

DOCTORAL THESIS
2016

APPEARANCE-BASED LOOP CLOSURE DETECTION
AND ITS APPLICATION TO TOPOLOGICAL

MAPPING AND IMAGE MOSAICING

Emilio García Fidalgo

DOCTORAL THESIS
2016

Doctoral Programme of Computer Science

APPEARANCE-BASED LOOP CLOSURE DETECTION AND
ITS APPLICATION TO TOPOLOGICAL MAPPING

AND IMAGE MOSAICING

Emilio García Fidalgo

Thesis Supervisor: Dr. Alberto Ortiz Rodríguez

Doctor by the Universitat de les Illes Balears

Statement of Authorship

This thesis has been submitted to the Escola de Doctorat, Universitat de les Illes
Balears, in fulfilment of the requirements for the degree of Doctor en Informática.
I hereby declare that, except where specific reference is made to the work of others,
the content of this dissertation is entirely my own work, describes my own research and
has not been submitted in whole or in part for consideration for any other degree or
qualification in this, or any other university.

Emilio García Fidalgo

Palma de Mallorca, June 2016

Funding

The work reported in this thesis was supported by the European Social Fund through
grant FPI11-43123621R (Conselleria d’Educació, Cultura i Universitats, Govern de les
Illes Balears) and by FP7 projects MINOAS (GA 233715) and INCASS (GA 605200).

Supervisor’s Agreement

I, Alberto Ortiz, Ph.D. in Computer Science and Associate Professor at the Department
of Mathematics and Computer Science, Universitat de les Illes Balears

ATTEST THAT:

this dissertation, titled Appearance-based Loop Closure Detection and its Application to
Topological Mapping and Image Mosaicing and submitted by Emilio García Fidalgo for
obtaining the degree of Doctor en Informática, was carried out under my supervision
and contains enough contributions to be considered as a doctoral thesis.

Dr. Alberto Ortiz Rodríguez

Palma de Mallorca, June 2016

Abstract

Mapping and localization are two essential processes in autonomous mobile robotics since they
are the basis of other higher level and more complex tasks, such as obstacle avoidance or path
planning. Mapping is the process through which a robot builds its own representation of
the environment when a map of the environment is not available. There exist mainly two
types of maps: metric and topological. While metric maps represent the world as accurate
as possible with regard to a global coordinate system, topological maps represent the envi-
ronment in an abstract manner by means of a graph, which implies several benefits in front
of the classic metric approaches. Due to the unavoidable noise that sensors present, map-
ping algorithms usually rely on loop closure detection techniques, which entails the correct
identification of previously seen places to reduce the uncertainty of the resulting maps. This
dissertation deals with the problem of generating topological maps of the environment using
efficient appearance-based loop closure detection techniques. Since the quality of a visual
loop closure detection algorithm is related to the image description method and its ability to
index previously seen images, several methods for loop closure detection adopting different
approaches are developed and assessed. Then, these methods are used as basic components in
three novel topological mapping algorithms. The results obtained indicate that the solutions
proposed attain a better performance than several state-of-the-art approaches. To conclude,
given that place recognition is also a key component in other research areas, a multi-threaded
image mosaicing algorithm is proposed. This approach makes use of one of the loop closure
detection techniques previously introduced in order to find overlapping pairs between images
and finally obtain seamless mosaics of different environments in a reasonable amount of time.

Resumen

El mapeo y la localización son dos procesos fundamentales en robótica autónoma móvil debido
a que son la base de otras tareas de más alto nivel y más complejas, como la evitación de ob-
stáculos o la planificación de rutas. El mapeo es el proceso a través del cual el robot construye
su propia representación del entorno cuando el mapa no está disponible. Existen fundamen-
talmente dos tipos de mapas: los métricos y los topológicos. Mientras que los mapas métricos
representan el mundo lo más exacto posible de acuerdo a un sistema de coordenadas de refer-
encia, los mapas topológicos lo representan de un modo abstracto utilizando un grafo, lo que
supone una serie de ventajas respecto a los métricos. Debido al inevitable ruido que incluyen
los sensores, los algoritmos de mapeo normalmente están basados en técnicas de detección
de bucles, que consisten en identificar correctamente cuando el vehículo ha vuelto a un lugar
previamente visitado para reducir la incertidumbre en los mapas resultantes. Esta tesis trata
de dar solución al problema de generar mapas topológicos del entorno utilizando algoritmos
eficientes de detección de bucles basados en visión. Debido a que la calidad de un algoritmo
de detección visual de bucles está directamente relacionada con la descripción de las imágenes
y con el método utilizado para indexarlas, en esta tesis se proponen varias técnicas para de-
tectar bucles, adoptando diferentes enfoques. Estos métodos se utilizan como componentes
básicos en tres novedosos algoritmos de mapeo topológico. Los resultados obtenidos indican
que las soluciones propuestas presentan un mejor rendimiento que diversos algoritmos consid-
erados como estado del arte por la comunidad. Para concluir, y dado que el reconocimiento
de escenas es también un componente esencial en otras áreas de investigación, se presenta un
algoritmo de generación de mosaicos de imágenes. Este algoritmo utiliza una de las técni-
cas de detección de bucles presentadas previamente para encontrar pares de imágenes que se
solapan y se utiliza para obtener mosaicos en diferentes entornos en un tiempo razonable.

Resum

El mapeig i la localització són dos processos fonamentals en robòtica autònoma mòbil a causa
de que són la base d’altres tasques de més alt nivell i més complexes, com l’evitació d’obstacles
o la planificació de rutes. El mapeig és el procés a través del qual el robot construeix la seva
pròpia representació de l’entorn quan el mapa no està disponible. Existeixen fonamentalment
dos tipus de mapes: els mètrics i els topològics. Mentre que els mapes mètrics representen
el món el més exacte possible d’acord a un sistema de coordenades de referència, els mapes
topològics el representen d’una manera abstracte utilitzant un graf, el que suposa una sèrie
d’avantatges respecte als mètrics. A causa de l’inevitable soroll que inclouen els sensors,
els algorismes de mapeig normalment estan basats en tècniques de detecció de bucles, que
consisteixen en identificar correctament quan el vehicle ha tornat a un lloc prèviament visitat
per reduir la incertesa en els mapes resultants. Aquesta tesi tracta de donar solució al problema
de generar mapes topològics de l’entorn utilitzant algorismes eficients de detecció de bucles
basats en visió. Degut a que la qualitat d’un algorisme de detecció visual de bucles està
directament relacionada amb la descripció de les imatges i amb el mètode utilitzat per indexar-
les, en aquesta tesi es proposen diverses tècniques per detectar bucles adoptant diferents
enfocs. Aquests mètodes s’utilitzen com a components bàsics en tres nous algorismes de
mapeig topològic. Els resultats obtinguts indiquen que les solucions proposades presenten un
millor rendiment que diversos algorismes considerats com estat de l’art per la comunitat. Per
concloure, i atès que el reconeixement d’escenes és també un component essencial en altres
àrees d’investigació, es presenta un algorisme de generació de mosaics d’imatges. Aquest
algorisme utilitza una de les tècniques de detecció de bucles presentades prèviament per trobar
parells d’imatges que es solapen, i s’utilitza per obtenir mosaics en diferents entorns en un
temps raonable.

Acknowledgements

Let me write some words in Spanish. Es difícil terminar una tesis sin la ayuda de una serie
de personas que, ya sea por su trabajo, por su apoyo o por ambas cosas, colaboran en mayor
o menor medida en su desarrollo. Es el momento, por tanto, de aprovechar estas líneas para
agradecer a esas personas todo lo que han hecho por mí durante estos años. Sin ningún orden
en particular, me gustaría dar las gracias:

• A mi director de tesis, Alberto Ortiz, por las incontables horas que me ha dedicado
durante casi una década, por aportar todos sus conocimientos cuando los míos habían
llegado a su límite, por darme la oportunidad de dedicarme a esto y por enseñarme la
profesión. Alberto ha sido todo lo que un director de tesis debería ser.

• A Xisco Bonnín, mi compañero de batalla y de despacho, por haber recorrido este
viaje junto a mí desde el principio, por sus contínuas muestras de apoyo y por los
buenos momentos pasados durante todos estos años, especialmente durante los viajes
de MINOAS e INCASS.

• A Joan Pep Company, el último en aparecer por el laboratorio, por su buen humor, por
sus ánimos y por estar siempre dispuesto a echar una mano sin esperar nada a cambio.

• AMiquel, Pep Lluís, Alberto, David, Inés, y Francesc, por aguantar mi mal rollo durante
muchos cafés y por multitud de conversaciones monotemáticas sobre lo que es e implica
hacer una tesis.

• A Javier Antich, por hacerme ganar algún partido de vez en cuando y por dejarme el
estilo de este documento.

• Al resto de miembros del grupo SRV y a Óscar Valero por sus contínuas muestras de
apoyo e interés en este trabajo.

• A toda mi familia, especialmente a mis padres, Valentín y Catalina, que aún no teniendo
una vida fácil lo han dado todo para que yo haya podido llegar hasta aquí en unas
condiciones que ellos no pudieron ni soñar.

• A Pedro y a Toni, por más de 25 años de amistad, y a mi gente: Edu, Mainez, Susana,
Carlos, Ana, Sara, Cristóbal y Javi por hacerme olvidar por momentos las complica-
ciones de esta tesis.

• Por último, y muy especialmente, a María, la persona que más ha tenido que sufrirme
durante el desarrollo de esta tesis, por estar siempre apoyándome y a mi lado. Esta
tesis la hemos hecho a medias: yo he puesto el trabajo y las horas, y tú, la paciencia, la
comprensión y el cariño.

Contents

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

List of Acronyms xxv

Symbols and Notation xxix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Basic Concepts . 1
1.1.2 Mobile Robot Navigation . 3
1.1.3 Mapping, Localization and SLAM . 3
1.1.4 Loop Closure Detection . 4

1.2 Contributions . 5
1.3 Document Structure . 6
1.4 Associated Publications . 7

2 Background 11
2.1 Topological Mapping . 11
2.2 Appearance-based Loop Closure Detection . 13

2.2.1 Image Description . 14
2.2.2 Image Indexing . 22

3 Literature Review 27
3.1 Methods based on Global Descriptors . 28

3.1.1 Histograms . 29
3.1.2 The Gist Descriptor . 31
3.1.3 Vertical Regions . 32
3.1.4 Discrete Fourier Transform . 33
3.1.5 Biologically-Inspired Approaches . 33
3.1.6 Other Approaches . 34

3.2 Methods based on Local Features . 35
3.3 Methods based on Bag-of-Words Schemes . 40

3.3.1 Offline Visual Vocabulary Approaches 40
3.3.2 Online Visual Vocabulary Approaches 44

3.4 Methods based on Combined Approaches . 45

xv

xvi CONTENTS

3.5 Discussion . 48

4 Experimental Setup 51
4.1 Performance Metrics . 51
4.2 Datasets . 53

4.2.1 Lip6 Dataset . 54
4.2.2 Oxford Dataset . 54
4.2.3 KITTI Dataset . 56
4.2.4 UIB Dataset . 56

4.3 Reference Solutions . 57
4.3.1 FAB-MAP 2.0 . 57
4.3.2 SeqSLAM . 58

5 Loop Closure Detection using Local Invariant Features and KD-Trees 59
5.1 Image Description . 60
5.2 Map Representation . 60
5.3 Topological Mapping Framework . 61

5.3.1 Algorithm Overview . 61
5.3.2 Probabilistic Loop Closure Detection . 63
5.3.3 Map Refinement . 67

5.4 Experimental Results . 70
5.4.1 Parameter Configuration . 70
5.4.2 Loop Closure Detection . 71
5.4.3 Topological Mapping and Localization 76
5.4.4 Map Refinement . 81
5.4.5 Computational Times . 83

5.5 Discussion . 88

6 Loop Closure Detection using Incremental Bags of Binary Words 89
6.1 Incremental Bag-of-Binary-Words . 90

6.1.1 Fast Matching of Binary Features . 90
6.1.2 Online Binary Image Index . 91

6.2 Image Description . 94
6.3 Map Representation . 94
6.4 Topological Mapping Framework . 95

6.4.1 Algorithm Overview . 95
6.4.2 Probabilistic Loop Closure Detection . 96

6.5 Experimental Results . 98
6.5.1 Parameter Configuration . 99
6.5.2 Loop Closure Detection . 100
6.5.3 Topological Mapping and Localization 104
6.5.4 Computational Times . 104

6.6 Discussion . 107

7 Hierarchical Loop Closure Detection for Topological Mapping 109
7.1 Image Description . 110

7.1.1 Global Feature Description . 110
7.1.2 Local Feature Description . 110

CONTENTS xvii

7.2 Map Representation . 111
7.3 Topological Mapping Framework . 112

7.3.1 Algorithm Overview . 112
7.3.2 Hierarchical Loop Closure Detection . 114
7.3.3 New Location Policy . 117

7.4 Experimental Results . 118
7.4.1 Parameter Configuration . 118
7.4.2 Loop Closure Detection . 119
7.4.3 Topological Mapping and Localization 124
7.4.4 Sparsity . 125
7.4.5 Computational Times . 128

7.5 Discussion . 130

8 Fast Image Mosaicing using Incremental Bags of Binary Words 133
8.1 Background . 134
8.2 Motion Estimation . 135
8.3 Image Mosaicing using Binary Descriptors . 136

8.3.1 Mosaic Graph . 137
8.3.2 Keyframe Selection . 138
8.3.3 Loop Closing . 139
8.3.4 Optimization . 140
8.3.5 Blending . 141

8.4 Experimental Results . 141
8.5 Discussion . 147

9 Conclusions and Future Work 149
9.1 Summary . 149
9.2 Future Work . 151

Bibliography 153

List of Figures

1.1 Examples of modern robots. 2
1.2 Example of metric map generated using a laser range finder. 5

2.1 Classical example of a topological map. 13
2.2 An example of PHOG descriptor computation. 16
2.3 Overview of the DoG scheme. 19
2.4 Box filters used by SURF. 19
2.5 FAST corner detection. 20
2.6 Different spatial arrangements for computing BRIEF. 21
2.7 Example of matching two images using ORB. 22
2.8 LDB descriptor computation. 22
2.9 Example of a 3-dimensional tree. 23
2.10 Example of BoW scheme. 24

3.1 Taxonomy for classifying vision-based topological schemes. 28

4.1 Graphical representation of precision and recall metrics. 53
4.2 Examples of images taken from the Lip6 dataset. 55
4.3 Examples of images taken from the Oxford dataset. 55
4.4 Examples of images taken from the KITTI dataset. 56
4.5 Examples of images taken from the UIB dataset. 57

5.1 Overview of FEATMap. 61
5.2 Image selection policy in FEATMap. 63
5.3 Example of erasability. 69
5.4 Examples of situations solved by FEATMap’s map refinement strategy. 69
5.5 Likelihood matrix computed using FEATMap. 72
5.6 Example of loop closured detection in FEATMAP. 73
5.7 Example of loop closure detection in FEATMap under camera rotations. 73
5.8 Example of loop closure detection under bad weather conditions. 74
5.9 Precision-recall curves for each sequence using FEATMap and FAB-MAP 2.0. . 75
5.10 Path followed by the camera during the UIBSmallLoop experiment. 76
5.11 Path followed by the camera during the UIBLargeLoop experiment. 77
5.12 Topological map generated for the Lip6Indoor sequence using FEATMap. . . . 78
5.13 Topological map generated for the Lip6Outdoor sequence using FEATMap. . . 79
5.14 Topological map generated for the UIBSmallLoop sequence using FEATMap. . 80
5.15 Example of adding intermediate nodes in the Lip6Indoor sequence. 81
5.16 Topological map generated for the UIBLargeLoop sequence using FEATMap. . 82

xix

xx LIST OF FIGURES

5.17 Topological map generated for the UIBIndoor sequence using FEATMap. . . . 83
5.18 Map of the Lip6Indoor sequence obtained without map refinement. 84
5.19 Map of the Lip6Outdoor sequence obtained without map refinement. 84
5.20 Map of the UIBSmallLoop sequence obtained without map refinement. 85
5.21 Map of the UIBLargeLoop sequence obtained without map refinement. 85
5.22 Map of the UIBIndoor sequence obtained without map refinement. 86
5.23 Computational times of FEATMap executed over the KITTI 05 sequence. . . . 86

6.1 Simple example of OBIndex. 91
6.2 Overview of BINMap. 96
6.3 Likelihood matrix computed using BINMap. 100
6.4 Example of loop closure detection in BINMap. 101
6.5 Precision-recall curves for each sequence using BINMap and FAB-MAP 2.0. . . 102
6.6 Topological map generated for the City Center sequence using BINMap. 103
6.7 Topological map generated for the New College sequence using BINMap. 103
6.8 Topological map generated for the KITTI 00 sequence using BINMap. 104
6.9 Topological map generated for the KITTI 05 sequence using BINMap. 105
6.10 Topological map generated for the KITTI 06 sequence using BINMap. 105
6.11 Searching times regarding the number of features in the index. 106
6.12 Computational times of BINMap executed over the KITTI 00 sequence. 107

7.1 Example of a hierarchical map generated by HTMap. 112
7.2 Overview of HTMap. 113
7.3 Hierarchical loop closure detection algorithm. 113
7.4 Likelihood matrix computed using HTMap. 120
7.5 Precision-recall curves using HTMap, FAB-MAP 2.0 and SeqSLAM. 121
7.6 Loop closure results for the City Center sequence. 122
7.7 Loop closure results for the New College sequence. 122
7.8 Loop closure results for the KITTI 00 sequence. 123
7.9 Loop closure results for the KITTI 05 sequence. 123
7.10 Loop closure results for the KITTI 06 sequence. 124
7.11 Topological map generated for the City Center sequence using HTMap. 125
7.12 Topological map generated for the New College sequence using HTMap. 126
7.13 Topological map generated for the KITTI 00 sequence using HTMap. 126
7.14 Topological map generated for the KITTI 05 sequence using HTMap. 127
7.15 Topological map generated for the KITTI 06 sequence using HTMap. 127
7.16 Sparsity analysis of HTMap. 128
7.17 Computational times of HTMap on the KITTI 00 sequence. 130

8.1 BIMOS architecture. 137
8.2 A simple example of a mosaic graph. 138
8.3 An simple example of bounding rectangle computation. 139
8.4 Mosaic resulting for the Vall1 dataset. 142
8.5 Mosaic resulting for the Vall2 dataset. 143
8.6 Mosaic resulting for the image sequence collected by a MAV. 144
8.7 Mosaic resulting for the Air1 sequence. 145
8.8 Mosaic resulting for the Air2 sequence. 146

List of Tables

2.1 Advantages and disadvantages of metric and topological maps. 12
2.2 Summary of global image descriptors. 15
2.3 Summary of local feature detectors. 17
2.4 Summary of local feature descriptors. 18

3.1 Summary of approaches based on global image descriptors. 29
3.2 Summary of approaches based on local features. 36
3.3 Summary of approaches based on BoW schemes. 41
3.4 Summary of approaches based on combined solutions. 46
3.5 Advantages and disadvantages of each description method. 48
3.6 Advantages and disadvantages of BoW approaches. 50

4.1 Sequence of images used in the thesis. 54

5.1 Parameters for FEATMap execution. 70
5.2 P and R achieved for five sequences using FEATMap and FAB-MAP 2.0. . . . 74
5.3 Results for the map refinement experiment using FEATMap. 87
5.4 Computational times for FEATMap executed over the KITTI 05 sequence. . . 87

6.1 Parameters for BINMap execution. 99
6.2 P and R achieved for five sequences using BINMap and FAB-MAP 2.0. 101
6.3 Computational times for BINMap executed over the KITTI 00 sequence. 106

7.1 Parameters for HTMap execution . 119
7.2 P and R for five sequences using HTMap, FAB-MAP 2.0 and SeqSLAM. 124
7.3 Computational times for HTMap on the KITTI 00 sequence. 129

8.1 Summary of the experimental results of BIMOS. 141

9.1 Summary of topological approaches. 151

xxi

List of Algorithms

5.1 FEATMap: Topological Mapping Framework 62
5.2 FEATMap: Loop Closure Detection . 67
5.3 FEATMap: Map Refinement . 68
6.1 OBIndex: Add New Image . 93
6.2 OBIndex: Search Image . 94
6.3 BINMap: Topological Mapping Framework . 95
6.4 BINMap: Loop Closure Detection . 98
7.1 HTMap: Topological Mapping Framework . 114
7.2 HTMap: Hierarchical Loop Closure Detection 115
7.3 HTMap: Likelihood Computation . 118

xxiii

List of Acronyms

ABLC Appearance-Based Loop Closure

ABLE Able for Binary-appearance Loop-closure Evaluation

ABTM Appearance-Based Topological Mapping

ANNS Approximate Nearest Neighbor Search

AUC Area Under the Curve

AUV Autonomous Underwater Vehicle

BIMOS Binary descriptor-based Image Mosaicing

BINMap Binary Mapping

BoW Bag-of-Words

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoints

CBIR Content-Based Image Retrieval

CENTRIST Census Transform Histogram

DFT Discrete Fourier Transform

DOG Difference of Gaussians

FAB-MAP Fast Appearance-based Mapping

FACT Fast Adaptive Colour Tags

FEATMap Feature-based Mapping

FN False Negative

FP False Positive

FREAK Fast Retina Keypoint

GPS Global Positioning System

GPU Graphics Processor Unit

xxv

xxvi LIST OF ACRONYMS

HCT Hull Census Transform

HMM Hidden Markov Model

HOUP Histogram of Oriented Uniform Patterns

HTMap Hierarchical Topological Mapping

IMU Inertial Measurement Unit

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute

KLT Tracker Kanade-Lucas-Tomasi Tracker

LDB Local Difference Binary

LTM Long-Term Memory

LSH Locality Sensitive Hashing

LVQ Learning Vector Quantization

MAV Micro-Aerial Vehicle

MRF Markov Random Field

NNS Nearest Neighbor Search

OACH Orientation Adjacency Coherence Histograms

OBIndex Online Binary Image Index

OpenCV Open Source Computer Vision

ORB Oriented FAST and Rotated BRIEF

PCA Principal Component Analysis

PHOG Pyramid Histogram of Oriented Gradients

PIRF Position-Invariant Robust Feature

PR Curve Precision-Recall Curve

PTM Probabilistic Topological Maps

RANSAC Random Sample Consensus

ROC Receiver Operating Characteristic

ROS Robot Operating System

SAT Separating Axis Theorem

SeqSLAM Sequence SLAM

SIFT Scale-Invariant Feature Transform

LIST OF ACRONYMS xxvii

SLAM Simultaneous Localization and Mapping

STM Short-Term Memory

SURF Speeded Up Robust Features

SVM Support Vector Machines

TF-IDF Term Frequency - Inverse Document Frequency

TN True Negative

TP True Positive

U-SURF Upright-SURF

VPC Visual Place Categorization

WGII Weighted Grid Integral Invariant

WGOH Weighted Gradient Orientation Histograms

Symbols and Notation

t Time stamp t

It Image at time t

Ft Set of local feature descriptors extracted from image It

f tj Local feature descriptor j belonging to set Ft

Gt Global descriptor computed from image It

df (f ip, f jq) Generic distance between two local feature descriptors of sets Fi and Fj

dg(Gi, Gj) Generic distance between two global descriptors

Mt Topological map at time t

γ Graph that encodes relationships between nodes of a topological map

ω Generic set of nodes

β Generic index of images

κi Generic keyframe

τi Generic threshold

c Loop closure candidate index

p Number of recent images discarded as loop closure candidates

zt Single observation at time t

Ot Set of observations at time t

Lti Event that image It closes a loop with image Ii

η Normalizing factor

s Generic score

P ij Path between nodes i and j

E(P ij) Erasability of path P ij

ρ Nearest neighbour distance ratio

xxix

xxx SYMBOLS AND NOTATION

`i Generic location

φi Representative global descriptor of the location `i

pi Point in an image
iHj Absolute homography between frames i and j
iH∗j Relative homography between frames i and j

iOj Overlap between images Ii and Ij

ε Error function

h(ε) Huber robust error function

R(iHj) Regularization term associated to homography iHj .

Chapter 1

Introduction

This chapter serves as introduction to this thesis. In the first section of this chapter, we intro-
duce some basic concepts of the robotics field and the scope of the dissertation is established.
Next, the main contributions made are outlined and, then, the structure of the dissertation
is presented. Finally, the publications derived from this thesis are enumerated.

1.1 Motivation

1.1.1 Basic Concepts

Robotics is a research field that has gained much popularity in recent years due to the growing
interest of big companies, like Google, Amazon, Bosch or Parrot. This increasing popularity
has also promoted the creation of new corporations dedicated to particular markets in robotics.
As a consequence of these facts, robotics has evolved from a purely academic field to be present
in the people’s daily lives. Robotic applications covers an extensive range of possibilities in
different areas, such as, for instance, surgery, space exploration, surveillance, security, personal
assistance, inspection of structures or rehabilitation. Among other definitions, robotics could
be stated as the branch of engineering that involves the design, manufacture, control and
programming of robots. Robotics takes concepts from different subjects such as mechanical
engineering, electrical engineering, electronic engineering, mathematics, physics and computer
science, and, therefore, it can be seen as a combination of several areas of knowledge. Fig. 1.1
illustrates some examples of different robots developed recently.

The term robot was first coined by the Czech writer Karel Capek in his science fiction play
Rossum’s Universal Robots (R.U.R). It comes from the Czech word robota, which means slave
or forced labour. It was popularized by Isaac Asimov in 1950 in his novel I Robot, where, by
the way, the Three Laws of Robotics were introduced. Nowadays, there is no clear consensus
on what the term means, since it is used to designate agents that perform different tasks in
many kinds of scenarios. In attempting to give a modern definition, we could say that robots
are machines which are able to execute one or more tasks repeatedly while interact with their
environment.

In order to perform more complex tasks, robots usually need to be moved, which leads
us to a special kind of robots that are mobile. Therefore, a mobile robot is an automatic

1

2 Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of modern robots. (a) Google’s self-driving car. (b) Amazon’s drone
for Prime Air. (c) Bosch’s Indego lawnmower. (d) Parrot’s AR.Drone. (e) iRobot’s Roomba
vacuum cleaner. (f) Asctec’s Firefly drone.

machine that has the ability to move around in their environment and it is not fixed to a
physical location. The type of movement of a mobile robot is determined according to their
locomotion mechanisms. Although a lot of actuators have been proposed by roboticists along
the years, the election of the locomotion mechanisms to be incorporated into a mobile vehicle
is normally governed by the domain of the application. According to Dudek and Jenkin [1],
mobile robots can be broadly classified into four main categories conforming to this application
domain:

• Terrestrial robots, which walk on the ground and are designed to take advantage of a solid
contact with a surface. Initially, the most common terrestrial vehicles were wheeled, but
recently, there exists a growing interest in humanoid robots, which are mainly based on
bipedal locomotion.

• Aquatic robots, which operate in water, either at the surface or underwater. This kind of
robots is mainly equipped with water jets or propellers as locomotion mechanisms. The
importance of this group of robots lies in that water, specially in scenarios like oceans,
is a medium usually hard to reach for humans.

• Aerial robots, which can fly. They share many issues and locomotion mechanisms with
aquatic robots. This kind of robot has become an important research field in the last
few years due to the intense development of Micro Aerial Vehicles (MAV).

• Space robots, which are designed to operate in the microgravity of outer space. The
locomotion strategies used for these robots vary, given that some of them are mainly
devised for flying and others for ground exploration.

1.1. Motivation 3

A mobile robot can be managed by a human operator. However, there are some tasks
where robots are required to be autonomous. By definition, an autonomous robot is an agent
that can perform behaviours or tasks with a high degree of autonomy and/or without human
intervention. This kind of robots is particularly interesting in fields such as space exploration
or rescuing tasks in disasters, which are hard to reach for humans.

1.1.2 Mobile Robot Navigation

When converting a mobile robot in an autonomous platform, several problems arise. In
addition to the locomotion mechanisms required for the task at hand, the robot needs to
perceive information from its environment and process it in a intelligent way in order to plan
routes, reach places and avoid dangerous situations. In this context, these tasks lead us to
another important concept in mobile robotics: navigation.

Mobile robot navigation can be roughly described as the process of determining a suitable
and safe path between a starting and a goal point for a robot travelling between them [2].
Navigation can be seen as a combination of, among others, three fundamental tasks:

• Localization, which denotes the ability of the robot to know its position and orientation
with regard to its environment.

• Path planning, which deals with finding the most optimal path between two points of
the environment. Note that this includes the ability of avoiding obstacles.

• Mapping, which is in charge of creating maps, abstract representations of the robot’s
environment, using the sensors the robot is equipped with.

Given the nature of each of these tasks, we can argue that maps are essential components
in most robotic navigation systems, since the other tasks depend significantly on them. For
instance, path planning, to be correctly carried out, require a map of the environment and the
location of the robot within the map. It is also true that some authors have proposed reactive
navigation techniques encompassed in a category called mapless navigation systems [2], where
there is no global representation of the environment and the world is perceived as the system
navigates through it. Nonetheless, most part of the solutions proposed during the last years
belong to the group of map-based navigation systems, where a map of the environment is
needed to navigate.

