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Abstract— Vessel maintenance entails periodic visual inspec-
tions of internal and external parts of the hull in order
to detect the typical defective situations affecting metallic
structures. Nowadays, robots are becoming more and more
important regarding these inspection tasks, since they can
collect the requested information and, thus, prevent humans
from performing tedious, and even dangerous tasks because of
places hard to reach for humans. A Micro Aerial Vehicle (MAV)
fitted with vision cameras can be used as part of an automated
or semi-automated inspection strategy. The resulting collection
of individual images, however, does not permit the surveyor to
get a global overview of the state of the surface under inspection,
apart from the fact that typically defects appear broken along a
number of consecutive images. Image mosaicing can certainly
help in this case. To this end, in this paper, we propose a
novel image mosaicing approach able to deal with this kind
of scenarios. Our solution employs a graph-based registration
method from which relevant topological relationships between
(overlapping) images are found. This graph is built according
to a visual index based on a Bag-of-Words (BoW) scheme
making use of binary descriptors for speeding up the image
description process. At the end of the paper, we report about the
results of a number of experiments that validate our approach,
including the outcome of defect detectors working directly over
the mosaic.

I. INTRODUCTION

Vessels represent one of the most common ways of trans-
port around the world. Despite these ships do not normally
suffer important maritime accidents, sometimes they occur-
with catastrophic consequences. Since the structural failure is
the major cause of shipwrecks, vessels need to be accurately
inspected to ensure their correct structural integrity. Due to
the size of these vessels, the inspection process becomes a
tedious, long task, which nowadays is carried out by human
surveyors which in turn must be made in the shortest time
possible to reduce costs. Besides, the vessel has to be emptied
and situated in a dockyard, where typically temporary stag-
ing, lifts and movable platforms need to be installed to allow
the workers for close-up inspection of the different metallic
surfaces. In addition to the significant heights, the operational
environment can include flammable and toxic gases. Under
these conditions, the survey can become a very hazardous
task for human operation. Furthermore, the total cost of a

This work is partially supported by the European Social Fund through
grant FPI11-43123621R (Conselleria d’Educacio, Cultura i Universitats,
Govern de les Illes Balears) and by project INCASS. This project has
received research funding from the EU FP7 under GA 605200. This
publication reflects only the author’s views and the European Union is not
liable for any use that may be made of the information contained therein.

All authors are with the Department of Mathematics and Computer
Science, University of the Balearic Islands, 07122 Palma de Mallorca, Spain,
email: emilio.garcia@uib.es

full vessel inspection, which can exceed $1M, is directly
related to the time along which the ship is inoperable.

Robots can be useful for automating the aforementioned
operations, simplifying the inspection task and making it
possible to collect information from places which are hard to
reach for humans. The EU-funded FP7 MINOAS project [1]
developed a fleet of robots to this end. Within this context,
a Micro Aerial Vehicle (MAV) [2] fitted with a flexible set
of cameras was proposed to provide the surveyor with an
overview of the surfaces present in cargo holds. The collected
images where next used as input to several algorithms
capable of detecting different kinds of defects that can affect
metallic surfaces, such as cracks or corrosion. During the
several field tests that took place as part of the MINOAS
project activities, surveyors asked for a better presentation
of the visual data collected. This has been assumed as a
requirement for the INCASS project (follow-up of MINOAS)
in the form of a tool able to provide a global overview of
the surfaces under inspection, so that defects do not appear
broken along several consecutive images and the surveyor
can easily get an overall impression of them.

To this end, in this paper, we propose a MAV-based novel
image mosaicing approach to create seamless composite
images of the area under inspection. Image mosaicing drawn
the attention of the robotics community some years ago,
specially for mapping areas using down-looking cameras, for
e.g. underwater [3]–[8] and aerial/satellite applications [9]–
[12]. However, it is less usual to find solutions that make
use of forward-looking cameras [13], as it is our approach,
which in turn captures the images from a MAV operating at
close distance from the scene (less than 2 meters, since the
surveyor needs to be within arm’s reach from the hull).

