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I. INTRODUCTION

Nowadays, Remotely Operated Vehicles (ROVs) are com-
monly used in a variety of scientific or industrial applications,
such as surveying, sampling, rescue or industrial infrastructure
inspection and maintenance. However, Autonomous Underwa-
ter Vehicles (AUVs) are being progressively introduced to run
highly repetitive, long or hazardous missions, reducing notably
the operational costs and the complexity of human and material
resources.

The localization task becomes a crucial issue in AUVs
since significant errors in pose can lead to the programmed
mission failure. The motion of an underwater vehicle with 6
Degrees of Freedom (DOF) can be estimated, for instance,
(a) using inertial sensors, (b) using odometry, computed via
cameras or acoustic sensors, or, (c) fusing all these sensorial
data in Extended Kalman Filters (EKF) or particle filters, to
smooth trajectories and errors [7]. However, all these methods
are, to a greater or lesser extent, prone to drift, being necessary
a periodical adjustment of the vehicle pose to minimize the
accumulated error. Simultaneous Localization And Mapping
(SLAM) [3] techniques constitute the most common and
successful approach to perform precise localization by iden-
tifying areas of the environment already visited by the robot.
Traditionally, SLAM has been developed using range sensors,
but cameras outperform range sensors in temporal and spatial
resolutions.

Imaging natural sub-aquatic environments has additional
difficulties not present in land: the light attenuation, flickering,
scattering, the lack of man made structured frameworks, and
the subsequent difficulty to register images, that is, to identify
the same scene visualized from different viewpoints, maybe
under different environmental conditions, with partial or total
overlap, and taken at different time instants.

The literature is scarce in efficient visual SLAM solutions
especially addressed to underwater robots and tested in field
robotic systems. Many of them particularize the approach
commonly known as EKF-SLAM [3], correcting the odometry
with the results of an image registration process in an EKF
context. These systems normally include the vehicle pose and
the landmarks in the state vector, correcting continuously the
vehicle trajectory and the whole map [10]. However, this
approach presents two major problems: (a) the computational
cost increases significantly with the number of the detected
landmarks, and (b) the linearization errors inherent to the EKF.
Eustice et al [4] adopted a Delayed State Filter (DSF) to
alleviate both problems.

EKF-SLAM approaches can be pose-based, if each itera-
tion of the filter gives in the state vector a set of successive

robot poses with respect to an external fixed global frame,
or trajectory-based, if the state vector contains the succes-
sive robot relative displacements from point to point of the
trajectory. The trajectory based approach reduces the EKF
linearization errors with respect to pose based approaches
but, contrarily to the later, it does not scale well for large
environments, since the Jacobian of the observation function
is non-zero with respect to all intermediate elements between
two poses closing a loop [5]. Although the trajectory-based
schema can be adopted to abate EKF linearization errors [2],
it is more suitable for low and mid scale missions.

This paper presents a stereo pose-based EKF-SLAM ap-
proach, with the next relevant characteristics: a) it is a generic
solution for vehicles with up to 6DOF ([x, y, z,roll, pitch,
yaw]), so especially useful in AUV; it is feed with pure 3D data
computed only from stereo vision; all orientations involved
in the approach are represented in the quaternion space to
avoid filtering errors due to singularities, b) the vector state
contains only the set of robot global poses, keeping the sparsity
of the covariance matrix at each iteration; the computational
resources needed are drastically reduced with respect other
EKF approaches that include the landmarks in the state vectors;
c) it pioneers the adaptation of the well known Perspective
N-Point problem (PNP) [1] to the image registration process
underwater, framing it in such a stereo EKF SLAM approach;
the algorithm performs robustly two tasks in one shot, firstly,
it confirms or it rejects the existence of overlap between two
stereo pairs (i.e. if both views represent a loop closing) and,
in case, there is a coincidence, it calculates the camera relative
transformation, in translation and orientation, between the two
poses at which both views were taken; these transformations
are later used as the measurements to correct the predictions in
the EKF. d) the implementation has been published in a pub-
lic repository (https://github.com/srv/6dof stereo ekf slam) to
facilitate further research and development in this area.

