An OMNET++ model to asses node fault-tolerance
mechanisms for FT'T-Ethernet DESs

Sinisa Derasevic, Manuel Barranco, Julidn Proenza
DMI, Universitat de les Illes Balears, Spain
sinishadj @ gmail.com, manuel.barranco@uib.es, julian.proenza@uib.es

Abstract—Distributed embedded systems (DESs) that oper-
ate in dynamic environments require emerging flexibility and
adaptivity communication requirements. When those DESs are
deployed for critical applications, they must also employ appro-
priate fault-tolerance (FT) mechanisms to attain a high level of
reliability. The FTT-Ethernet communication protocol supports
the flexibility needed in dynamic environments, but does not
provide adequate fault tolerance. In order to overcome this
limitation the ongoing FT4FTT project proposes a communi-
cation architecture that includes fault-tolerance capabilities at
different levels of DESs relying on FTT-Ethernet. In particular,
it provides communication and execution mechanisms to tolerate
node failures by means of active node replication with majority
voting. This paper builds upon a previous OMNET++ model of
an FTT-Ethernet-based DES in order to add, simulate and assess
those mechanisms. Specifically, it models the communication
mechanisms envisaged to enforce replica determinism in the
voting procedure, as well as to trigger and coordinate the tasks
executed in the replicas.

I. INTRODUCTION

The Flexible Time-Triggered (FTT) Ethernet [1] commu-
nication protocol has been designed to support the changing
communication and computation requirements of DES operat-
ing in dynamic environments. Nevertheless, it lacks appropriate
fault-tolerance mechanisms to attain the level of reliability
required by critical DESs. To overcome the reliability limi-
tations of FTT-Ethernet, the ongoing FTAFTT project aims at
providing an holistic FTT-Ethernet-based DES architecture that
includes fault-tolerance mechanisms at different levels.

Particularly, FTAFTT provides tolerance to node failures
by means of active node replication [2] with majority voting.
Specifically, it uses multiple identical replicas (same hardware
and software) of the nodes executing critical functions. In [3]
we proposed a set of communication mechanisms and a voting
algorithm for replicas to consistently vote in the presence of
permanent and transient node and channel faults. Moreover, in
[4] we explain how to trigger and dispatch the tasks and the
messages of a distributed control application that relies on the
FT4FTT replication and voting strategy.

In order to support the design of the FTAFTT architecture,
[5] proposes an OMNET++ model for simulating the behavior
of a DES relying on it. OMNET++ is an object-oriented mod-
ular discrete event network simulation framework written in
C++ programming language [6]. An open-source collection of
OMNET++ modules for wired and wireless network protocols
called INET Framework [7] is also used by [5].

The model in [5] includes the main features of FTT-
Ethernet, and allowed us to closely and quickly approach a real
DES based on this technology. Specifically, although not being
complete, the model has already served us to inject faults and
to test and refine some FT mechanisms proposed in FT4FTT.

978-1-4673-7929-8/15/$31.00 (© 2015 IEEE

" Node 2 Node 2 Node 2 Node N
Nodel | peplica1 Replica2 | *++ |ReplicaN| ***

The present paper builds upon [5] to add, simulate and test
the voting and dispatching mechanisms we proposed in [3] and

[4]. The results obtained with this new model allowed us to
qualitatively check the correctness of those mechanisms.

Fig. 1. System Architecture

Section II sketches the architecture, fault model and fault
tolerance mechanisms of FT4FTT. Sections III and IV re-
spectively describe in more detail the fault-tolerance and
the coordination/dispatching mechanisms we have modeled
in OMNET++. Section V describes the OMNET++ model
itself with special focus on those mechanisms. Section VI
summarizes our results, whereas section VII points out future
work and gives some concluding remarks.

II. SYSTEM ARCHITECTURE AND ORGANIZATION

As seen from Figure 1, the architecture of the system we
conceive in FTAFTT consists of multiple nodes, some of which
are replicas of the same one. The nodes are interconnected in
a star topology by a means of a full-duplex Ethernet switch.

The underlying communication protocol is FTT-Ethernet,
which supports real time response over standard Ethernet. FTT
is a maser/multi-slave paradigm in which a special node, called
FTT-Master, controls the communication of multiple slaves.
This paper considers a particular implementation of FTT where
the Master node is integrated within the switch. This switch is
called Hard Real Time Ethernet Switch (HaRTES) [8].

