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Abstract. The task allocation problem is one of the main issues in
multi-robot systems. Typical ways to address this problem are based
on Swarm Intelligence. One of them is the so-called Response Thresh-
old Method. In the aforementioned method every robot has associated a
task response threshold and a task stimuli in such a way that the robot’s
probability of executing a certain task depends on both factors. On of
the advantage of the aforesaid method is given by the fact that the origi-
nal problem is treated from a distributed mode which, at the same time,
means a very low computational requirements. However, the Response
Threshold Method cannot be extended in a natural way to allocate more
than two tasks when the theoretical basis is provided by probability the-
ory. Motivated by this fact, this paper leaves the probabilistic approach
to the problem and takes a first step towards a possibilistic theoretical
approach in order to treat successfully the multi-robot task allocation
problem when more than two tasks must be performed. As an example
of application, an scenario where each robot task stimuli only depends on
the distance between tasks is studied and the convergence of the system
to an stable state is shown.

Keywords: Multi-robot, Possibility Theory, Swarm Intelligence, Task
allocation

1 Introduction

Systems with two or more mobile robots (multi-robot-systems) can perform tasks
that with only one robot would be impossible to carry out or would take a lot of
time. Moreover, such systems are more robust, scalable and flexible than those
with only one robot. A lot of new challenges and problems must be solved before
taking advantage of the potential benefits of the multi-robot systems. Among
all possible issues that arise in a natural way in multi-robot systems, this paper
focuses on the problem commonly referred to as “Multi-robot Task Allocation”
problem (MRTA for short) which consists of selecting the best robot to execute
each of the tasks that must be performed. A lot of research has been done to
solve the aforementioned problem in the last years. Concretely, many efforts have
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been made to propose suitable methods based on auction and swarm strategies
for task allocation.

Auction paradigms [9, 6] are based on explicit communication protocols be-
tween robots: when a robot, called auctioneer, finds or generates a new task
sends a message to announce it before starting the execution. The other robots,
called bidders, send to the auctioneer a value, called bid, that indicates how
suitable is itself for executing the new task. Once the auctioneer has received all
the bids, it selects the robot with the highest bid for the task. Auction meth-
ods, and negotiation paradigms in general, provide better solutions than swarm
approaches. Nevertheless, the communication requirement in such methods can
become a drawback.

Swarm methods are inspired by insect colonies behavior, where the cooper-
ative behavior emerges from the interaction of very simple behaviors running
on each robot without any communication protocol [15]. Thus, swarm methods
are more scalable and simple than auction mechanisms. Because of these advan-
tages a lot of swarm like algorithms has been posed but, nowadays, those based
on the so-called Response Threshold Method (RTM for short) are probably the
most broadly used (see Section 2.2 for a detailed description of the classical
swarm algorithm based on RTM). In these methods, each involved robot has an
associated a task response threshold and a task stimuli.The task stimuli value
changes over the time and indicates how much atarctive is the task for the robot.
When the task stimuli, associated to a robot, takes a value greater than a cer-
tain threshold, the robot starts the execution of the task or, as happens in most
cases, a robot selects a tasks with a probability functions that depends on the
stimuli itself and the threshold [2]. To our best knowledge, in this system there
are only two tasks and the robots can only choose between them. Hence, a robot
can stay on its current task or change to the other one [16]. As can be seen, this
decision making process can be dealt as a Markov chain with only two states.
However, the probabilistic approach which yields support to Markov chains can
become a handicap. In fact, if the robots has a number of tasks greater than
two, such as happens in a real mission, then either the RTM based algorithms
cannot be directly applied or to fit the transition probabilities in the Markov
model can be a very hard labor and, hence, it is necessary to reason by means
imprecise probabilities that are fixed subjectively. In addition to this handicap,
the applicability of the Markov approach to real missions is also reduced because
of transition probabilities must meet some typical constraints. One of them is
that of the transition probabilities from one state to the other ones must be
a probability distribution (the sum of all of them must be equal to 1) and, in
general, this constraint is not satisfied in real problems. Despite, it is worthy to
point out that in the literature can be found Markov chain decision processes in
which normalized transition probabilities have been proposed in order to model
the behaviour of multi-robot systems where there are more than two possible
tasks (see, for instance, [13]). Although, this methodology implies to introduce
unnatural manipulations of the original system. Furthermore, in real situations
the transitions can be represented by numerical values outside the range of the
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unit interval. So the probability theoretical foundation may even be inappropri-
ate.