More precisely, our solution employs a graph-based reg-
istration method to find relevant topological relationships
between (overlapping) images. Additionally, the graph rep-
resentation allows us to search for the shortest path be-
tween every image and a chosen reference image (i.e. the
mosaic frame), minimizing the number of transformation
compositions required to compute the alignment of images.
To find image overlapping candidates, we employ a binary
visual dictionary [14], which is based on a Bag-of-Words
(BoW) scheme that is built in an online manner. Unlike most
image mosaicing solutions, which make use of SIFT [15] or
SURF [16] to describe images, our approach takes advantage
of the use of the FAST corner detector [17] combined with
the LDB binary descriptor [18] to speed up the description
process. In order to illustrate the usefulness of our approach
during vessel inspections, we have provided a defect detec-
tor [19] with the outcome of the mosaicing process. The



Fig. 1. An example of a cargo hold of a container ship.

resulting performance is discussed at the end of the paper
The rest of the paper is organized as follows: Section II

describes the conditions under which the images are cap-
tured, Sections III and IV describe our mosaicing approach,
Section V reports the experimental results obtained, and
Section VI concludes the paper.

II. OPERATING CONDITIONS

This section describes the conditions under which the
images for the mosaicing are captured during a typical
inspection task, as well as the typical image content, since
they both define the complexity of the image mosaicing
process. In our case, we consider container ships, i.e. vessels
that carry all of their load in truck-size intermodal containers
stacked in cargo holds. The vertical structures that can be
found in these holds are of prime importance. To make
proper repair/non-repair decisions, the surveyor must be
provided, among other kinds of input, with imagery detailed
enough so as to enable the remote visual assessment of
these structures.During the inspection process, the platform
sweeps the relevant metallic surfaces and grabs pictures
at a rate compatible with its speed. The areas suspected
of being defective can be re-visited for acquiring close-up
images, taking thickness measurements (by means of other
platforms), or even be compared in a posterior inspection.
Our goal is to create a mosaic using as input the images
obtained during this kind of visual inspection task.

Figure 1 shows an example of cargo hold. As can be
seen, the walls look globally as more or less planar surfaces,
which in this particular case measure in height around
15 meters (they can reach up to 20-25 meters). In order
to obtain useful images for visual inspection, the vehicle
needs to fly at short distance from the walls (less than 2
meters). Because of both the fast dynamics of the MAV
and the forward-looking camera configuration, this fact does
not lead to favourable image capture conditions, contrary
to other mosaicing scenarios where the effects of platform
oscillations are attenuated by the distance between camera
and scene, or simply they are negligible.

III. MOTION MODEL

The motion model plays a key role in the image regis-
tration process. In this work, the camera is assumed to be
perpendicular to the scene, which, as said previously, can be
considered more or less planar. Under these conditions, two
overlapping images Ii and Ij are related by a homography, a
linear transformation represented by a 3×3 matrix iHj such
that pi = iHj pj , where pi and pj are two corresponding
points from, respectively, Ii and Ij , expressed in homo-
geneous coordinates. Despite our approach can deal with
affine transformations (six degrees of freedom), the motion
of the vehicle can be approximated by a simpler model
using similarity transformations, which has four degrees of
freedom comprising rotation, translation and scaling. iHj is
expressed as:

iHj =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

 =

a −b c
b a d
0 0 1

 , (1)

where s is the scale, θ the rotation angle and (tx, ty) the
translation vector. The estimation of any of these homo-
graphies starts by matching corresponding points between
images. Maximum Likelihood Estimation Sample Consensus
(MLESAC) [20] is next used as a robust estimation algorithm
to minimize the reprojection error for (1) and discard out-
liers. Finally, given a path Ii, Ik1 , . . . , Ikm , Ij , the associated
transformation that relates frames Ii and Ij is computed
by concatenating the corresponding relative homographies
iHj =

iHk1
k1Hk2

. . . km−1Hkm
kmHj .

IV. THE MOSAIC BUILDING PROCESS

A mosaic is created by aligning images according to a se-
lected frame, commonly referred to as the mosaic frame, and
blending them together in a larger composite. This comprises
a sequence of more elementary steps, which, for our ap-
proach, is outlined in Fig. 2. As usual, the process starts with
the description of the images, which in our case is performed
using binary descriptors for efficiency reasons. The next step
discards those images which are not going to contribute
significantly to the mosaic by adopting a keyframe-based
approach. Subsequently, the surviving images are indexed
by means of the computed binary descriptors; this permits,
on the basis of image similarity metrics, to detect relevant
overlap between images [14]. This allows us to estimate the
topological relationships between the different images, from
which we apply bundle adjustment to optimize the image
alignment. Finally, in accordance to the resulting alignment,
the last step produces the mosaic by blending together the
image pixels contributing to the same mosaic pixels.

