched_priority = rtl_sched_get_priority_max(RTL_SCHED_FIFO)-1;
rtl_pthread_attr_setschedparam(&attr, &sched_param);

#ifdef RTL_PRO
rtl_pthread_attr_setfp_np(&attr, 1);

#endif
// rtl_pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

if ((ret = rtl_pthread_create(&ftt_sdispatcher_th, &attr, ftt_sdispatcher,
(void *)0))<0){

ERROR_MSG("Init Fatal Error: pthread_create returned %d", ret);
return -2;

}
#ifdef PRINT_THREAD_ID
#ifdef RTL_PRO

ERROR_MSG("New thread id: %d", ftt_sdispatcher_th);
#else

ERROR_MSG("New thread id: %lu", ftt_sdispatcher_th);
#endif
#endif

#ifdef PRINT_MODULES_INIT
PRINT_MSG(" -S_Dispatch_Init Ok");

#endif
return 0;

}

void S_Dispatch_Close(void)
{

// PRINT_MSG("Closing S_Dispatch");
/* cancel the ftt_dispatcher thread */
rtl_pthread_cancel(ftt_sdispatcher_th);
rtl_pthread_join(ftt_sdispatcher_th, NULL);

/* Clean up the semaphore */
FTT_SEMAPHORE_destroy(&sdisp_wake_semaph);

#ifdef PRINT_MODULES_INIT
PRINT_MSG(" -S_Dispatch_Close Ok");

#endif

}

void S_Dispatch_Wake(void)
{

/* Activate ftt_sdispatcher() */
FTT_SEMAPHORE_post(&sdisp_wake_semaph);

}

void S_Dispatch_Set_ec_time(int ec_time_ms)
{

S_ec_period = ec_time_ms*1000;
return;

}

unsigned int S_Dispatch_Read_ec_time_us(void)
{

return S_ec_period;
}

62

A.3. Slave dispatcher

static unsigned char S_Dispatcher_running_flag;

unsigned char S_Dispatcher_is_running(void)
{

return (S_Dispatcher_running_flag != 0);
}

extern void S_NRDB_enter(void);
extern void S_NRDB_leave(void);

void *ftt_sdispatcher(void *t)
/***/
/*!
\brief This task is responsible by timely produce the station messages.

This task is responsible by timely produce the station messages.
When an Ethernet frame with a Trigger message arrives, the routine\n

that handles the Ethernet frame processing fills a data structure\n
with the IDs and release time of the messages to be produced by this

station.\n
When the Trig mesg is completely processed, it activates this task.

***/
{

int ret;

unsigned short MesgID; /* Message ID */
unsigned short Mesg_frag_no; /* Message Length (in slots) */
unsigned char Mesg_source_nodeID;
signed char mesgstatus; /* Status ofa given message */

unsigned char *tmsg;
FTT_PKT_GENERIC_HEADERS *ftt_tmsg_generic_pointer;
FTT_PKT_SDM_HEADERS *ftt_tmsg_sdm_pointer;
FTT_PKT_ADM_HEADERS *ftt_tmsg_adm_pointer;

struct rtl_timespec jitter;

unsigned short mesg_efflen; /* Real data length of message (in bytes) */
unsigned char mesg_flags=0;
unsigned char mesg_seqn; /* Message sequence number */
unsigned short frag_seqn; /* Message fragmentation seqno*/

FTT_SIGNAL *callback_sig;

unsigned char *mac=NULL;

#ifdef QNX_TAGGING
QNX_TAGGING_TYPE tagging;

#endif

while (1){
S_Dispatcher_running_flag = 0;
/* Wait for start */
if (FTT_SEMAPHORE_wait(&sdisp_wake_semaph) < 0)

return NULL;

#ifndef DISABLE_TURNAROUND_WAIT
/* 2 - Waits for time-to-txmit */
/* 3 - Busy waits the arrival of correct instant */
{

63

A. SOURCE CODE

struct timespec tm_rx_abs_time;

/* Get the TM absolute time reference */
tm_rx_abs_time = S_ECScheduled_ReadTimestamp();
timespec_add_ns(&tm_rx_abs_time, TURN_AROUND_WINDOW * 1000);

struct rtl_timespec temp;
rtl_clock_gettime(RTL_CLOCK_REALTIME, &temp);
while (rtl_timespec_gt(tm_rx_abs_time, temp)){
rtl_clock_gettime(RTL_CLOCK_REALTIME, &temp);

}
#ifdef FTT_SLAVE_COMPILE

printf("Dispatch wake activation: %llu \n", rtl_timespec_getns(temp));
#endif

}
#endif

S_Dispatcher_running_flag = 1;
#ifdef DISABLE_DISPATCHING

continue;
#endif

#if defined(BE_POLITE)||defined(DISPATCHING_DECODE)
PRINT_MSG("S_Dispatcher: ");

#endif

/* Lets go through the table */
while (S_ECScheduled_GetMessage(&MesgID, &Mesg_source_nodeID,

&Mesg_frag_no)){

#ifdef DISPATCHING_DECODE
PRINT_MSG(" Var:%x frag%d src:%d", MesgID, Mesg_frag_no,

Mesg_source_nodeID);
#endif

if ((Mesg_source_nodeID != S_nodeID_read()) ||
((mesgstatus = NDB_test_produce_and_bind(MesgID, &mac)) < 0)){

/* Station not producer of this message*/
#ifdef DISPATCHING_DECODE

PRINTF(" pass");
#endif

continue ; /* and nothing else matters...Metallica*/
}

#ifdef DISPATCHING_DECODE
PRINTF(" tx_ing");

#endif

/* Get one new tx buffer */
if (ETH_L_tx_reserve_buffer(&tmsg) < 0){
ERROR_MSG("Problems getting a new Tx buffer - Progamming error ");

}

/* 1 - Prepare the message */
ftt_tmsg_generic_pointer = (FTT_PKT_GENERIC_HEADERS *)tmsg;

/* The source and destination address */
ETH_L_CopyMAC_to_from(ftt_tmsg_generic_pointer->eth_header.eth_dest, mac

);
ETH_L_CopyMAC_to_from(ftt_tmsg_generic_pointer->eth_header.eth_src,

S_Get_My_mac());

/* Message type */
ftt_tmsg_generic_pointer->eth_header.eth_type = htons (ETH_FTT_TYPE);

64

A.3. Slave dispatcher

mesg_efflen = 0;
callback_sig = NULL;

/* Select message type */
if(FTT_VAR_ID_IS_ID_SYNC(MesgID)){

//PRINT_MSG("SDidp: SDATA_MESG_ID");
ftt_tmsg_sdm_pointer = (FTT_PKT_SDM_HEADERS *)(tmsg);

/* Get data into net buffer */
S_NRDB_enter();
mesgstatus = NDB_get_data2tx(

MesgID,
Mesg_frag_no,
ftt_tmsg_sdm_pointer->data,
&mesg_efflen,
&mesg_seqn,
&frag_seqn,

#ifdef QNX_TAGGING
&tagging,

#endif
&callback_sig);

S_NRDB_leave();

//PRINT_MSG(" NDB_get_data2tx ret: %d", mesgstatus);
//if (frag_seqn == 1) PRINTF(".");
//PRINTF("S");

mesg_efflen = FTT_PKT_SDM_LOGICALSIZE_B(mesg_efflen);

if(mesgstatus < 0) {
ERROR_MSG("Strange Error: ftt_get2tx_sdata failed with 0x%x frag:%d

", MesgID, Mesg_frag_no);
ETH_L_tx_un_reserve_buffer();
continue;

}

mesg_flags = 0;
if(mesgstatus) /* Update the TXNEWDAT bit on the message identifier */

mesg_flags |= TXNEWDAT_MASK;

/* Setup message ID */
ftt_tmsg_sdm_pointer->pkt_header.type = htons(FTT_SDATA_MSG);
ftt_tmsg_sdm_pointer->sdm_header.id = htons((unsigned short)MesgID);
ftt_tmsg_sdm_pointer->sdm_header.seq_no = mesg_seqn;
ftt_tmsg_sdm_pointer->sdm_header.flag_s = mesg_flags;
ftt_tmsg_sdm_pointer->sdm_header.frag_seqno = htons(frag_seqn);
ftt_tmsg_sdm_pointer->sdm_header.source_nodeID = S_nodeID_read();

#ifdef QNX_TAGGING
ftt_tmsg_sdm_pointer->sdm_header.tagging = htoni(tagging);

#endif

}
else {

//PRINT_MSG("SDidp: ADATA_MESG_ID");
ftt_tmsg_adm_pointer = (FTT_PKT_ADM_HEADERS *)(tmsg);

/* Get data into net buffer */
S_NRDB_enter();
mesgstatus=NDB_get_data2tx(

MesgID,
Mesg_frag_no,
ftt_tmsg_adm_pointer->data,
&mesg_efflen,
&mesg_seqn,
&frag_seqn,

#ifdef QNX_TAGGING
&tagging,

65

A. SOURCE CODE

#endif
&callback_sig);

S_NRDB_leave();
//PRINT_MSG(" ftt_get2tx_adata ret: %d", mesgstatus);

/* If no message was in the FIFO */
if (mesg_efflen == 0)

ftt_tmsg_adm_pointer->pkt_header.type = htons(FTT_IDLE);
else

ftt_tmsg_adm_pointer->pkt_header.type = htons(FTT_ADATA_MSG);

mesg_efflen = FTT_PKT_ADM_LOGICALSIZE_B(mesg_efflen);

if(mesgstatus < 0) {
ERROR_MSG("Strange Error: ftt_get2tx_adata failed after

ftt_test_producer");
ETH_L_tx_un_reserve_buffer();
continue;

}

mesg_flags = 0;
if(mesgstatus) /* Update the TXNEWDAT bit on the message identifier */

mesg_flags |= TXNEWDAT_MASK;

// PRINT_MSG("sdispatcher: Async mesg_eff_len = %d", mesg_efflen);