In the light of the above-mentioned inexpedients associated to the proba-
bilistic RTM for task allocation, it seems natural to search through literature
a theoretical formalism, with a basis different from the probability theory, that
may be useful to study in a natural way the task allocation problem via a RTM
when more than two tasks are under consideration and, in addition, does not
involve artificial requeriments or constraints as, for instance, the normalization.
Fortunately, the desired formalism can be found in the literature and it is known
as possibility theory (see [3] and [17]). For this reason this paper takes a first
step towards a possibilistic theoretical formalism for a RTM and its utility for
the MRTA problem. Concretely, the RTM will be implemented considering tran-
sitions possibilities instead of transitions probabilities and this fact will imply
that in the intrinsic decision process the possibilistic Markov chains (also known
as fuzzy Markov chains) play the role of the probabilistic ones. Moreover, a few
powerful properties of this new method will be showed.

The remainder of the paper is organized as follows: Section 2 reviews the
basics of the MTRA problem. Thus the relevant notation and the problem state-
ment are introduced in Subsection 2.1. In Subsection 2.2 the swarm approach
to the MTRA problem is presented. Concretely, the classical swarm algorithm
based on the RTM is detailed and one limitation is discussed. Section 3 is de-
voted to developed the possibilistic theoretical formalism for a RTM and to
show its utility for the MRTA problem. Specifically, in Subsection 3.1 formalizes
a few concepts about possibilistic theory and fuzzy Markov chains that will play
a crucial role in order to achieve our objective. Moreover, in Subsection 3.2, a
specific MTRA problem is approached from a Swarm viewpoint via the use of
fuzzy Markov chains and some relevant properties of such a method are studied.
Besides, some typical cases of study are discussed in order to illustrate the utility
of the new method. Finally, the conclusions and future work are presented in
Section 4.

2 Multi-Robot Task Allocation Problem

2.1 The problem

In the literature there are a lot of MRTA problem definitions and all of them
depending on the characteristics of the problem to solve (see [7]). One criteria,
among others, to classify the MRTA problems consider the number of robots that
can be assigned to each task [7]. Thus, if two or more robots can collaborate to
carry out the same task, the problem is called “Multi-Robot Task” problem
(MRT for short). Otherwise, if only one robot can be assigned to each task at
the same time, the problem is called “Single-Robot Task” problem (SRT for
short). This paper only considers, as a first approach to the possibilistic MRTA
problem, the SRT problems that can be defined as follows.

Let N denote the set of positive integer numbers and let n,m ∈ N. Denote
by R the set of robots with R = {r1, ..., rn} and by T the set of tasks to carry
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out with T = {t1, ..., tm}. A task allocation is a function TA : T → R such that
T (ti)

⋂

T (tj) = ∅ provided that i 6= j. Observe that T assigns to each task tj ∈ T

a robot ri ∈ R in such a way that no more than one robot can be assigned to
the same task. Thus, the goal of a task allocation algorithm is to find an optimal
task allocation TA∗, among all valid TA functions, which optimizes some system
characteristics.