1.1.3 Mapping, Localization and SLAM

Maps could be provided to a robot a priori, but sometimes this is not possible, and then the
robot is required to build its own representation of the possibly unknown or partially unknown
environment. This process, as mentioned previously, is called mapping and is one of the main
topics of this dissertation. As far as robotic mapping is concerned, two main paradigms are
generally accepted: metric and topological mapping. While metric maps describes the position

4 Introduction

of the robot in the world along with the detected objects according to a global coordinate
system, topological maps represent the environment in an abstract manner by means of a
graph. Advantages and disadvantages of each paradigm will be discussed in chapter 2. In
this dissertation, we are primarily concerned with finding methods for generating topological
maps of the environment.

Despite mapping and localization can be performed as independent tasks, they are closely
related. As a result of the mapping process, a representative map of the environment is
generated while the localization process computes the pose of the robot within this map
according to the sensor data perceived from the sensors. As mentioned above, both processes
can be used for navigation-related tasks and are of special interest for autonomous vehicles,
which need to be able to operate without any human intervention. The pose of the structures
and the obstacles of the environment needs to be known to build a map. Whereas, during
localization, the pose of the agent against a reference map is computed. In this case the
map of the working scenario must be available before starting the navigation, which limits
the autonomy of the vehicle. To solve this egg-and-hen problem, several approaches have
been proposed where both tasks take place at the same time, creating an incremental map of
an unknown environment while localizing the robot within this map. These techniques are
generically known as Simultaneous Localization and Mapping (SLAM) [3].

1.1.4 Loop Closure Detection

One of the most important aspects of both mapping and localization tasks and, by association,
SLAM, is to correctly perceive the information of the environment. Different kinds of sensors,
such as sonars, radars, laser range finders or cameras have been used during years for this
purpose. However, none of them are exempt from noise. This unavoidable noise produces
inaccuracies in localization and mapping tasks, leading to inconsistent representations of the
environment if only raw sensor data is considered. Due to this reason, mapping approaches
are heavily influenced by loop closure detection. An example of the effect of loop closure
detection in mapping tasks is illustrated in Fig. 1.2.

Loop closure detection, also known as place recognition, is a key challenge to overcome
which entails the correct identification of previously visited places from sensor data. This
allows the robot to correct inaccuracies in the map, generating consistent representations and
reducing their uncertainty. However, as stated by Korrapati [5], loop closure detection is
not an easy task and is even a more complex problem than localization due to the following
reasons:

• Scalability: The complexity of the problem increases as the map enlarges, since more
previous observations need to be compared with the current one to determine the exis-
tence of a loop.

• Perceptual aliasing: Different places of the environment are perceived as the same,

1.2. Contributions 5

(a) (b)

Figure 1.2: Example of metric map generated using a laser range finder. (a) Resulting map
using raw sensor data. (b) The same map using the detected loop closures for correcting the
trajectory. Dataset recorded by Cyrill Stachniss and Giorgio Grisetti [4].

resulting into false loop closure detections.

• Sensor noise: As stated above, measurements include noise, which makes more difficult
the data association.

• Changes in the environment: Moving objects produce different perceptions of the same
place.

Recently there has been a significant increase in the number of visual solutions to solve
the loop closure detection problem because of the low cost of cameras and the richness of the
sensor data provided. This implies to carry out the loop closure detection using images as a
main source of information.

1.2 Contributions

Due to the importance of place recognition in mapping tasks, this dissertation introduces
several appearance-based loop closure detection techniques devised from different points of
view. Then, using these techniques as a basis, the rest of the thesis is concerned with the
development of a set of vision-based topological mapping algorithms. However, recognizing
previously seen places is also a key step in other research fields, such as image mosaicing.
Due to this reason, an image mosaicing algorithm based on one of the loop closure detection
techniques introduced in this work is also proposed, as an example of application of place
recognition in a different research area. More precisely, the main contributions of this thesis
are:

• A complete survey of the most outstanding works in vision-based topological mapping

6 Introduction

and localization methods during the last fifteen years. This survey has allowed us to
determine several open research topics that inspire the rest of contributions.

• The development of a new topological mapping algorithm called FEATMap (Feature-
based Mapping), whose main contribution is the use of a loop closure detection module
based on a set of randomized kd-trees and inverted files for indexing previously seen
images. Another contribution of FEATMap is a map refinement strategy to avoid re-
dundant nodes in the resulting maps and to refine the final estimated topology.

• A novel technique for indexing images called OBIndex (Online Binary Image Index).
This method is based on an incremental Bag-of-Binary-Words scheme, taking advantage
of the benefits of binary descriptors and avoiding the common training step of Bag-of-
Words approaches. This image indexing scheme is a key component for the remaining
contributions of this thesis.

• A new topological mapping algorithm called BINMap (Binary Mapping). As a main
innovation, BINMap utilizes OBIndex to index the previously seen images and to obtain
similar loop closure candidates in an efficient way, achieving good recall rates.

• A novel vision-based approach for topological mapping called HTMap (Hierarchical
Topological Mapping), which relies on a hierarchical loop closure detection algorithm.
In HTMap, images are described using a global descriptor and a set of binary local
descriptors, and similar images are grouped together to form a location. Each location
is represented by means of an average global descriptor and an instance of OBIndex
containing the descriptors found in the images associated to the location. Then, the
loop closure detection is performed in two different steps: first, the global descriptors
are used to obtain candidate locations, and, secondly, the instances of OBIndex of each
node are used for obtaining similar image candidates in the retrieved nodes.

• A novel image mosaicing algorithm called BIMOS (Binary descriptor-based Image Mo-
saicing), which can generate mosaics in a reasonable amount of time under different
operating conditions. In order to efficiently estimate the topology of the environment,
BIMOS uses OBIndex as a place recognition system.

1.3 Document Structure

With the preceding contributions in mind, the dissertation is divided into nine chapters as
follows:

• Chapter 2 reviews basic concepts and background for this thesis.

• Chapter 3 extensively discusses the main contributions on vision-based topological
mapping emerged during the last fifteen years, and identifies the strong and weak points
of the different approaches.

1.4. Associated Publications 7

• Chapter 4 explains a common framework used to validate the topological mapping al-
gorithms presented in this thesis. Performance metrics, datasets and reference solutions
taken as baseline for comparisons are discussed.

• Chapter 5 introduces FEATMap, a probabilistic topological mapping approach based
on local image features and a map refinement strategy.

• Chapter 6 introduces OBIndex, an image indexing approach based on an incremental
Bag-of-Binary-Words scheme. Then, we introduce BINMap, a topological mapping
algorithm which employs BINMap as a base component for detecting loop closures.

• Chapter 7 introduces HTMap, an appearance-based approach for topological mapping
based on a hierarchical decomposition of the environment.

• Chapter 8 describes BIMOS, a multi-threaded approach for fast image mosaicing,
which uses OBIndex as image index for inferring the relationships between the images
that conform the topology of the sequence.

• Chapter 9 concludes this dissertation by summarizing the main contributions of the
thesis and by highlighting the differences of the introduced approaches with other similar
solutions. Some future work to extend the research described here is also suggested.

1.4 Associated Publications

The publications that have been derived from the work presented in this thesis are enumerated
below, categorized by the type of publication.

Journals

• Emilio Garcia-Fidalgo and Alberto Ortiz,Hierarchical Place Recognition for Topo-
logical Mapping, IEEE Transactions on Robotics, (conditionally accepted).

• Emilio Garcia-Fidalgo and Alberto Ortiz, Vision-Based Topological Mapping and
Localization Methods: A Survey, Robotics and Autonomous Systems, vol. 64, pp.
1-20, 2015, ISSN: 0921-8890 [6].

• Emilio Garcia-Fidalgo and Alberto Ortiz, Vision-Based Topological Mapping and
Localization by means of Local Invariant Features and Map Refinement,
Robotica, vol. 33, no. 7, pp. 1446-1470, 2015, ISSN: 0263-5747 [7].

Conferences

• Emilio Garcia-Fidalgo, Alberto Ortiz, Francisco Bonnin-Pascual and Joan P. Company,
Fast Image Mosaicing using Incremental Bags of Binary Words, in proceedings

8 Introduction

of the IEEE International Conference on Robotics and Automation (ICRA), May 2016,
Stockholm (Sweden), pp. 1174-1180 [8].

• Emilio Garcia-Fidalgo, Alberto Ortiz, Francisco Bonnin-Pascual and Joan P. Company,
A Mosaicing Approach for Vessel Visual Inspection using a Micro-Aerial
Vehicle, in proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), September 2015, Hamburg (Germany), pp. 104-110 [9].

• Emilio Garcia-Fidalgo and Alberto Ortiz, On the Use of Binary Feature Descrip-
tors for Loop Closure Detection, in proceedings of the IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), September 2014,
Barcelona (Spain), pp. 1-8 [10].

• Emilio Garcia-Fidalgo and Alberto Ortiz, Probabilistic Appearance-Based Map-
ping and Localization Using Visual Features, in proceedings of the VI Iberian
Conference on Pattern Recognition and Image Analysis (IbPRIA), June 2013, Funchal
(Portugal), pp. 277-285 [11].

Technical and Research Reports

• Emilio Garcia-Fidalgo, Alberto Ortiz, Francisco Bonnin-Pascual and Joan P. Company,
A Multi-Threaded Architecture for Fast Topology Estimation in Image Mo-
saicing, Department of Mathematics and Computer Science, University of the Balearic
Islands, Tech. Rep. A-05-2015 [12].

• Emilio Garcia-Fidalgo, Alberto Ortiz, Francisco Bonnin-Pascual and Joan P. Company,
Vessel Visual Inspection: A Mosaicing Approach, Department of Mathematics
and Computer Science, University of the Balearic Islands, Tech. Rep. A-01-2015 [13].

• Emilio Garcia-Fidalgo and Alberto Ortiz, State-of-the-Art in Vision-Based Topo-
logical Mapping and Localization Methods, Department of Mathematics and
Computer Science, University of the Balearic Islands, Tech. Rep. A-01-2014 [14].

• Emilio Garcia-Fidalgo and Alberto Ortiz, Vision-Based Topological Mapping and
Localization by means of Local Invariant Features and Map Refinement,
Department of Mathematics and Computer Science, University of the Balearic Islands,
Tech. Rep. A-04-2013 [15].

• Emilio Garcia-Fidalgo and Alberto Ortiz, A Solution for Bayesian Visual Loop
Closure Detection Based on Local Invariant Features, Department of Mathe-
matics and Computer Science, University of the Balearic Islands, Tech. Rep. A-01-
2013 [16].

1.4. Associated Publications 9

Workshops

• Emilio Garcia-Fidalgo and Alberto Ortiz, Indexing Invariant Features for Topolog-
ical Mapping and Localization, inWorkshop on Field Robotics (euRathlon/ARCAS),
June 2014, Seville (Spain) [17].

Chapter 2

Background

This chapter is intended to provide the reader with a general overview of the most important
concepts and terms needed to understand the rest of this thesis. These main concepts are
briefly introduced and examples are also provided, when necessary.

2.1 Topological Mapping

As previously stated in chapter 1, robot mapping can be defined as the process of generating
a representation of the environment useful for the task at hand. Despite this process seems
to be an easy task for humans, it is not for a robot and therefore mapping is currently a very
active research field. An appropriate map for an autonomous robot should be constructed
using the same sensors that the robot employs to observe the world. These sensors usually
corrupted by noise and interferences, which makes more difficult the data association between
measurements and map.

There exist several ways of representing a map. The accuracy of the map will depend
on the information requirements of the application. Three main paradigms for mobile robot
mapping are usually accepted:

• Metric maps: this kind of maps represents the world as accurate as possible. They
maintain a high amount of information about environment details, such as distances,
measures, sizes and so on, and they are referenced according to a global coordinate
system. The main drawbacks of this approach are the processing time and the storage
needs, which makes its use in some real time applications more difficult.

• Topological maps: this approach generates an abstract representation of the world, usu-
ally as a graph with nodes and links between them. Nodes represent environment
locations with similar features and links are relationships or possible actions to take
between the different locations. These maps are simpler and more compact than metric
maps, and require much less space to be stored.

• Hybrid maps: this last paradigm tries to maximize the advantages and minimize the
problems of each kind of map alone and combine them in a different mapping technique.

11

12 Background

Feature Metric maps Topological maps
CPU Needs High Low

Storage Needs High Low
Path Planning Complex Simple
Optimal Routes Yes No

Accuracy Yes No

Table 2.1: Advantages and disadvantages of metric and topological maps.

The main advantages and disadvantages of metric and topological approaches [18] are
summarized in Table 2.1. As mentioned above, topological maps generally require less storage
space and are more computationally efficient than metric maps, due to a simpler representation
of the environment. This representation also reduces the navigation problem to finding a path
between two nodes, which can be solved by any graph search algorithm. However, unlike
metric maps, these paths are not always the optimal one between the nodes, due to the lack
of geometric information. Besides, topological maps are not useful for tasks with accuracy
needs, such as obstacle avoidance.

Given the advantages that topological maps present, in this thesis we are interested in
developing techniques to generate this kind of maps. Formally, a graph-based map can be
described as [1]:

G = (V,E) , (2.1)

where V is a set of nodes and E is a set of edges. The set of n nodes is denoted as:

V = {v1, . . . , vn} , (2.2)

and the set of m edges is denoted as:

E = {e1, . . . , em} , (2.3)

where and edge eij is expressed as:

eij = {vi, vj} . (2.4)

When the order of vi and vj is significant, the edge between nodes is unidirectional, resulting
into a directed graph. Otherwise, the edges are valid for both directions, resulting into an
undirected graph. The topological mapping solutions presented in this thesis belong to this
last type of graphs. An example of a topological map commonly used by humans is shown in
Fig. 2.1.

Using vision as a sensor to generate topological maps is commonly referred to as Appearance-
Based Topological Mapping (ABTM) [5] and is the main theme of this thesis. Images provide
rich information and besides a camera is a cheaper sensor in comparison with other solutions,

2.2. Appearance-based Loop Closure Detection 13

Figure 2.1: Classical example of a topological map: the London underground network. Note
that, in this kind of maps, no metric information is available, but it is enough for human
orientation.

such as laser range finders.

There exist mainly two types of topological maps: dense and sparse. In a dense topological
map, each new received image is added to the map as a new node. Conversely, a sparse
topological map tries to group similar images together in nodes following a similarity criterion.
In this thesis, solutions of both approaches are proposed.

2.2 Appearance-based Loop Closure Detection

In topological mapping, loop closure detection provides information about whether the current
node should be linked in the graph with a previously seen node or not. Hence, the accuracy
of the final map will depend on this loop closure detection process, and wrong detections will
result into inconsistent maps.

Metric information can be useful to infer or reduce the areas of the environment to search
for loop closures. Given that pure topological mapping approaches do not rely on an odometry
source, the loop closure detection must be performed using the sensors onboard the platform.
In this regard, when a camera is the elected sensor, loop closure detection approaches are usu-
ally known as Appearance-Based Loop Closure detection (ABLC). The topological mapping
approaches presented in this thesis heavily rely on ABLC. Due to this reason, several loop
closure detection techniques have been developed.

The performance of an appearance-based loop closure detection algorithm is highly influ-
enced by the description method used to describe images and the ability of the algorithm to
retrieve images similar to the current one. In the following, we will perform a brief introduc-
tion of these main factors.

14 Background

2.2.1 Image Description

In this section, we provide a general overview of some image description methods which
are relevant for this thesis. These methods can be classified in two main categories: global
descriptors and local image features.

2.2.1.1 Global Descriptors

Overview

Global descriptors describe the image in a holistic manner, using the full image as input
to the process. These descriptors are normally very fast to compute, what simplifies the
matching process between images and reduces the computational needs of mapping and local-
ization tasks. This kind of descriptor has been used in several applications comprising scene
classification, giving reasonable results in all cases.

A summary of global descriptors used in some topological mapping approaches is shown
in Table 2.2. There exist other global descriptors that have not been included in the table
because, to the best of our knowledge, they have not been employed in topological map-
ping and localization solutions, although they could be interesting for the reader. Some of
them have been used for scene categorization, such as Census Transform Histogram (CEN-
TRIST) [19], Pyramid Histogram of Oriented Gradients (PHOG) [20], Histogram of Oriented
Uniform Patterns (HOUP) [21], Multi-Resolution BoW [22] and for pedestrian detection, such
as Histogram of Oriented Gradients (HOG) [23].

PHOG

Pyramid Histogram of Oriented Gradients (PHOG) [20] was originally developed for scene
classification. It is briefly introduced here since is a key component of one of the solutions
presented in this thesis. To the best our knowledge, it is the first attempt of using the PHOG
descriptor for topological mapping.

PHOG represents an image by its local shape and the spatial layout of this shape. The
local shape is represented by a histogram of edge orientations (HOG) [23] quantized into K
bins computed from an image subregion, where the contribution of each edge is weighted
according to the magnitude of the gradient. The spatial layout is represented by tiling the
image into regions at multiple resolutions. More precisely, the image is split into L levels,
dividing the image into a sequence of increasingly finer spatial grids by repeatedly doubling
the number of divisions in each direction.

In order to compute the descriptor, a HOG vector is calculated for each grid cell at each
pyramid resolution level. Then, the final PHOG descriptor is created by concatenating all the
HOG descriptors and normalizing them to sum to unity. A graphical representation of the
descriptor is shown in Fig. 2.2.

2.2. Appearance-based Loop Closure Detection 15

Name References
Principal Components [24, 25]
Colour Histograms [26]

Gradient Orientation Histograms [27]
WGOH [28]
WGII [29]
OACH [30]

Receptive Field Histograms [31]
Gist [32]

Omni-Gist [33]
BRIEF-Gist [34]

Spherical Harmonics [35]
Fingerprints [36]

FACT [37]
DP-FACT [38]

Fourier Signatures [39, 40]
Colour Segmented Images [41]
Scanline Intensity Profile [42]

Normalized Patches [43]
2D Haar Wavelet Decomposition [44, 45]

WI-SURF [46]
WI-SIFT [46]
DIRD [47]
OFM [48]
OFSC [48]

Table 2.2: Summary of global image descriptors.

2.2.1.2 Local Image Features

Overview

Global descriptors, where the image is described using the entire image content, work well for
capturing the general structure of the scene, but they are not able to cope with several visual
problems like partial occlusions, illumination changes or camera rotations. These problems
have been addressed more intensively through the development of local image features.

Local image features, usually known as keypoints, are defined as interest points in the
image which are different enough from their neighbours, according to different criteria such
as color, texture and so on. During the extraction step, a set of distinctive local features,
which capture the essence of the image, are detected. These features can be derived from
the application of a neighbourhood operation or searching for specific structures within the
image, such as corners, blobs or regions. Then, a description step is performed, where some
measurements are taken from the vicinity of each local feature to form a descriptor. Initially,
descriptors were formed as multi-dimensional floating-point vectors. Recently, several authors
have proposed binary descriptors, where local features are defined as bit strings, reducing the

16 Background

Figure 2.2: An example of PHOG descriptor computation. The top row shows an image
and the corresponding grids for levels L = 0 to L = 2. Below, the corresponding histogram
representation for each level is shown. The final descriptor is formed by means of a weighted
concatenation of these histograms. The remaining rows show images from the same and from
different categories, and their corresponding histograms. Image taken from [20].

storage and computational needs.

In order to identify the same local features in other images, keypoints need to be invariant
to certain properties, such as camera rotations or affine transformations. According to [49],
a good feature detector should have the following properties: repeatability, distinctiveness,
locality, quantity, accuracy and efficiency. The most important property is repeatability, that
can be achieved either by invariance, when large deformations are expected because of relevant
viewpoint changes, or by robustness, in case of relatively small deformations.

Tables 2.3 and 2.4 collect relevant information about main feature detectors and descrip-
tors. In Table 2.3, detectors are classified based on the type of the feature extracted following
the guidelines of [49], where they distinguished between corner, blob and region detectors. The
descriptors summarized in Table 2.4 are classified according to their type (floating-point or bi-
nary). The descriptor size, in number of components, is also shown in the table. These tables
do not intend to be complete, but a summary of the most important facts about local feature
detection and description. A brief overview of the approaches which are relevant for this
thesis is given in the following. Note that some approaches comprise both feature detection
and description, while others are only devised to perform one of these tasks. The interested
reader is referred to [49, 50, 51, 52] for further information about local image features.

2.2. Appearance-based Loop Closure Detection 17

Invariant

Name References Type of detector R
ot
at
io
n

Sc
al
e

A
ffi
ne

Harris [53] Corners X (X) (X)
Shi and Tomasi [54] Corners X

SUSAN [55] Corners X
FAST [56] Corners X (X)

FAST-ER [57] Corners X (X)
ORB [58] Corners X X

AGAST [59] Corners X (X)
BRISK [60] Corners X X
SIFT [61] Blobs X X
SURF [62] Blobs X X
CenSure [63] Blobs X X
Star [64] Blobs X X

SUSurE [65] Blobs X X
KAZE [66] Blobs X X
AKAZE [67] Blobs X X
ASIFT [68] Blobs X X X
MSER [69] Regions X X X

Table 2.3: Summary of local feature detectors. Check marks between parentheses indicate
that there exist versions that are invariant to scale or affine transformations.

SIFT

Scale-Invariant Feature Transform (SIFT) is an algorithm developed by Lowe [61] to detect
and describe distinctive keypoints in images which was originally created for object recog-
nition. These keypoints are invariant to image rotation and scale and robust across affine
distortion, noise and changes in illumination. To obtain these keypoints, a scale space is
generated convolving the original image with Gaussian kernels at different scales. A set of
Difference of Gaussians (DoG) images is obtained subtracting the successive blurred images.
Key locations are defined as maxima and minima of the DoGs that occur at multiple scales
(see Fig. 2.3). Specifically, a DoG image D is given by:

D (x, y, σ) = L (x, y, kiσ)− L (x, y, kjσ) , (2.5)

where L (x, y, kσ) is the convolution of the original image I with a Gaussian kernel G at scale
kσ:

L (x, y, kσ) = G (x, y, kσ) ∗ I (x, y) . (2.6)

Scale-space extrema detection produces too many candidates, some of which are unstable.
Therefore, the next step is to perform a filtering process using the quadratic Taylor expansion
of the DoG scale-space function and the eigenvalues of the second-order Hessian matrix,

18 Background

Invariant

Name References Component type Number of components R
ot
at
io
n

Sc
al
e

A
ffi
ne

SIFT [61] Float 128 X X
SURF [62] Float 32, 64, 128 X X

U-SURF [62] Float 32, 64, 128 X
GLOH [52] Float 64, 128 X X

PCA-SIFT [70] Float 36 X X
M-SIFT [71] Float 128 X X
DAISY [72] Float 200 X X
LESH [73] Float 128 X X
ASIFT [68] Float 128 X X X
KAZE [66] Float 64 X X
BRIEF [74] Bit 128, 256, 512
ORB [58] Bit 256 X X
BRISK [60] Bit 512 X X
FREAK [75] Bit 512 X X
AKAZE [67] Bit 488 X X
D-BRIEF [76] Bit 32 X X
LDAHash [77] Bit 128 X X
BinBoost [78] Bit 64 X X
LDB [79] Bit 256, 512 X X
CBDF [80] Bit 256 X X

Table 2.4: Summary of local feature descriptors.

resulting into a reduced set of key locations. This keypoint detection is combined with a
128-dimensional descriptor, calculated on the basis of gradient orientation histograms of 4×4
subregions around the interest point.

SURF

Speeded Up Robust Features (SURF) is an image feature detection and description algorithm
presented by Bay et al [62]. It is partly inspired by the SIFT algorithm but outperforms
previous solutions in terms of computational time. The SURF detector is based on the
Hessian matrix. Given a point x = (x, y) in an image I, the Hessian matrix in x at scale σ is
defined as:

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
, (2.7)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2G(σ) with the
image I at point x, and similarly for the rest of the terms. The determinant of this matrix is
used for selecting the location and the scale. Denoting the Hessian components by Dxx, Dyy

2.2. Appearance-based Loop Closure Detection 19

Figure 2.3: Overview of the DoG scheme, used by SIFT for keypoint detection. For each
octave, the image is convolved with Gaussian kernels to produce the set of scale spaces shown
on the left. Adjacent Gaussian images are subtracted to produce the DoG images shown on
the right. Image taken from [61].

Figure 2.4: Left to right: the Gaussian second order partial derivatives in y-direction and
xy-direction, and SURF approximations using box filters. The gray regions correspond to
zeros. Image taken from [62].

and Dxy, the blob response at location x in the image can be approximated by:

det(Happrox) = DxxDyy + (0.6Dxy)2 . (2.8)

These responses are stored in a blob map, and local maxima are detected and refined using a
quadratic interpolation. The Hessian is roughly approximated using a set of box-type filters,
as shown in Fig. 2.4. These approximations can be evaluated very fast, and independently of
the image size, using integral images:

II(x, y) =
∑
x′≤x
y′≤y

I(x′, y′) , (2.9)

20 Background

Figure 2.5: FAST corner detection. The highlighted pixels are used by FAST for corner
detection. The point p is the pixel candidate to be a corner. Image taken from [56].

where I(x, y) is the input image. The 9 x 9 box filters illustrated in Fig. 2.4 are approximations
for a Gaussian with σ = 1.2 and represent the finest scale. The SURF descriptors show how
the pixel intensities are distributed within the neighbourhood of each feature at different
scales, resulting into a 64-dimensional vector, or a 128-dimensional vector when using the
extended version. The authors also provide a faster version of the algorithm called Upright-
SURF (U-SURF) where the orientation of the point is not computed and can be used in
applications without rotation invariance requirements.

FAST

Features from Accelerated Segment Test (FAST) is a corner detector proposed by Rosten and
Drummond [56]. It is based on the SUSAN [55] detector. FAST compares the intensity in a
circle of 16 pixels around the candidate point, as shown in Fig. 2.5. Initially pixels 1 and 2 are
compared with a threshold, then 3 and 4 as well as the remaining ones at the end. The pixels
are classified, according to its intensity, into dark, similar and brighter groups. An image
point is a corner if a minimum number of pixels can be found on the circle of fixed radius
around the point such that these pixels are all brighter or darker than the central point. The
feature descriptor consists of a vector containing the intensities of the 16 pixels surrounding
the point, but normally this corner detector is combined with other feature descriptors. FAST
has been reported as 30 times faster than a DoG detector, such as SIFT. However, it is not
invariant to scale changes and it depends on a predefined threshold.

BRIEF

Binary Robust Independent Elementary Features (BRIEF) is a simple binary descriptor cre-
ated by Calonder et al. [74]. The main goal of BRIEF is to speed up the matching process.
The descriptor is a binary string, where each bit represents a simple comparison between two
pixels inside a patch in the image. A bit is set to 1 if the first point has a higher intensity than
the second one. In the original work, the authors suggest several point spatial arrangements

2.2. Appearance-based Loop Closure Detection 21

Figure 2.6: Different spatial arrangements for computing BRIEF: G I: (x, y) ≈ U(−S
2 ,

S
2); G

II: (x, y) ≈ N(0, 1
25S

2); G III: x ≈ N(0, 1
25S

2), y ≈ N(x, 1
100S

2); G IV: (x, y) are randomly
sampled from discrete locations of a coarse polar grid introducing a spatial quantization; G
V: ∀i : x = (0, 0)T and y takes all possible values on a coarse polar grid containing the number
of desired tests points; the patch size is S × S pixels and the origin of its coordinate system
is located at the center. Image taken from [74].

over a keypoint centred patch, which are shown in Fig. 2.6. According to the authors, empir-
ically, better results are obtained with pixel pairs randomly drawn from uniform or Gaussian
distributions of point coordinates. The Hamming distance is used for matching, taking the
advantage of the XOR and bit-counting CPU instructions, included in modern computers.

ORB

Oriented FAST and Rotated BRIEF (ORB) is an image feature detector and descriptor which
combines the two corresponding techniques into a newer version given their good general per-
formance as independent solutions. Keypoints are detected using a multi-scale version of
FAST and filtered according to the Harris corner measure. For each corner, an orientation
is computed using the intensity centroid of the patch. Then, a steered BRIEF descriptor is
computed according to the orientation of the corner. The authors use Locality Sensitive Hash-
ing (LSH) [81] as an algorithm for a nearest neighbour search and obtain better performance
compared to SIFT or SURF approaches. An example of matching two images using ORB is
shown in Fig. 2.7.

LDB

Local Difference Binary (LDB) is a highly efficient, robust and distinctive binary descriptor.
The algorithm performs in, basically, three steps. First, LDB captures the internal patterns
of each image patch using a set of binary tests, comparing the average intensity (Iavg) and

22 Background

Figure 2.7: Example of matching two images with viewpoint changes using ORB. Image taken
from [58].

Figure 2.8: Illustration of the LDB descriptor computation. Image taken from [79].

first-order gradients (dx and dy). Second, the structure is computed at different spatial gran-
ularities. Third, the algorithm selects a subset of the bits according to their distinctiveness
and concatenates them to form the final binary descriptor. The LDB algorithm is illustrated
in Fig. 2.8.