/* Setup message ID */
ftt_tmsg_adm_pointer->adm_header.id = htons((unsigned short)MesgID);
ftt_tmsg_adm_pointer->adm_header.seq_no = mesg_seqn;
ftt_tmsg_adm_pointer->adm_header.flag_s = mesg_flags;
ftt_tmsg_adm_pointer->adm_header.frag_seqno = htons(frag_seqn);
ftt_tmsg_adm_pointer->adm_header.source_nodeID = S_nodeID_read();

#ifdef QNX_TAGGING
ftt_tmsg_adm_pointer->adm_header.tagging = htoni(tagging);

#endif

#ifndef DISABLE_TURNAROUND_WAIT
/* 2 - Waits for time-to-txmit */
/* 3 - Busy waits the arrival of correct instant */
{
struct timespec tm_rx_abs_time;

/* Get the TM absolute time reference */
tm_rx_abs_time = S_ECScheduled_ReadTimestamp();

timespec_add_ns(&tm_rx_abs_time, SCAN_WINDOW * 1000);
jitter = timespec_from_ns(0);
rtl_clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME|RTL_TIMER_ADVANCE,

&tm_rx_abs_time, &jitter);
}

#endif
}

#ifndef DISABLE_AM_SM_TX
/* 4 - Send packet */

// PRINT_MSG ("Dispatching a packet with size: %d", mesg_efflen);
if ((ret = ETH_L_tx_send_messagebuffer(NULL, mesg_efflen)) < 0){
ERROR_MSG("Message not sent. ETH_L_tx_send_messagebuffer returned: %d",

ret);
/* Maybe I should un-reserv the buffer tmsg */

}
#endif

/* 5 - Activate callback (if defined) */
if(callback_sig!=NULL) {
FTT_signal(callback_sig);

}

66

A.3. Slave dispatcher

} // while get message

S_Dispatcher_running_flag = 0;

#ifdef FTT_SLAVE_COMPILE
{

ASM_MSG_QUEUE_INDEX *temp_p;
unsigned short counter;
signed short nodeID;
FTT_PKT_ASM_HEADERS *ftt_tmsg_asm_pointer;
unsigned char app_id;
static unsigned char signaling_seq_no=0;

NDB_AM_Get_sent_RETURN_TYPE ndb_return_AM_queues[STA_MAX_AM_VARS];
unsigned short ndb_return_buf_size = STA_MAX_AM_VARS;

if (ETH_L_tx_reserve_buffer(&tmsg) < 0){
ERROR_MSG("Problems getting a new Tx buffer - Progamming error ");

}

ftt_tmsg_asm_pointer = (FTT_PKT_ASM_HEADERS *)tmsg;

switch (nodeID=S_nodeID_read()){
case -1:
ERROR_MSG(" master_mac still not initialized");
break;

case -2:
/* Send the Boot request */

// PRINT_MSG("Preparing to send a PnP req");
ETH_L_CopyMAC_to_from(ftt_tmsg_asm_pointer->eth_header.eth_dest,

S_Get_Master_mac());
ETH_L_CopyMAC_to_from(ftt_tmsg_asm_pointer->eth_header.eth_src,

S_Get_My_mac());

ftt_tmsg_asm_pointer->eth_header.eth_type = htons (ETH_FTT_TYPE);
ftt_tmsg_asm_pointer->pkt_header.type = htons(FTT_PLUGnPLAY);

//Missing the Seq_no
ftt_tmsg_asm_pointer->asm_header.seq_no = signaling_seq_no;
ftt_tmsg_asm_pointer->asm_header.nodeID = (unsigned char)nodeID;
ftt_tmsg_asm_pointer->asm_header.nam = htons((unsigned short)0);
mesg_efflen = FTT_PKT_ASM_LOGICALSIZE_B_from_no(0);
break;

default:
// PRINT_MSG("Preparing to send an ASM");

/* Send the Asynch buffers status */
ETH_L_CopyMAC_to_from(ftt_tmsg_asm_pointer->eth_header.eth_dest,

S_Get_Master_mac());
ETH_L_CopyMAC_to_from(ftt_tmsg_asm_pointer->eth_header.eth_src,

S_Get_My_mac());

ftt_tmsg_asm_pointer->eth_header.eth_type = htons (ETH_FTT_TYPE);
ftt_tmsg_asm_pointer->pkt_header.type = htons(FTT_ASTATUS_MSG);

temp_p = (ASM_MSG_QUEUE_INDEX *)ftt_tmsg_asm_pointer->data;

S_NRDB_enter ();
NDB_AM_Get_sent(ndb_return_AM_queues, &ndb_return_buf_size);
S_NRDB_leave();

counter = 0;
/* check if there is any app request */
if (S_appPnP_is_there_a_request(&app_id)){

// We will notify that will as if it was an assync notification

67

A. SOURCE CODE

// The AMesgId field will hold the MASTER_BROADCAST_A_CH_ID
// - (not used in this context - so used to notify this request)
// The AMesgQueueLen holds the app_id
temp_p[counter].AMesgId = htons(MASTER_BROADCAST_A_CH_ID);
temp_p[counter].AMesgQueueLen = htons((unsigned short)app_id);
counter++;

}

/* now, the real AM status */
while (ndb_return_buf_size--){

// PRINT_MSG("Sending status for id: %x
num:%d",ndb_return_AM_queues[ndb_return_buf_size].tagged_id,
ndb_return_AM_queues[ndb_return_buf_size].num);

temp_p[counter].AMesgId =
htons(ndb_return_AM_queues[ndb_return_buf_size].tagged_id);

temp_p[counter].AMesgQueueLen =
htons(ndb_return_AM_queues[ndb_return_buf_size].num);

counter++;
}

#ifdef SIG_RECOVER
{
unsigned char seq_no_retransmit;
void *ret_mem_p;
unsigned short ret_mem_size;

while (S_ECScheduled_GetSigRequest(NULL, &seq_no_retransmit)){
S_sig_backup_pull(seq_no_retransmit, &ret_mem_p, &ret_mem_size);

if (ret_mem_size%sizeof(ASM_MSG_QUEUE_INDEX)) {
ERROR_MSG("Programming error! Size must always come as a multiple

of sizeof(ASM_MSG_QUEUE_INDEX) ");
}
PRINT_MSG("Recovering signaling %d. Caught %d IDXs",

seq_no_retransmit, ret_mem_size/sizeof(ASM_MSG_QUEUE_INDEX));

if (ret_mem_p) {
memcpy((void *)(temp_p+counter), ret_mem_p, ret_mem_size);
counter += ret_mem_size/sizeof(ASM_MSG_QUEUE_INDEX);

}

}

S_sig_backup_push(signaling_seq_no, temp_p,
counter*sizeof(ASM_MSG_QUEUE_INDEX));

}
#endif

ftt_tmsg_asm_pointer->asm_header.seq_no = signaling_seq_no;
ftt_tmsg_asm_pointer->asm_header.nodeID = (unsigned char)nodeID;
ftt_tmsg_asm_pointer->asm_header.nam = htons((unsigned short)counter);
mesg_efflen = FTT_PKT_ASM_LOGICALSIZE_B_from_no(counter);

break;
}
signaling_seq_no ++;

#ifndef DISABLE_SIGNALING_SYNCH_DELAY
#ifndef ICNOVA

{
struct timespec tm_rx_abs_time;

/* Get the TM absolute time reference */
tm_rx_abs_time = S_ECScheduled_ReadTimestamp();

68

A.3. Slave dispatcher

//timespec_add_ns(&tm_rx_abs_time, (S_ec_period-20) * 1000); //como
estava antes

timespec_add_ns(&tm_rx_abs_time, (S_ec_period-(S_ec_period*0.15)) *
1000);

jitter = timespec_from_ns(0);
//PRINTF(">Waiting");
rtl_clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME|RTL_TIMER_ADVANCE,

&tm_rx_abs_time, NULL /*jitter*/);
}

#endif
#endif

#ifndef DISABLE_ASM_TX
if ((ret = ETH_L_tx_send_messagebuffer(NULL, mesg_efflen)) < 0){

ERROR_MSG("Message not sent. ETH_L_tx_send_messagebuffer returned: %d",
ret);

/* Perhaps I should un-reserv the buffer tmsg */
}

// PRINTF(">Sent");
#endif

}
#endif

/* Flush the igmp_queue */
S_igmp_queue_flush_queue();

}//while

return NULL;
}

69

A. SOURCE CODE

A.4 Common ftt-global

/***
* ftt-global.h:

* Copyright (C) 2006-2012 the FTT-SE team.

*
* Author: Ricardo Marau <marau at fe.up.pt>

*
* FTT-SE is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*
* FTT-SE is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with FTT-SE. If not, see <http://www.gnu.org/licenses/>.

***/

#ifndef FTT_GLOBAL_H
#define FTT_GLOBAL_H

///////////Linux compiling slowing factor
#define L26_SLOWING 1 // Using a factor smaller than 100*1ms is dangerous in

L26
//remember that the L26 resolution is 10 ms

#define MST_MAX_SM_VARS 100
#define MST_MAX_AM_VARS 100

#define STA_MAX_SM_VARS 10
#define STA_MAX_AM_VARS 10 //influencia o tamanho sa status ackowledge poll

/** @brief Maximum # of messages in 1 EC (Synchronous and Asynchronous) */
#define EC_MAX_SM_VARS 50 /* isto influencia o tamanho maximo da TM*/
#define EC_MAX_AM_VARS 300
#define EC_MAX_VARS (EC_MAX_SM_VARS + EC_MAX_AM_VARS)
#define EC_MAX_SIG_MISSING_REQUESTS 50

/** @brief Maximum valid ID of messages */
//#define MAX_ID 0x07FF
#define MAX_ID (MESGID_MASK)

/** @brief Maximum number of messages that a Station can handle */
#define STA_MAX_VAR 50

#ifdef SW_UNICAST
#define SW_MAX_PORTS 10
#endif

/** @brief Maximum load allowed due to the scheduler (in %) */
#define SCHED_LOAD_BOUND 80

/** @brief Size (in # of messages) of each buffer associated with asynch mesgs
transmitted or recieved locally by the node */