Following [5], the SRT problems can be described in terms of the well-known
Optimal Assignment Problem (OAP). The OAP is defined in the following way:

Consider n robots (or agents in general) and m tasks to carry out, each robot
can only be assigned to one task and each task requires only one robot. For each
couple (robot-task), a value is defined that forecasts the robots performance for
that task, that is, this value models the robots utility regarding that task. The
goal is to assign a robot to each task to maximize the total utility U . This goal
function is given by

U =
∑

1≤i≤n

∑

1≤j≤m

αijUijwj , (1)

where αij = 1 if the task i is assigned to agent j, and αij = 0 otherwise; Uij is
the utility gained by the system when agent j is assigned to task i; and wj is the
weight or importance of the task j. Thus, wj represents the priority of the task.
The Hungarian’s method [14] allows to get the optimal solution to this kind of
problems in a time O(nm2) through a dynamic programing centralized method.

2.2 A Swarm Task Approach to MTA Problem: The Response

Threshold Method

Although the Hungarian’s method gives an optimal assignment which solves the
OAP and, thus, the SRT problem, it is worthy to point out that it requires a
central agent with global knowledge about the characteristics of all the robots
and tasks to be performed. Moreover, since the environment where the robots
are operating is dynamic (it can change over the time) the allocation algorithm
should be executed constantly. Since in most of the real tasks it is needed a
decentralized and very low computational cost task allocation algorithm, the
preceding fact poses a handicap which is against the use of the Hungarian’s
method. In this direction methods based on swarm intelligence, as the RTM, are
more useful and appropriate.

According to [1], the classical response threshold method defines for each
robot ri and for each task tj , a stimuli sri,tj ∈ R that represents how suitable
tj is for ri, where R stands for the set of real numbers. When sri,tj exceeds a
given threshold (θri ∈ R), the robot ri starts to execute the task tj. To avoid
relying on the threshold value to an excessive degree, the task selection is usually
probabilistic. Thus, a robot ri will select a task tj to execute with a probability
Pri,tj which is given by
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Pri,tj =
snri,tj

snri,tj + θnri
(2)

Figure 1 shows Equation (2) values as a function of sri,tj for several values
of the exponent n and with θri = 50. In order to reproduce the conditions usev
by most of the authors, n will be always equal to 2 (see [11]).
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Fig. 1. Pri,tj values (Equation 2) as a function of the stimuli for several n values with
θri = 50
.

As mentioned earlier, the classical response threshold method is only suitable
when the robots have, at a given time, two available actions or tasks to perform,
i.e., T = {t1, t2}. Therefore the probability Prk,ti,tj that the robot rk (k =
1 . . . , n) leaves the task ti in order to perform the task tj , with i, j ∈ {1, 2} and
i 6= j, can be calculated according to Equation (2) by

Prk,ti,tj =
s2rk,tj

snrk,tj
+θ2

rk

and Prk,ti,ti = 1− Prk,ti,tj .

Of course, the evolution of the system over the time can be modeled by
means of a finite Markov chain where, for each robot rk, the transition matrix
Prk = {Prk, ij}ni,j=1 is given by Prk, ij = Prk,ti,tj for all i, j = 1, 2. Notice that,
for each k, i ∈ {1, 2}, Prk,i1 + Prk,i2 = 1.

It is clear that the preceding approach fits perfectly to the case of two pos-
sible states of the system, i.e., T = {t1, t2}. However, when more tasks are
available to be performed by the each robot over the time, i.e. T = {t1, . . . , tm}
(m > 2) then it seems natural to ask whether in general, for each robot rk and
i ∈ {1, . . . , n}, the equality

∑m
j=1 Prk,ti,tj = 1 holds. Obviously this constraint

is violated in many real situations (see, for instance, [8]). In order to avoid this
disadvantage, as we have mentioned in Section 1, normalization processes can
be introduced although they imply to impose unnatural system modifications.
Moreover, in addition to the aforesaid inconveniences, to determine the transi-
tions probabilities is an arduous task in general and, therefore, reasoning with
imprecise probabilities, which have to be fitted subjectively, becomes needful to
model the behavior of the system. Finally, let us recall that when more than
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two tasks are under consideration then the system will evolve to a stable state
provided that, for each robot rk, the transition matrix P rk is regular (see [10]).
In this case the behavior of the systems is described by the following result.