The communication is divided into fixed-size rounds called
Elementary Cycles (ECs). The FTT-Master starts each EC by
broadcasting a special control message, called Trigger Message
(TM), that serves two purposes. First, it synchronizes the
network by being broadcast in accurate points in time with
low jitter. Second, it conveys the schedule for that EC. Each
EC is further divided into two windows, synchronous and
asynchronous, that handle the transmission of periodic and
aperiodic messages respectively.

The fault model of FT4FTT includes permanent and tran-
sient node, link and switch faults. Nodes have byzantine failure
semantics, i.e. they fail in an arbitrary manner, while the switch
has crash failure semantics, i.e. it fails only by crashing.

We tolerate both transient and permanent switch faults by
using two actively replicated switches connected by two inter-
links. Furthermore, each switch is enforced to exhibit crash
failure semantics by duplicating and comparing its internal
circuitry. More details of switch replication are found in [9].

Transient link faults are tolerated by using both temporal
and spacial redundancy, i.e. critical messages are sent multiple

(©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. doi: 10.1109/ETFA.2015.7301634

times through multiple different paths/links. In particular, the
work in [10] provides tolerance to transient faults affecting the
TMs by employing the aforementioned redundancy.

Permanent link faults are tolerated by spacial redundancy
only. Since each node is connected to the switch by means
of a dedicated link, when the switch is replicated these links
become replicated as well.

Node faults are tolerated by actively replicating them.
More specifically, each critical node is replicated as a set
of identical hardware units executing the same software. To
mask the values produced by faulty node replicas, we employ
distributed majority voting. In particular, before using some
value (input/output), each replica exchanges it with other
replicas. Once the values are exchanged, each replica locally
votes on all the obtained values. We shall use the terminology
from NVP [11] and call the values that replicas vote on cross-
check vectors or cc-vectors for short.

In [4] we proposed a dispatching strategy, based on FTT-
Ethernet, to coordinate the execution of the tasks performed
by the replicas and the transmission of the messages they need
to exchange. This strategy is explained in details in section IV.

When replication is used, one of the main concerns is
how to ensure that non-faulty replicas behave the same. This
problem is know as replica determinism [2] and has to be
solved. Since we use active replication, i.e. same hardware
and software, we can assume that non-faulty replicas will vote
the same provided with the same input information. Therefore,
we have proposed a consistent voting protocol for tackling the
problem of providing same voting input to all correct replicas
[3] while tolerating node and channel faults.

To prevent unnecessary attrition of node redundancy due
to node transient faults, we proposed the mechanisms in [12].
These mechanisms are orthogonal to the ones we describe and
model in this work. They are used to recover the nodes being
affected by transient faults, and also to disconnect the nodes
that are permanently faulty and beyond recovery.

The previous work [5] models the mechanism proposed in
[10] to tolerate transient faults affecting the TM. As already
said, in this paper we extend this previous work by modeling
the mechanisms proposed in [3] and [4]. Next two sections
give more details about those new modeled mechanisms.

III. NODE FT MECHANISMS

As mentioned above, we use active replication and majority
voting to tolerate node faults. To enforce replica determinism
in this voting while also tolerating channel faults, we proposed
the consistent replicated voting protocol of [3]. This protocol
is divided into the following two parts:

1) Cc-vector exchange protocol (CVEP). Replicas first
exchange their cc-vectors. Upon the reception of a cc-vector,
each replica sends the acknowledgment (ACK) that the cc-
vector has been successfully received. The FTT-Master keeps
track of which messages have been exchanged and forms a
matrix called messages status vector, MS-vector for short. As
can be seen in Figure 2, this matrix can take one of two values
(0/1) representing received or lost message.

In the MS-vector we can discern two different cells having
two different meanings: a) diagonal cell [i,i] that indicates

My M, .. M,

R, |0/1|o/1| .. |01

R, |O/1]0/1] . |02

. |0/1

Fig. 2. MS-vector

whether the switch has received the cc-vector produced and
published by the node replica i.

b) non-diagonal cell [i,j] that indicates whether the switch
has received an ACK from node replica i. This ACK signifies
whether the node replica i has received the cc-vector previously
published by the replica j.

If some cell value is 0O, it means that some message has
been lost and the CVEP will then order the retransmission
of the appropriate message. The number of retransmissions is
envisioned to ensure that channel transient faults are tolerated.