#define STA_AM_BUFF_SIZE 1
#define STA_SM_BUFF_SIZE 3

/** @brief Worst case len of TM: Header(ID+Flags+nmesgs sinc and asinc +
ID/Txi of sync. mesgs + ID of asynch mesgs + Prop delay */

70

A.4. Common ftt-global

#define TM_LEN_bits ((long)(FTT_PKT_TM_REALSIZE_B_from_no(EC_MAX_SM_VARS,
EC_MAX_AM_VARS, EC_MAX_SIG_MISSING_REQUESTS))*8+FTT_IFS_bits)

#ifdef NODE_ASYNC_REPLY
#define POLL_STATUS_MAX_PAYLOAD (sizeof(FTT_ASM_HEADER) +

STA_MAX_AM_VARS*sizeof(FTT_ASM_MSG_QUEUE_INDEX))
#define POLL_STATUS_LEN_bits

((long)(FRAME_REALSIZE_B(POLL_STATUS_MAX_PAYLOAD))*8+FTT_IFS_bits)
#endif

/** @brief Bit time in us (for 100Mb/s Ethernet) */
//#define BIT_TIME_US 0.1
#define BIT_TIME_US ((float)0.01)

/** @brief EC length in bits */
#define EC_LEN_bits(_ec) (long)(_ec/BIT_TIME_US)

/** @brief Percentage of the EC reserved to the Synch Phase */
//#define SWIN_SHARE 0.10
//#define SWIN_SHARE 0.85
#define SWIN_SHARE 0.10

/** @brief Percentage of the EC reserved to the Asynch Phase */
#define AWIN_SHARE (float)(1-SWIN_SHARE) /* Percentage of the EC reserved

to the Asynch Phase */
/* Note : These values should no be used in the code! */

/* AWIN_SHARE + SWIN_SHARE cant be 100%, since some space is */
/* used by the trigger message (and other control

messages?)*/
/* Use in the code EC_MAX_bits_SP/AP that have already

included the overheads */

/** @brief Size of the scanning window (in us) after Trig mesg.\n
This time is intended to allow that all stations decode the TM and set the Tx

of the first data message
Human rights equality for everyone... */
#define SCAN_WINDOW 0 /* us */

#define TURN_AROUND_WINDOW 0 /*US*/

//#define SCAN_WINDOW_BITS (long)(SCAN_WINDOW/BIT_TIME_US) /* bits */

#define REAL_IDLE_TIME 200 /* us - Time between the the TM and the
transmission of the Synchs */

#if (REAL_IDLE_TIME > SCAN_WINDOW)
#define DEAD_TIME (REAL_IDLE_TIME)

#else
#define DEAD_TIME (SCAN_WINDOW)

#endif

#define DEAD_TIME_BITS (long)(DEAD_TIME/BIT_TIME_US) /* bits */

#define EC_EFF_LEN_bits(__ec) (long)(EC_LEN_bits(__ec)-SCAN_WINDOW-TM_LEN_bits)

/** @brief EC Maximum Synchronous Phase duration measured in bits */
#define EC_MAX_bits_SP(___ec) (long)((EC_EFF_LEN_bits(___ec))*SWIN_SHARE)

/** @brief EC Maximum asynchronous Phase duration measured in bits */
#define EC_MAX_bits_AP(____ec) (long)((EC_EFF_LEN_bits(____ec)) -

EC_MAX_bits_SP(____ec))

/** @brief EC Maximum Synchronous Phase duration (in microsecs) */
#define EC_MAX_us_SP(____ec) (long)(EC_MAX_bits_SP(____ec)*BIT_TIME_US)

/** @brief EC Maximum Asynchronous Phase duration (in microsecs) */

71

A. SOURCE CODE

#define EC_MAX_us_AP(_____ec) (long)(EC_MAX_bits_AP(_____ec)*BIT_TIME_US)

#ifdef NODE_ASYNC_REPLY
#define EC_MAX_us_POLL ((long)((DEAD_TIME_BITS + TM_LEN_bits)*BIT_TIME_US))
#endif

/** @defgroup Ethernet_related_constants

* Ethernet related constants

* @{

*/

#define ETH_MAC_PREAMBLE_B 8 /* bytes */
#define ETH_MAC_DEST_B 6 /* bytes */
#define ETH_MAC_SOURCE_B 6 /* bytes */
#define ETH_MAC_TYPE_B 2 /* bytes */
#define ETH_MINIMUM_PAYLOAD 46 /* bytes */
#define ETH_MAXIMUM_PAYLOAD 1500/* bytes */
#define ETH_CRC_B 4 /* bytes */
#define ETH_INTERFRAMEGAP_B 12 /* bytes */

#define ETH_DATALEN_MIN (ETH_MINIMUM_PAYLOAD)
#define ETH_DATALEN_MAX (ETH_MAXIMUM_PAYLOAD)

/** @brief Overhead of an Ethernet Frame:\n
Dest. Addr (6) + Src. Addr (6) + Type (2)\n
Note : from a logical point of view, Prelude and FCS not included */
#define ETH_LOGICAL_OVERHEAD (ETH_MAC_DEST_B + ETH_MAC_SOURCE_B +

ETH_MAC_TYPE_B)
#define ETH_OVERHEAD_BYTES (ETH_MAC_PREAMBLE_B + ETH_LOGICAL_OVERHEAD +

ETH_CRC_B + ETH_INTERFRAMEGAP_B)
#define ETH_OVERHEAD_bits (ETH_OVERHEAD_BYTES*8)

#define FRAME_LOGICALSIZE_B(_a) ((_a) + ETH_LOGICAL_OVERHEAD)
#define FRAME_REALSIZE_B(_a) ((_a) + ETH_OVERHEAD_BYTES)

#define ETH_FRAME_HIDDEN_OVERHEAD (ETH_MAC_PREAMBLE_B + ETH_CRC_B +
ETH_INTERFRAMEGAP_B)

/** @} */

/** @brief Ethernet Frame type ID */
#define ETH_FTT_TYPE 0x8FF0

/** @brief Worst-case gap that must be forced between short FTT Data frames,
due to non-simultaneous\n

reception of the TM mesg in all nodes and software jitter (on reception of TM /
txmit of data frame */

#define FTT_IFS_bits 500

/** @brief Minimum allowed size for a data frame in FTT Ethernet\n
(to support bus and software jitter still without collisions) */
#define FTT_MINLEN_bits ((ETH_OVERHEAD_BYTES + ETH_DATALEN_MIN)*8 +

FTT_IFS_bits)

/** @brief Value of the Slot time used as a count unit for message tx time
indication in the trig. mesg */

#define SLOTV_US 10

72

A.4. Common ftt-global

#ifdef QNX_TAGGING
typedef unsigned int QNX_TAGGING_TYPE;
#endif

/* FTT Generic */
typedef struct{

unsigned char eth_dest[ETH_MAC_DEST_B];
unsigned char eth_src[ETH_MAC_DEST_B];
unsigned short eth_type;

}__attribute__ ((packed)) FTT_ETH_HEADER;

typedef enum{
FTT_MST_MSG = 0,
FTT_SDATA_MSG,
FTT_ADATA_MSG,
FTT_ASTATUS_MSG,
FTT_IDLE,
FTT_PLUGnPLAY,
FTT_NOTUSED = 0xFFFF /* only to force the enum size to 2B */

}__attribute__ ((packed)) FTT_PKT_TYPE;

typedef struct{
FTT_PKT_TYPE type;

}__attribute__ ((packed)) FTT_PKT_HEADER;

typedef struct{
FTT_ETH_HEADER eth_header;
FTT_PKT_HEADER pkt_header;

}__attribute__ ((packed)) FTT_PKT_GENERIC_HEADERS;

#define FTT_PKT_GENERIC_max_payload (ETH_DATALEN_MAX - sizeof(FTT_PKT_HEADER))
#define FTT_PKT_GENERIC_min_payload (ETH_DATALEN_MIN - sizeof(FTT_PKT_HEADER))

/* TM */
typedef struct{

unsigned char num_tms_per_ec;
unsigned char tm_sequence_number;
unsigned short tm_interarrival_time;

} __attribute__ ((packed)) FTT_PKT_TM_RELIABLE_HEADER;

typedef struct{
unsigned char seq_no;
unsigned char ec_time_ms;
unsigned short nsm; ///< Number of synch. mesgs
unsigned short nam; ///< Number of asynch. mesgs
unsigned short nsa; ///< Number of signaling !ack

} __attribute__ ((packed)) FTT_PKT_TM_HEADER;

#define TM_SEQN_MASK 0x00FF

typedef struct{
FTT_ETH_HEADER eth_header;
FTT_PKT_HEADER pkt_header;

FTT_PKT_TM_RELIABLE_HEADER tm_reliable_header;

FTT_PKT_TM_HEADER tm_header;
unsigned char data[];

} __attribute__ ((packed)) FTT_PKT_TM_HEADERS;

typedef struct{
unsigned short SMesgId; ///< ID
unsigned short SMesg_frag_no;
unsigned char source_nodeID;

73

A. SOURCE CODE

} __attribute__ ((packed)) TM_SYNC_MSG_INDEX;

typedef struct{
unsigned short AMesgId; ///< ID
unsigned short AMesg_frag_no;
unsigned char source_nodeID;

} __attribute__ ((packed)) TM_ASYNC_MSG_INDEX;

typedef struct{
unsigned short nodeID; ///< ID
unsigned char sig_seqno;

} __attribute__ ((packed)) TM_SIG_ACK_INDEX;

#define FTT_PKT_TM_DATALEN_MAX (FTT_PKT_GENERIC_max_payload -
sizeof(FTT_PKT_TM_HEADER))

#define FTT_PKT_TM_DATALEN_MIN (FTT_PKT_GENERIC_min_payload -
sizeof(FTT_PKT_TM_HEADER))

#define FTT_PKT_TM_LOGICALSIZE_B_from_no(_no_SM, _no_AM, _no_Sig_ACK) (
_no_Sig_ACK*sizeof(TM_SIG_ACK_INDEX) + _no_SM*sizeof(TM_SYNC_MSG_INDEX) +
_no_AM*sizeof(TM_ASYNC_MSG_INDEX) + sizeof(FTT_PKT_TM_HEADERS))