Theorem 1. Let P be a transition matrix for a regular Markov chain. Then

the matrices Pn approach a limiting matrix W with all rows the same vector w

whose all components are strictly positive and their sum is equals 1. Moreover,

wP = w.

In the light of the preceding result, it must be pointed out that the evolution
of the system to a stable state is only guaranteed asymptotically and, as a conse-
quence, in many cases the knowledge of the final state of the systems is obtained
by successive approximations. It follows that in the probabilistic framework the
final state of the systems is known with some degree of approximation in many
cases.

3 Possibility Theory and Task Allocation

Since the transition probabilities in multi-task allocation problems can violate
in a natural way a few axioms of the probability theory and they may be also
imprecise and fixed subjectively, in this section a RTM based on a more general
framework than the probabilistic one is introduced. Concretely a possibilistic
approach for task allocation is proposed in such a way that multi-task allocation
problems can be formulated via RTM based techniques in which the above-
mentioned handicaps disappear. The aforementioned framework allows to encode
the imprecise nature of the transitions of the system and to model the transitions
probabilities without incorporating unnatural manipulations in the spirit of the
normalization process.

3.1 Possibility Theory and Markov Chains

Next we recall a few pertinent notions from the possibility theory which will be
crucial to achieve our announced target.

On account of [3] (see also [17]), given a non-empty finite set Ω, a
possibility distribution onΩ is a function Pos : Ω → [0, 1] such that maxω∈Ω Pos(ω) ≤

1. Moreover, provided that the power set of Ω is denoted by P(Ω), a (non-
normalized) fuzzy measure on Ω is a function M : P(Ω) → [0, 1] which holds
the following axioms:

i) M(∅) = 0;
ii) M(Ω) ≤ 1;
iii) M(A) ≤ M(B) provided that A ⊆ B.

A fuzzy measure M on Ω is called a possibility measure whenever the addi-
tional axiom is satisfied:
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iv) M(A ∪B) = max{M(A),M(B)} for all A,B ∈ P(Ω).

Of course, a possibility distribution Pos on Ω induces a non-normalized fuzzy
measure on Ω denoted by MPos : P(Ω) → [0, 1] and defined by

MPos(A) = max
ω∈A

Pos({ω})

for all A ∈ P(Ω). Notice that MPos(Ω) = maxω∈Ω Pos(ω) ≤ 1.
Usually the probability of an “event” A ∈ Ω is understood as a degree

of likelihood or frequency which A occurs. In contrast, the possibility of A,
MPos(A), is related to our perception of the degree of feasibility of A occurs.
Thus, MPos(A) = maxω∈Ω Pos({ω}) and MPos(A) = 0 mean that the event
A is totally possible or plausible and impossible, respectively. Nevertheless, con-
trarily to the probabilistic approach, there may be two events A and B with
MPos(A) = MPos(B) = maxω∈Ω Pos({ω}), i.e., both events are totally possi-
ble. Despite these notable differences between possibility and probability, there
is a relationship between them. In particular, if an event is probable then it is
certainly possible or, equivalently, the degree of possibility of 3an event is greater
than or equal to its degree of probability.

The theory of possibility has been applied to model those decision making
processes based on Markov chains recently in [12]. Next we recall the basic
notions about possibilistic Markov chains (fuzzy Markov chains in [12]) because
they will be crucial in our subsequent discussion.

Consider a system a system evolving in time in such a way that the states
of the system is fixed and finite, say S = {s1, . . . , sk}. Moreover, at any unit of
time the system changes from one state to another one according the following
memoryless possibilistic law:

If the system is in the state si at time n (n ∈ N), then the system will
move to the state sj with possibility pij at time n+ 1. Moreover, the transition
possibility pij does not depend upon which states the system was in before the
current state si. Of course, this law yields that the future state of the system
depends only on the present state. Furthermore, given that the system is in the
state si at time n then the system will move to one of the s1, . . . , sk possible
states at time n+ 1 and, hence, we have that

∨k

j=1 pij ≤ 1 for every 1 ≤ i ≤ n,
where ∨ stands for the maximum operator on [0, 1].