We use thus a global alignment method in order to
avoid the drift introduced by concatenating homographies
estimated from consecutive frames, although at some steps
we perform pairwise alignment. In our case, to implement
this global alignment process, we use exclusively visual
information, from which we infer image similarities that sug-
gest significant overlap between images, either consecutive



or non-consecutive in the image sequence. Since a frame-
to-frame comparison approach easily becomes unfeasible as
the number of input images grows, we index every image
using binary descriptors. This index is used next to deter-
mine the similarity between images and establish topological
relationships between them. From this, we build a graph
structure which allows us to find the shortest paths between
the mosaic frame and any other image [7], [21], [22], in
order to reduce the number of transformation compositions
and further improve the alignment of every frame with the
mosaic. Bundle adjustment follows next on the basis of the
data finally available in the graph structure.

The following sections detail the aforementioned steps:
1) Image Description: This step computes a compact

representation of every image as a collection of FAST fea-
tures [17] described each by an LDB binary descriptor [18].
This allows us to take advantage of their faster computation
times and reduced storage needs, in front of the classic
approaches used previously in image mosaicing such as
SIFT [15] and SURF [16]. Besides, to favour accurate es-
timations of the image transformations, a minimum number
of features (3000) is requested to be found, and they are
required to cover the full image in a more or less uniform
way. To this end, a 4×4 regular grid is defined over the
image and around 190 features are expected from each cell.

In order to ensure this minimum number of features, the
detector is allowed to iterate around the feature detection
parameters until the requested number of features is avail-
able. To reduce the number of iterations, the contrast of the
sequence is globally improved by transforming each image
to HSV space, computing the V-channel histogram for the
full set of images, deriving an intensity look-up table (LUT)
that stretches this histogram, and finally transforming each V-
level at each image according to the computed LUT, together
with going back to the RGB colour space.

2) Image Selection: This step discards images which
are not deemed to provide a significant contribution to the
mosaic in order not to introduce unnecessary drift during
the alingment process. This contribution is measured as the
amount of overlap between the current image and a previous
image considered as a keyframe, so that the higher the
overlap the less relevant is the image. More specifically, we
compute the homography between both images, warp the
four corners of the current image onto the keyframe, take
the maximum distance between each pair of corresponding
corners and discard the frame if this distance is below a
certain threshold. In order to relate the magnitude of the
camera motion to the size of the input images, the distance
and the threshold are normalized by the maximum of the
horizontal and vertical image sizes.

3) Image Indexing: The goal of this step is to build
an image index for, given a query input, finding similar
images. This index, inspired by image retrieval methods,
is an efficient way to determine overlapping image pairs.
Image retrieval methods developed recently are based on
the BoW approach [23]. Despite its good performance, this
technique presents several drawbacks, since it usually needs

a training phase, and the generated visual dictionary can be
non-representative for all environments. Furthermore, most
BoW approaches for image indexing are usually based on
real-valued descriptors [15], [16] and is less common to find
binary solutions [24]. In this work, we employ a method for
computing a vocabulary of binary features that can be built
online, avoiding thus a training phase. A brief overview can
be found next (the interested reader is referred to [14] for
the details).

Our method is based on an incremental visual dictio-
nary based on a modified version of Muja and Lowe’s
approach [25]. The dictionary is combined with an inverted
index, which contains, for each word, a list of images where
it was found.

Since our approach relies on an incremental visual dictio-
nary based on binary features, an updating policy for combin-
ing binary descriptors is needed. Averaging each component
of the vector is an option for real-valued descriptors, but
it cannot be considered for the binary case. We propose to
use a bitwise AND operation. Formally, being B a binary
descriptor:

Bt
wi

= Bt−1
wi
∧Bq , (2)

where Bt−1
wi

is the binary descriptor of the word wi stored in
the dictionary at time t− 1, Bq is the query descriptor and
Bt

wi
is the merged descriptor for word wi at time t. This

policy is inspired by the observation that each component
of a binary descriptor is usually set to 1 or 0 according to
the result of a comparison between a pair of image pixel
intensities. If the i-th bit is the same in both descriptors,
it means that the result of this comparison between the
pixel intensities was the same in both images. Otherwise,
we experimentally prioritize the use of the zero value by
means of the AND operation.