The switch keeps the received messages. If the switch has
the message it is the one responsible for retransmissions, if
not, the replica retransmits. Once the switch has the message it
must have forwarded it to the other replicas. If we allowed the
replica to retransmit the messages that the switch has, it may
happen that the replica becomes faulty and sends the erroneous
messages and these messages might be different from the ones
received before by the other replicas. This cannot happen with
the switch though since it has crash failure semantics.

2) Voting Set-Up Algorithm (VSUA). Once the messages
are exchanged, the FTT-Master piggybacks the MS-vector on
the TM and each replica receives it. This is when VSUA comes
in place. This algorithm is performed locally by replicas and it
inspects the exchanged messages information contained in the
MS-vector. The result of the algorithm is a decision of which
replicas and messages are to be used by the majority voting.

More details about CVEP and VSUA are found in [3].

IV. COORDINATED DISPATCHING OF TASKS AND
MESSAGES

This section summarizes the strategy we proposed in [4]
for coordinating the dispatch of tasks and messages exe-
cuted/transmitted by node replicas.

This strategy is thought for general control applications. As
it is well known, control applications are generally divided into
three phases: sense (acquisition of data), control (processing
of acquired data) and actuation (perform the action set by the
control phase). These phases are repeated cyclically with a
period called sampling period (T%).

FTAFTT uses active replication and distributed majority
voting. Therefore in FT4FTT the phases of a control appli-
cation have to be designed so that replicas can exchange and
vote on both, the information obtained from the sensors and
the information calculated for the actuation.

Specifically, the following five phases are proposed in
FT4FTT: 1) Sense; 2) Exchange of sensor values; 3) Voting
on sensor values + Control; 4) Exchange of actuation values;
5) Voting on actuation values + Actuate; Worst case execution
time of each phase (C;) has to be calculated and sum of all
phases has to be less or equal to the sampling period. Note

Application

Error
Injector

¢ Physical Link (@]

Fig. 3. Modeled general architecture of an FT4AFTT-based DES

that the sum of each one of these phases (C;) has to be less
or equal to the sampling period, i.e. Zle Ci < Ts.

To trigger the tasks of phases 1, 3 and 5 the TM is used
implicitly. More specifically, each replica has an EC counter
that increases with the reception of TM, as well as a table that
specifies which tasks have to be triggered for each EC value.

As regards how to trigger the transmission of messages of
phases 2 and 4, FT4FTT uses the polling mechanism already
provided by the TM in FTT. In this sense recall that the FTT
Master keeps a table, called Synchronous Requirements Table
(SRT), which includes the data about the message scheduling.

More information about the dispatching is found in [4].
V. OMNET++ SIMULATION SYSTEM MODEL

Figure 3 sketches the general modeled functional archi-
tecture of a FT4FTT-based DES. It differs from the previous
model [5] by CVEP, VSUA, TT and Error Injector blocks.

On the left side is the switch. It receives Ethernet frames via
all the ports (PHY and MAC), checks each of them for validity
(Packet Validation) and forwards them (Packet Forwarder).
The Scheduler constructs TMs and the Dispatcher dispatches
them to the rest of the slaves. For more details about the
functioning of the aforementioned blocks the reader can refer
to [5]. The added block CVEP is responsible for incorporating
homonymous protocol to the switch.

On the right side there is one of the Slaves, i.e. one
of the replicas. Its structure is similar to the corresponding
subset of blocks of the switch. The main difference is that
the slave includes the following blocks: the VSUA block
responsible for incorporating homonymous algorithm; the 77T
block responsible for the task triggering mechanisms; and the
Error Injector block intended to inject errors.

The detailed simulation OMNET++ model of the FT4FTT-
based system is depicted by Figure 4. The modules colored in
gray are INET framework modules. Both switch and slave have
INET modules for Ethernet interfaces ETH.

We will now explain the functioning of all the modules
with a special focus on the modules related to the node fault
tolerance and coordinated dispatching mechanisms, as they are
the main contributions of this work. Next, the functions of all
modules are summarized, with special focus on the ones that
are new with respect to the previous model in [5], i.e. the node
fault tolerance and coordinated dispatching mechanisms.