Note that the numerical value
∨k

j=1 pij provides information about what is
the most possible state at which the system that the system will move from the
state si. Although, of course, several states can become enjoy the same degree
of possibility.

Next, let xi(n), 1 ≤ i ≤ k, denote the possibility that the state si will occur

at time n. Then it follows that
∨k

i=1 xi(n) ≤ 1 and, in addition, such a numerical
value can be understood as the evolution of the system at time n is governed by
the most possible state at that time. Notice that one of the states s1, . . . , sk must
occur at time n. However, two states can become equally possible at time n and,
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thus, the dynamics of the system will be totally determined by the possibilities
of transition. Obviously, the evolution of the system in time is given by the
following equations

xi(n) =

k
∨

j=1

pji ∧ xj(n− 1) (3)

for all i = 1, . . . , k and for all n ∈ N, where ∧ stands for the minimum operator
on [0, 1].

Obviously, the preceding systems of equations is equivalent to the below one
in matrix notation:

x(n) = x(n− 1) ◦ P (4)

for all n ∈ N, where P = {pij}ni,j=1 is the matrix of transition possibilities, ◦ is the
matrix product in the max-min algebra ([0, 1],∨,∧) and x(n) = (x1(n), . . . , xk(n))
for all n ∈ N. Observe that x(n) = (x1(n), . . . , xk(n)) represents the possibility
distribution of the set of states at time n (the ith component of x(n) matches up
with the possibility of the system is in state si at time n. Naturally, a possibility
distribution x(n) of the system states at time n is said to be stationary, or stable,
whenever x(n) = x(n) ◦ P .

The great advantage of the possibilistic Markov chains with respect to the
probabilistic ones is given by the fact that under certain conditions the system
which is modeled will converge to a stable (stationary) state in a finite time.
In contrast probabilistic Markov chains under the hypothesis of regularity guar-
anteed that the system will converge to a stationary state asymptotically, i.e.,
not necessarily in a finite time (see Theorem 1). The conditions that provide the
finite convergence character of the system in the possibilistic case can be found
in [4]. With the aim of recalling such conditions let us introduce a few notions
about fuzzy matrix.

Following [4], a matrix A ∈ Mn([0, 1]) will said to be k-power-convergent
if Ak = Ak+1 for some k ∈ N, where Ak denotes the max-min composition
of A and itself k times. Moreover, the least k ∈ N such that A is k-power-
convergent (or simply power-convergent) will be denoted by k(A) and called
the index of A. Furthermore, given A,B ∈ Mn([0, 1]), we denote by A ≤ B

the fact that aij ≤ bij , where ≤ stands for the usual order on [0, 1]. Finally, a
matrix A ∈ Mn([0, 1]) will said to be column diagonally dominant provided that
aii ≥ aji for all i, j = 1, . . . , n.

Taking into account the above introduced concepts we are able to state the
result which guarantees the aforesaid finite convergence character of possibilistic
Marckov chains.

Theorem 2. Let A ∈ Mn([0, 1]). Assume that A is column diagonally dominant

and that A ≤ A2. Then A is power-convergent and k(A) ≤ n− 1.
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In the light of the preceding result, those systems modeled by possibilistic
Markov chains whose transition matrix satisfies the assumptions in the stament
of Theorem 2 will evolve to a stationary state in a finite time.

It must be pointed out that the preceding result will be crucial in our subse-
quent discussion, since the equation that describes the evolution of a possibilistic
Markov chain, Equation (4), is equivalent to the following one: x(n) = x(0) ◦Pn

for all n ∈ N. So the study of the power-convergence of the transition matrix will
play a central role in the study of the behavior of the system under consideration.