In order to save storage space and computation time, only
a subset of the total features, corresponding to the image
features with higher response, is used for indexing each
image. In our experiments, around 500 features have been
enough to find most of the overlaps. The index is initially
built using the descriptors of the first image. When a new
image needs to be added to the index, their descriptors are
searched in the index. Given a query binary descriptor, we
search for the two nearest neighbours traversing the tree
from the root to the leafs and selecting at each level the
node that minimizes the Hamming distance. Using these two
neighbours, we apply the ratio test [15] in order to determine
if both descriptors represent the same visual feature. If
positive, the query descriptor and the visual word are merged
using (2) and replaced in the dictionary. Otherwise, the query
descriptor is considered a new feature and is added to the
index as a new visual word. In both cases, the inverted index
is updated accordingly, adding a reference to the current
image in the list corresponding to the modified or added
feature. Given the features of a query image as input, the
visual index returns an ordered list of images according to a
scoring process based on Term Frequency Inverse Document
Frequency (TF-IDF) weighting [26].



Fig. 2. Steps performed in our image mosaicing approach.

4) Topology Estimation: The topology of the environment
represents the relationships that exists between the images of
the surveyed area. This topology is modelled by means of
an undirected graph, whose nodes represent the individual
images and edges represent overlaps between them. As a
measure of the quality of a link, an edge between the images
Ii and Ij is labelled with the following weight w:

iwj =

n∑
k=1

‖pki − iHj p
k
j ‖

n
, (3)

where n is the number of inliers obtained during the compu-
tation of iHj and (pki , p

k
j ) are the corresponding points for

the inlier k.
The construction of the graph relies on the index built

in the previous step, running iteratively for each image.
First, a link is added between the current image and the
next one. Then, the image is queried against the index for
obtaining a list of similar images ordered by their TF-IDF
value, discarding the current image and the next one, since
a link has already been added between them. For the top c
candidates (15 in our experiments), we compute their homo-
graphies with the current frame, and rerank all the candidates
in accordance to the number of inliers. If this number is
higher than a certain threshold (500 in our experiments) and
the images pass an overlap spatial verification step based
on the intersection between the circles circumscribing the
respective warped frames [22], a link between those images
is incorporated into the graph.

Once the graph has been built, all the images are trans-
formed to a common reference frame. This transformation
is performed by means of an absolute homography MHi,
which relates image i with the reference frame. The image
corresponding to the node of the graph with the highest
output degree is selected as the reference or mosaic frame,
whose absolute homography is thus the identity matrix.

Finally, the shortest-path tree (SPT) rooted at the mosaic
frame is found using Dijkstra’s algorithm. For each of the
remaining images, the absolute transformation is computed
by traversing the graph using the shortest path from the
root node to the image, and concatenating the corresponding
pairwise homographies. This allows us to find the absolute
homographies using the minimum number of transformation
compositions for each case.

5) Bundle Adjustment: Despite the efforts for accurately
estimating the images relationships, alignment errors still
arise, resulting into a globally inconsistent map. To correct
this problem, a bundle adjustment step is performed in order
to jointly minimize the global misalignment induced by the
current absolute homographies. The error function is defined

as follows:

ε =
∑
i

∑
j

n∑
k=1

‖pki − (MHi)
−1 MHj p

k
j ‖ + R(MHj)

‖pkj − (MHj)
−1 MHi p

k
i ‖ + R(MHi) ,

(4)

where i and j are two images related by a link which
belongs to the SPT, n is the total number of resulting inliers
when computing the related homography, (pki , p

k
j ) are the

corresponding points for the inlier k, MHi and MHj are
the absolute homographies for, respectively, images i and j,
and R(MHi) and R(MHj) are regularization terms. These
terms prioritize homographies with scale closer to 1 during
the optimization, since we assume that the vehicle flies at a
more or less constant distance from the wall, and are defined
as follows:

R(MHi) = γ
(
a2 + b2 − 1

)
= γ

(
(s cos θ)2 + (s sin θ)2 − 1

)
(5)

where γ is a regularization factor, s and θ are the, respec-
tively, scale and orientation contained in the homography,
and a and b are defined in (1). To reduce the influence
of outliers, we optimize, instead of (4), a Huber robust
error function h(ε) = {|ε|2 if |ε| ≤ 1; 2|ε| − 1 if |ε| > 1}.
The system of non-linear equations is solved by means of
the Levenberg-Marquardt algorithm using the Ceres Solver
library1 and the absolute homographies available so far as a
starting point. Usually a few iterations are needed to achieve
convergence, resulting into better estimations of the absolutes
homographies.