2.2.2 Image Indexing

Another important factor that affects the performance of an ABLC algorithm is its ability
to efficiently retrieve past images. In this regard, ABLC approaches present some similarities
with the Content Based Image Retrieval (CBIR) research field, where, given a query image,
a list of similar candidate images is retrieved according to a similarity measure established
between images.

A brute-force search could be considered when using global descriptors due to the sim-
plicity of their representation. However, these descriptors are not descriptive enough and are

2.2. Appearance-based Loop Closure Detection 23

Figure 2.9: Example of a 3-dimensional tree. The first split (red) cuts the root cell (white)
into two subcells, each of which is then split (green) into two subcells. Finally, each of those
four is split (blue) into two subcells. Since there is no more splitting, the final eight are called
leaf cells. Image taken from Wikipedia.

more prone to produce false loop candidate images. Local image features are more robust,
but usually several hundreds of descriptors per image are needed, increasing matching times.
Therefore, in a large database of images, a brute-force search is computationally unfeasible.
This problem has been addressed from different points of view in the literature by means of
efficient indexing schemes or using feature quantization. In this thesis, we tackle the problem
from the two perspectives. Then, in this section, we briefly introduce the techniques and data
structures used in future chapters for obtaining similar image candidates in an efficient way.

2.2.2.1 KD-Tree

The k-dimensional tree (kd-tree) is a space partitioning data structure for organizing points
in a k-dimensional space. These structures will be used in chapter 5 for directly indexing
128-dimensional descriptors resulting from SIFT/SURF algorithms. The kd-tree is a binary
tree in which every node is a k-dimensional point. At each step of the construction of the
kd-tree, one of the coordinates is selected as a splitting hyperplane, and then, it is used as a
basis for separating the rest of the points into left and right subtrees. The point corresponding
to the median value for the chosen hyperplane is usually selected as the root node. Then, the
remaining points are assigned to the subtrees according to the following criterion: the items
in the left subtree will have the chosen coordinate value lower than the root node, while the
items in the right subtree will have the chosen coordinate value greater or equal than the
root node. The process is recursively applied to the subtrees selecting another coordinate as
splitting hyperplane. It finishes when all points have been allocated in the tree. An example
of kd-tree with 3 dimensions is shown in Fig. 2.9.

From our point of view, the most interesting operation to be performed over a kd-tree

24 Background

Figure 2.10: Example of BoW scheme. Visual words are represented by means of coloured
shapes. See text for details.

is the Nearest Neighbor Search (NNS), which tries to find, given a query point, the closest
point stored in the tree. When dealing with high-dimensional vectors, such as SIFT or SURF
descriptors, the performance of a kd-tree decreases dramatically, and most of the points in
the tree are required to be evaluated. This effect is known in the literature as the curse of
dimensionality. In this case, an Approximate Nearest Neighbor Search (ANNS) method should
be used instead for efficiency reasons. In this thesis, we tackle this problem using randomized
kd-trees [82]. The idea is to build a set of independent kd-trees using the same input data.
During the building process, the splitting dimensions are chosen randomly among the top five
most variant dimensions at each level. The search is then performed simultaneously among
all the trees and using priority queues for visiting a predefined maximum number of points.

2.2.2.2 The Bag-of-Words Model

Instead of indexing the descriptors directly, another option is to quantize the features and
summarize them in clusters. In this regard, the most common method is the Bag-of-Words
(BoW) algorithm. This algorithm was initially developed for text retrieval, where a BoW is a
sparse vector representation of a document counting the number of occurrences of each word
given a predefined vocabulary. Documents with more words in common are likely to describe
the same topic. Exporting these concepts to the computer vision field [83], the idea is to
treat local features as visual words and quantize them according to a set of representative

2.2. Appearance-based Loop Closure Detection 25

features, known as codebook or visual vocabulary. This quantization is performed by mapping
each descriptor of the image to the nearest image word in the dictionary. Then, the image
is represented by a histogram of occurrences of each reference local feature presented in the
image, reducing the total set of feature descriptors found to a vector of integers. Since some
words are more discriminating than others when identifying an image, the BoW vector is
normally weighted by some scoring algorithm such as the Term Frequency-Inverse Document
Frequency (TF-IDF).

The most common way of generating a visual dictionary is to cluster the descriptors
extracted from a set of training images using some clustering algorithm, such as k-means,
where the learned centroids are considered as the reference visual words. Recently, some
approaches have proposed to generate the dictionary online, avoiding this training step. In
chapter 3, we will review the main topological mapping approaches based on the BoW scheme
according to these criteria.

In image retrieval, these BoW schemes are usually employed together with inverted files,
also known as inverted indexes. The inverted file of a visual word is a list of the images
where this word appeared. This permits to obtain rapidly image candidates as the features
are processed. The topological mapping solutions proposed in this thesis take advantage of
these inverted files to efficiently retrieve loop closure candidates.

An example of a classic BoW scheme is shown in Fig. 2.10. A clustering technique is
performed against the set of training descriptors in order to obtain the visual vocabulary, which
is represented by coloured shapes in the figure. When a new image needs to be processed, its
extracted descriptors are associated to the closest visual word in the dictionary and then, a
histogram of occurrences of each visual word is computed. Then, a distance metric between
histograms, such as the cosine distance, could be used to estimate the similarity between the
two image representations.

Chapter 3

Literature Review

In this chapter we review the main approaches published in the last fifteen years with regard to
topological mapping and localization by visual means. In the related literature, one can find
similar surveys, although they rather focus more on navigation [2] and on visual SLAM [84]. In
this review we will mostly consider approaches dealing with topological maps, although we will
also take into account hybrid solutions that somehow consider the topology of the environment.
Other possibly related problem is that of pose-graph SLAM. Notice that algorithms such
as Olson [85], TreeMap [86], Square Root SAM [87], iSAM [88], TORO [89], Sparse Pose
Adjustment [90], iSAM2 [91] or g2o [92] could take as input a topological map. However,
pose-graph SLAM nodes usually represent poses reached by the agent, and not distinctive
places of the environment. Besides, the position in pose-graph SLAM is a metric position
of the vehicle and not a qualitative estimation in a discrete model of the appearance of the
world. Because of those reasons, we will consider this class of mapping algorithms out of the
scope of this chapter.

Loop closure detection is an important component in topological schemes. When using
vision as a source, this problem is usually solved comparing images directly, resulting into
appearance-based approaches. In this regard, a related research field is scene categorization
or visual place categorization (VPC) [93]. The main goal of this area is to find the class
of a place in a rough manner. For instance, given the current image, the objective is to
conclude that the current place is a kitchen. Some authors create topological maps using
these frameworks, forming a graph of known places. However, VPC can be considered as a
different research line and these works are also out of the scope of this chapter.

In order to perform mapping and localization tasks using vision, it is necessary to describe
the acquired images and be able to compare these descriptions. Consequently, the quality
of the map and the posterior localization will directly rely on the method used for visu-
ally describing the different environment locations. For this reason, we classify the different
approaches according to the description method employed as: approaches based on global de-
scriptors, approaches based on local features and approaches based on Bag-Of-Words (BoW)
schemes. We also identify that these methods can be combined. See Fig. 3.1 for a graphical
description of this classification.

Note that BoW schemes, where the local features extracted from an image are quantized

27

28 Literature Review

Vision-Based
Topological
Mapping and
Localization
Approaches

Global
Descriptors

Local
Features

Bag-Of-
Words
Schemes

Combined
Approaches

Figure 3.1: Taxonomy for classifying vision-based topological schemes according to their image
representation method.

according to a set of representative visual words, are mainly used in combination with an
inverted file to index visual information in an efficient way for fast image retrieval, and could
be regarded as a subcategory within the local features approaches. Another possibility is
to consider that, in these approaches, the image representation changes from the set of local
features to a histogram of occurrences of each visual word in the image, reducing the descriptor
to a vector of integers. In this chapter, and to make it more understandable, we have decided
to adopt the second view, keep the BoW category and, hence, classify the BoW-related papers
apart from the local features-related papers.

Given the taxonomy of the problem, the rest of the chapter is organized as follows: sec-
tion 3.1 enumerates fundamental works based on global descriptors, approaches based on local
features are presented in section 3.2, section 3.3 introduces main solutions built under BoW
schemes, section 3.4 enumerates principal works that represent the image as a combination of
the other ones and section 3.5 concludes the chapter.

3.1 Methods based on Global Descriptors

Many authors have proposed different solutions for topological mapping and localization using
global image representations, which are summarized in Table 3.1. This table indicates, for each
solution, the imaging configuration adopted, whether the resulting map is a pure topological

3.1. Methods based on Global Descriptors 29

References Camera Map Tasks Environment Descriptor
Winters [24] Omnidir Topo Map + Loc Indoors PCA
Gaspar [25] Omnidir Topo Map + Loc Indoors PCA
Ulrich [26] Omnidir Topo Map + Loc In + Out Colour Hist.
Werner [94] Omnidir Topo SLAM Indoors Colour Hist.
Kosecka [27] Mono Topo Map + Loc Indoors Gradient Orien. Hist.
Bradley [28] Mono Topo Map + Loc Outdoors WGOH
Weiss [29] Mono Topo Map + Loc Outdoors WGII
Wang [30] Mono Topo Map + Loc In + Out OACH

Pronobis [31] Mono Topo Loc Indoors Receptive Field Hist.
Singh [95] Omnidir Topo Map + Loc Outdoors Gist
Murillo [33] Omnidir Hybrid Map + Loc In + Out Omni-Gist
Rituerto [96] Omnidir Topo Mapping Indoors Omni-Gist

Sunderhauf [34] Mono Topo SLAM Outdoors BRIEF-Gist
Arroyo [97] Omnidir Topo Map + Loc Outdoors LDB
Arroyo [98] Stereo Topo Map + Loc Outdoors D-LDB
Liu [99] Mono Topo SLAM Outdoors Gist

Chapoulie [100] Sphere Topo Map + Loc In + Out Gist
Chapoulie [35] Sphere Topo Map + Loc In + Out Spherical Harmonics
Lamon [36] Omnidir Topo Loc Indoors Fingerprints

Tapus [101, 102] Omnidir Topo Map + Loc Indoors Fingerprints
Liu [37] Omnidir Topo Mapping Indoors FACT
Liu [38] Omnidir Topo Mapping Indoors DP-FACT

Menegatti [39, 40] Omnidir Topo Map + Loc Indoors Fourier Signatures
Paya [103] Omnidir Topo Map + Loc Indoors Fourier Signatures

Ranganathan [104] Omnidir Topo Mapping Indoors Fourier Signatures
Milford [105] Mono Hybrid SLAM Indoors Colour Segmentation
Prasser [106] Omnidir Hybrid SLAM Outdoors Colour Hist.
Milford [42] Mono Hybrid SLAM Outdoors Scan Intensity Prof.
Glover [107] Mono Hybrid SLAM Outdoors Scan Intensity Prof.
Lui [44, 45] Omnidir Hybrid SLAM In + Out 2D Haar Wavelet Dec.
Badino [46] Mono Hybrid Map + Loc Outdoors WI-SURF
Xu [108] Mono Hybrid Map + Loc Outdoors WI-SURF

Lategahn [47] Mono Hybrid SLAM Outdoors DIRD
Nourani [48] Mono Topo Map + Loc In + Out OFM/OFSC

Milford [43, 109, 110] Mono Topo SLAM Outdoors Normalized Patches
Pepperell [111] Mono Topo SLAM Outdoors Normalized Patches

Wu [112] Mono Topo Map + Loc Outdoors Binarized Patches

Table 3.1: Summary of topological mapping and localization solutions based on global image
descriptors.

map or otherwise is a hybrid representation, the intended tasks, the environments where the
approach was assessed and the image descriptor used. For further information about global
descriptors, the reader is referred to section 2.2.1.1.

3.1.1 Histograms

Histograms provide a compact way of representing an image and have been used for topological
mapping and localization in different forms. An example of that is the work of Ulrich and
Nourbakhsh [26]. They proposed a topological localization method based on appearance.

30 Literature Review

Each image is represented by six one-dimensional colour histograms, three extracted from the
HLS colour space and other three extracted from the RGB colour space. Given a query image,
they retrieved reference images from the map using a nearest neighbour learning scheme in
their topological map. The Jeffrey divergence was used as a distance measure between two
histograms. They assessed their system in several environments, obtaining at least 87.5% of
correctly classified images in all of them. Werner et al. [94] also employed colour histograms
combined with a Bayes filter for providing a topological SLAM solution. They used the
Hausdorff distance to compare the topological map and the visual observations received by
the robotic platform. They argued that colour histograms are not distinctive enough, and
that the Bayes filter helps to disambiguate places with similar appearance.

Kosecka et al. [27] proposed a navigation strategy using gradient orientation histograms
as image descriptor. In an exploration phase, a topological map was built by comparing suc-
cessive frame descriptors. For each node, a set of representative views was computed using
Learning Vector Quantization (LVQ). During the navigation, the current frame’s histogram
was extracted and compared with each node representatives using the Euclidean distance
to determine the most similar location. Inspired by Kosecka’s work, Bradley et al. [28] in-
troduced a topological localization approach in large outdoor environments using Weighted
Gradient Orientation Histogram (WGOH) features. These features were computed partition-
ing the image into a grid, and extracting an 8-bin histogram of the gradient orientations
for each part of the grid, weighted by the magnitude of the gradient at each point and the
distance from the center to the region. A WGOH descriptor was formed concatenating each
histogram and normalizing it to the unit length. In order to avoid a dependence of the feature
vector to any particular component, values higher than 0.2 were capped to 0.2 and the final
descriptor was re-normalized again. Their experiments covered over 100,000 images and 67
km of traverse with a high success. Similarly, Weiss et al. [29] also split each image into
a grid, but computing an 8×8 histogram of integral invariants using two relational kernels.
These integral invariant features are features which are invariant to some Euclidean motions,
such as rotations or translations. The main idea is to apply all possible transformations
to each sub-image and obtain and averaged version of these image transformations. They
called this approach Weighted Grid Integral Invariant (WGII) features. These features were
combined with a particle filter for outdoor mobile robot localization. Wang et al. [30] intro-
duced Orientation Adjacency Coherence Histograms (OACH) to solve the coarse part of a
topological localization process. OACH is an extension of the traditional gradient orientation
histograms where two Orientation Adjacency Histograms (OAH) are computed respectively
in the edge and corner regions of the image according to the Harris detector response and
concatenated to form the final descriptor. In an OAH, the gradient orientations of the center
pixel’s 4-neighbourhood are accumulated and then normalized by the number of center pixels
of each orientation. The Jeffrey divergence between OACH descriptors was used to compare
the images in the framework.

3.1. Methods based on Global Descriptors 31

Pronobis et al. [31] showed that receptive field responses summarized into histograms can
be used for place recognition. In a training phase, several histograms were acquired from the
environment and used to train Support Vector Machines (SVM) as classifiers which served as
a basis of a topological localization process.

3.1.2 The Gist Descriptor

Recently, several approaches have proposed to use the Gist global descriptor [32]. Initially
developed for scene recognition, it is based on the observation that humans are able to classify
images at a single glance under certain conditions. Their authors concluded that humans are
receptive to what they called the spatial envelope of the scene, defined as a set of perceptual
properties related to the shape of the space. They demonstrated that this spatial envelope is
closely correlated with second-order statistics (Discriminant Spectral Template) and with the
spatial arrangement of structures in the scene (Windowed Discriminant Spectral Template).
A bank of filters (such as Gabor filters [113]) can be used to infer a global descriptor of the
scene. Principal Component Analysis (PCA) can be also used in order to reduce the final
dimension of the descriptor.

Singh and Kosecka [95] computed a Gist descriptor for panoramas applying the algorithm
to each of the four views that the omnidirectional image consisted of. They introduced a novel
similarity measure between image panoramas for these descriptors and evaluated its efficiency
for loop closure detection in urban environments. Murillo et al. [33] extended this proposal
and introduced omni-gist, an adapted version of the descriptor to be used with omnidirectional
images extracted from catadioptric cameras, instead of multi-camera systems. They improved
the similarity measure for these descriptors and proposed a hierarchical topological localization
and map building algorithm based on them. In a more recent work [96], omni-gist was used in
a semantic labelling process for building indoor topological maps. The images were classified
as places or transitions, which corresponds to, respectively, the nodes and the edges of the
topological map. This place classification module was integrated with a Hidden Markov Model
(HMM) to ensure the temporal consistency.

Liu and Zhang [99] employed PCA to reduce the dimensionality of a Gist descriptor for
improving the efficiency and the discriminative power of the descriptor. Then, they presented
a particle filter for detecting loop closures in a SLAM system. These descriptors were taken
into account in the update step of the filter. As a result, they showed that a high recall can
be obtained at 100% precision with only a few particles.

Chapoulie et al. [100] presented an approach for segmenting the environment into topo-
logical places using spherical images. This segmentation approach was based on detecting
changes in the environment and an adapted version of Gist for spherical images. In a more
recent work [35], they argued that Gist is not well adapted to represent this kind of images
because the sphere spatial periodicity is partially lost. Then, they introduced a new global
image representation based on spherical harmonics adapted for spherical views.

32 Literature Review

Finally, motivated by the success of Gist and the BRIEF binary descriptor [74], Sunderhauf
and Protzel [34] adapted the latter to be used as a global descriptor, introducing the BRIEF-
Gist descriptor. The implementation is very straightforward: the image is downsampled to
the size of a patch and a BRIEF descriptor is computed from its center. Other possible
implementation consists in partitioning the image into a grid, compute the BRIEF descriptor
for each patch and concatenate them to form the final descriptor. They used this simple
descriptor for loop closing in a SLAM system that can be used in a large-scale scenario,
as is shown in their experiments. As a main drawback, BRIEF-Gist is not able to detect
bidirectional loops. In this regard, Arroyo et al. [97] introduced an algorithm called Able
for Binary-appearance Loop-closure Evaluation applied to Panoramas (ABLE-P) which can
detect these cases. They divided each panorama in sub-panoramas and extracted an LDB
binary descriptor for each of them [79]. The final image descriptor is created concatenating
the different LDB strings. The loop closures are then found correlating the descriptors of the
different panoramas using the Hamming distance. In a more recent work [98], they updated
their algorithm to be used with a monocular or a stereo camera (ABLE-S) and added disparity
information to the LDB descriptor, generating the D-LDB descriptor, which is also used for
detecting loop closures.

3.1.3 Vertical Regions

Extracting vertical lines in order to define globally omnidirectional images has also been used
for topological mapping and localization, specially for indoor environments because of the na-
ture of their structures. In this regard, Lamon et al. [36] presented the concept of fingerprints
of places. A fingerprint is a circular list of features extracted using different algorithms. In
their case, they used two detectors: a vertical edge detector based on histograms and a colour
patch detector. They also presented an algorithm for matching these sequences of features
based on a minimum energy algorithm, and employed this framework for global localization.
Tapus et al. [101] demonstrated that this fingerprint representation combined with an uncer-
tainty model of the features can improve the localization results. After this work, Tapus and
Siegwart [102] expanded the fingerprint concept incorporating information from a laser range
finder in an incremental topological mapping approach for multi-room indoor environments.

Liu et al. [37] introduced the Fast Adaptive Color Tags (FACT) descriptor, employed for
a topological mapping approach. It is based on the fact that, in indoor environments, the
important vertical edges (windows, columns, etc.) naturally divide the indoor environment
into several meaningful cuts. For each cut, the average colour value in the U-V space is
computed. This U-V average value and the width of the region form a region descriptor
called tag. A scene descriptor is formed concatenating each region descriptor in a vector.
Scene matching between new scenes and existing nodes was performed computing the 2D
Euclidean distance between colour descriptors, and recursively comparing the widths of the
regions according to an empirically determined inequality. In order to take into the account

3.1. Methods based on Global Descriptors 33

the main drawbacks that this solution presented, they improved their descriptor publishing
another version called DP-FACT [38], where a Dirichlet Process Mixture Model is used to
combine colour and geometry features extracted from omnidirectional images.

3.1.4 Discrete Fourier Transform

Several authors have proposed to use the Discrete Fourier Transform (DFT) as a global
image representation method. Menegatti et al. [39] unwarped omnidirectional images over a
panoramic cylinder. These panoramic cylinders were expanded row by row into their Fourier
series. An image was represented by the first 15 Fourier coefficients i.e. the 15 lowest frequency
components, reducing the storage needs for each reference view. The set of these selected
coefficients was called by their authors as Fourier signatures. They also proposed a method
for an automatic organization of a set of reference images obtained in an exploration phase
into a visual memory and a navigation approach using this framework. To overcome the
perceptual aliasing problem that the original approach presented, in a following work [40],
they improved their localization system fusing this image representation with a particle filter.
Based on these works, Paya et al. [103] contributed with an incremental mapping process,
creating the map while the robot is traversing the environment and Ranganathan et al. [104]
introduced the concept of Probabilistic Topological Maps (PTM), where a particle filter was
employed for approximating the posterior distribution over the possible topologies given the
available sensor measurements and an odometry source.

3.1.5 Biologically-Inspired Approaches

Biologically-inspired solutions try to emulate the information processing methods and problem
resolution abilities of the biological systems, simulating the behaviour of living organisms.
Several topological mapping and localization solutions fall under this subcategory.

Gaspar et al. [25] mapped an indoor environment emulating the vision-based navigation
capabilities of insects using an omnidirectional camera. The images of the topological map
were encoded as a manifold in a low-dimensional eigenspace obtained from PCA. In an offline
phase, they created a representation of the environment resulting into a topological map,
which was later used to navigate using a visual following approach.

Milford et al. [105] introduced RatSLAM, a single-camera SLAM system derived from
models of the hippocampal complex in rodents. According to the authors, the operation
of these models appears to be related with some topological and metric properties to its
advantage, so it can be considered as a hybrid approach. The environment representation
was built using a competitive attractor network structure called pose cells, which was used to
concurrently represent the belief about the location and orientation of the robot. The system
performed a colour segmentation process [41] to detect some coloured cylinders spread around
the experimental area in order to update these pose cells. This approach was later adapted by
Prasser et al. [106] to be used in outdoor environments and using an omnidirectional camera

34 Literature Review

as a main input sensor. Images were described using histograms of the hue and saturation
colour bands and compared using the χ2 statistic. Later, Milford and Wyeth [42] mapped
a path of 66 km along an entire suburb using RatSLAM, showing that it can be used in a
long-term operation. A scanline intensity profile is employed as image descriptor, which is a
one-dimensional vector formed by summing the intensity values in each pixel column, and then
normalizing the final vector. Glover et al. [107] combined RatSLAM with other approaches
in order to address the challenging problem of producing coherent maps across several times
of the day.

3.1.6 Other Approaches

Winters et al. [24] utilized an omnidirectional camera to create a topological map from the
environment during a training phase. Nodes were sets of images with common properties, and
links were sequences of consecutive views between two nodes. The large image set obtained
was compressed using PCA, resulting in a low-dimensional eigenspace from which the robot
could determine its global topological position using an appearance-based method.

Badino [46] presented an outdoor localization approach based in a descriptor called Whole
Image SURF (WI-SURF), where a Speeded Up Robust Feature (SURF) descriptor for the
entire image is computed according to [63]. Each node of the map is associated with the GPS
coordinates where it was acquired, and a Bayesian filter is used to compute the probability
of being in each discrete place of the map. They reported successful results for long-term
localization experiments, concluding its validity for solving the global localization problem.
In a more recent work [108], they presented an algorithm for localizing a vehicle on an arbitrary
road network.

Lategahn et al. [47] studied how to generate robust descriptors for environments under
severe lighting changes. They proposed to use building blocks which can be used to construct
millions of descriptors. In that work, an evaluation function to evaluate the performance of
these descriptors was presented, as well as a search algorithm for them. Results for loop closure
detection were also presented. The experiments were carried on using the best combination of
these building blocks found and was called Dird is an Illumination Robust Descriptor (DIRD).

A complete loop closing system for autonomous mobile robots was proposed by Lui and
Jarvis [44, 45], where omnidirectional images was described employing a GPU-based 2D Haar
Wavelet decomposition. These images are used to create a database of signatures. A relaxation
algorithm is executed to adjust the topology each time the vehicle revisits a previously seen
place.

Nourani-Vatani et al. [48] proposed to use optical flow information to detect changes in the
environment, using the Optical Flow Moment (OFM) and the Optical Flow Shape Context
(OFSC) descriptors. Then, statistical attributes from the flow were extracted in order to
define each location. Once a database of nodes was generated, where a node was defined as a
detected scene change, the most likely location was obtained using the Mahalanobis and χ2

3.2. Methods based on Local Features 35

distances. They assessed their approach in indoor and outdoor environments, showing that it
could be used in several kinds of scenarios.

In a more recent research line, Milford and Wyeth presented SeqSLAM [43], where instead
of searching for a single previously seen image given the current frame, they performed the
localization process recognizing coherent sequences of local consecutive images. They showed
that this approach could be used for visual navigation under weather or season changes. They
employed normalized patches in a cropped version of the original image, and Sum of Absolute
Differences (SAD) to compare these patches. They have also showed that route recognition
can be accomplished even with a few bits per image [109] and they studied the effect of the
length of the sequences onto the SeqSLAM algorithm performance [110]. An evolution of the
SeqSLAM algorithm called Sequence Matching Across Route Traversals (SMART) has been
recently proposed in [111], which improves its general applicability by integrating self-motion
information to form spatially consistent sequences, and new image matching techniques to
handle greater perceptual change and variations in translational pose.

Wu et al. [112] presented a loop closure detection method which uses an extremely simple
image representation. Images are smoothed using a Gaussian kernel, and then resized to a
small patch. The Otsu’s method is then employed to binarize the image, producing a binary
code of a few hundred bits. The mutual information for the image pairs is used as a similarity
measure. According to their results, they are able to detect loop closures in a map of 20
million key locations.

3.2 Methods based on Local Features

Several authors, as shown in Table 3.2, have used local image features to perform topologi-
cal mapping and localization tasks, specially since the release of the Lowe’s Scale-Invariant
Feature Transformt (SIFT) algorithm. Kosecka and Yang [114, 115] used SIFT features for
describing images in indoor environments and performed a global localization process based
on a simple voting scheme. In order to overcome the problems resulting from dynamic changes
in the environment, they proposed to incorporate additional knowledge about neighbourhood
relationships between individual locations using a Hidden Markov Model. The likelihood
function was based on the number of correspondences between the current image and past
locations. Following this work, in [116] they presented a feature selection strategy in order
to reduce the number of keypoints per location. This strategy was carried on measuring the
discriminability of the individual features to describe each topological location. Zhang [117]
also presented a method for selecting a subset of visual features from an image called Bag-
of-Raw-Features (BoRF). The features were selected according to the scale where they were
found. A location was represented by the set of features that can be matched consecutively in
several images, applying a keyframe selection policy based on their previous work [153]. The
main problem that BoRF presents was that the number of features to manage increases while

36 Literature Review

References Camera Map Tasks Environment Feature
Kosecka [114, 115, 116] Mono Topo Map + Loc Indoors SIFT

Zhang [117] Mono Topo Map + Loc Indoors SIFT
Zhang [118] Mono Topo SLAM Indoors SIFT
Rybski [119] Omnidir Topo Map + Loc Indoors KLT
He [120] Mono Topo Map + Loc Outdoors SIFT

Sabatta [121] Omnidir Topo Map + Loc Indoors SIFT
Johns [122] Mono Topo Map + Loc Indoors SIFT

Kawewong [123, 124] Omnidir Topo SLAM In + Out PIRF (SIFT)
Tongprasit [125] Omnidir Topo SLAM In + Out PIRF (SURF)
Morioka [126] Omnidir Hybrid SLAM Indoors 3D-PIRF (SURF)
Andreasson [71] Omnidir Topo Map + Loc Indoors KLT/M-SIFT
Valgren [127] Omnidir Topo Mapping Indoors KLT/M-SIFT
Valgren [128] Omnidir Topo Mapping In + Out SIFT
Valgren [129] Omnidir Topo Loc Outdoors SIFT/SURF
Ascani [130] Omnidir Topo Loc In + Out SIFT/SURF
Anati [131] Omnidir Topo Map + Loc In + Out SIFT

Zivkovic [132] Omnidir Hybrid Map + Loc Indoors SIFT
Booij [133] Omnidir Hybrid Map + Loc Indoors SIFT
Booij [134] Omnidir Hybrid Map + Loc In + Out SIFT

Dayoub [135] Omnidir Hybrid Map + Loc Indoors SURF
Blanco [136, 137] Stereo Hybrid SLAM Indoors SIFT

Tully [138] Omnidir Hybrid Map + Loc Indoors SIFT
Tully [139] Omnidir Hybrid SLAM Indoors SIFT
Segvic [140] Mono Hybrid Map + Loc Outdoors SIFT/Harris/MSER
Ramisa [141] Omnidir Topo Map + Loc Indoors MSER/SIFT/GLOH
Badino [142] Mono Hybrid Map + Loc Outdoors SURF/U-SURF
Dayoub [143] Omnidir Topo Map + Loc Indoors SURF

Bacca [144, 145] Omnidir Topo Map + Loc Indoors SIFT/SURF
Bacca [146] Omnidir Topo SLAM Indoors Edges

Romero [147, 148] Omnidir Topo SLAM Outdoors MSER
Majdik [149] Mono Topo Loc Outdoors ASIFT
Saedan [150] Omnidir Hybrid SLAM Indoors Wavelets
Kessler [151] Omnidir Topo SLAM Indoors SIFT
Maohai [152] Omnidir Topo Map + Loc Indoors ASIFT

Table 3.2: Summary of topological mapping and localization solutions based on local features.

new images were added, and a linear search for matching became intractable. This drawback
was overcome in [118] by indexing features through kd-tree structures.