#define FTT_PKT_TM_REALSIZE_B_from_no(_no_SM, _no_AM, _no_Sig_ACK) (
_no_Sig_ACK*sizeof(TM_SIG_ACK_INDEX) + _no_SM*sizeof(TM_SYNC_MSG_INDEX) +
_no_AM*sizeof(TM_ASYNC_MSG_INDEX) + sizeof(FTT_PKT_TM_HEADERS) +
ETH_FRAME_HIDDEN_OVERHEAD)

/** @brief Mask for the 9th bit of identifier (flags) */
#define TXNEWDAT_MASK 0x01

/* SDM */
typedef struct{

unsigned short id; ///< Frame ID
unsigned char seq_no;
unsigned char flag_s;
unsigned short frag_seqno; ///< Sequence number within the fragmentation

(could be char)
unsigned char source_nodeID;

#ifdef QNX_TAGGING
QNX_TAGGING_TYPE tagging;

#endif
} __attribute__ ((packed)) FTT_PKT_SDM_HEADER;

typedef struct{
FTT_ETH_HEADER eth_header;
FTT_PKT_HEADER pkt_header;
FTT_PKT_SDM_HEADER sdm_header;
unsigned char data[];

} __attribute__ ((packed)) FTT_PKT_SDM_HEADERS;

#define FTT_PKT_SDM_DATALEN_MAX (FTT_PKT_GENERIC_max_payload -
sizeof(FTT_PKT_SDM_HEADER))

#define FTT_PKT_SDM_DATALEN_MIN (FTT_PKT_GENERIC_min_payload -
sizeof(FTT_PKT_SDM_HEADER))

#define FTT_PKT_SDM_LOGICALSIZE_B(_load) (_load +
sizeof(FTT_PKT_SDM_HEADERS))

#define FTT_PKT_SDM_REALSIZE_B(_load) (_load + sizeof(FTT_PKT_SDM_HEADERS) +
ETH_FRAME_HIDDEN_OVERHEAD)

#define FTT_PKT_SDM_REALSIZE_B_reverse(_load) (_load -
sizeof(FTT_PKT_SDM_HEADERS) - ETH_FRAME_HIDDEN_OVERHEAD)

/* ADM */
typedef struct{
unsigned short id; ///< Frame ID
unsigned char seq_no;
unsigned char flag_s;
unsigned short frag_seqno; ///< Sequence number within the fragmentation
unsigned char source_nodeID;

74

A.4. Common ftt-global

#ifdef QNX_TAGGING
QNX_TAGGING_TYPE tagging;

#endif
} __attribute__ ((packed)) FTT_PKT_ADM_HEADER;

typedef struct{
FTT_ETH_HEADER eth_header;
FTT_PKT_HEADER pkt_header;
FTT_PKT_ADM_HEADER adm_header;
unsigned char data[];

} __attribute__ ((packed)) FTT_PKT_ADM_HEADERS;

#define FTT_PKT_ADM_DATALEN_MAX (FTT_PKT_GENERIC_max_payload -
sizeof(FTT_PKT_ADM_HEADER))

#define FTT_PKT_ADM_DATALEN_MIN (FTT_PKT_GENERIC_min_payload -
sizeof(FTT_PKT_ADM_HEADER))

#define FTT_PKT_ADM_LOGICALSIZE_B(_load) (_load +
sizeof(FTT_PKT_ADM_HEADERS))

#define FTT_PKT_ADM_REALSIZE_B(_load) (_load + sizeof(FTT_PKT_ADM_HEADERS) +
ETH_FRAME_HIDDEN_OVERHEAD)

#define FTT_PKT_ADM_REALSIZE_B_reverse(_load) (_load -
sizeof(FTT_PKT_ADM_HEADERS) - ETH_FRAME_HIDDEN_OVERHEAD)

/* ASM */
typedef struct{

unsigned char seq_no;
unsigned char nodeID;
unsigned short nam;

} __attribute__ ((packed)) FTT_PKT_ASM_HEADER;

typedef struct{
FTT_ETH_HEADER eth_header;
FTT_PKT_HEADER pkt_header;
FTT_PKT_ASM_HEADER asm_header;
unsigned char data[];

} __attribute__ ((packed)) FTT_PKT_ASM_HEADERS;

typedef struct{
unsigned short AMesgId; ///< ID
unsigned short AMesgQueueLen; ///< Len of the queue in the asynchronous

producer
} __attribute__ ((packed)) ASM_MSG_QUEUE_INDEX;

#define FTT_PKT_ASM_LOGICALSIZE_B_from_no(_no) (
_no*sizeof(ASM_MSG_QUEUE_INDEX) + sizeof(FTT_PKT_ASM_HEADERS))

#define FTT_PKT_ASM_REALSIZE_B_from_no(_no) (_no*sizeof(ASM_MSG_QUEUE_INDEX)
+ sizeof(FTT_PKT_ASM_HEADERS) + ETH_FRAME_HIDDEN_OVERHEAD)

/* IDLE */
typedef struct{

unsigned short id; ///< Frame ID
} __attribute__ ((packed)) FTT_PKT_IDLE_HEADER;

typedef struct{
FTT_ETH_HEADER eth_header;
FTT_PKT_HEADER pkt_header;
FTT_PKT_IDLE_HEADER idle_header;

} __attribute__ ((packed)) FTT_PKT_IDLE_HEADERS;

//

#define FTT_SM (0)
#define FTT_AM (1)

75

A. SOURCE CODE

typedef unsigned short FTT_VAR_ID; /* 1-type 3-tag 12-ID */

#define FTT_VAR_ID_TYPE_MASK (0x8000)
#define FTT_VAR_ID_TAG_MASK (0x7000)
#define FTT_VAR_ID_ID_MASK (0xFFF)

#define FTT_VAR_ID_TYPE_SHIFT (15)
#define FTT_VAR_ID_TAG_SHIFT (12)
#define FTT_VAR_ID_ID_SHIFT (0)

#define FTT_VAR_ID_TAG_BASEMASK (0x7)

#define FTT_VAR_ID_GET_ID(_id) (((FTT_VAR_ID)_id & FTT_VAR_ID_ID_MASK) >>
FTT_VAR_ID_ID_SHIFT)

#define FTT_VAR_ID_GET_TAG(_id) (((FTT_VAR_ID)_id & FTT_VAR_ID_TAG_MASK)
>> FTT_VAR_ID_TAG_SHIFT)

#define FTT_VAR_ID_GET_TYPE(_id) (((FTT_VAR_ID)_id & FTT_VAR_ID_TYPE_MASK)
>> FTT_VAR_ID_TYPE_SHIFT)

#define FTT_VAR_ID_SET_ID(_idout, _idin) { _idout = ((((FTT_VAR_ID)_idin) <<
FTT_VAR_ID_ID_SHIFT) & FTT_VAR_ID_ID_MASK) | (((FTT_VAR_ID)_idout) &
(~FTT_VAR_ID_ID_MASK)); }

#define FTT_VAR_ID_SET_TAG(_idout, _idin) { _idout = ((((FTT_VAR_ID)_idin)
<< FTT_VAR_ID_TAG_SHIFT) & FTT_VAR_ID_TAG_MASK) | (((FTT_VAR_ID)_idout) &
(~FTT_VAR_ID_TAG_MASK)); }

#define FTT_VAR_ID_SET_TYPE(_idout, _idin) { _idout = ((((FTT_VAR_ID)_idin)
<< FTT_VAR_ID_TYPE_SHIFT) & FTT_VAR_ID_TYPE_MASK) | (((FTT_VAR_ID)_idout)
& (~FTT_VAR_ID_TYPE_MASK)); }

#define FTT_VAR_ID_SET_TYPE_SYNC(_id) (FTT_VAR_ID_SET_TYPE(_id, FTT_SM)
)

#define FTT_VAR_ID_SET_TYPE_ASYNC(_id) (FTT_VAR_ID_SET_TYPE(_id, FTT_AM
))

#define FTT_VAR_ID_IS_ID_SYNC(__id) (FTT_VAR_ID_GET_TYPE(__id) ==
FTT_SM)

#define FTT_VAR_ID_IS_ID_ASYNC(__id) (FTT_VAR_ID_GET_TYPE(__id) ==
FTT_AM)

#define FTT_VAR_ID_CMP_ID(_id1, _id2) (((FTT_VAR_ID)_id1 &
FTT_VAR_ID_ID_MASK) == ((FTT_VAR_ID)_id2 & FTT_VAR_ID_ID_MASK))

#define FTT_VAR_ID_CMP_TAG(_id1, _id2) (((FTT_VAR_ID)_id1 &
FTT_VAR_ID_TAG_MASK) == ((FTT_VAR_ID)_id2 & FTT_VAR_ID_TAG_MASK))

#define FTT_VAR_ID_CMP_TYPE(_id1, _id2) (((FTT_VAR_ID)_id1 &
FTT_VAR_ID_TYPE_MASK) == ((FTT_VAR_ID)_id2 & FTT_VAR_ID_TYPE_MASK))

#define FTT_VAR_ID_CMP_ID_TYPE(_id1, _id2) (((FTT_VAR_ID)_id1 &
(FTT_VAR_ID_ID_MASK|FTT_VAR_ID_TYPE_MASK)) == ((FTT_VAR_ID)_id2 &
(FTT_VAR_ID_ID_MASK|FTT_VAR_ID_TYPE_MASK)))

#define FTT_VAR_ID_CMP_ID_TYPE_TAG(_id1, _id2) ((FTT_VAR_ID)_id1 ==
(FTT_VAR_ID)_id2)

/* Asynchronous communication channel - Used for Dbs synch */

#define MASTER_BROADCAST_A_CH_ID 1
#define MASTER_BROADCAST_A_CH_SIZE 120
#define MASTER_BROADCAST_A_CH_MTU 1200

typedef enum
{
FTT_CMD_SET_NODEID=0,
FTT_CMD_SET_APP_PNP_IDS,
FTT_CMD_ADD_MSG,
FTT_CMD_DEL_MSG,
FTT_CMD_DEL_OLD_TAG,

76

A.4. Common ftt-global

FTT_CMD_DUMMY
}FTT_COMMANDS;