The System Requirements Database (SRDB) and Node
Requirements Database (NRDB) modules keep the FTT pro-
tocol and scheduling information for the switch and the node

respectively. This information is used for packet validation and
scheduling. In particular, module SRDB includes the infor-
mation about SRT. These modules are populated on system
initialization by defining the proper xml files to read from.

The Forwarding Table module keeps the information of
which node is connected to which port and is used by the
Dispatcher to forward packets.

The NRT, Sync and Async modules are queues storing non
real-time, synchronous and asynchronous packets respectively.

Next follows a step-by-step overview of how the simulation
model works.

Each message exchange phase (2 and 4) is constituted by
several ECs. The Switch starts each EC by constructing the
TM in the Scheduler module. The TM is then sent to the
Dispatcher module which broadcasts it to all outgoing ports.

In the initial EC of phases 2 and 4, each Slave receives the
TM containing the list of synchronous messages that should
be sent in that EC. In each Slave the Dispatcher module
decodes the TM and instructs the Application module to send
the synchronous messages the Slave produced (cc-vectors).

These cc-vectors are received, validated, and stored in the
Sync queue by the Switch. Therein, the Switch Dispatcher
fetches the packets from the Sync queue and forwards them to
the CVEP module. Upon the reception of each synchronous
packet, CVEP populates the appropriate diagonal value in
the MS-vector. This module also saves all these synchronous
packets in a vector that has one slot per slave and is called
retransmissionVector. Finally, CVEP forwards all the packets
to the corresponding outgoing ports.

The forwarded cc-vectors are received by the Slaves. When
a Slave receives one of these packets, it passes it to its Applica-
tion, which in turn sends the ACK packet in the asynchronous
window of the EC. The Switch eventually stores all Slaves
ACKs in the Async queue and, then, its Dispatcher forwards
the Async packets (ACKs) to the CVEP. This last module
populates the appropriate non-diagonal MS-vector values.

When the initial EC ends, what follows is a set of ECs
devoted for retransmissions. Each one of these ECs contains
the same schedule as the initial one. In principle this means
that the communication pattern is repeated. But there is a subtle
difference: if the Switch receives a cc-vector it has already
stored in the retransmissionVector in a previous EC, it drops
the just received cc-vector and forwards the already stored one.

Note that in each retransmission EC the Slaves send the
same packets again, even though some of them will be dropped
if the Switch already has them. The reason for this behavior is
twofold. First, the bandwidth reserved for these packets would
otherwise be non-utilized, and the packets can be used as a
signal that the slaves are still operational. Second, it makes
the model of the FTT-Master simpler, as the Master does not
need to calculate a new schedule for each retransmission EC.

Once the initial and all the retransmissions ECs end, the
CVEP module piggybacks the MS-vector on the next TM.
When the Slaves receive it, their VSUA modules extract the
MS-vector and perform the algorithm upon it deciding which
messages and replicas are to be used by the voting.

(HaRTES Switch FTT Slave

4 _[Emor | __ N

Master-to-Slave messages

FTT

n

Forwarding
Table
\..

W - w -
[J INET model T 1
[FTT model

Fig. 4. OMNET++ simulation model

As concerns how the dispatching of tasks is modeled,
note that the 77 module is used for triggering the tasks in
the Application module, e.g. the tasks that perform the sense
phase. For this purpose, the 77 module contains an EC counter
it increases with the reception of each TM, as well as a table
that specifies the correspondence between the value of this
counter and the tasks to be triggered.

The Application module simulates the control application.
In particular, we used it to simulate the majority voting on the
received cc-vectors and a PID controller [13].

Finally the Error Injector module allows injecting errors
in the Application module, in order to check the correctness
of the simulated FT and dispatching mechanisms. Note that it
is connected with the switch Dispatcher module. This allows
the injector to be synchronized with the EC state kept by the
switch, e.g. to know if the synchronous window has started.

VI. RESULTS

We have used the OMNET++ model herein proposed to
carry out a series of tests to assess the correctness of the CVEP,
VSUA, majority voting and the dispatching mechanisms.

First, as was done in the previous model [5], we have
injected errors in the links by setting specific Bit Error Rates
(BER). This was done to asses the correctness of the mecha-
nisms when transient faults in the links do occur.

Second, we used the Error injection module to inject
different errors in the slaves, e.g. to drop a packet going
to/from the application, to change the value of the packet
etc. We modified only the FT mechanisms related packets:
cc-vectors and ACKs. This was done to simulate permanent
and transient faults affecting the slaves (node replicas).