Using the idea of maintaining only persistent features, several authors have proposed vari-
ous solutions to the community. Rybski et al. [119] used Kanade-Lucas-Tomasi (KLT) feature
tracker for matching persistent features in a sequence of omnidirectional images and con-
structed a topological map incrementally. He et al. [120] proposed to use manifold constraints
to find representative feature prototypes, which are useful to represent any image within the
environment in an efficient manner. Sabatta [121] introduced a mapping and localization
algorithm that exploits the persistence of SIFT features within consecutive omnidirectional
images to improve data association. He also modified the SIFT algorithm in order to include
colour information in the descriptor. More recently, Johns and Yang [122] introduced an ap-

3.2. Methods based on Local Features 37

proach where the map is composed by a set of landmarks detected across multiple images,
spanning the continuous space between nodal images. Given a query image, matches are then
made to landmarks instead of individual images, resulting into a dense continuous topological
map without sacrificing the speed of the solution. They presented a probabilistic localization
approach using the learned discriminative properties of each landmark.

Kawewong et al. presented Position-Invariant Robust Features (PIRFs) [123, 124], a
method for generating averaged features from SIFT descriptors that can be matched along
several consecutive frames in a temporal window given the input sequence of images. Each
place was represented by a dictionary of these representative PIRFs, whose variation of ap-
pearance was assumed relatively small with regard to robot motion. These features were then
used in an incremental appearance-based SLAM algorithm called PIRF-Nav, which was based
on a majority voting scheme. Despite they showed several improvements in terms of recall
regarding other common solutions, the main problem of this approach was the computational
cost, since some images took long time to be processed. In order to improve this performance,
Tongprasit et al. [125] modified the original PIRF algorithm and added a new dictionary
management in a SLAM approach called PIRF-Nav 2. This method was 12 times faster
than the original PIRF-Nav sacrificing only a small percentage of recall. Morioka et al. [126]
presented a method for mapping PIRFs in three-dimensional space combining them with an
odometry source. Their method, called 3D-PIRF, was validated navigating in crowded indoor
environments.

Andreasson and Duckett [71] presented a simplified version of the SIFT algorithm (M-
SIFT) adapted to omnidirectional images, where the descriptors are only found in one reso-
lution, because full invariance to scale and translation is not required in their case. Interest
points are selected using the Shi and Tomasi method. Several image description methods
used for topological localization were presented, showing the M-SIFT approach the best per-
formance with regard to the other ones. Using the M-SIFT descriptor, Valgren et al. [127]
represented the environment by means of an image similarity matrix. They avoided exhaus-
tively computing the affinity matrix by searching for cells which are more likely to describe
existing loop closures. Later, in [128], they employed exhaustive search, but introduced an
incremental spectral clustering algorithm to reduce the search space incrementally when new
images are processed. They also addressed the topological localization problem for outdoor
environments over time [129], comparing SIFT and SURF for these purposes and conclud-
ing that SURF performs better for topological localization in outdoor scenarios. Moreover,
Ascani et al. [130] found that SIFT performs better in indoor environments for topological
localization tasks. Other authors that created a topological map from a similarity matrix are
Anati and Daniilidis [131]. In their work, they introduced a novel image similarity measure for
panoramas which involves dynamic programming to match images using both the appearance
and the relative positions of local features simultaneously. The probability of loop closures is
modelled using a Markov Random Field (MRF) over the image similarity matrix.

38 Literature Review

Some researchers construct hierarchical maps of the environment from a set of input
images. These approaches combine higher level conceptual maps (usually topological) with
lower level and geometrically accurate maps, trying to maximize the advantages and minimize
the problems of each kind of map alone and combine them in a different mapping technique.
Zivkovic et al. [132] presented an algorithm for automatically generating hierarchical maps
from images. A low-level map is built using SIFT features and geometrical constraints. They
then use the graph-cuts algorithm to cluster nodes to construct a high-level representation.
This hierarchical representation was later employed in [133], where they showed a navigation
system based on a topological space which used the epipolar geometry and a planar floor
constraint to obtain a heading estimation. This work was further improved in [134] proposing
a incremental data association scheme based on the concept of Connected Dominating Set
(CDS) of a graph. Given a new image, this method is used to find a subset of past images
that represents the complete image set, enabling an efficient loop closure detection during
the trajectory of the robot. Dayoub et al. [135] presented a solution where an initial dense
pose-graph map of the environment were generated using a graph-based SLAM algorithm.
This map is then used to infer a sparse hybrid map with two levels, global and local. The
global level is represented by a topological map built using a dual clustering approach. On
the local level, each node stores a spherical view representation of the features extracted from
images recorded at the position of the node, which is used for estimating the robot’s heading
using a multiple-view geometry approach. As a contribution of this thesis, in chapter 7, a
hybrid vision-based topological mapping approach is introduced.

Instead of inferring a high-level topological map from a set of geometric relations, other
authors have proposed an alternative hybrid representation where each node of a global topo-
logical map includes its own metric sub-map. Blanco el al. [136] presented an approach called
Hybrid Metric-Topological SLAM (HTM-SLAM). The sequence of areas traversed by the
robot is modelled as a graph whose nodes are annotated with metric sub-maps and whose
arcs include the coordinate transformation between these areas. They also proposed a unified
Bayesian approach to estimate the robot’s path while traversing the environment. This work
was improved in [137] using spectral techniques to efficiently partition the map into sub-maps
and deriving expressions for applying their ideas to other sensors, such as a stereo camera. In
the same line, Tully et al. [138] proposed a hybrid localization solution based on the hierarchi-
cal atlas map [154], a structure specially created for robots operating in large environments.
In this framework, a global topological map decomposes the space into regions within which a
feature-based map is built. The localization process is separated in two steps. First, a discrete
probability distribution is computed using a recursive Bayesian filter in order to determine the
most probable map. Next, a metric position is estimated within the correspondent sub-map
using a Kalman filter. Later, in [139], they investigated SLAM as a multi-hypothesis topo-
logical loop closing problem. Both works were combined in a more complete solution recently
in [155].

3.2. Methods based on Local Features 39

Segvic et al. [140] created a hybrid visual navigation framework for large-scale mapping and
localization combining several features extracted from monocular perspective images. Despite
the approach supported navigation based exclusively on 2D image measurements, it relied in
3D reconstruction procedures. Ramisa et al. [141] also tried to combine several local feature
region detectors in order to create a signature of a place for localization purposes. They
showed that these combinations increase notably the performance compared with the use of
one descriptor alone. Badino et al. [142] integrated metric data directly into a topological
map in their hybrid approach called topometric localization. Each node of the graph is stored
together with its GPS position. They grab images at a constant Euclidean distance, and for
each one, visual local features are extracted. A feature database is generated next, where each
feature is stored with a reference to the node corresponding to its real location. This database
is then used by a Bayes filter to estimate the probability density function of the position of
the observer as the vehicle moves along the route.

The multi-store model of human memory proposed by Atkinson and Shiffrin [156] has in-
spired several approaches. This model divides the human memory into three stores: Sensory
Memory (SM), Short-Term Memory (STM) and Long-Term Memory (LTM). Input informa-
tion is stored in the SM. A selective attention process determines which information can be
moved to the STM. Information stored in this memory can be forgotten as soon as it is no
longer attended to. Through a rehearsal process, information is moved from the STM to the
LTM in order to be retained for longer periods. Dayoub and Duckett [143] used these concepts
in order to keep up to date the appearance of a particular place in a map in response to the
dynamic changes of the environment during a long-term operation. Bacca et al. [144, 145]
adapted this human memory model considering a weighted voting scheme. This allows to
pass to the STM only strong features present in the environment. The memory model is
implemented using a Feature Stability Histogram (FSH), which stores information about the
number of times each feature has been observed in each node. A more complete FSH approach
was presented in [146], adapting the initial solution to operate in SLAM conditions.

Romero and Cazorla [147, 148] proposed an approach to construct topological maps match-
ing graphs of invariant features. Each image is segmented into regions in order to group the
extracted invariant features in a graph so that each graph defines a single region of the image.
The matching process takes into the account the features and their structure using the Graph
Transformation Matching (GTM) algorithm.

Recently, Majdik et al. [149] dealt with the air-ground matching localization problem,
where images taken by a camera mounted on a Micro Aerial Vehicle (MAV) need to be
matched with a set of images stored in a database of geotagged pictures obtained from Google
Street View. To overcome the severe viewpoint changes presented, they proposed to generate
virtual views of each scene, exploiting the air-ground geometry of the system. The best
image correspondences are obtained using a histogram-voting scheme. They compared their
solution with several state-of-the-art approaches, outperforming them in computational terms

40 Literature Review

and precision-recall rates.
Other solutions based on local features [150, 151] included particle filters as a method

to estimate the probability distribution of the location over the topological map. More re-
cently, Maohai et al. [152] combined a particle filter with a GPU-based image description
and matching algorithm to define a complete topological autonomous navigation system for
indoor environments.

3.3 Methods based on Bag-of-Words Schemes

The Bag-of-Words (BoW) algorithm has recently been used in a high number of different
topological mapping approaches due to its ability for rapidly finding similar image candidates
in large datasets of images. The reader is referred to section 2.2.2 for further details about
the BoW model.

Visual vocabularies employed in the BoW model are usually generated offline in a train-
ing phase. As will be seen in section 3.5, generating the visual dictionary in an offline phase
presents several problems. In order to overcome these drawbacks, some authors have proposed
to build it in an incremental fashion, adapting the codewords to the appearance of the oper-
ating scenario. In this section, the BoW-based works are classified according to this criterion.
The main approaches based on BoW schemes are summarized in Table 3.3 following the same
guidelines as the previous sections.

3.3.1 Offline Visual Vocabulary Approaches

Despite the BoW algorithm has been used in other areas, such as for internet search engines or
for scene categorization [195, 196], it was first applied to visual search techniques in the seminal
work of Sivic an Zisserman [83], where this model was employed in order to find similar scenes
in video sequences. SIFT features were extracted from each frame and then quantized as BoW
vectors, creating a database of BoW image representations. They presented an interactive
application where the user could query the image database to find similar frames , i.e. with
enough features in common. A lookup table called inverted file, which mapped image words
to the video frames where they were found, was also used to speed up the retrieval process.
Wang et al. [157, 158] presented a coarse-to-fine global localization system based on the BoW
model, where interest points detected with the Harris-Laplace detector were described using
the SIFT algorithm. In an offline phase, the vocabulary and the inverted index were created,
and then used for localization. An epipolar geometry step was incorporated in order to verify
whether the loop candidate obtained from the BoW stage was plausible.

The size of a dictionary can vary within a large range, which has an impact on the perfor-
mance of the retrieval process. The larger the size, the more discriminating the vocabulary is,
but at a higher computational cost for finding the nearest reference descriptor. The hierarchi-
cal visual vocabulary has been proposed as a relevant improvement towards alleviating this

3.3. Methods based on Bag-of-Words Schemes 41

References Camera Map Tasks Environment Features
Wang [157, 158] Mono Topo Map + Loc In + Out HARRIS/SIFT
Fraundorfer [159] Mono Topo Map + Loc Indoors MSER/SIFT
Konolige [64] Stereo Hybrid SLAM In + Out STAR/FAST/SAD

Cummins [160, 161] Mono Topo SLAM Outdoors SIFT/SURF
Cummins [162, 163] Mono Topo SLAM Outdoors SURF
Cummins [164, 165] Omnidir Topo SLAM Outdoors SURF

Newman [166] Omnidir Hybrid SLAM Outdoors SURF
Maddern [167, 168] Omnidir Hybrid SLAM Outdoors SURF

Maddern [169] Omnidir Hybrid SLAM Indoors SURF
Paul [170] Mono Topo SLAM Outdoors SURF

Johns [171, 172] Mono Topo SLAM Outdoors SIFT
Galvez [173, 174] Mono Topo SLAM In + Out FAST/BRIEF
Mur-Artal [175] Mono Topo SLAM Outdoors ORB

Ranganathan [176] Mono Hybrid SLAM Indoors SIFT
Cadena [177] Stereo Topo SLAM In + Out SURF

Ciarfuglia [178] Mono Topo SLAM In + Out SURF
Majdik [179] Mon/Ste Topo SLAM Outdoors SURF
Schindler [180] Mono Topo Map + Loc Outdoors SIFT
Achar [181] Mono Topo Map + Loc Outdoors SIFT
Lee [182] Mono Topo SLAM Indoors MSLD

Filliat [183] Mono Topo Map + Loc Indoors SIFT
Angeli [184] Mono Topo SLAM Indoors SIFT
Angeli [185] Mono Topo SLAM In + Out SIFT/Color Hist.
Angeli [186] Mono Topo SLAM Indoors SIFT/Color Hist.

Labbe [187, 188] Mono Topo SLAM In + Out SURF
Nicosevici [189, 190] Mono Topo SLAM Underwater SURF

Khan [191] Mono Topo SLAM In + Out BRISK
Murphy [192] Mono Topo SLAM In + Out -

MacTavish [193] Mono Hybrid Map + Loc Outdoors SURF
Mohan [194] Mono Hybrid Map + Loc In + Out ORB

Table 3.3: Summary of topological mapping and localization solutions based on BoW schemes.

problem [197], where the original training set of descriptors is clustered in a small number
of clusters, and then each cluster is recursively clustered again until achieving the desired
number of words. Given a query descriptor, finding its closest word consists in traversing the
tree from the root until reaching a leaf node. This hierarchical representation, in addition to
the inverted index, makes the BoW algorithm an ideal and scalable approach for searching
millions of images in an efficient way and it is a good option to consider when mapping large
environments. Fraundorfer et al. [159] applied this hierarchical dictionary to the visual nav-
igation problem, presenting a highly scalable vision-based localization and mapping method
using image collections. For each frame captured by the camera, they used the dictionary
structure and the inverted file to retrieve the most likely images. Using a RANSAC pro-
cedure, they performed a geometry verification step against these candidates, which can be
used to determine if the image closes a loop or otherwise is a new place to be added to the
map. They used the local geometric information to navigate within the generated topological
map. Konolige et al. [64] proposed a SLAM solution based on an adapted scheme of this

42 Literature Review

hierarchical codebook using a stereo camera. As shown in their results, the approach, which
was assessed in indoor and outdoors environments, was able to find loop closures in paths
of several kilometers. A strong geometric filter was used to eliminate false positives when
detecting loop closures.

Probably the most well-known solution that falls into this category is the Cummins and
Newman’s Fast Appearance-Based Mapping (FAB-MAP) approach [160, 161], proposed under
the assumption that modelling the probabilities that the visual words appear simultaneously
can help in the localization process. These probabilities were approximated by a Chow Liu
tree, computed from a set of training data as the maximum-weight spanning tree of a directed
graph of co-occurrences between visual words. This approximation permitted the authors to
compute efficiently an observation likelihood which was used in a Bayes filter for predicting
loop closure candidates. The main drawback presented by the original FAB-MAP algorithm
was the high computational cost, since every time the robot collected an observation, the
likelihood needed to be computed for each location existent in the map. To solve this problem,
Cummins and Newman [162, 163] introduced a probabilistic bail-out test based on the use
of concentration inequalities for rapidly identifying promising loop closure hypotheses and
then avoid to compute the likelihood for all locations. Later, an even faster version called
FAB-MAP 2.0 [164, 165] was presented adapting the probabilistic model to be used with an
inverted index architecture similar to image typical search engines. This scheme was assessed
using a dataset of 1,000 km composed by omnidirectional images and GPS coordinates to
be used as ground truth. FAB-MAP was combined with a laser in the work of Newman et
al. [166], where it was used as a component to detect loop closures in urban scenes.

Initially, the authors only published FAB-MAP as binaries to the community. For this
reason, Glover et al. developed OpenFABMAP [198], a fully open-source implementation
of the algorithm, adding some improvements. OpenFABMAP was a key component in the
solution proposed by Maddern et al. called Continuous Appearance-based Trajectory SLAM
(CAT-SLAM) [167, 168], where an appearance-based SLAM system was improved with odo-
metric information using a particle filter in order to obtain an estimation of the position of the
vehicle. An extension of CAT-SLAM called CAT-Graph was introduced in [169] combining
multiple visits to the same place to build a topological graph-based representation of indoor
environments. These graphs were used in the mapping and localization processes according
to the loop closures detected by the appearance-based module.

Since the BoW model used in FAB-MAP does not take into account the spatial arrange-
ment of the visual words, Paul and Newman introduced FAB-MAP 3D [170], where they
demonstrated that integrating this kind of information in the algorithm improved the local-
ization accuracy. Using a random graph, they modelled the word co-occurrences as well as
their pairwise distances and showed how to accelerate the inference process with a Delaunay
tessellation of this graph. Another attempt to include spatial information within the BoW
model for localization is the recent work by Johns and Yang, where they presented the Fea-

3.3. Methods based on Bag-of-Words Schemes 43

ture Co-occurrence Maps (Cooc-Map) [171], where local features are quantized in both feature
and image space and a set of statistics regarding their co-occurrence at different times of the
day are calculated. They also introduce a new geometric feature matching algorithm for this
kind of representation and showed how sequential matching can be incorporated into their
solution. They also showed that learning the properties of local features observed during long
periods of time can be more accurate for localization than representing a location using a
single image [172].

An attempt to create a visual dictionary from binary features can be found in the work
of Galvez-Lopez and Tardos [173, 174]. They adapted the hierarchical BoW model of Nister
to be used with keypoints detected with FAST and described with the BRIEF algorithm.
Other novelties of their work included a direct index to obtain correspondences between
images in a efficient manner and matching images in groups to increase the accuracy of the
loop closure detection process. Using this framework, they are able to detect loop closures
in sequences of 19,000 images spending an average time of 16 ms per image, presenting an
interesting improvement in performance in comparison to other solutions. Their dictionary-
building approach was recently used in combination with the ORB descriptor in [175], showing
improvements in the recognition performance.

Ranganathan et al. presented Online Probabilistic Topological Mapping (OPTM) [176],
an online loop-closing algorithm based on a Rao-Blackwellized particle filter which was used
for updating incrementally the posterior on the space of all possible topologies whenever a new
measurement arrived. Since OPTM was sensor independent, it was assessed with a laser range
finder, an odometry source and visual input in indoor environments. A BoW model based on
a multivariate Polya distribution was used for quantizing SIFT descriptors. OPTM improves
a previous framework called Probabilistic Topological Maps (PTM) [199] by enhancing the
inference process so that it can be used online.

Cadena et al. [177] introduced a place recognition framework based on stereo vision which
combined a BoW model for obtaining loop closure candidates and an algorithm based on Con-
ditional Random Fields (CRF-Matching) in order to verify these candidates. This matching
method, according to the authors, was more robust than using only epipolar geometry, since
it used 3D information provided by the stereo images. This module was later used in [200],
where a method for removing past incorrect loop closures using the Realizing, Reversing,
Recovering (RRR) algorithm was presented.

Some authors have proposed weighing strategies different to the one typically used in BoW
approaches, i.e. TF-IDF. For a start, Ciarfuglia et al. [178] showed a discriminative criterion
to assign weights to the visual words in a training phase. The weights are learnt in an approach
based on the large margin paradigm and can be applied to several similarity functions in order
to compare images. This weighing scheme was assessed in a loop closure detection module
within a SLAM framework for navigating in indoor and outdoor environments. Another
case is Majdik et al. [179] who proposed an adaptive loop closure algorithm based on the

44 Literature Review

hierarchical BoW model that was able to update the weights of the visual words according
to their importance when detecting loop closures. They assessed their approach using both
single and stereo cameras in outdoor environments.

While in outdoor environments GPS can be used for estimating the location of a robot,
urban environments present more challenging situations since buildings can block the satellite
signals. Clearly, vision becomes an option as exteroceptive sensor in these cases. Nevertheless,
indexing images from a city can be very difficult in computational terms, reason why the
BoW model can be of help for this kind of situations. In line with this scenario, Schindler
et al. [180] presented a localization system for recognizing scenes in cities, where they were
able to index 30,000 images from a city using a BoW scheme. They showed that this huge
amount of information can be more efficiently retrieved by selecting the most informative
features from the training dataset, understanding these features as the ones that occur in all
images of some specific location but not in other places. This concept was measured using the
information gain formula. They also proposed an alternative search algorithm called Greedy
N-Best Paths (GNP) improving the image retrieval performance. A more recent solution for
urban localization can be found in the work by Achar et al. [181], where geometric inferencing
was used to identify features corresponding to moving objects in the scene. These features
are then used for global localization.

Recently, Lee et al. [182] proposed a place recognition system that, instead of quantizing
interest points, they processed lines using Mean Standard-Deviation Line descriptors (MSLD).
A hierarchical visual dictionary was trained using these vectors, which was employed in combi-
nation with a Bayes filter for detecting loop closures in indoor environments. They integrated
this loop closure detection module into a SLAM solution.

Other place recognition solutions which have appeared recently are based on the BoW
framework, adapting FAB-MAP to work as a hierarchical approach [193] or maintaining an
inverted file per group of images or environments [194].

3.3.2 Online Visual Vocabulary Approaches

An alternative to maintain the dictionary adapted to the operating environment is to generate
it online, at the same time that the robot explores the world. In this regard, Filliat [183]
introduced an approach to construct dynamically a visual dictionary. The closest visual
word to a given local feature was selected performing a simple linear search algorithm. If
these features were very far in distance, the query local feature was added as a new word
to the dictionary. This scheme was assessed using different feature spaces and employed for
mapping and localization tasks, but it was limited to small distances due to the inefficiency
of the linear search algorithm. This model was extended by Angeli et al. [184] to incremental
conditions to be used in a place recognition module. Their approach relied on a discrete Bayes
filter to estimate the probability of loop closures and to ensure temporal coherency between
predictions. During the calculation of the likelihood, the TF-IDF coefficients were extracted

3.4. Methods based on Combined Approaches 45

according to the distinctiveness of each word given the current image. This work was improved
in [185], where two visual vocabularies were trained and used together as input to the Bayes
filter, and further expanded in [186] by constructing a complete topological SLAM system.

Inspired by the work of Angeli, Labbe and Michaud presented Real-Time Appearance-
Based Mapping (RTAB-Map) [187, 188] a loop closure detection approach for large-scale and
long-term SLAM. The main contribution of this solution was that they provided memory
management mechanisms for caching a subset of the online learnt visual words in the main
memory (called Working Memory), and this subset was used for detecting loop closures. The
rest were stored in a database stored in an external memory called Long Term Memory. The
transition of words between memories was ruled by the time taken for processing images in
an adaptive way. This scheme allowed to obtain high recall rates at 100% of precision while
maintaining the real time performance of the solution.

Nicosevici and Garcia [189, 190] introduced Online Visual Vocabulary (OVV), where the
words were generated at the same time that the robot was exploring the environment using
a modified version of an agglomerative clustering algorithm. The elementary clusters were
created from features that can be tracked along the images of the sequence, represented by
the mean descriptor of a feature and the covariance matrix of the observed descriptors at
the current point. In order to merge these clusters, they provided a novel criterion based on
the Fisher’s linear discriminant that took into account the global distribution of the data,
resulting into more distinctive visual words. A method for efficiently reindexing the images
when the vocabulary changes is also proposed. An interesting aspect of their experimental
results is that, in addition to outdoor scenarios, the approach was assessed in underwater
environments. The OVV technique was recently used in [192] for performing unsupervised
topological place recognition in an image stream captured by a robot.

Recently, an incremental BoW scheme based on binary descriptors called IBuILD [191]
has emerged. In this work, the authors propose a method to construct a visual dictionary
that can be used for loop closure detection. However, the authors do not use an indexing
scheme for an efficient search of features.

Despite they are more related to the pose-graph SLAM field, there exists other solutions
that used a BoW scheme built in an online manner that can be interesting for the reader,
such as the works of Eade and Drummond [201], Botterill et al. [202] and Pradeep et al. [203].

3.4 Methods based on Combined Approaches

In order to maximize the benefits of each approach, several authors have proposed solutions
based on combinations of different image descriptors for topological mapping and localization.
The main approaches that fall into this category are summarized in Table 3.4 specifying the
same characteristics as in previous sections.

A common approach is to use a global descriptor to perform a fast selection of similar

46 Literature Review

References Camera Map Tasks Environment Combination
Goedeme [204, 205] Omnidir Topo Map + Loc Indoors SIFT/Columns
Murillo [206, 207] Omnidir Hybrid Map + Loc In + Out SURF/Color Hist.

Wang [208] Mono Topo Map + Loc In + Out OACH/SIFT
Weiss [209, 210] Mono Topo Map + Loc Outdoors WGOH/WGII/SIFT
Siagian [211] Mono Topo Map + Loc Outdoors Gist/SIFT

Chapoulie [212] Sphere Topo SLAM Outdoors SIFT/Spatial Hists.
Wang [213] Omnidir Topo Map + Loc Indoors SURF/Convex Hull
Lin [214] Omnidir Topo Map + Loc In + Out SURF/Convex Hull

Wang [215] Mono Topo Map + Loc Outdoors Harris/Color Hist.
Maohai [216] Omnidir Hybrid Map + Loc Outdoors Color Hist./SIFT

Korrapati [217, 218] Omnidir Topo Mapping Outdoors SURF/BoW

Table 3.4: Summary of topological mapping and localization solutions based on combined
approaches.

images during an image search and then use a more accurate process in order to confirm the
association, such as matching local features. Goedeme et al. [204] presented a localization
system for omnidirectional cameras where, for each acquired image, they extracted vertical
column segments and described them with ten different descriptors. After a clustering process,
these local descriptors were inserted into a kd-tree structure that was used by the localization
process. When a query image arrived, the same local descriptors applied to the vertical
structures were computed over the entire image and used to rapidly retrieve possible loop
candidates. Next, a matching distance based on the column segments was applied between
the image and each of the candidates in order to ensure a correct image matching. The
localization process was supported by a Bayes filter, which allowed them to deal with noisy
measurements. Their work was improved in [205], presenting a complete navigation system,
adding SIFT features to the framework and applying the Dempster-Shafer probabilistic theory
to the topological map construction.

Murillo et al. [206] proposed a three-step hierarchical localization method for omnidi-
rectional images. A global color descriptor was applied to obtain a set of susceptible loop
candidates, and then line features described by their line support regions were matched using
pyramidal matching in order to find the most similar image given a predefined visual memory.
The 1D radial trifocal tensor was employed to obtain a metric localization. Their work was
expanded incorporating SURF features to the framework [207].

Wang and Yagi [208] combined recently their OACH global descriptor with local features
extracted with the Harris-Laplace detector and described by the SIFT descriptor. They
created two databases: one for OACH descriptors for coarse localization and a SIFT database
for fine localization. During the global localization stage, a set of candidate images was
extracted and then a fine localization step against this subset was performed. A RANSAC-
based fundamental matrix estimation strategy was employed in order to verify if the image
association was correct.

Weiss et al. [209] performed outdoor localization using a particle filter where particle

3.4. Methods based on Combined Approaches 47

weights were updated according to the similarities computed using two global descriptors:
WGOH and WGII. To calculate the similarity between two images, each descriptor was com-
pared independently using normalized histogram intersection and the final distance was the
product of the previous results. This method was compared with SIFT, presenting a slightly
minor recall, but four times faster. Later in [210], SIFT was incorporated into their frame-
work as an alternative to compute the position of the robot in those cases where it can not
be inferred using the combined global descriptors method.

Another localization approach based on particle filters and inspired in biological concepts
can be found in the work proposed by Siagian and Itti [211], which is based in Gist and
saliency features, implemented in parallel using shared raw feature channels.

Chapoulie et al. [212] introduced a loop closing algorithm to be used with spherical images.
SIFT features were extracted as local features, while histograms of their distribution over the
features space were used as global features. These representations were combined in a Bayes
filter in order to detect loop closure candidates under outdoor environments.

Wang and Lin presented a combined local and global descriptor for omnidirectional images
called Hull Census Transform (HCT) [213], which consisted of repeatedly generating the
convex hull from the extracted SURF features and computing the relative magnitude between
these features that compose the convex hull, resulting into a set of binary vectors. This
representation was then used for detecting scene changes, generating a set of topological node
lists. This work was recently expanded by Lin et al. [214] in a new combined descriptor
called Extended-HTC, where they included color information from the environment, encoded
as color histograms, as well as the structure information of the convex hulls, computed by
means of the centroid of the features and the total distance between any two feature point
locations.

A location recognition system which combined edges, local features and color histograms
was proposed by Wang and Yagi [215]. The image description process was computed in an
integrated way: the Harris detector was used to obtain both edges and interests points, while
SIFT algorithm was used for describing interest points.