/** \struct MASTER_ASYNCH
\brief Header data carried in the Trigger Message

*/
typedef struct{
unsigned short COMMAND_id; ///< Command id
unsigned short flags; ///< Sequence number + command hold

} __attribute__ ((packed)) A_MST_CHANNEL_HEADER;

typedef struct{
A_MST_CHANNEL_HEADER header;
unsigned short nodeID;
unsigned char mac[6];

} __attribute__ ((packed)) A_MST_SET_NODEID;

typedef struct{
A_MST_CHANNEL_HEADER header;
unsigned char adding_type; //0-change if possible 1-force as new
unsigned char mesg_type;
unsigned short mesg_id;
unsigned char mesg_id_tag;
unsigned int mesg_size;
unsigned int mesg_max_size;
unsigned short mesg_MTU;
unsigned int mesg_period;
unsigned char mesg_production_mac[6];
unsigned char mesg_producerID[40]; //nodeID
unsigned char mesg_producers_no;
unsigned char mesg_producers_max_no;
unsigned char mesg_consumers_no; //if 0 broadcast
unsigned char mesg_consumerID[40];

} __attribute__ ((packed)) A_MST_ADD;

typedef struct{
A_MST_CHANNEL_HEADER header;
unsigned char mesg_type;
unsigned short mesg_id;

} __attribute__ ((packed)) A_MST_DEL;

typedef struct{
A_MST_CHANNEL_HEADER header;
unsigned char mesg_type;
unsigned short mesg_id; //It embedds the old tag

} __attribute__ ((packed)) A_MST_DEL_OLD_TAG;

typedef struct{
A_MST_CHANNEL_HEADER header;

} __attribute__ ((packed)) A_MST_DUMMY;

typedef struct{
A_MST_CHANNEL_HEADER header;
unsigned char app_id;
unsigned char nodeID;
unsigned char ack; // 0/1
unsigned short tx_id;
unsigned short rx_id;

} __attribute__ ((packed)) A_PNP_IDS_NOTIFY;

#endif /* ----- #ifndef FTT-GLOBAL2_FILE_HEADER_INC ----- */

77

A. SOURCE CODE

A.5 Ports

/***
* Ports.h:

* Copyright (C) 2006-2012 the FTT-SE team.

*
* Author: Ricardo Marau <marau at fe.up.pt>

*
* FTT-SE is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*
* FTT-SE is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with FTT-SE. If not, see <http://www.gnu.org/licenses/>.

***/

#ifndef _PORTS_H
#define _PORTS_H

/* This must be the first include in the .c files */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#ifdef RTL_PRO
#include <rtl_pthread.h>
#include <rtl_semaphore.h>
#else
#include <pthread.h>
#include <semaphore.h>
#include <sched.h>
#endif

#ifdef RTL_PRO

#else

#define rtl_pthread_t pthread_t
#define rtl_pthread_attr_t pthread_attr_t
#define rtl_pthread_attr_init pthread_attr_init
#define rtl_pthread_attr_setschedparam pthread_attr_setschedparam
#define rtl_pthread_create pthread_create
#define rtl_pthread_cancel pthread_cancel
#define rtl_pthread_join pthread_join

#define rtl_pthread_mutex_t pthread_mutex_t
#define rtl_pthread_mutex_lock pthread_mutex_lock
#define rtl_pthread_mutex_unlock pthread_mutex_unlock
#define rtl_pthread_mutex_init pthread_mutex_init
#define rtl_pthread_mutex_destroy pthread_mutex_destroy
#define rtl_pthread_attr_setdetachstate pthread_attr_setdetachstate

#define rtl_pthread_cond_t pthread_cond_t
#define rtl_pthread_cond_wait pthread_cond_wait
#define rtl_pthread_cond_signal pthread_cond_signal
#define rtl_pthread_cond_broadcast pthread_cond_broadcast
#define rtl_pthread_cond_init pthread_cond_init
#define rtl_pthread_cond_destroy pthread_cond_destroy

78

A.5. Ports

//#define rtl_pthread_mutexattr_t pthread_mutexattr_t
//#define rtl_pthread_condattr_init pthread_condattr_init
//#define rtl_pthread_condattr_destroy pthread_condattr_destroy
//#define rtl_pthread_mutexattr_setpshared pthread_mutexattr_setpshared
//#define RTL_PTHREAD_PROCESS_SHARED PTHREAD_PROCESS_SHARED

#define rtl_sem_t sem_t
#define rtl_sem_wait sem_wait
#define rtl_sem_trywait sem_trywait
#define rtl_sem_timedwait sem_timedwait
#define rtl_sem_post sem_post
#define rtl_sem_init sem_init
#define rtl_sem_destroy sem_destroy

#define RTL_TIMER_ADVANCE 0

#define rtl_clock_nanosleep clock_nanosleep
#define rtl_clock_gettime clock_gettime

#define RTL_CLOCK_REALTIME CLOCK_REALTIME
#define rtl_timespec timespec
#define rtl_sched_get_priority_max sched_get_priority_max
#define rtl_sched_get_priority_min sched_get_priority_min
#define rtl_sched_param sched_param
#define rtl_pthread_attr_setstacksize pthread_attr_setstacksize
#define rtl_pthread_attr_setstackaddr pthread_attr_setstackaddr
#define RTL_SCHED_FIFO SCHED_FIFO

#define rtl_timespec_add timespec_add
#define rtl_timespec_add_ns timespec_add_ns
#define rtl_timespec_from_ns timespec_from_ns
#define rtl_timespec_gt timespec_gt
#define rtl_timespec_sub timespec_sub
#define rtl_timespec_sub_ns timespec_sub_ns
#define rtl_timespec_getns timespec_getns
#define RTL_TIMER_ABSTIME TIMER_ABSTIME

#define rtl_shm_open shm_open
#define rtl_mmap mmap
#define rtl_munmap munmap
#define rtl_close close
#define rtl_shm_unlink shm_unlink

#define RTL_PROT_READ PROT_READ
#define RTL_O_CREAT O_CREAT
#define RTL_O_RDWR O_RDWR
#define RTL_O_RDONLY O_RDONLY
#define RTL_O_PHYS 0
#define RTL_PROT_WRITE PROT_WRITE
#define RTL_MAP_SHARED MAP_SHARED
#define RTL_MAP_FAILED MAP_FAILED

#define rtl_errors errors
#define rtl_combinations combinations
#define rtl_next_combination next_combination
#define rtl_number_combinations number_combinations
#define rtl_factorial factorial

#endif

#ifdef RTL_PRO
#define ERROR_MSG(F, S...) {rtl_printf("\n[%s] %s() " F , __FILE__,

__FUNCTION__, ## S);}
#define PRINT_MSG(F, S...) {rtl_printf("\n" F , ## S);}

79

A. SOURCE CODE

#define PRINTF(F, S...) {rtl_printf(F , ## S);}
#else
#define ERROR_MSG(F, S...) {fprintf(stderr,"\n[%s] %s() " F , __FILE__,

__FUNCTION__, ## S);fflush(stdout);}
#define PRINT_MSG(F, S...) {fprintf(stdout,"\n" F , ## S);fflush(stdout);}
#define PRINTF(F, S...) {fprintf(stdout, F , ## S);fflush(stdout);}

static inline struct timespec timespec_add(struct timespec a, struct timespec b)
{
#define NSEC_PER_SEC 1000000000L

struct timespec temp;

if ((a.tv_nsec+b.tv_nsec) > NSEC_PER_SEC) {
temp.tv_sec = a.tv_sec + b.tv_sec + 1;
temp.tv_nsec = a.tv_nsec + b.tv_nsec - NSEC_PER_SEC;

}else{
temp.tv_sec = a.tv_sec + b.tv_sec;
temp.tv_nsec = a.tv_nsec + b.tv_nsec;

}
return temp;

}

static inline void timespec_add_ns(struct timespec *a, unsigned long ns)
{
#define NSEC_PER_SEC 1000000000L

unsigned long long temp;
temp = ns + a->tv_nsec;
while(temp >= NSEC_PER_SEC) {

temp -= NSEC_PER_SEC;
a->tv_sec++;

}

a->tv_nsec = temp;
}

static inline struct timespec timespec_from_ns(unsigned long ns)
{

struct timespec x={0,0};
timespec_add_ns(&x, ns);
return x;

}

static inline unsigned char timespec_gt(struct timespec ts1, struct timespec
ts2){

if(ts1.tv_sec < ts2.tv_sec) return 0;
if(ts1.tv_sec == ts2.tv_sec) return (ts1.tv_nsec > ts2.tv_nsec);
if(ts1.tv_sec > ts2.tv_sec) return 1;

}

static inline struct timespec timespec_sub(struct timespec start, struct
timespec end)

{
struct timespec temp;

if ((end.tv_nsec-start.tv_nsec)<0) {
temp.tv_sec = end.tv_sec-start.tv_sec-1;
temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;

}else{

temp.tv_sec = end.tv_sec-start.tv_sec;
temp.tv_nsec = end.tv_nsec-start.tv_nsec;

}

return temp;
}

80

A.5. Ports

static inline unsigned long long timespec_getns(struct timespec ts)
{

return (ts.tv_nsec + 1000000000*(unsigned long long)ts.tv_sec);
}

static inline void timespec_sub_ns(struct timespec *a, unsigned long ns)
{

while(ns >= NSEC_PER_SEC) {
ns -= NSEC_PER_SEC;
a->tv_sec--;

}

if(ns > a->tv_nsec){
a->tv_sec--;
ns -= a->tv_nsec;
a->tv_nsec = NSEC_PER_SEC - ns;

}else{
a->tv_nsec -= ns;

}
}

#endif

#ifdef RTL_PRO
//#if __BYTE_ORDER == __BIG_ENDIAN
//cannot use this MACRO. It is not provided by rtl-gcc
inline static unsigned short ntohs (unsigned short nValue){

return (((nValue>> 8)) | (nValue << 8));
}

inline static unsigned short htons (unsigned short nValue){
return (((nValue>> 8)) | (nValue << 8));