6) Blending: As a last step, the final mosaic is created
using the multi-band blending algorithm [27] to diminish
the visual artifacts that result from the combination of the
images contributing to the mosaic. This step makes use of
the stitching module implemented in the OpenCV library.
Besides the multi-band blending, this module also includes
seam finding and exposure compensation, which perfectly
suits our needs.

V. EXPERIMENTAL RESULTS
We have validated our approach under different operating

conditions. The experiments are summarized in Table I,
indicating, for each case, the total number of images in
the input set, the total number of images selected by our
algorithm, the initial cost of the error function, the final cost
after the bundle adjustment step, the number of iterations
needed to achieve convergence, the time needed to create
the mosaic and the average reprojection error measured
as the ratio between the final cost and the resulting non-
zero pixels of the mosaic. As shown, the optimization step

1http://ceres-solver.org/



TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

Seq #Imgs Sel IC FC I T Avg
SYNTH1 679 331 8.78e6 2.43e5 51 649.4 0.024
SYNTH2 431 86 1.77e6 3.93e4 165 68.0 0.036
FLIGHT1 137 54 3.04e5 1.17e4 87 108.6 0.014
FLIGHT2 274 25 1.35e6 7.14e4 56 94.0 0.027
FLIGHT3 143 64 1.84e5 4.90e4 84 152.4 0.061
FLIGHT4 517 53 8.33e5 3.11e4 75 48.0 0.011

UNW 201 86 7.43e5 2.88e4 116 187.5 0.092
ODEMAR 65 47 1.64e6 9.77e4 66 42.2 0.095
BBOARD 291 14 2.47e5 2.44e4 75 45.0 0.047

#Imgs : Number of images in the input set.
Sel : Number of images selected by our approach.
IC : Initial cost before the bundle adjustment step.

FC : Final cost after the bundle adjustment step.
I : Number of iterations needed to converge.
T : Time in seconds.

Avg : Average reprojection error in pixels.

reduces the global misalignment of the images, improving
the registration of the images prior to blending the final
mosaic. Notice that our approach is able to achieve good
results despite it discards a high number of frames.

For the experiments, we used the 2.5×4 meter canvas
that can be seen in Fig. 3, which directly comes from
a real wall of a cargo hold of a container ship. Further,
to get more insight on the performance of the mosaicing
approach, we have tested other sequences recorded from
other environments, e.g. underwater, whose results are also
discussed.

In a first kind of experiment, we generated synthetic
sweeping trajectories over a full image of the canvas, intro-
ducing random alterations in scale, rotation and translation,
collecting subimages of size 640×480 from time to time.
The synthetic sequence that Table I refers to as SYNTH1
comprised a total set of 679 images which were introduced
as input to the mosaicing algorithm. A subset of 331 images
were selected from the original set. The resulting mosaic
can be found in Fig. 4, while the estimated topology is
shown in Fig 5. As can be seen, the alignment in this
case is correct, generating the original image in a seamless
mosaic despite the the simulated MAV motion. An additional
squared trajectory introducing random motion was generated
over an underwater image (referred as SYNTH2), producing
431 images of size 320×240. The resulting mosaic and the
estimated topology are shown, respectively, in Fig. 6 and
Fig. 7. Note that the shape in the corners are because our
approach estimates the motion using the top-left corner of
an image as the origin of a coordinate system.

For a second kind of experiments, we flew in front of
the canvas a real MAV based on the AscTec Hummingbird
platform, fitted with a 752×480-pixel/58o-lens uEye UI-
1221LE camera running at 10Hz. Notice that this is a more
challenging situation because of the motion of the MAV at
close distance to the canvas, resulting into a more difficult
image registration problem. We performed four flights doing

Fig. 3. Canvas used in our experiments for simulating a cargo hold wall.