Maohai et al. [216] presented a hierarchical localization approach based on omnidirectional
vision where, in a first step, colour histograms allow to select a subset of the images stored
in the map. Next, SIFT local features are used to obtain a more accurate localization inside
this subset.

Recently, Korrapati et al. [217] presented a hierarchical mapping model which organized
images into a topological map using the Vector of Locally Aggregated Descriptors (VLAD),
where the quantization residues of the local features descriptors, such as SURF, were combined
into a single descriptor. This allowed them to create maps containing over 11,000 images and
a decent amount of frames per second. In a more recent work [218], they also proposed a hier-
archical topological mapping algorithm using a sparse node representation where Hierarchical
Inverted Files (HIF) were employed for an efficient two-level map storage.

48 Literature Review

Feature Global Descriptors Local Features BoW Schemes
CPU Needs ∗ ∗ ∗ ∗ ∗∗

Storage Needs ∗ ∗ ∗ ∗ ∗∗
Matching Complexity ∗∗ ∗ ∗ ∗ ∗
Discrimination Power ∗ ∗ ∗ ∗ ∗∗

Perceptual Aliasing Effect ∗ ∗ ∗ ∗ ∗∗
Large-Scale Operation ∗∗ ∗ ∗ ∗ ∗

Spatial Loss Information ∗∗ ∗ ∗ ∗ ∗
Pose Recovery Complexity ∗ ∗ ∗ ∗ ∗∗

Table 3.5: Advantages and disadvantages of each method. More ’∗’ means better performance
regarding the corresponding attribute.

3.5 Discussion

In the last decades, there has been a significant increase in the number of visual solutions
for topological mapping and localization because of the low cost of cameras and the richness
of the sensor data provided. This chapter surveyed the main approaches emerged in the last
fifteen years. We identified that these works can be classified, according to the method used
for representing the image, into four main categories:

• methods based on global descriptors, where the image is represented by a general de-
scriptor computed using the entire visual information as input;

• methods based on local descriptors, where interest points are found in the image and
then a patch around this point is described in order to identify them in other images;

• methods based on the BoW algorithm, where local features are quantized according to
a set of feature models called visual dictionary, representing images as histograms of
occurrences of each word in the image; and

• methods based on combined descriptors, where several techniques described above are
used together as a new solution.

The main advantages and disadvantages of each method are summarized in Table 3.5.
All these methods are active research areas and authors publish continuously solutions for
mapping, localization or SLAM facing the problem from the point of view of these approaches.

Regarding the different categories of methods enumerated above, global descriptors are
normally very fast to compute, favouring the matching process between the images and re-
ducing the computational needs of mapping and localization tasks. As a main disadvantages,
they offer less robustness to occlusion and illumination effects, what results in a lower dis-
criminative power and an increment of the perceptual aliasing effect, where different places
can be perceived as the same. They have been used intensively in other related research areas,
such as scene categorization.

3.5. Discussion 49

Local features are usually more robust to occlusions and changes in scale, rotation and
illumination. These methods start with a detection phase, where interest points are found
in the image, and are followed by a description phase, where some measures are extracted
from the surroundings of these keypoints. Local features present a better discrimination
capacity, resulting into higher recognition rates and less detection errors. Furthermore, the
recovery of relative poses between images, which can be used for confirming if two images
come from the same scene, can be performed easily. However, the storage requirements and
the computational cost are higher than for global descriptors and the matching process is also
more complex, since sometimes each query descriptor requires to find their closest neighbour
within a large set of features. According to the surveyed works, the most used feature is
SIFT, followed by SURF, both representing features as vectors of floating point numbers.
Recently, a number of binary descriptors have been proposed in the literature, providing an
interesting research line to explore regarding topological mapping and localization, because
they are cheaper to compute, compact to store and faster to compare.

While global descriptors and local features demonstrate useful approaches for robot map-
ping and localization, they do not result to be satisfactory when the number of images to
process is high. Matching hundreds of images using local features can take a long time when
trying to associate the current frame with every previously seen location. Indexing structures
can be used to accelerate the search. However, with a high number of descriptors, memory
problems and computational bottlenecks appear. Global descriptors are easier to compute
and save storage space, but sacrificing discriminative power which reduces the performance
of the solution. In this case, an alternative approach for describing and matching images is
the Bag-Of-Words (BoW) algorithm, which can efficiently index a huge amount of images
incorporating a hierarchical scheme and an inverted index structure. Due to this fast image
retrieval, works classified in this category are mainly SLAM approaches. As main limitation,
it can be mentioned the fact that the effect of perceptual aliasing worsens due to the quantiza-
tion process, the presence of noisy words due to the coarseness of the vocabulary construction
method and the loss of the spatial relations between the words. Some authors have proposed
several improvements in order to overcome this last drawback [171, 219].

The visual dictionaries can be generated offline or online. As a main shortcoming, the
offline approaches need a training phase, where sometimes millions of descriptors have to
be clustered. This can take hours, depending on the number of images and the clustering
technique used. Furthermore, the robot can operate in an environment with an appearance
totally different to the training set employed for generating the dictionary, which implies
that it is not representative of the scenario, increasing false detections. An alternative is to
build the codebook online in an incremental manner, while the robot is navigating across the
environment. However, this implies inserting and deleting features to/from the dictionary,
limiting its possible size. An interesting study about the reuse of visual dictionaries and their
universality is presented by Hou et al. [220]. Nowadays, despite several approaches have been

50 Literature Review

Feature Offline Online
Training Phase Needed No

Scenario Model Updated No Yes
Incremental Memory Management No Needed

Dictionary Size Large As Required
Handle Large Dictionaries Yes As Required

Table 3.6: Advantages and disadvantages of methods for generating visual dictionaries in
BoW schemes.

proposed, managing efficiently online visual dictionaries for BoW schemes can be considered
as a topic of interest. Another interesting issue is long-term mapping, in order to manage
maps during long periods of time under changes in the appearance of the environment. The
main advantages and limitations of each dictionary-generation approach are summarized in
Table 3.6.

After the deep literature review performed in this chapter and considering the open re-
search topics found, in this thesis, three visual topological mapping approaches are proposed,
tackling the problem from different points of view:

• In chapter 5, the problem of indexing floating-point local features efficiently for topo-
logical mapping is addressed, resulting into a solution called FEATMap.

• In chapter 6, we propose an incremental Bag-of-Binary-Words scheme for place recog-
nition called OBIndex, and, next, this approach is used as a key component in a dense
topological mapping solution called BINMap.

• In chapter 7, to further improve the results obtained with BINMap and to favour long-
term mapping tasks, a hierarchical approach called HTMap is introduced.

The approaches presented in this thesis are evaluated using a common framework, which
is presented in the following chapter.

Chapter 4

Experimental Setup

The topological mapping algorithms presented in this thesis have been validated using a
common framework, which comprises several criteria for evaluating their performance and
public datasets from different scenarios. The algorithms have been also compared against
some state-of-the-art solutions. The goal of this chapter is to summarize this experimental
framework, which will be used from now on to evaluate the different solutions proposed.
The chapter is organized as follows: section 4.1 explains the metrics used to validate the
performance of the different approaches, section 4.2 introduces the datasets used in this thesis,
and, finally, section 4.3 enumerates the main state-of-the-art approaches used as a reference
for comparing the proposed topological mapping solutions.

4.1 Performance Metrics

Loop closure detection can be seen as a binary classification problem, where the classifier
is the algorithm itself and its output represents if the current image closes a loop with an
already seen image or not. Therefore, it is usual to validate the performance of a loop closure
algorithm employing methods which are normally used to evaluate binary classifiers.

Binary classification is the task of distributing the elements of a set in two groups according
to a discrimination rule. This kind of classification has been applied successfully in different
tasks, such as medical testing or information retrieval. According to the classification rules,
a classifier can produce errors, which can be stated as:

• false positive errors (FP), commonly referred to as false alarms, which are produced
when the result of the classification indicates the presence of a condition whereas actually
it is not fulfilled, and,

• false negative errors (FN), which are produced when the result of the the classification
indicates that a condition is not fulfilled, whereas actually it is.

Conversely, a correct result can be classified into true positives (TP) or true negatives (TN)
depending on the presence of the condition or not. In order to associate the response of
a classifier to one of these groups, we need information provided by direct observation in

51

52 Experimental Setup

contrast to the result itself, which has been inferred. This information is commonly referred
to as the ground truth.

It is interesting to note that in many practical binary classification problems, the two
groups are not symmetric and then the relative proportion between the different types of
errors is of interest. For instance, in medical testing, false positives (detecting a disease
when it is not present) and false negatives (not detecting a disease when it is present) are
considered different error cases. Then, it is common to take this fact into account to evaluate
the performance of a binary classifier, obtaining ratios between the different types of errors
instead of total numbers.

There exist several metrics and ratios to evaluate the performance of a binary classifier,
and the election depends on the field of application [221]. In computer science and information
retrieval, the combination of precision and recall is usually the preferred option. Precision
is the fraction of positive retrieved instances that are actually positive, while recall is the
fraction of positive retrieved instances out of the total number of positive instances:

P = TP

TP + FP
, (4.1)

R = TP

TP + FN
. (4.2)

Informally, a high precision value means a low number of false positives, while a high recall
value means a low number of false negatives. A graphical representation of the precision and
recall metrics is shown in Fig. 4.1.

In order to use the precision-recall metrics to evaluate the performance of the algorithms
presented in this thesis, the datasets introduced in section 4.2 are provided with a ground
truth, which indicates, for each image in the sequence, which other images can be considered
to close a loop with it. Then, the assessment is performed counting for each dataset the
number of true positives, true negatives, false positives and false negatives, where positive is
meant for detection of loop closure. The precision P is then defined as the ratio of real loop
closure detections to total amount of loop closures detected, while the recall R is defined as
the ratio of real loop closures to total amount of loop closures existent in the dataset.

For loop closure detection, it is essential to avoid false positives, since it means that two
images have been identified as a loop but, in reality, they represent different places. This
will induce the algorithm to produce inconsistent maps and, therefore, avoiding these false
positives becomes essential. By definition, if no false positives are found, the precision reaches
100% (see 4.1). Then, in our experiments, we are interested in finding the best recall than
can be achieved at 100% of precision using each approach, which indicates the percentage of
loop closures that can be detected by the algorithm without false positive detections.

Another common performance measure used in this work is the precision-recall (PR)
curve. A PR curve is a graphical plot that illustrates the performance of the algorithm as

4.2. Datasets 53

Figure 4.1: Precision and recall metrics. The items that are positive according to the ground
truth are located to the left of the straight line, while the items retrieved as positive by the
binary classifier are inside the oval area. The red areas represent errors. Then, the red area
located to the left of the line and outside of the oval area represents the positive items that
could not be retrieved (false negatives), while the red area inside the oval area represents the
items retrieved as positives that are not actually positives (false positives).

a critical parameter is varied. As the name suggests, the curve is created by plotting the
precision (P) against the recall (R) obtained for different values of that parameter. This
plot is useful to validate the sensitivity and the behaviour of the algorithms with regard to a
critical parameter with a great impact in the global performance of the approach, such as an
acceptance threshold. PR curves are usually presented as an alternative to Receiver Operating
Characteristic (ROC) curves depending on the class distribution [222]. Unlike ROC curves,
the best performance in a PR curve is indicated with 100% of precision and 100% of recall
(the upper-right corner of the plot), which also yields to the maximum Area Under the Curve
(AUC).

The execution times for each component of the different algorithms are also measured,
obtaining the average, the standard deviation, the maximum and the minimum values. This
allows us to validate the performance of the solutions according to their computational times,
giving an estimation of the time needed to execute each of them. All experiments were
performed on a laptop fitted with an Intel Core i3 at 2.27Ghz processor and 8GB of RAM
memory and running GNU/Linux Ubuntu.

4.2 Datasets

In order to carry out the performance evaluation of the solutions proposed in this thesis, several
datasets have been employed. A total of 10 image sequences from 4 different datasets were
selected, including indoor and outdoor environments. These sequences, which are summarized
in Table 4.1, have been used independently and in no particular order in the following chapters.
In this section, the main characteristics of each dataset are enumerated.

54 Experimental Setup

Sequence #Images Image size (px) Rate (hz) Dist (km) Env
Lip6 Indoor [185] 388 240×192 1.0 Unknown Indoors
Lip6 Outdoor [185] 1063 240×192 1.0 1.41 Outdoors
City Center [161] 1237 1280×480 0.5 2.01 Outdoors
New College [161] 1073 1280×480 0.5 1.92 Outdoors
KITTI 00 [223] 4541 1241×376 10.0 3.73 Outdoors
KITTI 05 [223] 2761 1226×370 10.0 2.22 Outdoors
KITTI 06 [223] 1101 1226×370 10.0 1.27 Outdoors

UIBSmallLoop [7] 388 300×240 0.5 0.47 Outdoors
UIBLargeLoop [7] 997 300×240 0.5 1.48 Outdoors
UIBIndoor [7] 384 300×240 0.5 Unknown Indoors

Table 4.1: Sequence of images used in this thesis. The total distance travelled in the indoor
sequences is unknown, since GPS signal is not available in these scenarios.

4.2.1 Lip6 Dataset

Lip6 is a public dataset recorded for validating the work of Angeli et al [185]. It consists of two
sequences with images of size 240× 192: one indoors and one outdoors. The indoor sequence,
referred to as Lip6 Indoor, performs two loops inside a building under high perceptual aliasing
conditions while the outdoor sequence, referred to as Lip6 Outdoor, presents a very changing
scenario around a building at the city of Paris. Both sequences were recorded with a hand-
held camera approximately pointing in the direction of displacement and were acquired at 1
Hz. The authors provide ground truth files for each sequence, which were created by hand by
themselves. Some examples of images from the Lip6 sequences are shown in Fig 4.2.

4.2.2 Oxford Dataset

The Oxford dataset consists of two different sequences: City Center and New College. These
sequences were originally obtained for the evaluation of FAB-MAP [161] and consist of, re-
spectively, 1237 and 1073 pairs of images of size 640 × 480 taken by two cameras mounted
on a robot while it travels through the city of Oxford. Since the approaches presented in
this thesis have been developed to be used with monocular cameras, we merge left and right
frames resulting into images of size 1280 × 480. The City Center sequence was recorded to
validate the ability of a system for matching images in the presence of scene changes, while the
New College sequence was recorded because of its high perceptual aliasing conditions. Along
with the images, the authors provide ground truth files labelled by their own observations.
Unlike the Lip6 dataset, the positions of the images are also available. This allows us to plot
the detected loop closures and the resulting maps when using this dataset, as will be seen in
the following chapters. Some examples of images taken from these sequences are shown in
Fig. 4.3.

4.2. Datasets 55

Figure 4.2: Examples of images taken from the Lip6 Indoor sequence (top row) and the Lip6
Outdoor sequence (bottom row).

Figure 4.3: Examples of images taken from the City Center (top) and the New College
(bottom) sequences.

56 Experimental Setup

Figure 4.4: Examples of images taken from the KITTI 00 (top), KITTI 05 (middle) and
KITTI 06 sequences (bottom).

4.2.3 KITTI Dataset

The third group of sequences have been obtained from the Karlsruhe Institute of Technology
and Toyota Technological Institute (KITTI) suite [223]. This suite comprises benchmarks for
stereo, optical flow, visual odometry, SLAM and 3D object detection and was recorded using
a platform equipped with four high resolution video cameras, a Velodyne laser scanner and
a localization system. In this thesis, we use the odometry benchmark. More precisely, the
KITTI odometry benchmark consists of 22 outdoor sequences, with more than 40000 images
covering a total of 39.2 km. Among these 22 sequences, there are 12 that contain loop closures.
We employ sequences 00, 05 and 06 as a representative set of this benchmark. Since originally
the KITTI sequences did not include a specific ground truth for loop closure detection, we
use the ones provided by Arroyo et al. [98]. Each dataset is also provided with a pose file,
which is exclusively used to plot the positions of the images. Examples of these sequences are
shown in Fig. 4.4.

4.2.4 UIB Dataset

The UIB dataset has been recorded by ourselves during the development of this thesis. It
comprises three sequences: UIBSmallLoop, UIBLargeLoop and UIBIndoor. The UIBSmall-
Loop and UIBLargeLoop datasets were recorded around the Anselm Turmeda building at the
University of the Balearic Islands campus. They consist of 388 and 997 images, respectively,
taken under bad weather conditions, for verifying the performance of the approaches under

4.3. Reference Solutions 57

Figure 4.5: Examples of images taken from the UIBIndoor sequence (top row) and UIB
outdoor sequences (bottom row).

these situations. The UIBIndoor dataset, recorded inside the Anselm Turmeda building, com-
prises a total of 384 images from an indoor environment which means a number of challenges
for loop closure. First of all, the camera velocity is not constant. This is due to the fact that
we needed to climb up and down the stairs during the recording. This difficulty enables us
to validate the capability of the filter to self-adapt under camera speed changes. Besides, a
number of images of white walls result when the camera is at the stairs, what gives rise to the
detection of very few features. Moreover, the dataset presents some parts with substantial
illumination changes, what leads on some occasions to overexposed images. The ground truth
files were created manually by ourselves. These sequences do not include pose files, and then
the image positions could not be plotted when using this dataset. Some example images of
these sequences are shown in Fig 4.5.

4.3 Reference Solutions

In chapter 3, we reviewed the most important techniques presented during the last fifteen years
in vision-based topological mapping and localization. In this thesis, two of them are used as
a baseline for validating the proposed solutions: FAB-MAP 2.0 [165] and SeqSLAM [43].

4.3.1 FAB-MAP 2.0

FAB-MAP is the best known example of an appearance-based solution implemented using
an offline Bag-of-Words (BoW) scheme. FAB-MAP 2.0 [165] is an evolution of the original
FAB-MAP algorithm [161], proposed under the assumption that modelling the probabilities

58 Experimental Setup

of the co-occurrences of visual words can help during the localization process. These prob-
abilities are approximated by a Chow-Liu tree, computed from a set of training data as the
maximum-weight spanning tree of a directed graph of co-occurrences between visual words.
This approximation allows the authors to compute efficiently a likelihood which is then used
in a Bayes filter. FAB-MAP 2.0 includes some enhancements such as the introduction of an
inverted file, like in image retrieval systems.

In order to obtain precision-recall metrics from FAB-MAP 2.0, we execute the binaries
provided by the authors. The algorithm is configured with the default parameters and using
the indoor vocabulary for Lip6 Indoor and UIBIndoor sequences, and the outdoor vocabulary
for the rest of sequences. The output is a matrix, the n-th row of which corresponds to the
probability distribution over previously seen places due to the n-th image. In this matrix, the
main diagonal corresponds to the probability that the image comes from a new place. Since
we do not take into account this case in any of our approaches and we want to avoid the false
detection of loop closures with recent frames, the output matrix is rectified by removing the
most recent probabilities for each row and normalizing the final distribution. A loop closure
is detected if the probability is above a predefined threshold p. The precision-recall curves
are obtained modifying this threshold p.

4.3.2 SeqSLAM

The second reference work taken into account in this thesis for comparison purposes is the
Milford and Wyeth’s SeqSLAM algorithm [43]. This approach is one of the most popular
solutions based on global descriptors. SeqSLAM, instead of searching for a single previously
seen image given the current frame, performs the localization process recognizing coherent
sequences of local consecutive images, even under weather or season changes. They employed
normalized patches in a cropped version of the original image, and Sum of Absolute Differences
(SAD) to compare these patches.

For testing SeqSLAM, we use the source code provided by OpenSeqSLAM [224]. OpenSe-
qSLAM has been also configured with the default parameters, except the temporal length of
the image sequences (ds) which is, according to the authors, the most influential parameter
of the algorithm. Longer sequence lengths usually perform better in terms of precision-recall,
but, in some datasets, they can result into the opposite behaviour because of the absence of
sequences of that length, specially in environments with frequent turns. Since we want to
increment the performance of each approach, this parameter was experimentally set to 30,
what maximized the recall in all datasets. The precision-recall curves are obtained modifying
the acceptance threshold.

Chapter 5

Loop Closure Detection using
Local Invariant Features and
Randomized KD-Trees

As stated in chapter 3, the Bag-of-Words (BoW) approach [83] is one of the most used
techniques in appearance-based loop closure detection. However, this method presents some
drawbacks. On the one hand, the quantization process performed during the clustering step
contributes to emphasize the perceptual aliasing effect [117], i.e. two different places are
perceived as the same because of the similarity between their representations. On the other
hand, the training phase is typically performed offline and can take a long time, depending
on the number of training descriptors. Global descriptors could be an alternative but usually
they are not descriptive enough to be used in an accurate loop detection process.

Topological maps obtained from visual information tend to contain spurious paths and
nodes [184, 133]. This is because of image noise, partial invariance to viewpoint, scale and/or
illumination changes of image descriptors, or due to the mapping algorithm itself. The final
map obtained can be very large and can contain more nodes than are actually required to rep-
resent the environment, resulting in an increment of the storage needs and the computational
requirements.

To cope with the aforementioned issues, this chapter discusses an appearance-based ap-
proach for topological mapping and localization named FEATMap (Feature-based Mapping).
FEATMap is based on a loop closure detection framework which uses local invariant features
directly as image description method. To optimize running times, matchings between the
current image and previously visited places are determined using an index of features based
on a set of randomized kd-trees (see section 2.2.2.1), which is a simple structure that allows
us to index images as they are processed, avoiding the classical training step of offline BoW
schemes. We use a discrete Bayes filter for predicting loop closure candidates, whose obser-
vation model is a novel approach based on an efficient matching scheme between features. In
order to avoid redundant information in the resulting maps, we also present a map refinement
strategy, which takes into account the visual information stored in the map for refining the
resulting final topology. These refined maps save storage space and improve the execution
times of localizations tasks. FEATMap is validated under different scenarios and compared
with the state-of-the-art FAB-MAP 2.0 algorithm.

59

60 Loop Closure Detection using Local Features and KD-Trees

The chapter is organized as follows: section 5.1 introduces the image description technique
used in FEATMap, section 5.2 describes the structure of the map employed in FEATMap,
section 5.3 describes our topological mapping framework in detail, section 5.4 reports on the
results of the different experiments performed, and section 5.5 concludes the chapter.

5.1 Image Description

FEATMap uses a kd-tree-based algorithm for indexing features. These algorithms assume
the features exist in a real vector space where each dimension of the features can be contin-
uously averaged. For this reason, binary descriptors like BRIEF[74], BRISK [60], ORB [58],
FREAK [75] or LDB[79] cannot be used in FEATMap, despite their lower detection and de-
scription times. This kind of descriptors will be intensively used in the following chapters,
due to their demonstrated benefits. Instead, FEATMap can only employ real-valued descrip-
tors, such as Scale-Invariant Feature Transform (SIFT) [61] or Speeded Up Robust Features
(SURF) [62]. Then, the set of descriptors of the n features found at image It is defined as
Ft = {f t0, f t1, . . . , f tn−1}. These descriptors are compared using the Euclidean distance. The
reader is referred to section 2.2.1.2 for further information about SIFT or SURF.

5.2 Map Representation

The main goal of FEATMap is to construct a clean visual representation of the robot envi-
ronment using a monocular camera while localizing the robot within the map. Since in a real
scenario storing all images taken by the camera is impossible, we need to reduce the number
of images to handle without missing visually distinct locations of the robot environment. The
elements of this subset of images are called keyframes [153]. FEATMap is also based on the
keyframe concept. In our map, each node represents a keyframe, and each keyframe is rep-
resented by its corresponding feature descriptors. Formally, given I = {I0, I1, . . . , It} as the
input sequence of images received up to time t, our topological map at time t is defined as:

Mt = (γ, ω, β) , (5.1)

being γ a graph which encodes the relationships between the keyframes, ω the set of selected
keyframes up to time t, and β an index of features based on a set of randomized kd-trees that
contains the descriptors of the keyframes. More precisely, ω is defined as:

ω = {κ0, κ1, . . . , κc−1} , (5.2)

where κi is the keyframe i from a total of c selected keyframes. Each keyframe κi is represented
by the set of descriptors Fj found in the corresponding image Ij .

The index β is a key component used during the loop closure detection step. As we will

5.3. Topological Mapping Framework 61

Figure 5.1: Overview of FEATMap. See text for details.

see shortly, it is needed to match efficiently the features of the current image with features
of all previously considered keyframes, in order to determine whether it is a revisited place.
Therefore, a method for an efficient nearest neighbour search is required in order to match
these high-dimensional descriptors. Tree structures have been widely used to this end, since
they reduce the search complexity from linear to logarithmic. To the same purpose, we
maintain a set of randomized kd-trees containing all the descriptors of the detected keyframes.
An inverted index structure, which maps each feature to the keyframe where it was found, is
also employed. Given a query descriptor, these structures allow us to obtain, traversing the
tree just once, the top K nearest keypoints among all keyframes in an efficient way.

5.3 Topological Mapping Framework

5.3.1 Algorithm Overview

FEATMap is outlined in Fig. 5.1 and Alg. 5.1. At each time step, the robot is considered to be
at a keyframe κa of the map. In order to select the keyframes, we discard: (a) images similar
to the current keyframe of the robot, since they do not provide distinct visual information
about the environment and therefore are redundant; and (b) robot camera turns, because
they are noisy and can introduce errors in the mapping and localization processes. For the
first case, feature descriptors of the current image are matched applying the ratio test [61] to

62 Loop Closure Detection using Local Features and KD-Trees

Algorithm 5.1 FEATMap: Topological Mapping Framework
1: procedure topological_mapping
2: while there are images do
3: It = get_image()
4: Ft = local_description(It) . Feature detection/description
5: bayes_filter_predict()
6: likelihood = compute_likelihood(Ft,Mt)
7: bayes_filter_update(likelihood)
8: if useful_image(Ft, Ft−1, Fka) then
9: if loop_closure(Ft, Mt) then

10: κc = get_loop_closure_location()
11: link(κa, κc, Mt)
12: refine_map(Mt, κc) . Starts the map refinement step
13: κa = κc . Updates the active location
14: else
15: κn = create_new_location(Mt)
16: link(κa, κn, Mt)
17: κa = κn . Updates the active location
18: end if
19: end if
20: add_hypotheses(t) . Add valid hypotheses at time t
21: end while
22: end procedure

the features of the current keyframe κa:

df (f ti , fam)
df (f ti , fan) < ρ , (5.3)

being f ti a descriptor of the current image It, fam and fan , respectively, the nearest and the
second-nearest neighbours of the descriptor f ti in the keyframe κa, df the distance between
two descriptors and ρ the desired ratio. If the number of matched features is high enough,
the image is considered similar to the current location. The same matching step is applied
between the current image It and the last received image in the sequence It−1: if it is not
possible to match a certain number of features, the image is classified as a turn. In these
two cases, the image is discarded. Otherwise, it is considered useful and is processed in order
to determine whether it is a loop closure or a new keyframe to be added to the map. This
keyframe selection policy is shown graphically in Fig. 5.2.

Our loop closure approach makes use of a discrete Bayes filter. This filter is updated with
every image irrespective of whether the image has been discarded or not. When an image is
considered as useful, FEATMap validates whether it represents a loop closure. If this is not
the case, the current image is considered as a new keyframe and is added to the map as a
new node. Otherwise, a link is created between the current keyframe and the loop closure
candidate and, then, a map refinement process runs, in order to determine if redundant paths

5.3. Topological Mapping Framework 63

Figure 5.2: Image selection policy. The current image taken by the camera (6) is matched
with the image that represents the current keyframe (0) and the last received image in the
sequence (5) in order to determine if it is a useful frame. K represents the current location
(keyframe), S and T represent images discarded because they are, respectively, similar enough
to the current location or they correspond to camera turns.

have been created. As a consequence, a set of superfluous nodes may be detected. If this is
the case, they are removed from the map, and the robot position within the map is updated
accordingly.

In order to avoid false loop closure detections between the current image and its neighbours
in the sequence, new keyframes are not inserted directly as loop closure hypotheses in the filter.
They are instead stored in a temporary cache list and pushed into the filter once a certain
number of images have been considered.

The loop closure detection algorithm and the map refinement strategy are detailed in the
following sections.

5.3.2 Probabilistic Loop Closure Detection

A discrete Bayes filter is used to detect loop closure candidates. This filter estimates the
probability that the current image closes a loop with previously seen locations, allowing us to
deal with noisy measurements and uncertainty in the robot location, and helping us to discard
false recognitions. The Bayesian framework is also used for ensuring temporal coherency
between consecutive predictions, integrating past estimations over time. It could also be
used for fusing sensory information from different sources, such as cameras, lasers or IMUs,
providing an observation model for each one. In our approach, we only use images as input.

Given the current image It at time t, we denote zt as the observation in our filter, which
in this case corresponds to Ft, the set of descriptors extracted from It. We also denote Lti as
the event that image It closes a loop with image Ii, where i < t. Using these definitions, we
want to detect the image of the map Ic whose index satisfies:

c = arg max
i=0,...,t−p

{P
(
Lti|z0:t

)
} , (5.4)

where P
(
Lti|z0:t

)
is the full posterior probability at time t given all previous observations

up to time t. As in [185], the most recent p images are not included as hypotheses in the

64 Loop Closure Detection using Local Features and KD-Trees

computation of the posterior since It is expected to be very similar to its neighbours and
then false loop closure detections will be found. This parameter p delays the publication of
hypotheses and needs to be set according to the frame rate or the velocity of the camera.