}

inline static unsigned int ntohi (unsigned int nValue){
return ((nValue>>24) | ((nValue>>8)&0x0000FF00) | ((nValue<<8)&0x00FF0000) |

(nValue<<24));
}

inline static unsigned int htoni (unsigned int nValue){
return ((nValue>>24) | ((nValue>>8)&0x0000FF00) | ((nValue<<8)&0x00FF0000) |

(nValue<<24));
}
#else
#include <netinet/in.h>
#define ntohi ntohl
#define htoni htonl
#endif

typedef struct{
rtl_sem_t semaphore;
unsigned char is_destroyed;

}FTT_SEMAPHORE;

static inline signed char FTT_SEMAPHORE_wait(FTT_SEMAPHORE *sem)
{

signed char ret;

ret = rtl_sem_wait(&(sem->semaphore));
if (ret<0) return ret;
if (sem->is_destroyed) return -10;

return 0;
}

81

A. SOURCE CODE

static inline void FTT_SEMAPHORE_post(FTT_SEMAPHORE *sem)
{

rtl_sem_post(&(sem->semaphore));
}

static inline signed char FTT_SEMAPHORE_init(FTT_SEMAPHORE *sem, int
init_state)

{
sem->is_destroyed = 0;
return rtl_sem_init(&(sem->semaphore), 0, init_state);

}

static inline signed char FTT_SEMAPHORE_destroy(FTT_SEMAPHORE *sem)
{

sem->is_destroyed = 1;
rtl_sem_post(&(sem->semaphore)); // wake it
/* and make sure to clean up the semaphore */
rtl_sem_destroy(&(sem->semaphore));
return 0;

}
#ifdef RTL_PRO
/* It seams that the rtl_sem_trywait doesn’t work properly under RTL

* Maybe because it’s being called from within the IRQ

* If I call it right after the sem_init it works.

* The workaround checks directly the sem value */
static inline signed char FTT_SEMAPHORE_trywait(FTT_SEMAPHORE *sem)
{

if (sem->semaphore.value){

sem->semaphore.value --;
return 0;

}else{
return -1;

}
}
#else
static inline signed char FTT_SEMAPHORE_trywait(FTT_SEMAPHORE *sem)
{

if (rtl_sem_trywait(&(sem->semaphore)) < 0)
return -1;

return 0;
}
#endif

struct errors {
int num_combinations;
int combinations[35][7];

};

static inline int factorial (int n)
{

int cumul = 1;
while (n > 0) {
cumul *= n;
n--;

}
return cumul;

}

static inline int number_combinations (int k, int i)
{

return ((factorial (k)) / (factorial (i) * factorial (k - i)));
}

82

A.5. Ports

static inline unsigned char next_combination(unsigned char
*present_combination, unsigned char index, unsigned char k, unsigned char
errors, unsigned char end)

{
if (!end) {

if (present_combination[0] != (k - errors)) {
present_combination[index] = present_combination[index] + 1;

//Cogemos el siguiente elemento posible
if (index > 0) {

if (present_combination[index] > k - (errors - index)) { //Si nos
hemos pasado de
end = next_combination(present_combination, index - 1, k,

errors, 0);
present_combination[index] = present_combination[index - 1] + 1;

} else {
end = 1;

}
} else {

end = 1;
}

} else {
end = 1;

}
}
return end;

}

static inline void combinations (int k, int num_errors, struct errors *error)
{

error->num_combinations = number_combinations (k , num_errors);
int i;
int j;
int l = 0;
unsigned char present_combination[num_errors];
for (i = 0; i < num_errors; i ++){

present_combination[i] = i;
}
if (num_errors == 0){

for (i = 0 ; i < k ; i++){
error->combinations[0][i] = 1;

}
} else {

for (i = 0; i < error->num_combinations; i++){
for (j = 0; j < k; j++){

if (present_combination[l] == j) {
error->combinations[i][j] = 0;
l ++;

} else {
error->combinations[i][j] = 1;

}
}
l = 0;
next_combination(present_combination, num_errors - 1, k, num_errors, 0);

}

}
}

#endif

83

A
P

P
E

N
D

I
X

B
PUBLISHED PAPER ABOUT THE RESULTS OF

THE PROJECT

The results of this project permitted the writing of a published short paper, in which
the candidate participated as a co-author. The other authors of the paper were David
Gessner, Alberto Ballesteros, Manuel Barranco and Julián Proenza. The reference of the
paper is:

• Gessner, D., Álvarez, I., Ballesteros, A., Barranco, M., Proenza, J., Towards an
Experimental Assessment of the Slave Elementary Cycle Synchronization in the
Flexible Time-Triggered Replicated Star for Ethernet. In Proc. 19th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA),
September 16-19, 2014, Barcelona, Spain.

Next we can find the complete paper.

85

B. PUBLISHED PAPER ABOUT THE RESULTS OF THE PROJECT

Towards an Experimental Assessment of the Slave
Elementary Cycle Synchronization in the Flexible

Time-Triggered Replicated Star for Ethernet

David Gessner, Inés Álvarez, Alberto Ballesteros, Manuel Barranco, Julián Proenza
DMI, Universitat de les Illes Balears, Spain

{davidges, ines.alvarez.91}@gmail.com {a.ballesteros, manuel.barranco, julian.proenza}@uib.es

Abstract—The communication subsystem of distributed em-
bedded systems (DES) that must operate continuously and satisfy
unpredictable requirement changes must be reliable and flexible.
Recently the Flexible Time-Triggered Replicated Star for Ether-
net (FTTRS) has been proposed as a communication subsystem
that satisfies these two attributes. It is based on the master/multi-
slave Flexible-Time Triggered (FTT) communication paradigm
and relies on two custom switches, each with its own embedded
FTT master. Both masters are active simultaneously and provide
the same service. Specifically, they simultaneously and periodi-
cally broadcast so-called trigger messages (TMs) in a redundant
manner to make them robust to transient channel faults. One
of the functions of these TMs is to divide the communication
time into rounds called elementary cycles (ECs). For the correct
operation of FTTRS, it is important that all slaves agree when
each EC starts and ends. A mechanism to achieve this has been
recently proposed. This paper presents a first implementation of
this mechanism and a series of experimental tests that constitute
a first step towards building a prototype of an FTTRS network.

I. INTRODUCTION

A distributed embedded system (DES), to operate con-
tinuously while satisfying unpredictable requirement changes,
must be both highly reliable and flexible. To achieve this it
requires a communication channel that satisfies those attributes
as well. The goal of the Flexible Time-Triggered Replicated
Star for Ethernet (FTTRS) [1] is to provide such a channel
for a project called Fault Tolerance for Flexible Time-Triggered
Ethernet-based systems (FT4FTT), which aims to provide high
reliability and flexibility to all crucial parts of a DES.

FTTRS is based on a switched Ethernet implementa-
tion of the Flexible Time Triggered (FTT) communication
paradigm [2], a paradigm that provides master/multi-slave
communication in a way that allows the communication to
adapt to changing real-time requirements. FTTRS attempts
to make such communication highly reliable for switched
ethernet by using fault tolerance. Its architecture is shown in
Figure 1. The main components are two interconnected custom
ethernet switches, each of which embeds an FTT master, and
a set of FTT slaves connected to both of them.

The embedded masters broadcast a periodic message called
trigger message (TM), which divides the communication time
into rounds of fixed duration called elementary cycles (ECs).
Specifically, each EC begins with a trigger message window
(TM window) in which each one of the two embedded masters
broadcasts several redundant TMs to the slaves while no other
traffic is exchanged on the network. The number of TMs

Switch 2
(master 2)

Switch 1
(master 1)

Slave A

Slave B

Slave C

ethernet link

Fig. 1. FTTRS architecture.

broadcast by each master in each EC is given by a parameter
k, which is a function of the bit error rate of the channel.
Moreover, the broadcasts are synchronized such that when
one master transmits its nth TM of a given TM window, the
other transmits its nth TM of the same TM window quasi-
simultaneously [3]. In other words, the TM transmissions of
the two masters occur in lockstep.

For FTTRS to function correctly, the slaves must agree
when each EC begins and ends. Since we want FTTRS to be
highly reliable, we have recently proposed a mechanism to
achieve this even if due to channel faults each slave fails to
receive all but one TM per TM window [4]. In this paper we
present a first implementation of this mechanism and a series of
tests to check that the implementation is correct. Moreover, we
provide some first results regarding the viability of achieving
a precise EC synchronization in practice with the mechanism.

The remainder of the paper proceeds as follows. Section II
summarizes the EC synchronization mechanism used by the
slaves. Section III describes our implementation of the EC
synchronization mechanism. Section IV describes the tests we
performed and the results we obtained. Finally, Section V
concludes the paper and points to future work.

II. THE SLAVE EC SYNCHRONIZATION MECHANISM

This section summarizes the slave EC synchronization
mechanism that was first presented in a previous paper [4].

As mentioned in the introduction, of the k TM replicas
broadcast by each master, the corresponding slave might
receive all k replicas or only a subset of them due to transient
faults. Regardless of which specific replicas each slave receives
on each of its links, the time instants when the slaves consider
each EC to start and end must align. This can be achieved by

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

86

s1

s2

m1,c

αs1 (1, c)

m2,c

αs1 (2, c)

m3,c

αs1 (3, c)

. . . mi,c

αs1 (i, c)

. . . mk,c

αs1 (k, c)

τ τ (k − i)τ

(k − 2)τ

(k − 1)τ

. .
.

m1,c

αs2
(1, c)

m2,c

αs2
(2, c)

m3,c

αs2
(3, c)

. . . mi,c

αs2
(i, c)

. . . mk,c

αs2
(k, c)

time

TM window

Fig. 2. Alignment of TM arrival times.

the recently proposed EC synchronization mechanism under
certain conditions, which we will call EC synchronization
requirements. These conditions can be summarized as follows:
(a) each of the slaves to be synchronized receives at least
one TM per TM window; (b) the TMs of a TM window are
broadcast such that all slaves that receive the same TM do
so at the same time through each of their links; (c) the TMs
are broadcast with the same fixed intertransmission time τ ;
and (d) the amount by which the clocks of the slaves drift
apart during one EC is negligible. Under these conditions, the
following EC synchronization mechanism can be used for the
slaves. (Note that because of condition (b), we do not need to
distinguish between the links of each slave.)