II. 3D TRANSFORMATIONS

A. Composition

One of the key targets of this work is modeling, for 6DOF
and in the quaternion space, the classical composition (⊕) and
inversion (	) transformations, described by Smith et al [11] in
the context of stochastic mapping, and deriving their Jacobians.

Both operations define a transformation in translation and
rotation. The ⊕ operation permits accumulating a pose trans-
form Y (translation, [xY , yY , zY ] and rotation in roll, pitch
and yaw, represented as a quaternion q̂Y = [qYw , q
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3 ])

to a current global pose X (position [xX , yX , zX ] and its
quaternion orientation q̂X = [qXw , q

X
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X
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X
3 ]).
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Let us define X+ as the global pose obtained from the
composition between X and Y . X+ = X ⊕ Y = [Xt

+, X
r
+],

where

Xt
+ = [xX , yX , zX , 1] +AX · [xY , yY , zY , 1] (1)

, being AX the rotation matrix obtained from q̂X and,
Xr

+ = q̂X ∗ q̂Y , where the operator ∗ denotes the product
of quaternions.

The covariance of the composition function f⊕ = X ⊕ Y
is:

C+ = J1⊕ · CX · JT1⊕ + J2⊕ · CY · JT2⊕ (2)

, where CX and CY are the corresponding covariances of X
and Y , J1⊕ = ∂f⊕

∂X |X̂,Ŷ and J2⊕ = ∂f⊕
∂Y |X̂,Ŷ , being X̂ and Ŷ

the mean of the X and Y variables.

B. Inversion

The operation (	) returns the inverse of a given transfor-
mation in position and orientation. Let us denote X = [t, q̂X ],
being, t = (xX , yX , zX) and q̂X = (qXw , q
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pose with 6DOF. X can also be represented as a matrix,

(~n ~o ~a ~p

A t
0 0 0 1

)
(3)

, where A is the 3× 3 rotation matrix obtained from q̂X .

Let us denote the inverse of X as f	 = 	X = [−~n ◦
~p,−~o ◦ ~p,−~a ◦ ~p, q̂X(−1)], where ◦ represents the dot product
and q̂X(−1) is the quaternion result of inverting q̂X .

The covariance of f	 = 	X is:

C− = J	 · CX · JT	 (4)

, being J	 = ∂f	
∂X |X̂ .

III. IMAGE REGISTRATION

The image registration process is in charge of verifying if
two stereo images close a loop, that is, if they have a certain
overlap, although they are taken at different time instants, at
different view points, at different height, or even with different
environmental conditions.

Algorithm 1 describes the main steps of this process.

Line 1: finds and matches image features between Sl and
Sr, applying RANSAC to eliminate outliers, and stores them in
Fl and Fr. Line 2 finds image features in Il and stores them
in Ft. Line 3 performs a feature matching between Fl and
Ft refined by RANSAC. If the number of features matched
between Fl and Ft is greater than a certain threshold, then
there is a loop closing. Otherwise, it returns an error. Line
4 updates the features in Fr that remain as inliers after the
matching between Fl and Ft, to be in line with the inliers
matching between Fl and Ft. Line 5 computes the 3D points
coordinates, using the stereoscopy principle, corresponding

Algorithm 1: Image Registration
input : Current Stereo Image pair Sl (left frame), Sr

(right frame) and Recorded Stereo Image
I = (Il, Ir) candidate to close a loop with Sl
and Sr

output: 3D Transformation [R, t]
begin

1 [Fl, Fr] ← stereoMatching (Sl, Sr);
2 Ft ← findFeature (Ii);
3 if match (Fl, Ft) == true then
45 [Fl, Fr] ← updateFeature (Fl, Fr);
6 P3D ← calc3DPoints (Fl, Fr);
7 [R, t] ← solvePnPRansac (Ft, P3D);

return [R, t]
else

8 return error;

to the remaining inliers in Fl and Fr, and stores them in
P3D. Line 6 solves the Perspective N-Point problem (PNP),
returning a pose transformation [R, t] between Sl-Sr to Il-Ir
that minimizes the error of reprojecting the 3D points stored in
P3D onto the 2D features of the image Il. The PNP-problem is
widely discussed and can be found in the literature formulated
in multiple solutions. This technique is applied in a wide range
of applications such as object recognition or structure from
motion [8].