3.2 Possibilistic Markov chains and Task Allocation

This section shows an example of how possibilistic Markov chains are useful
for developing a RTM for solving multi-robot task allocation problems. For the
sake of simplicity, and honoring the the titile of the paper, a very simple but
representative case is discussed. Finally, two illustrative examples, which worth
to mention, are studied.

According to the MRTA problem statement consider a collection of robots
R = {r1, ..., rn} (n ∈ N) and a set of tasks to carry out T = {t1, ..., tm} (m ∈ N).
Assume that the tasks are randomly placed in an environment and the robots are
initially randomly placed. Then the target is to find an optimal task allocation
in such a way that only one robot can be assigned to each task at the same
time. Hence our possibilistic RTM must decide which task must execute each
robot although this decision must be made individually by each robot without
exchanging information between them. Moreover, we will assume that each robot
allocation only depends on the distance between the robot and the task.

From now on, denote by xi(n) = (xi1(n), ..., xim(n)) a fuzzy set, where xij(n)
is the possibility for the robot ri of executing the task tj at time n. Consider the
position space endowed with a metric d. Then denote by d(ri, tj) the distance
between the current position of ri and the position of tj and by d(ti, tj) the
distance between the position of the task ti and tj . Of course, it is assumed
that when a robot is assigned to a task the position of this task and the robot’s
position are the same and therefore, the distance between the task and the robot
is 0. Following the response-threshold notation, define the stimuli of the robot
rk to carry out task tj as follows:

srk,tj =

{

1
d(rk,tj)

if d(rk, tj) 6= 0
1
α

if d(rk, tj) = 0,
(5)

where α = mini,j=1,...,md(ti, tj). This stimuli srk,tj allows us to obtain, by means
of Equation (2), the response threshold possibility

prk,ij =







1
1+d(rk,tj)2θ2

rk

if d(rk, ti) = 0 and d(ti, tj) 6= 0

1
1+α2θ2

rk

if d(rk, ti) = 0 and d(ti, tj) = 0.
(6)
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Notice that the numerical value prk,ij = 1
1+α2θ2

rk

in Equation (6) can be

understood in the following way: a robot rk tends to stay on the task ti when
its position coincides with that of the task ti. So the perception of the degree
of feasibility of the robot stays at the position of the task ti at the next time
should be related to the greatest numerical value of the assigned possibilities.
However, it is also possible that the robot rk leaves the position of the task ti,
despite its current position coincides with that of the task ti, and moves to the
position of the task tj to carry out it. This perception of the degree of feasibility
that event occurs is represented by the numerical value prk,ij = 1

1+d(rk,tj)2θ2
rk

.

Note that when smaller the distance d(ti, tj), with i 6= j and d(rk, ti) = 0, the
greater is the possibility degree of feasibility of the robot rk transits from the
position of ti to the position of tk.

From Equation (6) one can compute the fuzzy matrix of possibilities Prk =
{prk,ij}

m
i,j=1 which enjoys nice properties such as the next result shows.

Proposition 1. Fix rk ∈ R. Then Prk is power-convergent with k(Prk) ≤ m−1.

Proof. The fact that 0 ≤ prk,ij ≤ 1 for all i, j = 1, . . . ,m immediately yields that
Prk ∈ Mm([0, 1]). Moreover, Prk is column diagonally dominant and satisfies that
Prk ≤ P 2

rk
, since P 2

rkij
=

∨n

k=1(pil ∧plj) for all l = 1...m. Therefore, by Theorem
2, we conclude that Prk is power-convergent with k(Prk) ≤ m− 1.

As a consequence of the preceding result we obtain the following conclusion.

Corollary 1. Fix rk ∈ R. Then the possibilistic Markov chain with transition

matrix Prk converge to a stationary non-periodic solution in at most m−1 steps

and, in addition, such a convergence does not depend on the initial posibilistic

distribution xi(0).

Finally, we focus our attention on two illustrative and interesting cases of
study.

Case Study 1: Homogeneous robots and one robot per task.