Let Sc denote the set of slaves in a given FTTRS network
that remain non-faulty at the end of EC c. Moreover, let mi,c

denote the TM with sequence number i in EC c, where i ∈ N
and 1 ≤ i ≤ k. Also, let Ms,c be the set of TMs that a
slave s ∈ Sc receives during the TM window of an EC c.
Furthermore, let αs(i, c) denote the expected arrival time of
mi,c ∈Ms,c at slave s ∈ Sc. Figure 2 illustrates these expected
TM arrival times during the TM window of an EC c for two
slaves s1, s2 ∈ Sc.

The expected arrival time of mk,c at a slave s is

αs(k, c) = αs(i, c) + (k − i)τ, (1)

which coincides with the end of the TM window. This is also
illustrated in Figure 2 for slaves s1 and s2.

If s received at least one TM replica mi,c in c, then (1)
can be calculated for all s ∈ Sc for each EC c. Because of
condition (b), in addition we have that

αs1(k, c) = αs2(k, c), where s1, s2 ∈ Sc. (2)

The EC synchronization mechanism for the slaves can there-
fore synchronize the end of the TM window of EC c among
s1 and s2 by using the TM arrival time αs1(k, c) = αs2(k, c)
as the synchronization event.

III. IMPLEMENTING THE SLAVE EC SYNCHRONIZATION

To simplify a first experimental assessment of the EC
synchronization mechanism, in our current implementation we
abstracted away the presence of two switches and masters.
This is a reasonable abstraction for an initial experimental

evaluation of the EC synchronization mechanism because
according to the FTTRS design the two masters are replica
determinate and thus provide identical service from the slaves
point of view [3]. The advantage of this abstraction is that
it allowed us to test the EC synchronization among slaves
without first having to implement the enforcement of master
replica determinism, which is required for two masters to
transmit their TMs in lockstep. Moreover, it also allowed us to
obtain some first results without having to implement how the
slaves manage the replication of the TMs caused by having
two masters generating sets of k TM replicas.

Regarding the specifics of our implementation, we took
as our starting point a software implementation of FTT-
SE [5], [6], which is a non-fault-tolerant switched Ethernet
implementation of FTT. In this implementation the slaves and
masters are implemented as processes to be executed in user
space on top of an x86-based computer running a GNU/Linux
operating system. In a typical FTT-SE network based on this
implementation, several computers running GNU/Linux are
interconnected by means of a single commercial off-the-shelf
(COTS) Ethernet switch. One of these computers executes the
process for the FTT-SE master, and each one of the others
executes an FTT-SE slave process.

For our implementation we made several changes to the
FTT-SE codebase. First, we modified the code for the master
such that it implements the behaviors that are relevant for the
FTTRS slave EC synchronization mechanism. Specifically, we
made changes for the master to transmit a pre-specified number
k of TMs per EC, and to do that with a fixed period τ within
each EC. Both k and τ , as well as the desired EC duration,
can be passed as arguments to the executable for the master.
Moreover, we modified the code for the master to encapsulate
k and τ in all TMs, and to add sequence numbers to them.
Regarding the EC duration, it was already encapsulated in the
TMs in the original FTT-SE codebase.

With respect to the code for the slaves, we modified it
to implement the EC synchronization mechanism using a busy
wait. When a TM mi,c is received by a slave s at time αs(i, c),
it calculates the time remaining to the end of the current TM
window. This time is then added to αs(i, c) in order to set
the absolute time when the TM window in EC c must end.
We call this time the TM window expiration time of EC c
and it coincides with αs(k, c) of equation (1). If mi,c was
the first TM received in c, a thread is created which will,
by means of a busy wait, indicate the TM window expiration
time. Note that the advantage of using a busy wait is that we
avoid sleeping the slave process. This provides better behavior
than timers because with timers processes are sent to sleep and
must be awoken by the OS, which may cause nondeterministic
delays. Finally, as explained in the next section, we added some
additional code to the slaves to evaluate the implementation of
the mechanism.

IV. TESTING THE IMPLEMENTATION

To test the implementation of the EC synchronization
mechanism we used software implemented fault injection
(SWIFI) [7]. This means that each slave process executes
additional code that forces them to ignore certain TMs. In this
way, we can test whether the implementation is robust to TM

87

B. PUBLISHED PAPER ABOUT THE RESULTS OF THE PROJECT

Virtual
Switch

Master process

Slave process s1

Slave process s2

Testbed machine

Fig. 3. Virtualized prototype architecture.

losses as foreseen by the design of the EC synchronization
mechanism. In particular, the added SWIFI code chooses
which TMs must be ignored depending on their sequence
number. This is done such that all possible combinations of
missing up to k − 1 TMs on a slave’s link are tested, which
are all TM loss scenarios under which the designed mechanism
can synchronize the slaves. The number of these TM loss
combinations is given by

(
k−1∑

e=0

(
k

e

))n

, (3)

where k is the number of TMs per EC, e is the number of lost
TMs, and n is the number of slaves attached to the network.

In addition to the SWIFI code, we also added instrumenta-
tion code to the slaves to timestamp the TM window expiration
time of each EC. This allows us to evaluate the precision with
which we are able to synchronize the ECs among the slaves.

A. Test setup

To test the slave EC synchronization we used two different
setups, but with several commonalities. First, in both setups
we used a single master and two slaves. This is the minimum
number of slaves and masters required for a first experimental
evaluation of the slave EC synchronization. Second, in both
setups the process for the master and the two processes for
the slaves were executed on the same machine and under the
same GNU/Linux OS instance. This made it possible for the
slaves to share the same clock, providing a common timebase
for their timestamping. Moreover, it simplified initializing the
communication between the master and the slaves. Finally, in
both setups the master process and slave processes are attached
to a single 100 Mbps Ethernet switch. Next, we highlight the
differences between the two setups.

1) Virtualized network setup: In this setup the single switch
is a virtual one and the processes are attached to it through
virtual Ethernet interfaces. Specifically, a virtual distributed
Ethernet switch is used [8]. This setup allowed us to check
the performance of the synchronization without taking into
account physical Ethernet interfaces, propagation delay, and
switching delay. A diagram of this setup can be seen in
Figure 3.

2) Shared machine with physical switch: In this setup the
single switch is a COTS Ethernet switch and each process
is attached to it by means of a different physical Ethernet
interface of the testbed machine. A diagram of this setup is
shown in Figure 4.

COTS
Switch

Master process

Slave process s1

Slave process s2

Eth1

Eth0

Eth2

Testbed machine

Fig. 4. Physical switch prototype architecture.

TABLE I. EXPERIMENT PARAMETERS.

k τ (µs) EC length (µs) # Test runs

Virtual Switch 4 100 1000 1000
COTS switch 4 100 1000 1000

B. Test parameters and results

To evaluate the results we define the measured EC offset
between two slaves s1 and s2 in cycle c as |ts1(c) − ts2(c)|,
where ts1(c) and ts2(c) indicate the recorded timestamp in EC
c by slave s1 and s2, respectively. In other words, we measure
by how much the TM window expiration times of the slaves
deviate in each EC. Note that since these times correspond
to αs1(k, c) and αs2(k, c), respectively, the measured EC
offset should be zero according to equality (2) of Section II.
Under our real experimental conditions, however, the EC
synchronization requirements are not perfectly satisfied and the
execution time of the slave processes is not deterministic, e.g.,
the process might be preempted by the OS. Thus, the measured
EC offset is a measure of the precision with which the EC
synchronization among two slaves is achieved in practice.

Table I shows the parameters we used in our tests. Specif-
ically, the EC length has been set to 1 ms. This is a suit-
able value for providing timely communications for typical
control applications. Regarding the intertransmission time τ
with which the master process sends the TMs to the slaves, it
must be greater than the transmission time of a TM, including
the Ethernet interframe gap (96 bit times). Since during the
TM window only TMs are exchanged on the network, this
prevents the TMs from being queued in the switch output
ports. This helps ensure that the TMs are not only transmitted
with an intertransmission time τ , but also reach the slaves
with the necessary interarrival time τ . Note that queuing at a
switch output port could prevent this by introducing significant
non-deterministic delays. This might occur, for instance, if
some TMs occupy a link for a longer or shorter time than
the expected TM transmission time due to errors in the link
such as dribble bits. In our experiments the TMs do not carry
scheduling data [2] and thus are only 14 bytes long, which
fits within the 46 bytes of data padding of an Ethernet frame
of minimum size (72 bytes). Since we are using 100 Mbps
Ethernet, we must therefore set τ to a value greater than
(72 · 8 + 96)/100 = 6.72 µs. We have chosen a value of 100
µs. We have also chosen to perform 1000 test runs, where each
test run injects all possible ways of losing TMs in both slaves
with k = 4. This yields (

∑4−1
e=0

(
4
e

)
)2 = 225 fault injections per

test run according to equation (3), giving us 225000 sample
points. This already provided us with important insights, as
described in the next paragraph and Section V, and we had
no need for testing different parameter sets with our current

88

TABLE II. MEASURED EC OFFSET RESULTS.

samples mean (µs) std. dev. (µs) max (µs)

Virtual Switch 225000 1.94 0.84 47.62
COTS switch 225000 0.69 1.36 91.37

Fig. 5. Histogram of measured EC offset for shared machine with virtual
switch. Bin size is 0.5 µs. The superimposed figure is a close-up of the right
tail of the histogram.

implementation and experimental setups.

The results are shown in Table II. The mean and standard
deviation of the measured EC offset indicate that with both
experimental setups the implementation achieves a good EC
synchronization, on the order of 0.1–0.2% of the EC length,
in most cases. However, the main measure of interest is the
maximum measured EC offset. This is so because FTTRS
provides real-time communication, where the end of each EC
constitutes a hard deadline for the round-based communication
to take place. Unfortunately, with the current implementation,
and with both experimental setups, we can get values that are
significantly larger than the mean: on the order of 5–10% of
the EC length. This is also confirmed by the histograms of
figures 5 and 6. They both reveal that the distribution of the
EC offset has a long tail in the current implementation.