IV. STEREO POSE-BASED EKF-SLAM

The localization module performs a pose-based stereo
SLAM approach in an EKF context. The Kalman state vector χ
contains a successive set of robot poses expressed with respect
to a global static frame, in the form of X = [t, qp] (position
in 3D and a quaternion representing an orientation in 3 axis).
The initial state of χ = (0, 0, 0, 1, 0, 0, 0) (position= (0,0,0),
and an orientation of 0 in all axis). The covariance C of the
state vector is initially set to a 7×7 zero-matrix. The approach
has 3 main stages, the Prediction step, the State Augmentation
step and the Update step.

During the prediction stage, the vehicle motion is estimated
by a stereo visual odometer, in the form of Yo = [t, qo]
(translation in 3D and a rotation in 3D) with a 7 × 7 co-
variance matrix C0. The predicted pose is Xp = X ⊕ Yo
with an associated 7 × 7 matrix covariance C+

t calculated
as detailed in section II-A. Then, χ is augmented with Xp,
giving rise to the prediction function fp(χ, Yo) = [χ,Xp]. The
covariance C of the state vector is also augmented according
to: C+ = JcCJ

T
c + JoCoJ

T
o , being Jc =

∂fp(χ,Yo)
∂χ |χ̂ and

Jo =
∂fp(χ,Yo)

∂Yo
|χ̂. After n iterations, the length of the state

vector will be n ∗ 7.

The update step is in charge of correcting the predicted
motion using the loop closings detected between the image
grabbed at the current filter iteration and all the images
grabbed previously. When the stereo image grabbed at the
current state is registered with an image captured and stored
during any other previous state of the covered trajectory, the
system is providing an additional pose constraint between
both camera positions. This constraint can be compared with
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Fig. 1: A loop closing (dashed arrow) in the state vector (black
arrows).

the transformation between both positions giving by a pure
composition of the corresponding poses stored in the filter
state. Figure 1 illustrates the idea. X0, X1, · · · , Xk represent
the successive absolute poses of the vehicle along its trajectory
stored in the state vector. After k iterations, the image grabbed
at iteration i + 1 is registered with the current image at Xk,
so both close a loop. The result of this image registration
process is z

(i+1)
k , a relative transformation from X(i+1) to

Xk which depends only on the image registration process.
The observation function for one loop closing is defined as
hk = 	Xk ⊕ X(i+1), which is the relative transformation
between both registered states according to the successive
filter estimates. The Kalman innovation for one loop closing
is defined as Υk = hk − z(i+1)

k . The observation vector h, the
measurements vector and the innovation vector Υ will have
as many rows as loop closings are found with the current
image. The observation matrix H = ∂h

∂χ+

∣∣∣
χ̂+

will have as

many rows as loop closings, as many columns as elements in
the state vector, and all positions not corresponding to those
states involved in each loop closing will be 0:

H =

 0 ∂h1

∂Xi 0 . . . 0 ∂h1

∂Xk

. . .
0 0 ∂hn

∂Xj . . . 0 ∂hn

∂Xk

 (5)

where n is the number of loop closings registered with the
current image and Xi, Xj represent two of those n registered
states.

Due to the nature of the quaternions (completely different
quaternions can represent the same orientation and vice-versa),
the pure subtraction that defines the innovation might not
reflect correctly how is, or how the innovation should be
when two orientations are very close. For this reason, our
approach calculates the innovation subtracting the translation
vector of hk and z

(i+1)
k and subtracting the modules of the

corresponding quaternions to get the difference of orientations:
|qzi|−|qhi|, where qzi represents the quaternion corresponding
to the orientation of the ith-measurement and qhi represents
the quaternion of the corresponding ith observation.

From now on, by applying the Kalman equations, one can
obtain an updated state vector χ+ and its updated covariance.

S = H · C+ ·HT +R, (6a)
K = (C+ ·HT )/S, (6b)
χ+ = χ+K · Υ, (6c)
Cu = (1−K ·H) · C+, (6d)

Noise Level 1 2 3 4 5 6
Noise Covariance 0 3e-9 9e-9 3e-8 5e-7 3e-6
Odom. error ∅ 0.038 0.417 0.494 0.806 2.614 6.898
EKF error ∅ 0.027 0.282 0.285 0.309 0.590 0.953
Improv. (%) 28.9 32.3 42.3 61.6 77.4 86.1

TABLE I: Odometry and EKF-SLAM trajectory mean errors (∅).
Error units are meters per traveled meter.

where R is the measurements covariance matrix and Cu
represents the updated state vector covariance (C).