In this context homogeneous robots means that all the robots have the same
threshold, that is, θri = θ for i = 1...n. Initially each robot rk is assigned to
a different task with a possibility 1

α
. If we assume the same number of robots

and tasks, n = m, then the robot rk can initially be assigned to task tk for
all k = 1, . . . , n. Moreover, it is clear that prk,ij = prl,ij for all k, l = 1, . . . , n.
Furthemore, the initial possibility distribution of the states for robot rk is given
by

xk(0) = (xk1(0), . . . , xkn(0)),

where

xki(0) =

{

1
αk

if k = i

0 otherwise.
(7)
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By Corollary 1 we have that the possibility distribution of sates for each
robot will converge to a stationary non-periodic one in at most n − 1 steps. In
particular if case we take n = 3, then the possibility distribution of states for
both robots will converge to a stationary non-periodic one in at most 2 steps.
Specifically the possibility distribution of states at step 2 for each robot will be
the following one:

x1(2) = ( 1
α
,
∨

(p12, p13 ∧ p32),
∨

(p13, p12 ∧ p23))
x2(2) = (

∨

(p21, p23 ∧ p31),
1
α
,
∨

(p23, p21 ∧ p13))
x3(2) = (

∨

(p31, p32 ∧ p21),
∨

(p32, p31 ∧ p12),
1
α
))

Although all robots have the same transition matrix, all of them converge to a
different possibilistic distribution of states. Despite in all cases the most possible
state is that of the robot stays performing the task where it was initially allo-
cated, the robots have a non zero possibility for other tasks. Thus, all task has
a possibility greater than 0 of execution.

Case of Study 2. Heterogeneous robots and all the robots are as-

signed to the same task.

In this case all the robots has the same initial possibility distribution of states,
for example all robots are initially allocated to task t1. But, now the robots are
heterogeneous, that is, θri 6= θrj provided i 6= j. Therefore each robot will have
its own transition matrix Prk . Note that the number of robots and task may
differ but if we take n = m, then, by Corollary 1, we have that the possibility
distribution of sates for each robot will converge to a stationary non-periodic
one in at most n− 1 steps.

In particular if we take n = m = 3, then the possibility distribution of states
for all robots will converge to a stationary non-periodic one in at most 2 steps.
Specifically if we assume, as an example, that all robots are allocated to task
t1, then the possibility distribution of states at step 2 for each robot will be the
following one:

xk(2) = (
1

α
,
∨

(prk,12, prk,13 ∧ prk,32),
∨

(prk,13, prk,12 ∧ prk,23))

for all k = 1, . . . , n.

If the threshold had been the same for all the robots, all of them would
converge to the same state, generating a non balanced system, that is, with a
high possibility all the robots would have executed the same task (t1). But now
the robots are heterogeneous, so each vector xk(2) depends on θrk and, therefore,
the final distribution of the robots can be fitted through the threshold values.

4 Conclusions and Future Work

This paper has taken a first step to develop the theoretical basis for possibility
multi-robot task allocation methods based on swarm intelligence. One of the
most important swarmMRTAmethod is the response threshold. As mentioned in
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this paper, RT methods have a few inconveniences, from practical and theoretical
point of view. In fact, if there are more than 2 states then easily either to
determine the transitions probabilities is a hard task and, therefore, they have
to be fitted subjectively, or the distribution of transitions is not probabilistic and
must be normalized. This handicaps can be avoided using possibilistic Markov
chains which clearly offers a more realistic and general approach because allow to
model imprecise probabilities. The paper proves that, in the specific case where
the transition possibility depends on a distance, the Markov process converges
in a finite number of steps lower or equal to the tasks.

This paper presents a work in its very first stages that has a lot of challenging
aspects to add and to improve. For the time being, we focus on new scenarios and
possibility transitions that depends on new factors like for example the utility
of the task. We also plan to compare possibilistic Markov chains with current
response threshold methods from an empirical point of view.
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