Separating the current observation from the previous ones, the posterior can be rewritten
as:

P
(
Lti|z0:t

)
= P

(
Lti|zt, z0:t−1

)
, (5.5)

and then, using conditional probability properties1, the next equality holds:

P
(
Lti|zt, z0:t−1

)
P (zt|z0:t−1) = P

(
zt|Lti, z0:t−1

)
P
(
Lti|z0:t−1

)
, (5.6)

from where we can isolate our final goal to obtain:

P
(
Lti|zt, z0:t−1

)
= P

(
zt|Lti, z0:t−1

)
P
(
Lti|z0:t−1

)
P (zt|z0:t−1) . (5.7)

where P (zt|z0:t−1) can be seen as a normalizing factor since its computation does not depend
on Lti. Under this premise and the Markov assumption, the posterior is defined as:

P
(
Lti|z0:t

)
= η P

(
zt|Lti

)
P
(
Lti|z0:t−1

)
, (5.8)

where η represents the normalizing factor, P
(
zt|Lti

)
is the observation likelihood and P

(
Lti|z0:t−1

)
is the probability distribution after a prediction step. Decomposing the right side of Eq. 5.8
using the Law of Total Probability, the full posterior can be written as:

P
(
Lti|z0:t

)
= η P

(
zt|Lti

) t−p∑
j=0

P
(
Lti|Lt−1

j

)
P
(
Lt−1
j |z0:t−1

)
, (5.9)

where P
(
Lt−1
j |z0:t−1

)
is the posterior distribution computed at the previous time instant and

P
(
Lti|L

t−1
j

)
is the transition model.

Unlike Angeli et al. [185] and Cummins and Newman [161], we do not model explicitly
the probability of no loop closure in the posterior. If the loop closure probability of It with
Ic (P

(
Ltc|z0:t

)
) is not high enough, we discard Ltc as a possible loop candidate.

5.3.2.1 Transition Model

Before updating the filter using the current observation, the loop closure probability at time
t is predicted from P

(
Lt−1
j |z0:t−1

)
according to an evolution model. The probability of loop

closure with an image Ij at time t − 1 is diffused over its neighbours following a discretized
Gaussian-like function centred at j. In more detail, 90% of the total probability is distributed
among j and exactly four of its neighbours (j− 2, j− 1, j, j+ 1, j+ 2) using coefficients (0.1,

1P (A | B, C) P (B | C) = P (A∩B∩C)
P (B∩C)

P (B∩C)
P (C) = P (A∩B∩C)

P (A∩C)
P (A∩C)

P (C) = P (B | A, C) P (A | C)

5.3. Topological Mapping Framework 65

0.2, 0.4, 0.2, 0.1), i.e. 0.9 × (0.1, 0.2, 0.4, 0.2, 0.1). The remaining 10% is shared uniformly
across the rest of loop closure hypotheses according to:

0.1
max{0, t− p− 5}+ 1 . (5.10)

This implies that there is always a small probability of jumping between hypotheses far away
in time, improving the sensitivity of the filter when the robot revisits old places.

Our model is similar to the one presented by Angeli [185] but using different coefficients
in order to give more importance to the central image of the Gaussian. FAB-MAP employs a
Gaussian-like function using only two neighbours, reducing the speed transition of the filter.

5.3.2.2 Observation Model

Once the prediction step is performed, the current observation needs to be included in the
filter. We have to compute the most likely locations given the current image It and its feature
descriptors Ft, but we want to avoid comparing It with each previous keyframe, since this
can be unfeasible for a high number of images. To this end, we use the index β described
in section 5.2. Note that if the robot revisits the same place several times and the current
image It closes this loop again, each descriptor in Ft can be close to descriptors from different
previous images. This fact is taken into account in the computation of our likelihood.

Since we do not use a BoW model, we can not rely on solutions created for these repre-
sentations like the TF-IDF score [225] used by Angeli [185], or on an observation likelihood
based on a precomputed Chow-Liu tree like Cummins [161]. Instead, our observation model
provides an efficient way of obtaining loop closure candidates using local scale invariant fea-
tures and indexing structures such as kd-trees. For each hypothesis i in the filter, a score
s (Ft, Fi) is computed. This score represents the likelihood that the current image It closes
the loop with image Ii given their descriptors, Ft and Fi, respectively. Initially, these scores
are set to 0 for all frames from 0 to t− p. For each descriptor in Ft, the K closest descriptors
among the previous keyframe images are retrieved without taking into account the p previous
frames; next, each of them, denoted by n, adds a weight wn to the score of the image where
it appears. This value is normalized using the total distance of the K candidates retrieved:

wn = 1− dn
K∑
k=1

dk

,∀n = 1, . . . ,K , (5.11)

where d is the Euclidean distance between the considered query descriptor in Ft and the
nearest neighbour descriptor found in the tree structure. This value is accumulated onto a
score according to:

s
(
Ft, Fj(n)

)
= s

(
Ft, Fj(n)

)
+ wn ,∀n = 1, . . . ,K , (5.12)

66 Loop Closure Detection using Local Features and KD-Trees

being j(n) the index of the image where the candidate descriptor n was extracted. The
computation of the scores finishes when all descriptors in Ft have been processed. Then, the
likelihood function is calculated according to the following rule (similarly to [185]):

P
(
zt|Lti

)
=


s (Ft, Fi)− sσ

sµ
if s (Ft, Fi) ≥ sµ + sσ

1 otherwise
, (5.13)

being respectively sµ and sσ the mean and the standard deviation of the set of scores. Notice
that by means of Eq. 5.13, given the current observation zt, only the most likely locations
update their posterior. After incorporating the observation into our filter, the full posterior
is normalized in order to obtain a probability distribution.

Our observation model enables us to detect similar past scenes in challenging situations
such as illumination changes, appearance modifications, camera rotations and scene occlu-
sions. This will be shown empirically in the experimental results section, where the obser-
vation likelihood for this kind of loop closure situations presents clear peaks despite their
complexity. Note that despite the loop closure algorithm is defined for all previous images
from 0 to t − p, only the likelihood of the images selected as keyframes is computed, since
the index β includes only the features of these images. Then, only keyframe images will be
returned by the Bayes filter as loop closure candidates.

5.3.2.3 Selection of a Loop Closure Candidate

In order to select a final candidate, we do not search for high peaks in the posterior distri-
bution, because loop closure probabilities are usually diffused between neighbouring images.
This is due to visual similarities between consecutive keyframes in the sequence. Instead, for
each location in the filter, we sum the probabilities along a predefined neighbourhood. This
neighbourhood is the same as defined in section 5.3.2.1, i.e. frames (j − 2, j − 1, j, j + 1,
j + 2) for image j.

The image Ij with the highest sum of probabilities in its neighbourhood is selected as a loop
closure candidate. If this probability is below a threshold τloop, the loop closure hypothesis
is not accepted. Otherwise, an epipolarity analysis between It and Ij is performed in order
to validate if they can come from the same scene after a camera rotation and/or translation.
Matchings that do not fulfil the epipolar constraint are discarded by means of RANSAC. If
the number of surviving matchings is above a threshold τep, the loop closure hypothesis is
accepted; otherwise, it is definitely rejected.

Finally, we define another threshold τhyp to ensure a minimum number of hypotheses in
the filter, so that loop closure candidates are meaningful. This step counteracts the fact that
first images inserted in the filter tend to attain a high probability of loop closure after the
normalization step, what leads to incorrect detections.

The full loop closure detection approach is outlined in Alg. 5.2.

5.3. Topological Mapping Framework 67

Algorithm 5.2 FEATMap: Loop Closure Detection
1: procedure loop_closure(Ft,Mt)
2: [c, Pc] = get_best_candidate() . Pc: Sum of probabilities for candidate c
3: if Pc > τloop and number_of_hyp > τhyp then
4: ninliers = epipolar_geometry(Ft, Fc)
5: if ninliers > τep then
6: return true . Loop closure found
7: else
8: return false . Loop closure rejected
9: end if

10: else
11: return false . No loop closure found
12: end if
13: end procedure

5.3.3 Map Refinement

Visual topological maps tend to contain redundant nodes and paths due to several reasons.
On the one hand, sometimes the current image acquired by the robot is blurred, what makes
difficult to identify loop closures at the right time and therefore new nodes are added to the
map. The loop closure is identified once the image stream becomes stable again. The net
result is that a redundant path is generated because of the noisy images. On the other hand,
the Bayes filter does not detect a revisited place instantaneously, but needs some frames to
become aware of the loop closure: along these frames, the posterior moves from one keyframe
(hypothesis) to another, while a new path containing the unmatched frames is created. These
problems are common of many vision-based topological mapping solutions. In this section, we
present a map refinement framework based on the visual information obtained from each node
of the environment in order to maintain the map structure as simple as possible in storage
and computational terms.

Our method is executed each time a loop closure is detected. The idea is to refine the local
area of the map around the loop closing node, since the redundant paths are generated within
this zone. To this end, its k-neighbourhood is obtained. This is the set of nodes from which
we can reach the loop closing node in k steps or less, where k was set empirically to 10. For
each element in this set, all paths to the loop closing node are obtained using an adjacency
list. If there is only one path between the nodes, it is concluded that there are no redundant
paths and this route is left unaltered. Otherwise, a further analysis of the different paths is
performed. To this end, a path P of length l between nodes i and j is defined as:

P ij = {N0, N1, . . . , Nl} , 0 ≤ l ≤ k + 1 , (5.14)

being N0 the starting node of P ij and Nl the loop closing node. We define the erasability of a

68 Loop Closure Detection using Local Features and KD-Trees

Algorithm 5.3 FEATMap: Map Refinement
1: procedure refine_map(Mt, κc)
2: neighbours = get_neighbours(Mt, κc, 10)
3: for all neighbour κ in neighbours do
4: P = get_paths(κ, κc)
5: if length(P) > 1 then
6: E = [] . Erasability of each path
7: D = [] . Distance of each path to the model
8: dr = compute_reference_path(P)
9: for each p in index_of(P) do

10: E[p] = compute_erasability(P [p])
11: dp = compute_path_descriptor(P [p])
12: D[p] = compute_distance(dr, dp)
13: end for
14: m = max_path(D) . Gets the index of the farthest path
15: for each p in index_of(P) do
16: if E[p] and D[p] < τpath and (exist_non_erasable(E) or m 6= p) then
17: delete_path(P [p], Mt)
18: end if
19: end for
20: end if
21: end for
22: end procedure

path as:
E(P ij) = (deg−(Ni) = 1) ∧ (deg+(Ni) = 1) , ∀i = 1, . . . , l − 1 , (5.15)

where deg− and deg+ are, respectively, the input degree and the output degree of a vertex.
Therefore, a path is classified as erasable if Eq. 5.15 holds for each inner node of the path.
Otherwise, the path is classified as non-erasable. The meaning of an erasable path in our
context is that the route can be deleted without breaking the topology of the environment.
Examples of erasable and non-erasable paths are shown in Fig. 5.3.

Once all paths have been classified according to their erasability, a decision about which
ones can be deleted is made, taking into account that real alternative paths have to be
preserved to maintain the topology of the environment. To this end, we propose to generate
a reference path using the feature descriptors of all paths, in order to summarize the visual
appearance of the route. Next, each erasable path is contrasted against this reference to
validate if it is a redundant or a required path. In order to create the reference path, a k-
means clustering process with 100 centroids is performed using the descriptors of the keyframes
that belong to all paths in consideration, resulting into a set of reference virtual descriptors.
Next, for each erasable path, the same clustering process is applied using the descriptors of the
corresponding nodes of the map. The virtual descriptors of each path are matched against the
reference path using a brute-force approach. Then, the distance between the paths is defined

5.3. Topological Mapping Framework 69

Figure 5.3: Example of erasability. Two paths exist between node 1 and node 8. The red path
(up) is classified as non-erasable, since the inner node 6 does not fulfil Eq. 5.15. This path
can not be removed without losing the path starting at node 9. The green path (bottom) is
classified as erasable and is a candidate to be removed.

a) b)

c) d)

e) f)

Figure 5.4: Examples of situations solved by our map refinement strategy. Green and red
paths are, respectively, erasable and non-erasable paths. Red nodes indicate that they will
be removed by our approach. When there are several erasable paths, the decision is taken
according to the distance of the paths to the reference model path, as explained in the text.

70 Loop Closure Detection using Local Features and KD-Trees

Parameter Value
Keypoints per image (n) 650

Nearest neighbour ratio (ρ) 0.8
Previous images discarded (p) 30

Map refinement neighbourhood (k) 10
Sum of probabilities (τloop) Varying

Number of inliers for loop closure(τep) 45
Minimum number of hypotheses (τhyp) 20

Table 5.1: Parameters for FEATMap execution.

as the average distance between the matched descriptors.
For each erasable path between the nodes, if the distance is below a threshold τpath, this

path is considered similar to the others and thus is regarded as redundant. If there is at least
one non-erasable route between the nodes, the inner nodes belonging to the rest of erasable
paths are deleted. Otherwise, if all paths are classified as erasable, the most different path
(higher distance) is left unaltered, and the remaining ones are removed. The full algorithm
for map refinement is outlined in Alg. 5.3.

Fig. 5.4 shows several examples of situations that our map refinement strategy is able to
overcome. In (a), (b) and (c), the removed paths were selected because the distances to the
model path are lower than the others. In (d), since there exists a non-erasable path between
nodes 1 and 3 and the distances of the other paths to the model are lower than the threshold
τpath, both erasable routes are deleted. In (e), any of the routes can be deleted since they are
non-erasable paths. In (f), there exists a non-erasable path and then, the erasable one could
be deleted. However, in this case the path can not be removed, since the distance of the path
to the model is higher than τpath, indicating that this is a real alternative path.

5.4 Experimental Results

In this section, we will report about the results of several experiments, assessing FEATMap
from different points of view. This section is organized as follows: first, we discuss the
configuration of the different parameters and their effect in the algorithm; next, the loop
closure detection algorithm is evaluated irrespective of the mapping and localization process;
then, results for the full mapping and localization approach are shown; finally, experiments
for validating our map refinement algorithm are reported.

5.4.1 Parameter Configuration

In all cases, the algorithm was configured using the parameter values indicated in Table 5.1,
what achieve the best performance in all sequences used to validate the approach. In this
section, we discuss the election of the most important parameters and how each one affects
the global performance of the algorithm. Particularly:

5.4. Experimental Results 71

• The number of keypoints per image (n) has a great impact in the general performance
of FEATMap: the higher the number of descriptors to manage by the feature index,
the higher the time needed to detect a loop closure. However, a low number of features
per image decreases the ability of the algorithm to find correct loop closures, and, as
a consequence, increases the number of false positives. We found that 650 features per
image is enough to avoid false positives in all cases.

• According to Lowe [61], a nearest neighbour ratio (ρ) of 0.8 is enough to eliminate 90%
of the false matches while discarding less than 5% of the correct matches.

• The number of previous discarded images (p) is closely related to the velocity and the
frame rate of the camera. According to our experiments, a value of 30 ensures that no
loop closures will be found with the most recent frames, assuming that the camera keeps
moving.

• The number of inliers after passing the epipolar test to accept a loop closure (τep)
affects the sensitivity of the approach: the lower the value, the higher the number of
loop closures accepted. However, false positives are more likely to appear. Note that
this parameter is closely related with the number of keypoints per image (n). Given that
we established n to 650, we found that a value of 45 is enough to avoid false positives
in all cases.

• The loop acceptance threshold (τloop) also affects the sensitivity of the algorithm and
has been used for plotting the precision-recall curves shown in the next section. Due to
this reason, its value changes from one execution to another of the algorithm.

The remaining parameters were not deemed as critical for the performance of FEATMap.
They were established empirically.

5.4.2 Loop Closure Detection

Several experiments were carried out in order to validate the suitability of FEATMap for
loop closure detection tasks. We processed sequences from indoor and outdoor environments,
providing results under different environmental conditions. More precisely, FEATMap is vali-
dated against the Lip6 Indoor, Lip6 Outdoor, UIBSmallLoop, UIBLargeLoop and UIBIndoor
sequences. The reader is referred to section 4.2 for further details about them.

Figure 5.5 illustrates the performance of the observation likelihood for detecting loop
closures within the Lip6Indoor sequence. The right picture shows the likelihood function
values for every pair of frames Ii and Ij while the left picture is the ground truth. As can be
seen, our likelihood presents high values for real loop closures, which are shown as diagonals
in the images. There is more noise in the likelihood at the beginning of the sequence because
there are less images in the trees, which implies that nearest neighbours for each descriptor

72 Loop Closure Detection using Local Features and KD-Trees

(a) (b)

Figure 5.5: (a) Ground truth loop closure matrix for the Lip6Indoor sequence. (b) Likelihood
matrix computed using FEATMap.

are shared between a minor number of images. This effect decreases as we move forward along
the sequence.

Figure 5.6 shows the performance of the Bayes framework in a loop closure detection
situation. In this case, the camera visited twice the same place. When it returns to this place
again, two high peaks corresponding to the previous visits can be observed in the likelihood,
representing possible loop candidates for the current image. After the prediction, update and
normalization steps, the posterior presents only one single peak at the most recent candidate
image, corresponding to the closest in time, i.e. the filter ensures temporal coherency between
predictions. This figure also shows an example of situation where a loop is detected despite
there is a person in the image who was not in the previous visit, what suggests the ability
of the filter for detecting loops when the appearance of the environment changes. FEATMap
accepts the loop closure since the epipolar constraint between the two images is satisfied. It
is also able to detect loop closures under camera rotations, as can be seen in Fig. 5.7, and
under bad weather conditions, as shown in Fig 5.8.

If e.g. an overexposed image or with not enough features was considered by the filter, the
full posterior might not present high peaks and a false negative could be generated. However,
as soon as the image stream became stable, the algorithm would react and start detecting
loop closures again. This shows that FEATMap is able to manage challenging situations.

For obtaining global performance measures, FEATMap was assessed in terms of precision-
recall, as explained in chapter 4. The results for each sequence are shown in Table 5.2. The
best recall rates for 100% precision are shown in the table. As can be seen, no false positives
resulted in any case. This is essential, since false positives can induce errors in mapping and
localization tasks.

In order to validate the reliability of our loop closure algorithm against other existing so-
lutions, we performed a comparison with the state-of-the-art FAB-MAP 2.0 algorithm [165],

5.4. Experimental Results 73

(a) (b)

(c) (d)

Figure 5.6: Example of loop closure detection visiting several times the same place and with
changes in the environment in the Lip6Indoor sequence. Image 331 (a) closes a loop with
image 189 (c) and image 48 (not shown). As can be seen in (b), the current likelihood
presents two strong peaks despite a person in the current image occludes part of the scene.
Peaks correspond to loop candidates. After the prediction, update and normalization steps,
the posterior (d) shows a single peak in the last candidate frame. Red and green lines show
respectively sµ and sµ + sσ values.

(a) (b)

(c) (d)

Figure 5.7: Example of loop closure detection under camera rotations. Despite there is a
camera rotation, image 216 (a) closes a loop with image 72 (c). The likelihood (b) presents
two high peaks since it is the third time the camera visits this place. (d) shows the final
posterior. Red and green lines show respectively sµ and sµ + sσ values.

74 Loop Closure Detection using Local Features and KD-Trees

(a) (b)

(c) (d)

Figure 5.8: Example of loop closure detection under bad weather conditions and camera
rotations for the UIBSmallLoop sequence. Image 330 (a) closes a loop with image 139 (c).
(b) Likelihood given the current image. (d) Full posterior after the prediction, update and
normalization steps. Red and green lines show respectively sµ and sµ + sσ values.

FEATMap FABMAPv2
Sequence TP TN FP FN Pr Re Pr Re
Lip6Indoor 191 151 0 31 100 86.04 33.12 66.04
Lip6Outdoor 551 435 0 52 100 91.38 100 13.26
UIBSmallLoop 194 172 0 2 100 99.97 100 28.84
UIBLargeLoop 439 491 0 47 100 90.32 100 19.14
UIBIndoor 157 177 0 30 100 83.95 88.34 8.05

Table 5.2: Results for the five sequences using FEATMap and FAB-MAP 2.0. Precision (Pr)
and Recall (Re) columns are expressed as percentages. See text for details.

whose binaries and visual vocabularies for indoors and outdoors are available online. The
output of the algorithm is processed as explained in section 4.3.1. The curves for FEATMap
result from modifying the threshold for loop acceptance (τloop). Clearly, our approach out-
performs FAB-MAP in all sequences, obtaining a higher recall for 100% precision. As can
be seen, our solution is also more stable, specially in indoor environments, where the perfor-
mance of FAB-MAP decreases dramatically. We think this is due to the use of the indoors
vocabulary and the complexity of finding features in this kind of environment. As a further
benefit, our approach can deal better with sensor noise. Notice that a precision below 100%
implies the presence of false positives, what will have an influence over the generated map.
Our algorithm allows us to obtain a higher recall than FAB-MAP maintaining the maximum
precision possible. The maximum precision of FAB-MAP together with its recall for each
sequence is also shown in Table 5.2.

As can be seen, a high rate of correct detections were obtained for all experiments. False

5.4. Experimental Results 75

Figure 5.9: Precision-recall curves for each sequence using FEATMap and FAB-MAP 2.0.

negatives are due to, on the one hand, the sensitivity of the filter. In effect, when an old
place is revisited, the likelihood associated to that hypothesis needs to be higher than the
other likelihood values during several consecutive images in order to increase the posterior
for this hypothesis. This introduces a delay in the loop closure detection, which derives in
false negatives. This sensitivity can be tuned by modifying the transition model of the filter,
although a higher sensitivity can introduce loop detection errors, i.e. false positives. On the

76 Loop Closure Detection using Local Features and KD-Trees

Figure 5.10: Path followed by the camera during the UIBSmallLoop experiment. Green and
blue points indicate respectively the beginning and the end of the sequence; the black lines
show no loop closure detections (highest posterior probability is under Tloop) and the yellow
lines represent loop closure detections (highest probability is above Tloop and the epipolar
constraint is satisfied). Notice that the camera passes through the same place in successive
loops, but the lines are drawn in parallel for visualization purposes.

other hand, false negatives can also be due to camera rotations. When the camera is turning
around a corner, it is difficult to find and match features in the images, which prevents the
hypothesis from satisfying the epipolar constraint and leads to the loop closure hypothesis
to be rejected, despite the posterior for this image is higher than τloop. However, in spite of
the difficulties of the UIBIndoor sequence, our approach is able to succeed, as can be seen in
Table 5.2.

The paths followed by the camera in the UIB sequences are shown in Fig 5.10 and Fig 5.11.
These sequences do not include a file with image poses and, then, the positions are approxi-
mately plotted to show the loop closures detected. Whenever the camera explores new places,
no loop closures are found. When a place is revisited, the algorithm starts to find loop clo-
sures. Several images are usually needed until closing the loop, due to the filter inertia. These
images correspond to the false negatives found.

5.4.3 Topological Mapping and Localization

The same sequences used in the previous experiments were also employed to validate our
framework regarding mapping and localization. To this end, the loop closure detection algo-
rithm was adapted to be used with the detected keyframes. A real map of the environment
and the topological map generated by our approach are shown for each sequence. The main
zones of these maps were labelled with letters to simplify the identification of each part in
the topological structure, since these maps do not preserve the shape. The results are shown

5.4. Experimental Results 77

Figure 5.11: Path followed by the camera during the UIBLargeLoop experiment. Green and
blue points indicate respectively the beginning and the end of the sequence; the black lines
show no loop closure detections (highest posterior probability is under Tloop), the red lines
show rejected hypoteses (no epipolar geometry is satisfied) and the yellow lines represent loop
closure detections (highest probability is above Tloop and the epipolar constraint is satisfied).
Notice that the camera passes through the same place in successive loops, but the lines are
drawn in parallel for visualization purposes.

from Fig. 5.12 to 5.17.
As can be seen, the maps generated by FEATMap represent topologically the real scenario.

Connections between each part of the topological map are the same of the real environment,
and the maps do not contain redundant paths or spurious nodes between locations, saving
storage space and improving the computational efficiency of the localization process. There-
fore, we can conclude that our map refinement strategy helps us to clean the final structure,
correcting the problems generated by blurred images and the delays inherent to the loop
closure detection process.

Maps are mainly created during the first exploration of the environment, so that revisiting
a place normally turns into reassigning the current location of the robot to an existing node of
the map. However, sometimes maps result enlarged with new nodes corresponding to images
which are visually in-between two nodes. Generally, they provide unregistered information
about the robot scenario, as can be seen for example in Fig. 5.15.

To finish, it must be noted that it is typical that a few nodes at the beginning of the
sequence do not close any loop, generating a short tail in the map. This is due to the
prediction of the Bayes filter, which tends to move the probability away from the beginning

78 Loop Closure Detection using Local Features and KD-Trees

Figure 5.12: (top) Reference map for the Lip6Indoor sequence. (bottom) Topological map
generated using FEATMap. Each part of the map is identified with a letter in both maps.
The red node identifies the beginning of the sequence. The reference map comes from
http://cogrob.ensta-paristech.fr/loopclosure.html. Map locations are visited in the following
order: A-B-I-H-A-B-C-D-E-F-G-H-A-B-C-D-E-F-G-H-A-B-I.

5.4. Experimental Results 79

Figure 5.13: (top) Reference map for the Lip6Outdoor sequence. (bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node identifies the beginning of the sequence. Map locations are visited in the
following order: A-B-C-D-E-F-G-H-A-B-C-D-E-F-G-H-A-B

80 Loop Closure Detection using Local Features and KD-Trees

Figure 5.14: (top) Reference map for the UIBSmallLoop sequence. (bottom) Topological
map generated using our approach. Each part of the map is identified with a letter in both
maps. The red node identifies the beginning of the sequence. Map locations are visited in the
following order: A-B-C-D-E-A-B-C-D-E.

5.4. Experimental Results 81

(a) (b) (c)

Figure 5.15: Example of adding intermediate nodes in the Lip6Indoor sequence. Images 13
(a) and 86 (c) were added to the map at the first loop. Image 228 (b) was added to the
map the next time the camera visited the same place. As can be seen, image 228 is visually
in-between the left and the right images.

of the sequence, producing that the first loop is closed with the subsequent frames. Notice
that this, however, does not affect the final result of the localization process.

5.4.4 Map Refinement

The main goal of this last section is to verify the quality of the refined maps, in terms of storage
space, computational times and usefulness/efficiency. We want to assess that the generated
maps are representative of the environment and can be used for localization without com-
promising the original performance. To this end, we compare the maps of the five sequences
used in this work with and without refinement. The former appear from Fig. 5.12 to 5.17,
while the latter are shown from Fig. 5.18 to 5.22. As can be seen, the original maps without
the refinement contain spurious nodes and alternative redundant paths between nodes, in-
crementing the execution time of mapping and localization processes, since more nodes need
to be considered at each step. The refined maps shown in section 5.4.3 represent better the
environment.

An additional experiment was performed in order to verify whether refined maps could be
employed for localization with a similar performance to the original ones. To this end, we first
generated the map of the environment and, for each image, the assigned keyframe was stored.
After that, the sequence was processed again using the localization filter to determine, for
each image, the closest location in the map. If that location was the same as the one stored
during the mapping process, the image was considered as a correct localization (CL). For each
sequence, we also obtained the total mapping and localization times, as well as the number of
nodes generated in the graph. These values were measured for each sequence with and without
the refinement step. The results can be found in Table 5.3. As it is shown, map refinement
leads to less nodes than without it. Despite the correct localization rate is slightly lower
for some environments, refining the map improves the computational times of the mapping
and localizations processes. This effect increases with the length of the sequence, as is the

82 Loop Closure Detection using Local Features and KD-Trees

Figure 5.16: (top) Reference map for the UIBLargeLoop sequence. (bottom) Topological
map generated using our approach. Each part of the map is identified with a letter in both
maps. The red node identifies the beginning of the sequence. Map locations are visited in the
following order: A-B-C-D-F-G-H-I-J-K-F-G-H-I-J-K-E-A-B-C-D-E.

5.4. Experimental Results 83

Figure 5.17: (top) Reference map for the UIBIndoor sequence. (bottom) Topological map
generated using our approach. Each part of the map is identified with a letter in both maps.
The red node identifies the beginning of the sequence. Map locations are visited in the
following order: B-C-D-E-F-A-B-C-D-E-F-A-B.

case of the Lip6Outdoor and the UIBLargeLoop sequences. The UIBSmallLoop sequence
presents small differences between the two versions of the map. This is because the resulting
structures in the maps are practically the same, resulting into similar processing times. From
the table we can also observe that, in general, the outdoor environments are more affected by
the refinement step, since the correct localization rates are lower for these cases. In general
terms, we can argue that the map refinement strategy proposed in this work can be used for
saving space in memory and for improving the speed of the mapping and localization tasks
without compromising the performance of FEATMap.