V. CONCLUSIONS AND FUTURE WORK

This paper constitutes a first step towards building a proto-
type of FTTRS. Specifically, it presents a first implementation
of an EC synchronization mechanism for the slaves, which is
a key part of FTTRS. The implementation was tested with a
single master and two slaves, all executing as processes on
the same machine under the same GNU/Linux OS instance.
This significantly simplified a first experimental verification of
the implementation. The experiments consisted in having the
master process transmit its TMs to the slave processes through
both a virtual switch and a physical COTS switch. The results
of the tests are promising: they show that the implementation
achieves a good EC synchronization most of the time with
the experimental setups we used. Nevertheless, they also
highlighted that occasionally a large EC offset between the
slaves can be observed. This, as was to be expected, is due to
the slaves being executed as user processes on top of a non-
real-time OS. We inherited this from the FTT-SE codebase.
If large EC lengths are used, then a maximum EC offset on
the order of 50-100 µs, as we have measured, are acceptable.
However, with FT4FTT we are also targeting control applica-
tions with high sampling rates, where the measured values can
be problematic. In this paper we therefore confirmed that the
FTT-SE codebase must be further adapted to our needs.

Fig. 6. Histogram of measured EC offset for shared machine with COTS
switch. Bin size is 0.5 µs. The superimposed figure is a close-up of the right
tail of the histogram.

The next step involves updating the implementation to take
advantage of a Linux kernel that offers real-time features. We
are considering Xenomai [9] for this. Moreover, we also plan to
modify the experimental setup by moving the slave processes
and the master process to different machines and measuring
the EC offset in this new distributed setup. This will give us a
better view of the precision with which ECs can be synchro-
nized among slaves in an actual FTTRS implementation.

Further future work includes implementing the mechanisms
to achieve replica determinism for two FTTRS masters and
to then test the implementation of the EC synchronization
mechanism with two such replica determinate masters.

ACKNOWLEDGEMENTS

This work was supported by project DPI2011-22992 and
grant BES-2012-052040 (Spanish Ministerio de economı́a y
competividad), and by FEDER funding.

REFERENCES

[1] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a flexible
time-triggered replicated star for Ethernet,” in Proc. 18th IEEE Conf. on
Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy,
Sep. 2013.

[2] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symposium.
IEEE Computer Society, 2001.

[3] D. Gessner, J. Proenza, and M. Barranco, “A Proposal for Master Replica
Control in the Flexible Time-Triggered Replicated Star for Ethernet,”
in Proc. 10th IEEE Int. Workshop on Factory Communication Systems
(WFCS), Toulouse, France, May 2014.

[4] ——, “A Proposal for Managing the Redundancy Provided by the Flex-
ible Time-Triggered Replicated Star for Ethernet,” in Proc. 10th IEEE
Int. Workshop on Factory Communication Systems (WFCS), Toulouse,
France, May 2014.

[5] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over COTS Ethernet switches,” in Proc. 6th IEEE Int. Workshop
on Factory Communication Systems (WFCS). Torino, Italy: IEEE, 2006,
pp. 295–302.

[6] (2014, May) FTT-SE v2.6.2 source code. [Online]. Available:
http://paginas.fe.up.pt/∼ftt/repository/ftt-se.2.6.2.tar.bz2

[7] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[8] R. Davoli, “Vde: Virtual distributed ethernet,” in Proc. 1st IEEE Int.
Conf. on Testbeds and Research Infrastructures for the Development of
Networks and Communities. IEEE, 2005, pp. 213–220.

[9] P. Gerum, “Xenomai—Implementing a RTOS emulation framework
on GNU/Linux,” White Paper, Xenomai, 2004. [Online]. Available:
http://www.xenomai.org/documentation/xenomai-head/pdf/xenomai.pdf

89

BIBLIOGRAPHY

[1] H. Kopetz, Design Principles for Distributed Embedded Applications. Kluwer
Academic Publishers, 1997. 1.1

[2] A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers,
April 2009. 1.1

[3] B. Bouyssounouse and J. E. Sifakis, “Embedded Systems Design. The ARTIST
Roadmap for Research and Development,” Lecture Notes in Computer Science, vol.
3436, 2005. 1.1

[4] L. Almeida, P. Pedreiras, and J. A. G. Fonseca, “The FTT-CAN protocol: why and
how,” Industrial Electronics, IEEE Transactions, vol. 49, no. 6, pp. 1189 – 1201,
december 2002. 1.1, 2.1, 2.1

[5] FlexRay™, “FlexRay Communications System - Protocol Specification, Version
2.1,” 2005. 1.1

[6] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo, FTT-Ethernet: a flexible real-time
communication protocol that supports dynamic QoS management on Ethernet-
based systems. IEEE Transactions on Industrial Informatics, 2005, 1, 162-172. 1.1

[7] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communication over
COTS Ethernet switches,” in Proc. 6th IEEE Int. Workshop on Factory Communi-
cation Systems (WFCS). Torino, Italy: IEEE, 2006, pp. 295–302. 1.1, 1.3, 3, 8.1,
A

[8] (2014) Fault Tolerance for Flexible Time-Triggered project page. [Online].
Available: http://srv.uib.es/project/16 1.1, 8

[9] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a flexible time-
triggered replicated star for Ethernet,” in Proc. 18th IEEE Conf. on Emerging
Technologies & Factory Automation (ETFA), Cagliari, Italy, Sep. 2013. 1.1, 2.3, 5.1.2,
8.2

[10] D. Gessner, J. Proenza, and M. Barranco, “A Proposal for Managing the Redundancy
Provided by the Flexible Time-Triggered Replicated Star for Ethernet,” in Proc. 10th
IEEE Int. Workshop on Factory Communication Systems (WFCS), Toulouse, France,
May 2014. 1.1, 1.3, 8.1

91

http://srv.uib.es/project/16

BIBLIOGRAPHY

[11] (2014, May) FTT-SE v2.6.2 source code. [Online]. Available: http://paginas.fe.up.
pt/~ftt/repository/ftt-se.2.6.2.tar.bz2 1.3, 3, 8.1, A

[12] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo, “FTT-Ethernet: a flexible
real-time communication protocol that supports dynamic QoS management on
Ethernet-based systems,” IEEE Transactions on Industrial Informatics, vol. 1, no. 3,
pp. 162–172, 2005. 2.1, 2.2

[13] R. Marau, “Real-time communications over switched Ethernet supporting
dynamic QoS management,” Ph.D. dissertation, 2009. [Online]. Available:
http://ria.ua.pt/handle/10773/2224 2.1

[14] R. Santos, “Enhanced Ethernet Switching Technology for Adaptive Hard Real-Time
Applications,” Ph.D. dissertation, Universidade Aveiro, 2011. 2.1

[15] R. Davoli, “Vde: Virtual distributed ethernet,” in Proc. 1st IEEE Int. Conf. on
Testbeds and Research Infrastructures for the Development of Networks and Com-
munities. IEEE, 2005, pp. 213–220. 5.1.2

[16] W. Stallings, Data and Computer Communications. Prentice Hall, 2011. (docu-
ment), 5.2

[17] A. Ballesteros, J. Proenza, D. Gessner, G. Rodriguez-Navas, and T. Sauter, “Achieving
Elementary Cycle Synchronization between Masters in the Flexible Time-Triggered
Replicated Star for Ethernet,” in Proc. 19th IEEE 19th IEEE Conf. on Emerging Tech-
nologies & Factory Automation (ETFA), Barcelona, Spain, Sep. 2014. 6.1.1, 8.2

[18] D. Gessner, I. Álvarez, A. Ballesteros, M. Barranco, and J. Proenza, “Towards an
experimental assessment of the Slave Elementary Cycle Synchronization in the
Flexible Time-Triggered Replicated Star for Ethernet,” in Proc. 19th IEEE Conf. on
Emerging Technologies & Factory Automation (ETFA), Barcelona, Spain, Sep. 2014.
8.3

92

http://paginas.fe.up.pt/~ftt/repository/ftt-se.2.6.2.tar.bz2
http://paginas.fe.up.pt/~ftt/repository/ftt-se.2.6.2.tar.bz2
http://ria.ua.pt/handle/10773/2224

	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Goals of the project
	1.3 Work that has been carried out
	1.4 Document structure

	2 Previous work
	2.1 The Flexible Time-Triggered paradigm (FTT)
	2.2 FTT-Switched Ethernet (FTT-SE)
	2.3 The Slave Elementary Cycle Synchronization Mechanism (SECSM) specification

	3 Phases of the project
	4 Study of the available FTT-SE prototype
	5 Implementation and validation of the SECSM in the master
	5.1 First iteration: preliminary version of the multiple TM transmission in the master
	5.1.1 Solution proposal and implementation
	5.1.2 Testing

	5.2 Second iteration: enhanced version of the multiple TM transmission in the master
	5.2.1 Solution proposal and implementation
	5.2.2 Testing

	6 Implementation and validation of the SECSM in the slaves
	6.1 First iteration: preliminary version of the redundancy management in the slaves
	6.1.1 Solution proposal and implementation
	6.1.2 Testing

	6.2 Second iteration: enhanced version of the redundancy management in the slaves
	6.2.1 Solution proposal and implementation
	6.2.2 Testing

	6.3 Third iteration: Turn Around Window (FTT-SE) implementation
	6.3.1 Solution proposal and implementation
	6.3.2 Testing

	7 Evaluation of the integrated prototype
	7.1 TM replica transmission
	7.2 TM window duration in the slave nodes
	7.3 Slaves synchronization in a non-faulty scenario
	7.4 Slaves synchronization in scenarios involving transient faults

	8 Conclusions
	8.1 Summary
	8.2 Future work
	8.3 Considerations about the learning process

	A Source Code
	A.1 Master dispatcher
	A.2 Slave eth_filter
	A.3 Slave dispatcher
	A.4 Common ftt-global
	A.5 Ports

	B Published paper about the results of the project
	Bibliography