Fig. 4. Mosaic resulting from the synthetic sweeping trajectory generated
over the canvas image.



Fig. 5. Topology estimated by our approach for the synthetic sequence.
Each image is indicated using a red circle and the first image is labelled by
a green triangle.

different shapes, referred as FLIGHT1 (top-down), FLIGHT2
(square), FLIGHT3 (free) and FLIGHT4 (eight-shaped). All
of them were recorded at a distance of 1-1.5 m. The final
mosaics are shown from Fig. 8 to Fig. 11. As before, good
alignment results are observed, and the defects (corrosion
in this case), do not appear broken, as expected. Indeed, in
order to check whether the mosaics were useful for defect
detection, we supplied the composite images to the defect
detector described in [19], which combines contrast and
symmetry information within a probabilistic framework for
corrosion detection. The results are shown from Fig. 8 to
Fig. 11, where the defects are labelled in black. As can be
observed, the main defective areas are correctly detected. The
estimated topologies for each case are shown from Fig. 12
to Fig. 15.

In order to further validate our mosaicing approach, in
a third kind of experiments, we provided the algorithm
with sequences from other environments. For the particular
case of the sequence referenced in Table I as UNW, the
images come from Valldemossa harbour seabed (Mallorca,
Spain) and a hand-held down-looking camera. The dataset
consists of 201 images of 320×180 pixels, which comprises
a large loop, what allows us to validate the ability of our
algorithm for recognizing previously seen places. A total of
86 images were selected by the algorithm, leading to the
final mosaic and the estimated topology shown in Fig. 16
and in Fig. 17. The alignment, in this case, is even better
than for the aerial sequences, since the camera motion is

Fig. 6. Mosaic resulting from the synthetic squared trajectory generated
over the underwater image.

Fig. 7. Topology estimated by our approach for the squared sequence using
the underwater image. Each image is indicated using a red circle and the
first image is labelled by a green triangle.

less aggressive and the image registration process is easier.
Results for another underwater sequence using a forward-
looking camera (referred as ODEMAR) are also presented in
Fig. 18 and Fig 19, and for a sequence including a blackboard
using a hand-held camera (referred as BBOARD), in Fig. and
Fig.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a novel approach for
generating mosaics from images collected by a MAV, to
be used for vessel visual inspection. Our scheme makes
use of a graph for modeling image relationships, which
allows us to determine the shortest path between each image
and the mosaic frame. This graph is created using a visual



Fig. 8. (left) Mosaic using the images collected by the MAV in a top-
down trajectory [mosaic contrast has been tuned for visualization purposes].
(right) Defective areas found, shown in black.

Fig. 9. (left) Mosaic using the images collected by the MAV in a squared
trajectory [mosaic contrast has been tuned for visualization purposes]. (right)
Defective areas found, shown in black.

index of binary features which is built online and is used to
obtain, in an efficient way, overlapping candidates according
to the image information. We have validated our approach
under different operating conditions, concluding that the
resulting mosaic can be employed to find defective situations
susceptible to appear in a vessel. Despite the unfavourable
MAV operating conditions during a vessel visual inspection,
our approach works reasonably well, being helpful as part
of an assistance tool suite for surveyors.

As part of the activities of the INCASS project, our future
plans are to finish the validation of our approach onboard a
real vessel. Other kinds of vessels will also be considered.
Finally, we are interested in improving the image registration
process by adopting a local submosaic-based strategy.

Fig. 10. (top) Mosaic using the images collected by the MAV in a
free trajectory [mosaic contrast has been tuned for visualization purposes].
(bottom) Defective areas found, shown in black.

Fig. 11. (left) Mosaic using the images collected by the MAV in a
eight-shaped trajectory [mosaic contrast has been tuned for visualization
purposes]. (right) Defective areas found, shown in black.
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Fig. 18. Mosaic resulting from the ODEMAR sequence.

Fig. 19. Topology estimated by our approach for the ODEMAR dataset.
Each image is indicated using a red circle and the first image is labelled by
a green triangle.

Fig. 20. Mosaic resulting from the BBOARD sequence.

Fig. 21. Topology estimated by our approach for the BBOARD dataset.
Each image is indicated using a red circle and the first image is labelled by
a green triangle.