5.4.5 Computational Times

In this section, we evaluate the performance of FEATMap in terms of computational time. To
this end, we execute the algorithm over the KITTI 05 sequence. For comparing FEATMap
against the solutions that will be presented in next chapters, we assume the worst possible case
during the execution of FEATMap, which in this case corresponds to insert each image as a

84 Loop Closure Detection using Local Features and KD-Trees

Figure 5.18: Map of the Lip6Indoor sequence obtained without using the map refinement
strategy. The red node identifies the beginning of the sequence.

Figure 5.19: Map of the Lip6Outdoor sequence obtained without using the map refinement
strategy. The red node identifies the beginning of the sequence.

5.4. Experimental Results 85

Figure 5.20: Map of the UIBSmallLoop sequence obtained without using the map refinement
strategy. The red node identifies the beginning of the sequence.

Figure 5.21: Map of the UIBLargeLoop sequence obtained without using the map refinement
strategy. The red node identifies the beginning of the sequence.

86 Loop Closure Detection using Local Features and KD-Trees

Figure 5.22: Map of the UIBIndoor sequence obtained without using the map refinement
strategy. The red node identifies the beginning of the sequence.

(a) (b)

Figure 5.23: Computational times of FEATMap executed over the KITTI 05 sequence. (a)
Computational times for describing an image. (b) Computational times for loop closure de-
tection. Likelihood and Bayes filter computational times have been separated in two different
plots for improving their visualization.

5.4. Experimental Results 87

With Map Refinement Without Map Refinement
Sequence N M L %CL N M L %CL
Lip6Indoor 40 137.37 6.27 64 62 155.36 9.08 63
Lip6Outdoor 103 1005.52 29.05 63 141 1150.87 42.95 61
UIBSmallLoop 59 152.2 8.25 75 61 155.3 8.57 77
UIBLargeLoop 100 728.94 44.29 74 111 798.53 60.98 78
UIBIndoor 40 118.4 16.2 76 59 190.39 24.64 73

Table 5.3: Results for the map refinement experiment. N : number of nodes; M : mapping
time in seconds; L: localization time in seconds; %CL: ratio between correct localizations and
total number of elements. See text for details.

Mean % Std Max Min

Image Description SIFT 1543.30 - 137.30 2156.60 1324.60
SURF 283.60 16.12 80.10 827.30 84.40

Loop Closure
Likelihood 1439.02 81.79 1284.40 4511.40 0.10

Bayes Predict 34.22 1.94 10.28 73.41 10.44
Bayes Update 2.57 0.15 1.08 4.51 0.67

Total 1759.41 1286.94 5416.62 95.61

Table 5.4: Computational times for FEATMap executed over the KITTI 05 sequence. All
times are expressed in milliseconds. The totals are computed taking into account the fastest
description method, which in this case corresponds to SURF. The % column indicates the
percentage of total time that approximately represents each step.

new node into the map. The times needed to execute the different parts of the algorithm have
been measured, and the results are shown in Fig. 5.23 and summarized in Table 5.4, where
SIFT and SURF are the times needed to describe 1000 features each, Likelihood Computation
is the time needed to compute the likelihood for the corresponding image, Bayes Predict is the
time needed to make a prediction in the filter and Bayes Update is the time needed to update
the filter using the computed likelihood. The total values of the last row are calculated only
summing the cost of computing SURF features, since it is considered as the fastest description
technique. The loop closure times correspond to using SIFT descriptors. Given that the length
of the SIFT and SURF descriptors is the same, these loop closure times are very similar for
both descriptors.

FEATMap can process one image in 1759.41 ms on average according to our results. As can
be seen, most part of the time is invested in the image description step, specially when using
SIFT, and during the likelihood computation. These are the main bottlenecks of FEATMap.
The Bayes filter steps can be considered fast in comparison with these two steps. As shown,
the time needed to compute the likelihood increases as more keyframes are inserted in the
map, which can be a problem in large environments.

88 Loop Closure Detection using Local Features and KD-Trees

5.5 Discussion

In this chapter, we have introduced FEATMap, a complete appearance-based topological
mapping and localization framework based on local invariant features. When a new useful
image is acquired, a discrete Bayes filter is used to select a loop closure candidate and decide
whether this frame closes a loop or a new node to be added to the map. This probabilistic
filter presents a novel observation model based on an efficient matching scheme between the
current image and the features of the current nodes in the map, using an index based on a set
of randomized kd-trees. As a result, a topological map of the environment is obtained, which
represents the scenario of the robot as a graph of keyframes.

Using probabilistic filters for mapping and localization tasks usually produces spurious
nodes and redundant paths over the graph. This is due to imperfections in the acquired images
and the delays introduced by the filter. A key contribution of FEATMap is a map refinement
strategy for solving these problems, producing cleaner maps and saving storage space and
computation resources for mapping and localization tasks. This technique is executed each
time a loop is closed, and a predefined neighbourhood is refined in each step. The final decision
of deleting nodes is taken according to the visual features of each path, avoiding the removal
of real paths of the environment.

In order to validate our solution, results from an extensive set of experiments, using
datasets from different environments, have been reported. These results show that our map-
ping and localization approach using a map refinement step can be employed for generating
topological maps of the environment which, if they are provided with odometry information,
can also be used for navigating in the current scenario in an efficient way. FEATMap has
been also compared against the state-of-the-art FAB-MAP 2.0 algorithm, obtaining better
performance in all the sequences employed during the experiments.

Despite the good results obtained using FEATMap, several drawbacks have been identi-
fied. These drawbacks have guided our efforts in the development of the remaining solutions
presented in this thesis. One of the main problems is the description method, since real-valued
descriptors like SIFT or SURF can be considered today slow techniques in comparison with
the binary description approaches proposed recently. This kind of descriptors can not be
indexed using kd-tree structures, as done in FEATMap, since they can not be averaged. We
need then efficient structures for indexing binary features.

Another problem is the scalability of the solution: the performance of FEATMap decreases
as more keyframes are inserted into the map. The main reason is that all the detected
features of the corresponding image are inserted as new features in the index. A BoW scheme,
where the features are quantized according to a reference visual dictionary, can help in these
cases. However, we are also interested in avoiding the training step, saving processing time
and adapting the visual dictionary to the operating conditions. Taking into account these
considerations, in the following chapter we introduce an incremental Bag-of-Binary-Words
scheme, which is used within a dense topological mapping framework.

Chapter 6

Loop Closure Detection using
Incremental Bags of Binary Words

As mentioned in previous chapters, many appearance-based algorithms for loop closure de-
tection developed recently [185, 161, 159, 173] are based on the Bag-Of-Words (BoW) ap-
proach [83, 197]. Most of them generate the dictionary offline, which implies several draw-
backs. An alternative is to build the visual dictionary in an incremental manner, while new
images are received.

SIFT [61] and SURF [62] are the most commonly used features in BoW schemes, due to
their invariance properties to illumination, scale and rotation changes. However, the detection
and description of these features are computationally expensive. Recently there has been a
growing interest in the use of binary descriptors, such as BRIEF [74], BRISK [60], ORB [58],
FREAK [75] or LDB [79]. These features present advantages over real-valued descriptors since
they are faster to compute and require less storage space [173]. Binary features are compared
using the Hamming distance, which can be efficiently computed by means of a bitwise XOR
operation and bit summation. Modern computers provide hardware support for executing
these operations quickly.

A BoW scheme based on binary features can be useful to overcome the drawbacks pre-
sented by FEATMap. Then, in this chapter, we introduce a method for computing a visual
vocabulary online, avoiding the training phase and making use of binary descriptors. This
binary vocabulary, in combination with an inverted file, conforms an index of images that
we call OBIndex (Online Binary Image Index)1. Next, this index is used in a probabilis-
tic topological mapping framework called BINMap (Binary Mapping). BINMap, as well as
FEATMap, is based on an appearance-based loop closure detection algorithm, where the in-
dex of features is a key component for obtaining similar loop closure candidates during the
likelihood computation. BINMap is validated using several datasets and compared against
the FAB-MAP 2.0 algorithm.

The main innovation presented in this chapter has to do with the incremental Bag-of-
Binary-Words approach. This approach is, to the best of our knowledge and according to the
works reviewed in chapter 3, the first attempt of using binary features and a BoW scheme
incrementally for loop closure detection. Perhaps the work most related to the one explained

1http://github.com/emiliofidalgo/obindex

89

90 Loop Closure Detection using Incremental Bags of Binary Words

here is the approach introduced by Galvez-Lopez and Tardos [174], but their visual dictionary
is built offline. More recently, Khan and Wollherr introduced IBuILD [191], an incremental
Bag-of-Binary-Words approach for loop closure detection. OBIndex [10] solves the scalability
problem of IBuILD by means of hierarchical structures.

The chapter is organized as follows: section 6.1 introduces our incremental Bag-of-Binary-
Words approach for indexing images, section 6.2 explains the image description techniques
used in BINMap, section 6.3 presents the map representation used in BINMap, section 6.4
details the topological mapping framework, section 6.5 reports several experiments in order
to validate the approach and, finally, section 6.6 concludes the chapter.

6.1 Incremental Bag-of-Binary-Words

As mentioned above, the key component of BINMap is an index of images which is used for
detecting loop closures. This approach is also part of the remaining solutions for retrieving
similar images presented in this thesis. It is because of this reason that OBIndex is detailed
in this section before introducing BINMap.

6.1.1 Fast Matching of Binary Features

A linear search is not feasible for searching words in a large visual dictionary. This prob-
lem is solved using an approximate matching algorithm, which usually employs hierarchical
structures, such as kd-trees or hierarchical k-means trees, to speed up the process. Several
randomized kd-trees were used in the previous chapter for indexing features, but these struc-
tures are not suitable for binary descriptors since they assume that each dimension of the
vector can be continuously averaged. Typical matching approaches for binary descriptors
include hashing techniques, e.g. Locality Sensitive Hashing (LSH) [81] or Semantic Hash-
ing [226]. Recently, Muja and Lowe [227] have presented an algorithm for matching binary
descriptors based on a hierarchical decomposition of the search space which performs better
in comparison with hashing approaches. Furthermore, new descriptors can be easily added in
this structure, becoming this solution into an interesting option to be used as an incremental
Bag-of-Binary-Words scheme.

In order to build a tree, initially all the input descriptors are clustered by means of a
k-medoids algorithm using K centres selected randomly, where K is called the branching
factor. Note that the centres are selected randomly from the input points instead of trying to
minimize the squared error between the centers and the elements of the clusters, which results
into a simpler and faster method for building the tree. This process is repeated recursively
until the number of leaf nodes in each cluster is below a threshold L, which is called the
maximum leaf size. The authors also proposed to build multiple trees (T) and using them in
parallel during the search for improving the performance of the algorithm.

The search is performed starting from the root until reaching a leaf node and, then, the

6.1. Incremental Bag-of-Binary-Words 91

Figure 6.1: Example of a single hierarchical tree and an inverted file that conform our image
index. In this case, the branching factor (K) and the maximum leaf size (L) are set both to
2. The visual vocabulary consists of 4 words {w0, w1, w2, w3}. For each of these words, the
inverted index stores a list of images in which the word appears.

points contained within this leaf are linearly searched in order to find the closest candidates. A
priority queue is employed when searching in several trees in parallel. After a single traverse of
each of the trees, the search continues using the closest node stored in the priority queue and
continuing the process from there. The search finishes when the number of points examined
is above a certain threshold. The performance of this index is directly related to the input
parameters: the branching factor, the maximum leaf size, the number of search trees and the
maximum number of points to examine. According to the results presented in [227], their
approach requires less storage space, scales better compared to LSH and results to be very
effective for matching binary descriptors.

6.1.2 Online Binary Image Index

In this section, we introduce Online Binary Image Index (OBIndex), our approach to find
similar images in a database given a query image. In OBIndex, we use a modified version
of the Muja and Lowe’s approach as an incremental visual dictionary, where the descriptors
stored in the trees represent the words of the visual dictionary. The hierarchical trees are
used in combination with an inverted index, which contains, for each word in the dictionary,
a list of images where it was found. This allows us to obtain similar image candidates in an
efficient way, as explained below. A simple example of these structures is shown in Fig. 6.1.

Since our approach relies on an incremental visual dictionary based on binary features,
an updating policy for combining binary descriptors is needed. Averaging each component of
the vector is an option for real-valued descriptors, but it can not be considered for the binary
case. To solve this issue, we propose to use a bitwise AND operation. Formally, being B a

92 Loop Closure Detection using Incremental Bags of Binary Words

binary descriptor, we use the following update rule:

Bt
wi

= Bt−1
wi
∧Bq , (6.1)

where Bt−1
wi

is the binary descriptor of the word wi stored in the dictionary at time instant
t − 1, Bq is the query descriptor and Bt

wi
is the merged descriptor stored for the word wi at

time t. This policy is inspired by the observation that each component of a binary descriptor
is usually set to 0 or 1 according to the result of a comparison between a pair of image pixel
intensities or gradients, e.g. BRIEF, ORB, FREAK and LDB. If the i-th bit is the same in
both descriptors, it means that the result of this comparison between the pixel intensities was
the same in both images. Otherwise, we experimentally prioritize the use of the zero value by
means of the AND operation.

6.1.2.1 Adding New Images

The trees are initially built using as visual words the descriptors of the first image to be
processed. When an image It received at time t needs to be added to the index, its descriptors
Ft are searched in the trees. Given a query binary descriptor, we search for the two nearest
neighbours traversing the trees from the root to the leafs and selecting at each level the node
that minimizes the Hamming distance. Using these two neighbours, we apply the ratio test [61]
in order to determine if both descriptors represent the same visual feature. If positive, the
query descriptor and the visual word are merged and replaced in the dictionary using Eq. 6.1.
Otherwise, the query descriptor is considered a new descriptor and is added to the index as a
new visual word. In both cases, the inverted index is updated accordingly, adding a reference
to the current image in the list corresponding to the modified or added feature. When the
size of the trees is R times bigger than the original one, they are rebuilt for redistributing the
descriptors. The updating process of the visual dictionary is summarized in Alg 6.1.

6.1.2.2 Searching for Images

As mentioned above, OBIndex is a structured database of images that can be used for obtain-
ing, given a query image Iq, an ordered list of similar images. In order to compute this list,
OBIndex handles, for each image i stored in the database, a similarity score si. Initially, these
scores are set to 0 for all images. Given the set of binary descriptors Fq found in the query
image Iq, we search each descriptor in the visual dictionary in order to find the closest word.
Next, the inverted index allows us to obtain a list of images where this word was found. We
then add a statistic about the word to the correspondent score s for each retrieved image. This
statistic is inspired in the Term Frequency-Inverse Document Frequency (TF-IDF) weighting
factor [225], which reflects how important a word is to the query image Iq with regard to the
images received up to time t. It increases the importance of the words seen frequently in a
few documents and decreases the importance of the most commonly seen words. Being I0:t

6.1. Incremental Bag-of-Binary-Words 93

Algorithm 6.1 OBIndex: Add New Image
1: procedure add_new_image(Ft, ρ, β)
2: Ft: Binary descriptors obtained from image It
3: ρ: Nearest neighbour distance ratio
4: β: Image index
5: for each d in Ft do
6: [n1, n2] = nearest_neighbours(β, d, 2) . Two nearest neighbours
7: if distance(d, n1) < distance(d, n2) * ρ then
8: B = d ∧ n1 . Merging descriptors
9: replace_descriptor(β, n1, B)

10: add_to_inverted_index(β, It, n1);
11: else
12: add_new_visual_word(β, d)
13: add_to_inverted_index(β, It, d);
14: end if
15: end for
16: end procedure

the set of the images processed by the index up to time t, the TF-IDF value %iwj
computed

given the word wj and the image Ii is defined as:

%iwj
= tf(wj , Ii)× idf(wj , I0:t) , (6.2)

where the term tf is the frequency of the word in the image, and the term idf is the inverse
frequency of the images containing this word. The term tf is defined as:

tf(wj , Ii) =
niwj

Ni
, (6.3)

being niwj
the number of occurrences of the word wj in the image Ii, and Ni the total number

of features found in the image Ii. The term idf is defined as:

idf(wj , I0:t) = log t− 1
nwj

, (6.4)

where t−1 coincides with the cardinal of set I0:t, and nwj is the total number of images in I0:t

containing the word wj . This value is accumulated onto the corresponding score according
to:

si = si + %iwj
, (6.5)

being i the index of the image extracted from the inverted index. The computation of the
scores is finished when all descriptors in Fq have been processed. Then, the list of candidate
images are sorted in descending order according to their scores. This search process is outlined
in Alg. 6.2.

94 Loop Closure Detection using Incremental Bags of Binary Words

Algorithm 6.2 OBIndex: Search Image
1: procedure search_image(Fq, β)
2: Fq: Binary descriptors obtained from query image Iq
3: β: Image index
4: s = [] . Scores
5: for each image i in β do
6: s[i] = 0 . Initializing scores
7: end for
8: for each descriptor d in Fq do . Processing all descriptors
9: wj = get_closest_word(β, d)
10: l = get_images_from_inverted_index(β, wj)
11: for each image i in l do . Processing each image in the list
12: %iwj

= compute_tfidf(β, wj , i);
13: s[i] = s[i] + %iwj

14: end for
15: end for
16: sort(s) . Sorting the candidates in descending order
17: return s
18: end procedure

6.2 Image Description

Given that OBIndex is descriptor-independent, BINMap can be used with any binary de-
scriptor. This allows us to take advantage of the faster computation and the reduced storage
needs of this kind of descriptors, against classic approaches like SIFT [61] or SURF [62]. In
BINMap, for each image, we compute a collection of FAST [56] features, and then they are
described using the BRIEF [74] algorithm. The detected corners are required to cover the full
image in a more or less uniform way. Due to this reason, a 4×4 regular grid is defined over
the image and a minimum number of corners in each cell is requested to be found.

Formally, the set of descriptors of the n features found in the image It is defined as
Ft = {f t0, f t1, . . . , f tn−1}. The similarity between two binary strings is computed by means of
the Hamming distance, which is equal to the number of ones after performing an exclusive
OR (⊕) operation between the descriptors. Then, the distance df (f ip, f jq) between two binary
descriptors p and q of sets Fi and Fj , respectively, can be defined as:

df (f ip, f jq) = bitsum(f ip ⊕ f jq) . (6.6)

6.3 Map Representation

Contrary to FEATMap, BINMap represents the environment as a dense topological map,
instead of selecting a set of keyframes from the input images. As was explained previously
in chapter 2, in a dense topological mapping approach, each new image is inserted into the
graph as a node. In this case, this map representation is possible thanks to the incremental

6.4. Topological Mapping Framework 95

Algorithm 6.3 BINMap: Topological Mapping Framework
1: procedure topological_mapping
2: while there are images do
3: It = get_image()
4: Ft = local_description(It) . FAST and BRIEF computation
5: nt = create_new_node(Mt)
6: link(nt−1, nt, Mt) . Linking with the previous node
7: if loop_closure(Ft, Mt) then
8: nc = get_loop_closure_location()
9: link(nt, nc, Mt) . Linking with the loop closure node

10: end if
11: end while
12: end procedure

BoW scheme used in BINMap, which allows us to save computation time and storage space.
Unlike FEATMap, where all the features of an image were inserted in the index, the OBIndex
quantization process combined with the inverted index results into a more compact represen-
tation, improving the scalability of the solution. Then, in BINMap, each node of the graph
represents an input image. Formally, given I = {I0, I1, . . . , It} as the input sequence of images
received up to time t, the topological map generated by BINMap is defined as:

Mt = (γ, ω, β) , (6.7)

being γ a graph which encodes the relationships between the images, ω the set of nodes of the
graph at time instant t and β an instance of OBIndex, working as explained in section 6.1.2.
Given that the number of nodes in BINMap is the same as the number of images received up
to time t, in this case w is defined as:

ω = {n0, n1, . . . , nt} , (6.8)

where ni is the node i of the graph, which corresponds to the image Ii. The index β, as in
FEATMap, is a key component used during the loop closure detection step. The structures
explained in section 6.1.2 are used to find possible loop closure candidates efficiently.

6.4 Topological Mapping Framework

6.4.1 Algorithm Overview

The BINMap algorithm is outlined in Fig 6.2 and Alg. 6.3. The algorithm is simpler in
comparison with FEATMap, given that in this case it is not needed to apply a keyframe
selection policy to the input images. For each new image It, a set of FAST corners and
their correspondent BRIEF descriptors, denoted by Ft, are computed. Next, a new node nt,

96 Loop Closure Detection using Incremental Bags of Binary Words

Figure 6.2: Overview of BINMap. See text for details.

corresponding to the current image It, is created and linked with the last node inserted in the
graph, denoted by nt−1. The BRIEF descriptors are then used in the loop closure detection
step in order to determine if this image represents an already visited place. If this is the case,
the current node nt is linked in the graph γ with the loop closure node nc. Otherwise, no
action is performed and the algorithm is ready to process the next image.

The loop closure detection algorithm, which is also based on a probabilistic scheme, is
detailed in the following section.

6.4.2 Probabilistic Loop Closure Detection

As in FEATMap, a discrete Bayes filter is used to detect loop closure candidates and to
integrate measurements over time. Being It the current image received at time t, zt the
observation and Lti the event that image It closes a loop with image Ii, we want to find the
image of the map Ic whose index satisfies:

c = arg max
i=0,...,t−p

{P
(
Lti|z0:t

)
} ,

where P
(
Lti|z0:t

)
is the full posterior probability at time t given all previous observations up to

time t. Note that zt corresponds to the set of binary descriptors extracted from the image It,
denoted by Ft. Again, we discard the most recent p images as loop closure hypotheses to avoid
loop closure detections between neighbouring images. The reader is referred to section 5.3.2
for further details about the derivation of the posterior, since it is the same than the one
presented there. Due to this reason, only the final equation is included here for completeness.
Consequently, the full posterior can be written as:

P
(
Lti|z0:t

)
= η P

(
zt|Lti

) t−p∑
j=0

P
(
Lti|Lt−1

j

)
P
(
Lt−1
j |z0:t−1

)
,

6.4. Topological Mapping Framework 97

where η is a normalizing factor, P
(
zt|Lti

)
is the observation likelihood, P

(
Lti|L

t−1
j

)
is the

transition model and P
(
Lt−1
j |z0:t−1

)
is the posterior distribution computed at the previous

time instant. The observation and transition models, as well as the method for selecting a
final loop closure candidate, are explained in the following sections.

6.4.2.1 Transition Model

The loop closure probability at time t is predicted from the previous probability distribution
by means of the transition model. In this case, this model is the same as the one used in
FEATMap, which was explained in section 5.3.2.1. To summarize, a discretized Gaussian-like
function is used to diffuse the 90% of the total probability among four neighbouring images
and the image itself. The remaining 10% is shared by the rest of the images by means of the
following expression:

0.1
max{0, t− p− 5}+ 1 .

6.4.2.2 Observation Model

The observation zt is incorporated into the filter after the prediction. To this end, the in-
stance of OBIndex, denoted in our map representation by β, is used for an efficient likelihood
computation. Note that we delay the publication of hypotheses as loop closure candidates,
which implies that the number of images processed by the index β at time t is t − p. The
current image It is queried against the index, resulting into an ordered list of similar images
according to their score si, as explained in section 6.1.2. The range of these scores depends on
the query image and the distribution of the visual words. The resulting list lt is a sequence
of matching candidates:

lt = {< c1, sc1 >,< c2, sc2 >, . . . , < ch, sch
> | sc1 > sc2 > . . . > sch

} , (6.9)

where ci is the index of the image candidate and sci is its corresponding score. Using this list,
the likelihood function is calculated, in a similar way to FEATMap, as:

P
(
zt|Lti

)
=


si − 2sσ
sµ

if si ≥ sµ + 2sσ

1 otherwise
, (6.10)

being respectively sµ and sσ the mean and the standard deviation of the set of scores. In
this case we are more restrictive when selecting the images whose posterior is updated: we
require 2sσ instead of only sσ. We have observed that being more restrictive regarding the
number of images which are considered for updating their likelihood led to better results.
After incorporating the measurement into the filter, the posterior is normalized for obtaining
a probability density function.

98 Loop Closure Detection using Incremental Bags of Binary Words

6.4.2.3 Selection of a Loop Closure Candidate

For selecting a final loop closure candidate, we sum the probabilities along a predefined
neighbourhood of each image instead of searching for high peaks, since usually the probabilities
are diffused over consecutive images. This is due to the similarities that consecutive images
belonging to the same place present. The image Ij with the highest sum of probabilities is
analysed in order to determine whether it can close a loop with the current image It. If the
probability of Ij is below a threshold τloop, the loop hypothesis is discarded. Otherwise, we
check whether the images verify the epipolar geometry constraint by means of a RANSAC-
based estimation of the fundamental matrix. If the resulting number of inliers is above a
threshold τep, the loop closure is accepted; otherwise, it is rejected. As in FEATMap, we also
define a threshold τhyp for avoiding loop closure detections when a small number of images
are stored in the filter. The loop closure algorithm is outlined in Alg. 6.4.

Algorithm 6.4 BINMap: Loop Closure Detection
1: procedure loop_closure(Ft,Mt)
2: ρ: Nearest neighbour distance ratio
3: enqueue_image(Ft) . Store the image for inserting it as a future LC candidate
4: n = t− p
5: if n < 0 then . Delaying the publication of hypotheses
6: return false
7: end if
8: add_new_image(Fn, ρ, βt); . Add In into the index as loop closure candidate
9: add_hypothesis(n) . Add In as new hypothesis into the Bayes filter

10: bayes_filter_predict()
11: likelihood = compute_likelihood(Ft,Mt)
12: bayes_filter_update(likelihood)
13: [c, Pc] = get_best_candidate() . Pc: Sum of probabilities for candidate c
14: if Pc > τloop and number_of_hyp > τhyp then
15: ninliers = epipolar_geometry(Ft, Fc)
16: if ninliers > τep then
17: return true . Loop closure found
18: else
19: return false . Loop closure rejected
20: end if
21: else
22: return false . No loop closure found
23: end if
24: end procedure

6.5 Experimental Results

In this section we report several experimental results in order to validate BINMap. This
section is organized as follows: first, we discuss the configuration of the different parameters

6.5. Experimental Results 99

Parameter Value
Branching factor (K) 16
Maximum leaf size (L) 150

Number of search trees (T) 4
Rebuild threshold (R) 4

Keypoints per image (n) 650
Nearest neighbour ratio (ρ) 0.8

Previous images discarded (p) 30
Sum of probabilities (τloop) Varying
Number of inliers (τep) 45

Minimum number of hypotheses (τhyp) 20

Table 6.1: Parameters for BINMap execution.

of the algorithm; next, we evaluate the effectiveness of BINMap for detecting loop closures;
then, we assess the ability of BINMap for generating topological maps and representing the
environment; finally, we discuss computational times.

6.5.1 Parameter Configuration

As in the previous chapter, in this section we discuss how the different parameters affect
the performance of BINMap. The parameters were configured using the values indicated in
Table 6.1. The parameters K, L, T and R directly affect the performance of OBIndex. Its
configuration is highly influenced by the original results obtained by Muja and Lowe [227] and
they are detailed next:

• The branching factor (K) has a key impact in the descriptor search performance: the
higher the branching factor, the higher the search precision, but the tree build time is
also increased. Muja and Lowe showed that there is a little gain for branching factors
above 16 and hence, due to this reason, we set this parameter to 16.

• The effect of the maximum leaf size parameters (L) is evident: the higher this value,
the higher the number of descriptors to compare when a leaf node is reached during a
search. However, the dispersion of the descriptors stored in the index is reduced, what
increases the precision of the search. According to the original results of the authors, a
value of 150 is reasonable for this parameter.

• The optimum number of search trees (T) depends on the desired precision. More trees
implies more memory and longer tree build times, but also a higher precision. As shown
by Muja and Lowe, 4 search trees is a good compromise between precision and speed.

• The rebuild threshold (R) builds a search tree again after a certain number of new
descriptors have been inserted. This is useful to reduce the dispersion of the index, but,
as more descriptors are stored, this step implies more computational resources, slowing

100 Loop Closure Detection using Incremental Bags of Binary Words

(a) (b)

Figure 6.3: (a) Ground truth loop closure matrix for the New College sequence. (b) Likelihood
matrix computed using BINMap.

down the selection process. We found that regenerating the index when its size is 4
times larger than the original is a reasonable value for this parameter.

• The remaining parameters are shared with FEATMap and, therefore, they will not be
discussed again in this section. The reader is referred to section 5.4.1 for further details
about their configuration.

6.5.2 Loop Closure Detection

In this case, contrary to chapter 5 where an indoor sequence was used, we process five out-
door sequences for validating the loop closure detection capabilities of BINMap, namely City
Center, New College, KITTI 00, KITTI 05 and KITTI 06, because of the better scalability
of BINMap with regard to FEATMap. These sequences are very dynamic and represent sev-
eral challenging scenarios including important changes in the environment, such as traffic or
pedestrians. The reader is referred to section 4.2 for further details about these sequences.