V. EXPERIMENTAL RESULTS

Experiments were conducted with the Fugu-C platform, a
low-cost mini-AUV developed at the University of the Balearic
Islands. The sensor suit for this vehicle includes two stereo
rigs, one looking forward and another one looking downwards,
a MEMS Inertial Measurement Unit and a pressure sensor.
Fugu-C works with ROS [9] as middleware, and thanks to
the ROS-bag technology, missions were recorded on-line and
reproduced offline with exactly the same conditions as the
original mission. A stereo visual odometer based on LibViso2
[6] was used to compute the first estimates of the robot dis-
placement. Visual odometry data was provided at 10Hz and all
routes were traveled at a constant depth. The first experiments
with the robot were conducted in a water tank 7 meters
long, 4 meters wide and 1.5 meters depth, whose bottom
was covered with a printed digital image of a real seabed.
The trajectory ground truth was computed by registering each
image captured online with the whole printed digital image,
which was previously known.

The example shown in this section corresponds to a
sweeping task performed in the tank. In order to assess
the performance of the SLAM approach with different lev-
els of error and drift in the visual odometry, the re-
sults of the stereo odometer were corrupted with differ-
ent levels of additive zero mean Gaussian noise. In to-
tal six noise levels were tested 20 times to obtain signif-
icant statistical results. The noise covariance ranges from
[Σx,Σy,Σz,Σqw,Σq1,Σq2,Σq3] = [0, 0, 0, 0, 0, 0, 0] (noise
level 1) to [Σx,Σy,Σz,Σqw,Σq1,Σq2,Σq3] = [3e − 6, 3e −
6, 3e−6, 3e−6, 3e−6, 3e−6, 3e−6] (noise level 6). In order to
have a quantitative measure of the SLAM quality, the trajectory
error was defined as the difference between the ground truth
and the corresponding estimate given by the odometry and by
the EKF, divided by the length of the trajectory. Calculated like
this, the obtained error units are meters per traveled meter. This
technique permits the direct comparison of results obtained in
different experiments.

Table I shows how the presented EKF-SLAM approach
improves the odometric estimates since the mean of the
trajectory error with respect to the ground truth are always
clearly smaller. In the first column, where, in fact, no noise
is used, the improvement is 28.9%, from an odometric mean
error of 0.038m down to a SLAM mean error of 0.027m.
When the noise level added to the odometry increases, the
correction given by the EKF-SLAM is more evidently reflected
in the percentage of improvement. For a noise level of 4, the
odometry mean error is 0.806m while the EKF mean error is
0.309m, an improvement of 61.6%.

Even with the highest noise level that causes an odometry



Fig. 2: Evolution of the odometry mean error and the EKF-SLAM
mean error, for the different levels of corruptive noise.

trajectory mean error of 6.898m, the EKF-SLAM is able
to improve the estimates a 86.1%. Figure 2 shows how the
trajectory mean error raises very fast up to 7m as the noise
level added to the odometry increases, whilst the level of the
trajectory mean error of the EKF-SLAM estimates is bounded
between 0m and 1m. The vertical error bars correspond to
0.1σ to provide a clearer representation. y−axis shows the
error per travelled meter in meters and the x−axis represents
the different noise levels corrupting the odometry.

Figure 3 shows the trajectory of the aforementioned sweep-
ing task, according to the odometry estimates (in black)
corrupted with different levels of Gaussian noise, the ground
truth (in blue) and the EKF estimates (in red). All units are
expressed in meters. The plot corresponding to the noise level 6
shows clearly how the EKF-SLAM approach is able to correct
the odometry trajectory which is clearly drifted, setting it close
to the ground truth.

Figure 4 shows the trajectory according to the three differ-
ent estimates, being the odometry corrupted with a noise level
3, and eight loop closings. Each loop closing is shown as an
edge in magenta linking the two images involved. Although
in this trajectory there are more than 30 loop closings, only 8
have been plotted just to present the figure with enough clarity.
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