Once the errors in the links and in the slaves were in-
jected we have tested whether the mechanisms that we have
introduced worked as planned. We have done this by printing
specific variables from different modules, e.g. the voting values
and the voting result from the Application module, the input
and the result of the VSUA algorithm from the VSUA module,
the MS-vector values form CVEP module, etc.

The simulation model allowed us to approach the real
system as close as possible and to test whether our mechanisms
worked as intended. The process of designing and simulating
guided us to discover some unexpected scenarios and further
refine our mechanisms.

VII. CONCLUSIONS AND FUTURE WORK

The contribution of this work was to extend a previous
model of the FT4FTT architecture in order to be able to

simulate and test a subset of FT mechanisms related to the node
fault tolerance and the mechanisms for the dispatching the task
and messages performed and transmitted by node replicas.

In the future, we plan to simulate the rest of the FTAFTT
project mechanisms to further evaluate their correctness.

Although the model has proven to be a valuable tool to
assess and refine the mentioned mechanisms, we are aware
about the limitations of simulation to inject all possible error
scenarios. Moreover, we are also interested in quantifying the
dependability of these mechanisms and of the whole FT4FTT
architecture. For these reasons we plan to carry out a formal
verification of the CVEP and VSUA as well as a dependability
evaluation by means of other formalisms.

VIII.

Supported by project DPI2011-22992, by the Portuguese
Government through FCT - Fundagdo para a Ciéncia e a
Tecnologia in the scope of project Serv-CPS -PTDC/EEA-
AUT/122362/2010 and by FEDER funding.

REFERENCES

ACKNOWLEDGMENTS

[1] P. Pedreiras, L. Almeida, and P. Gai, “The FTT-ethernet protocol:
Merging flexibility, timeliness and efficiency,” in 24th Euromicro Conf.
on Real-Time Systems. 1EEE Computer Society, 2002, pp. 152-152.

[2] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in
Distributed Computing Systems, 2000. Proc. 20th Int. Conf. on. 1EEE.

[3] S. Derasevic, M. Barranco, and J. Proenza, “Appropriate consistent
replicated voting for increased reliability in a node replication scheme
over FTT,” in Emerging Technology and Factory Automation (ETFA),
2014 IEEE.

[4] S. Derasevic, J. Proenza, and M. Barranco, “Using FTT-ethernet for the
coordinated dispatching of tasks and messages for node replication,” in
Emerging Technology and Factory Automation (ETFA), 2014 IEEE.

[5] M. Knezic, A. Ballesteros, and J. Proenza, “Towards extending the
OMNeT++ INET framework for simulating fault injection in ethernet-
based Flexible Time-Triggered systems,” in Emerging Technology and
Factory Automation (ETFA), 2014 IEEE. 1EEE, 2014, pp. 1-4.

[6] A. Varga et al., “The OMNeT++ discrete event simulation system,” in
Proceedings of the European simulation multiconference (ESM2001),
vol. 9, no. S 185. sn, 2001, p. 65.

[7]1 T. Steinbach, H. D. Kenfack, F. Korf, and T. C. Schmidt, “An extension
of the OMNeT++ INET framework for simulating real-time ethernet
with high accuracy,” in Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques. ~ ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2011, pp. 375-382.

[8] R. G. V. d. Santos, “Enhanced ethernet switching technology for
adaptive hard real-time applications: Tecnologia de comutagdo ethernet
melhorada para aplicagdes adaptativas e criticas de tempo-real,” 2011.

[9] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a
flexible time-triggered replicated star for Ethernet,” in Emerging Tech-
nologies & Factory Automation (ETFA), 2013 IEEE 18th Conference.

[10] D. Gessner, J. Proenza, and M. Barranco, “A proposal for master replica
control in the flexible time-triggered replicated star for Ethernet,” in
Factory Communication Systems (WFCS), 2014 10th IEEE Workshop.

[11] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Proc. 8th IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-8), 1978, pp. 3-9.

[12] J. Proenza, M. Barranco, J. Llodra, and L. Almeida, “Using FTT and
stars to simplify node replication in CAN-based systems.” in ETFA,
2012.

[13] K. J. Astrom and T. Hédgglund, “PID controllers: theory, design and
tuning,” 1995.