Figure 6.3 illustrates the performance of OBIndex for computing the observation likelihood
in the New College sequence. The left image is the ground truth while the right image shows
the likelihood values obtained for every pair of frames using BINMap. As can be seen, the
likelihood is very similar to the ground truth, obtaining high values when real loop closures
exist. As in FEATMap, the likelihood is noisier at the beginning of the sequence, which
decreases as more images are processed.

An example of loop closure detection in the City Center sequence can be found in Fig. 6.4.
In this figure, (a) shows the likelihood computed given the image 971, which is consistent with
the posterior shown in (b). Both plots present a high peak around the image 430. Figure 6.4
(c) and Fig. 6.4 (d) are respectively the current robot view and the retrieved location. As can
be seen, our approach is able to detect the loop closure situation despite there are changes in

6.5. Experimental Results 101

(a) Likelihood (b) Location probability

(c) Current image (d) Loop closure image

Figure 6.4: Example of loop closure detection in the City Center sequence. (a) Likelihood
given the current image. (b) Full posterior after the normalization step. Image 971 (c) closes
a loop with image 430 (d). Red and green lines show respectively sµ and sµ + 2sσ.

BINMap FABMAPv2
Sequence TP TN FP FN Pr Re Pr Re

City Center 497 676 0 64 100 88.24 100 38.50
New College 220 656 0 193 100 53.15 100 51.91
KITTI 00 622 3751 0 168 100 78.73 100 49.21
KITTI 05 301 2280 0 180 100 62.58 100 32.15
KITTI 06 228 832 0 41 100 84.76 100 55.34

Table 6.2: Results for the five sequences using BINMap and FAB-MAP 2.0. Precision (Pr)
and Recall (Re) columns are expressed as percentages. See text for details.

the scene.
The performance of the algorithm is evaluated in terms of precision-recall. As in the previ-

ous chapter, BINMap is compared against FAB-MAP 2.0 [165]. The binaries of this algorithm
are executed using the outdoor visual dictionary and the default parameters provided by the
authors, and the resulting files of each sequence are processed as explained in section 4.3.1.
The resulting precision-recall curves are shown in Fig 6.5 using BINMap and FAB-MAP 2.0.
The BINMap curves result after modifying the threshold for loop acceptance (τloop). The
best results for a 100% of precision are shown in Table 6.2 for an easier understanding of the
algorithm performance.

As can be seen, BINMap, as well as FEATMap, outperforms FAB-MAP in all sequences.
This is particularly evident for the City Center sequence, where the maximum recall obtained
by BINMap is 88.24, in front of the 38.50 reported by FAB-MAP (2.2 times better). This
increment of performance remains more or less constant for the KITTI sequences: KITTI 00

102 Loop Closure Detection using Incremental Bags of Binary Words

Figure 6.5: Precision-recall curves for each sequence using BINMap and FAB-MAP 2.0.

(1.5 times better), KITTI 05 (1.9 times better) and KITTI 06 (1.5 times better). For the
New College, the maximum recall value is similar to the one obtained using FAB-MAP. We
found this sequence very challenging since it presents changes between some semi-indoor and
outdoor areas, making more complex the loop closure detection task. As in FEATMap, it was
possible to avoid false positives in all cases, while a high number of true positives (TP) and
true negatives (TN) were found.

6.5. Experimental Results 103

(a) (b)

Figure 6.6: Topological map generated for the City Center sequence. The positions of the
images are plotted as black dots. Wherever an image closes a loop with another image, both
are labelled with a red dot and linked with a green line. (a) shows the result of BINMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

(a) (b)

Figure 6.7: Topological map generated for the New College sequence. The positions of the
images are plotted as black dots. Wherever an image closes a loop with another image, both
are labelled with a red dot and linked with a green line. (a) shows the result of BINMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

104 Loop Closure Detection using Incremental Bags of Binary Words

(a) (b)

Figure 6.8: Topological map generated for the KITTI 00 sequence. The positions of the
images are plotted as black dots. Wherever an image closes a loop with another image, both
are labelled with a red dot and linked with a green line. (a) shows the result of BINMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

6.5.3 Topological Mapping and Localization

The topological maps obtained for each sequence are presented from Fig. 6.6 to Fig 6.10.
Given that the image positions of these sequences are available and BINMap processes each
image of the sequence, we can spatially plot the images to produce an easy-to-understand
graphical representation of each topological map. Then, when a loop closure is detected,
images representing the loop are labelled in red and linked with a green line. Left figures show
the map obtained with our approach, while the right figures show the ideal maps that should
be obtained if all the loops of the sequences were correctly detected. As can be observed, most
loops are detected and the maps are very similar. The resulting maps represent topologically
the real scenario, and no false links were added. As commented in the previous section, the
map of the New College sequence (Fig. 6.7) is the most different with regard to its ground
truth map. This is particularly notorious in the square-shaped part of the map, where no loop
closures were found. As a general rule, most part of the true negatives (TN) are produced in
the intersections between paths, as shown in Fig. 6.8 and Fig. 6.9, or when the vehicle passes
by a previously visited place but at a certain distance to the original route, as it is clearly
visible in Fig. 6.10. The recall values are lower than the ones obtained in FEATMap, but it is
important to note that the sequences used to validate BINMap are longer than the ones used
in chapter 5, augmenting the probability of false detections.

6.5.4 Computational Times

In this section, we evaluate the performance of BINMap in terms of computational times.
We execute the algorithm against the KITTI 00 sequence, which is the longest one consid-

6.5. Experimental Results 105

(a) (b)

Figure 6.9: Topological map generated for the KITTI 05 sequence. The positions of the
images are plotted as black dots. Wherever an image closes a loop with another image, both
are labelled with a red dot and linked with a green line. (a) shows the result of BINMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

(a) (b)

Figure 6.10: Topological map generated for the KITTI 06 sequence. The positions of the
images are plotted as black dots. Wherever an image closes a loop with another image, both
are labelled with a red dot and linked with a green line. (a) shows the result of BINMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

106 Loop Closure Detection using Incremental Bags of Binary Words

Mean % Std Max Min

Image Description FAST 30.10 21.75 5.87 44.17 7.82
BRIEF 17.18 12.41 4.03 34.68 14.33

Loop Closure
Likelihood 45.05 32.55 12.94 83.63 5.75

Bayes Predict 40.02 28.91 35.57 148.18 0.004
Bayes Update 6.07 4.38 13.61 782.24 0.19

Total 138.42 40.84 1092.9 28.10

Table 6.3: Computational times for BINMap on the KITTI 00 sequence. All times are
expressed in milliseconds. The % column indicates the percentage of total time that approx-
imately represents each step.

Figure 6.11: Time required for searching 650 descriptors regarding the number of features
stored in the index.

ered in this thesis. To verify the improvement in performance that OBIndex presents against
FEATMap for searching descriptors, Fig. 6.11 shows the times needed for searching 650 fea-
tures per image according to the number of visual words stored in the dictionary. Note that
this is critical to reduce the likelihood computation time, which was one of the main draw-
backs of FEATMap. As can be seen, when the index contains approximately 1.5 millions
of visual words, the total search time is only about 50 ms, which can be considered fast in
comparison with FEATMap. The searching time initially grows fast, but for larger amounts
of features, the growth is far more contained, as shown in the figure.

The computational times invested in each part of the algorithm are shown in Fig. 6.12
and summarized in Table 6.3, where FAST refers to the time needed to compute 650 corners,
BRIEF is the time needed to describe these corners, and the Likelihood Computation, Bayes
Predict and Bayes Update rows have the same meaning as in the previous chapter. As can
be observed, average FAST detection (30.10 ms) and BRIEF description (17.18 ms) times are
substantially shorter than SIFT (1543.30 ms) or SURF approaches (283.60 ms), which repre-

6.6. Discussion 107

(a) (b)

Figure 6.12: Computational times of BINMap on the KITTI 00 sequence. (a) Computational
times for describing an image. (b) Computational times for loop closure detection.

sents an important increment of speed of BINMap against FEATMap. Another advantage of
BINMap compared to FEATMap is its scalability: OBIndex enables to process more images
maintaining a reasonable response time when searching for loop closure candidates, improv-
ing the likelihood computation (45.05 ms on average), in contrast to FEATMap (1439.02 ms
on average). Note that, according to Fig. 6.12 (b), the Bayes filter steps take even more
time than the likelihood computation after processing 3000 images, approximately. BINMap
can process an image in 138.42 ms on average according to our experiments, which clearly
outperforms FEATMap, which takes, at best, 1759.41 ms.

6.6 Discussion

In this chapter we have introduced BINMap, a topological mapping framework based on
a probabilistic loop closure detection algorithm and a discrete Bayes filter, which uses an
incremental Bag-of-Binary-Words approach to search for loop closure candidates. Unlike other
approaches that make use of visual dictionaries generated offline, in this work we propose an
online visual dictionary based on a hierarchical decomposition of the search space by means
of a tree. This index can be used with binary descriptors, which improves the speed of the
description and searching processes. In our image database approach, named OBIndex, we
extend an existing binary indexing algorithm to be used as an online visual dictionary, which,
in combination with an inverted index, enables us to obtain loop closure candidates in an
efficient way. An extensive set of results have been reported in order to validate BINMap.
BINMap has been also compared with FAB-MAP 2.0, outperforming this solution for all
sequences.

BINMap has been introduced as a solution to the main drawbacks presented by FEATMap,
namely faster image description times and a better scalability. Despite the obvious increment
in performance, BINMap can also be improved in terms of precision-recall. The reason is

108 Loop Closure Detection using Incremental Bags of Binary Words

that BINMap uses a single instance of OBIndex for all the images, which means that all the
map is searched when a query image is received. As more visual words are inserted into the
index, the dispersion among the image candidates augments, increasing the number of false
detections. Under these circumstances, in the following chapter, we introduce a hierarchical
approach which, instead of searching the whole map, it only considers the locations with an
appearance similar to the query image. After that, a more accurate search is performed by
means of maintaining an instance of OBIndex for each location. In order to select similar
places, a global description method will be shown useful for summarizing the visual content
of the images inside a location.

Chapter 7

Hierarchical Loop Closure
Detection for Topological Mapping

Most of the recent topological mapping approaches generate dense topological maps, where
each input image is introduced as a new node in the map. In these cases, despite the use of
different indexing techniques such as the Bag-Of-Words (BoW) schemes [83], the time needed
to detect loop closures increases with the number of images. A hierarchical representation of
the environment [218], where images which present a similar appearance are grouped together
in nodes, can help in these cases, reducing the search space when looking for similar places.
To select places, a global descriptor can be useful for summarizing the appearance of a place.

In this chapter, we propose a novel appearance-based approach for topological mapping
based on a hierarchical decomposition of the environment called HTMap (Hierarchical Topo-
logical Mapping). In HTMap, images with similar visual properties are grouped together in
locations, which are represented by means of an average global descriptor and an instance of
OBIndex as image database, working as explained in section 6.1.2. Each image is represented
by means of a global descriptor and a set of local features, and this information is used in
a two-level loop closure approach, where, first, global descriptors are employed to obtain the
most likely nodes of the map and, then, binary image features are used to retrieve the most
likely images inside these nodes. This hierarchical scheme enables us to reduce the search
space when recognizing places keeping high the representativeness of the map.

As a main contribution of this chapter, we introduce a robust hierarchical loop closure
algorithm, which operates in a two-level approach. First, Pyramid Histogram of Oriented
Gradients (PHOG) [20] global descriptors are calculated and employed for selecting the lo-
cations most similar to the current image, avoiding the need of searching in the whole map
and speeding up the retrieval process. Next, binary local features extracted from the current
image are used to query the indices of the locations obtained at the previous step in order
to find similar images inside the retrieved locations. The scores obtained at the two levels
are combined as a likelihood inside a Bayes filter to determine the image most similar to
the current image. Two additional contributions are, on the one hand, a scalable method to
construct topological maps which employs, as a key component, the above-mentioned hierar-
chical loop closure algorithm, and, on the other hand, to the best of our knowledge, the use for
the first time of the PHOG descriptor for mapping and localization tasks. PHOG represents

109

110 Hierarchical Loop Closure Detection for Topological Mapping

local image shape and its spatial layout, and was originally devised for image classification.
Finally, we performed an extensive evaluation of our approach and a comparison with some
state-of-the-art techniques, achieving better results in several public datasets. The accuracy
and the sparsity of the generated maps are also discussed.

The chapter is organized as follows: section 7.1 introduces the image description techniques
used in our approach, section 7.2 explains the structure of the map generated by HTMap,
section 7.3 describes HTMap in detail, section 7.4 reports on the results of the different
experiments performed, and section 7.5 concludes the chapter.

7.1 Image Description

In HTMap, images are described using global and local descriptors. When looking for similar
places, global descriptors allow us to obtain, in a fast way, a subset of the nodes of the map
whose stored images are similar to the current one. Then, local feature descriptors are used
to select the most similar images inside the retrieved nodes. An image at time stamp t is
described as It = {Gt, Ft}, where Gt is the global descriptor and Ft is the set of local features
found in the image. The techniques used for computing Gt and Ft are detailed in this section.

7.1.1 Global Feature Description

As a global representation, we use the Pyramid of Histograms of Orientation Gradients
(PHOG) global descriptor [20], which was originally developed for image classification. De-
spite the fact that it can result less effective for accurate place recognition, this simple de-
scriptor can help when summarizing image information inside a node, as will be shown later.
The reader is referred to section 2.2.1.1 and to the original paper [20] for further information
about PHOG. In our implementation, we achieve the best results with 60 bins (K) and 3
levels (L), which generates a descriptor of 1260 components. Formally, the global descriptor
is defined as Gt = {gt0, gt1, . . . , gt1259}. According to the original paper, the χ2 distance exhibits
a superior performance when comparing two of these descriptors. Hence, given two PHOG
descriptors, Gi and Gj , their distance d(Gi, Gj) is defined as:

dg(Gi, Gj) =
1259∑
k=0

(gik − g
j
k)2

gik + gjk
. (7.1)

7.1.2 Local Feature Description

Since HTMap uses OBIndex for indexing features at the image level, we compute for each
image a collection of FAST features [56] and describe each by an LDB binary descriptor [79].
Besides, we require local features to cover the full image in a more or less uniform way and,
to this end, a 4× 4 regular grid is defined over the image. The set of LDB descriptors of the
n features found at image It is defined as Ft = {f t0, f t1, . . . , f tn−1}. Each of these descriptors

7.2. Map Representation 111

is a binary string computed using simple intensity and gradient difference tests on pairwise
grid cells within a patch at different spatial granularities. The similarity between two binary
strings is computed by means of the Hamming distance. Then, as in 6.6, the distance df (f ip, f jq)
between two binary descriptors p and q of, respectively, sets Fi and Fj , is defined as:

df (f ip, f jq) = bitsum(f ip ⊕ f jq) .

7.2 Map Representation

Our map representation is based on the observation that the appearance between images
taken at the same physical place should remain more or less similar. These images can then
be grouped together in what we call locations. Hence, a location is a group of images of the
environment that present some visual similarity. In order to manage the relationships between
these locations, the environment is modelled by means of an undirected graph, whose nodes
represent the locations in the map and edges represent connectivities between them. Formally,
given I = {I0, I1, . . . , It} as the input sequence of images up to time t, we define our topological
map at t as:

Mt = (γ, ω) , (7.2)

where γ is a graph which encodes the topological relationships between locations and ω is the
set of existing locations:

ω = {`0, `1, . . . , `c−1} , (7.3)

where `i represents the location i and c is the total number of locations. Particularly, the i-th
location is defined as the tuple:

`i = (ζi, φi, βi) , (7.4)

where ζi = {ι0, ι1, . . . , ιm−1} are the indices of the m images associated to the location, φi
is the representative of the location and βi is an instance of OBIndex built from the images
belonging to the location, which is used to retrieve images according to the local binary
features found in the current image. When a new image It is added to the location, t is added
to ζi and φi and βi are updated accordingly.

Given a query image, the representative descriptor φi is used to rapidly obtain a measure
of similarity between that image and the location i, which is a key step in our hierarchical
loop closure algorithm. This representative φi is computed as the average PHOG descriptor
of the images inside the location. Note that this makes sense since images within a location
are supposed to present a similar appearance and, therefore, PHOG histograms should be
similar as well. Hence, it can be defined as φi = {ri0, ri1, . . . , ri1259}, where each component is
computed as:

rij =

m−1∑
k=0

gιkj

m
. (7.5)

112 Hierarchical Loop Closure Detection for Topological Mapping

Images Images

Φ1

β1

ℓ1

Images

Φ0

β0

ℓ0

Φ3

β3

ℓ3

Φ2

β2

ℓ2

Images

ζ0 ζ1 ζ2 ζ3

Figure 7.1: Example of a hierarchical map generated by our approach. The map comprises
four locations `0, `1, `2 and `3 and a loop between `0 and `2. Besides the corresponding set
of images ζi, each location i contains a representative φi and an index of local features βi.

After retrieving the most similar locations, we employ local binary descriptors to obtain
similar images in these locations. In order to avoid image-to-image comparisons, we make use
of the index of local features βi, which is an instance of OBIndex as explained in 6.1. Unlike
BINMap, HTMap maintains an index of images for each location, avoiding the search within
the whole map for each query image.

Figure 7.1 illustrates an example of a map generated using HTMap. Note that our hier-
archical decomposition favours long-term tasks. On the one hand, as mentioned previously,
it speeds up the loop closure detection process by preventing a search for images throughout
the whole map. On the other hand, in order to save storage space in memory, locations can
be serialized to disk and loaded on demand if the location is selected as a candidate. Only
the representative of the location φi needs to be maintained in memory for it to be available
for the first step of the loop closure detection algorithm.

7.3 Topological Mapping Framework

7.3.1 Algorithm Overview

HTMap builds a visual representation of the environment using a monocular camera, and
localizes the robot within this map. Therefore, at time stamp t − 1, there exists an active
location `a ∈ ω, which can be defined as the current topological position of the robot within
the map according to the images up to time t − 1. Given the next image It, our mapping
algorithm tries to determine if there exists a similar location in the map or, otherwise, this
image corresponds to an unexplored area of the environment.

Figure 7.2 and Alg. 7.1 illustrate our topological mapping approach. An initial location
`0, labelled as active, is created including only the first input image I0. For each new image
It, global descriptor Gt and local descriptors Ft are computed as explained in section 7.1.
These descriptors are then used in the loop closure step to determine if this image comes

7.3. Topological Mapping Framework 113

Figure 7.2: Overview of HTMap. See text for details.

Figure 7.3: Hierarchical loop closure detection algorithm. LC stands for loop closure.

from an already known place. If positive and the retrieved location is different to the current
active location `a, the locations are linked in the graph γ in order to register a topological
relationship between these places and `a is updated to point to the loop location. Otherwise,
a decision about whether this image belongs to `a or else is a new place is made. If it can be
considered as a new place, a location is added to the map, linked to the current location `a
and labelled as active. In the last step, It is associated to `a, and φa and βa are updated by
means of, respectively, Gt and Ft.

In the following sections we discuss the hierarchical loop closure detection algorithm and
the policy used for determining whether an image belongs to the current active location or is
a new location.

114 Hierarchical Loop Closure Detection for Topological Mapping

Algorithm 7.1 HTMap: Topological Mapping Framework
1: procedure topological_mapping
2: while there are images do
3: It = get_image()
4: Gt = global_description(It) . PHOG extraction
5: Ft = local_description(It) . FAST and LDB computation
6: if loop_closure(Gt, Ft, Mt) then
7: `c = get_loop_closure_location()
8: link(`a, `c, Mt)
9: `a = `c . Updates the active location

10: else
11: if is_new_location(Gt, `a) then
12: `n = create_new_location(Mt)
13: link(`a, `n, Mt)
14: `a = `n . Updates the active location
15: else
16: do_nothing() . The image belongs to `a
17: end if
18: end if
19: add_image_to_location(It, `a)
20: end while
21: end procedure

7.3.2 Hierarchical Loop Closure Detection

As in the previous solutions, the hierarchical loop closure detection module is based on a
discrete Bayes filter, which estimates the probability that the current image closes a loop
with a previously seen image associated to an existing location of the map. The approach
is outlined in Fig. 7.3 and Alg. 7.2. In order to avoid false loop closure detections with
immediately previous images, the latter are not directly included as loop closure hypotheses
as soon as they arrive. Instead, a buffer is used again to store the most recent p images,
delaying their publication as loop closure candidates. Consequently, the first step is to release
the candidates that could be considered as possible loop closures at the current time step.
After that, the current image is enqueued in the buffer and, then, the computation of the
likelihood and the Bayes filter update steps are performed. An epipolarity analysis between
the current image It and the image with the highest probability Ic is performed in order
to validate if they can come from the same scene after a camera rotation and/or translation.
Matchings that do not fulfil the epipolar constraint are discarded by means of RANSAC. If the
number of inliers is above a threshold τep, the loop closure hypothesis is accepted; otherwise,
it is definitely rejected.

The Bayes filter described below is based on the one described in chapter 5 after being
adapted to be used within a hierarchical approach. Let the pair Lti = {`tj , Iti} denote the event
that image It closes a loop with image Ii, which is associated to location `j at time stamp t,

7.3. Topological Mapping Framework 115

where i < t. We also denote Ot = {Gt, Ft} as the observation at time t, which comprises the
global and local descriptions computed for the current image It. Using these definitions, we
want to find the previous image Ic whose index satisfies:

c = arg max
i=0,...,t−p

{P
(
Lti|O0:t

)
} , (7.6)

where P
(
Lti|O0:t

)
is the full posterior probability at time t given all previous observations up

to time t. As mentioned previously, the most recent p images are not included as hypotheses in
the computation of the posterior. Despite the change of notation here due to the hierarchical
model of HTMap, the derivation of the filter is the same as the one presented in section 5.3.2
and the reader is referred to that section for further information. Consequently, the full
posterior can be written as:

P
(
Lti|O0:t

)
= ηP

(
Ot|Lti

) t−p∑
j=0

P
(
Lti|Lt−1

j

)
P
(
Lt−1
j |O0:t−1

)
, (7.7)

where η is a normalizing factor, P
(
Ot|Lti

)
is the observation likelihood, P

(
Lti|L

t−1
j

)
is the

transition model and P
(
Lt−1
j |O0:t−1

)
is the posterior distribution computed at the previous

time step. The observation model P
(
Ot|Lti

)
is computed in two consecutive steps according

to the observation pair Ot and using conditional probability properties:

P
(
Ot|Lti

)
= P

(
Gt, Ft|Lti

)
= P

(
Gt|Lti

)
P
(
Ft|Lti, Gt

)
, (7.8)

where P
(
Gt|Lti

)
is determined through the similarity between Gt and the existing locations

in the map, and P
(
Ft|Lti, Gt

)
is computed searching for similar images inside the retrieved

locations.

Algorithm 7.2 HTMap: Hierarchical Loop Closure Detection
1: procedure loop_closure(Gt, Ft,Mt)
2: add_hypotheses(t) . Add valid hypotheses at time t
3: enqueue_image(Gt, Ft)
4: bayes_filter_predict()
5: likelihood = compute_likelihood(Gt, Ft,Mt)
6: bayes_filter_update(likelihood)
7: c = get_best_candidate()
8: ninliers = epipolar_geometry(Ft, Fc)
9: if ninliers > τep then

10: return true . Loop closure found
11: else
12: return false . No loop closure found
13: end if
14: end procedure

116 Hierarchical Loop Closure Detection for Topological Mapping

7.3.2.1 Transition Model

As in the previous solutions, in order to predict the posterior, an evolution model is applied to
the probability of loop closure at time t− 1 using a discretized Gaussian-like function centred
at each image j. In HTMap, 90% of the total probability is distributed among eight of the
neighbours of j and the remaining 10% is shared uniformly across the rest of loop closure
hypotheses according to:

0.1
max{0, t− p− 9}+ 1 . (7.9)

Note that, unlike FEATMap and BINMap, the size of the Gaussian is eight instead of
four. This increases the sensitivity of the filter since the likelihood computation is limited to
the images belonging to the locations which are similar enough to the current image It.

7.3.2.2 Observation Model

The current observation Ot is included in the filter once the prediction step has been per-
formed. To this end, we make use of our hierarchical representation of the environment, which
allows us to calculate the likelihood without the need of computing the similarity between It
and all the previous images. This likelihood is calculated at two levels: first, global descriptors
are used to obtain the locations most similar to the current image, what produces a similarity
score for every location in the map. Then, local feature descriptors are searched only in the
feature indices at the locations whose score is above a threshold, in order to obtain a similarity
score respect to the images stored in those locations.

The goal of the first step is to obtain places in the map with a similar appearance to the
current image It. To this end, the distance between the global descriptor of the image, Gt,
and the representative global descriptor of each location, φi, is computed:

dg(φi, Gt) , ∀`i ∈ ω . (7.10)

Next, these distances are converted into a similarity score gi by means of Eq. 7.11:

gi = 1−
dg(φi, Gt)− dming

dmaxg − dming

, (7.11)

where dming and dmaxg are, respectively, the minimum and the maximum distances resulting
for It. In order to select the most likely places given the current image, a set of locations ω′,
whose score is higher than a predefined threshold τllc, is defined as:

ω′ = {`i ∈ ω | gi > τllc} , (7.12)

where ω is defined in Eq. 7.2. The final set of candidate locations ωc is obtained combining

7.3. Topological Mapping Framework 117

ω′ with the current active location in the map:

ωc = ω′ ∪ `a . (7.13)

We always include `a as a possible loop closure candidate irrespective of the score ga.
In a second step, additional image similarities are computed in order to find the most

likely images in the selected locations. To this end, local binary features of the current image
are searched in the feature indices of the retrieved locations ωc, and a similarity score l is
computed for every image in each candidate location:

lj = sim_score (Ft, βi) , ∀Ij ∈ `i, ∀`i ∈ ωc , (7.14)

which is a score based on the TF-IDF weighting factor as explained in section 6.1.2 (see
Eq. 6.5). Next, the combined similarity score sij of the image j which is stored at location i
is defined as the product of global score gi and the local score lj :

sij = gi · lj . (7.15)

The likelihood is then calculated, similarly to the previous solutions, according to the following
rule:

P
(
Ot|Lti

)
=


sij − sσ
sµ

if sij ≥ sµ + sσ

1 otherwise
, (7.16)

being, respectively, sµ and sσ the mean and the standard deviation of the set of scores. Notice
that, by means of Eq. 7.16, given the current observation Ot, only the most likely images
update their posterior, and, in this case, the function is more selective than in FEATMap
or BINMap. The likelihood computation is formally stated in Alg. 7.3. To finish, the full
posterior is normalized in order to obtain a probability density function after incorporating
the observation into the filter.

7.3.3 New Location Policy

Once the current image has been determined not to close a loop with any existing location, the
dissimilarity between `a and It is evaluated in order to determine if the image has been taken
from the same physical place represented by the current location. To this end, the distance
between the representative of the node and the global descriptor of the image is computed
and contrasted against a threshold τnn, so that if dg(φa, Gt) < τnn, then It is associated to
`a. This parameter plays a key role with regard to the sparsity of the map: the higher the
value of τnn, the lower the number of nodes, but more images are associated to each location.
In section 7.4, we will evaluate how the quality and accuracy of the generated maps varies
according to this parameter.

118 Hierarchical Loop Closure Detection for Topological Mapping

Algorithm 7.3 HTMap: Likelihood Computation
1: procedure compute_likelihood(Gt, Ft,Mt)
2: dg = []
3: for each location i in ω do
4: dg[i] = compute_global_dist(φi, Gt)
5: end for
6: dmax = get_max(dg)
7: dmin = get_min(dg)
8: g = [] . Global scores
9: ωc = [`a] . Similar locations to the current image

10: for each location i in ω do
11: g[i] = 1− dg [i]−dmin

dmax−dmin

12: if g[i] > τllc then
13: ωc = ωc ∪ `i
14: end if
15: end for
16: s = [] . Combined Scores
17: for each location i in ωc do
18: for each image j in `i do
19: lj = sim_score(Ft, βi)
20: s[j] = g[i] · lj
21: end for
22: end for
23: return s
24: end procedure

7.4 Experimental Results

In this section we evaluate HTMap from different points of view. The section is organized as
follows: first, we discuss about the configuration of the parameters; secondly, the performance
of our hierarchical loop closure detection algorithm is evaluated; next, the ability of HTMap
to create topological maps from the environment is assessed; then, the quality of the maps
with regard to their sparsity is analysed; finally, HTMap computational times are discussed.

7.4.1 Parameter Configuration

In the same way as for FEATMap and BINMap, in this section we discuss the different
parameters that affect the performance of HTMap. The algorithm was configured using the
parameters indicated in Table 7.1. Most part of the parameters of HTMap are also present
in the previous solutions and have been already discussed. Therefore, they are not reviewed
again here and the reader is referred to sections 5.4.1 and 6.5.1 for further information about
their configuration. Two additional parameters are considered in HTMap:

• The new location threshold (τnn), which directly affects the sparsity of the resulting
maps: the higher the value, the lower the number of resulting locations. This is a

7.4. Experimental Results 119

Parameter Value
Branching factor (K) 16
Maximum leaf size (L) 150

Number of search trees (T) 4
Rebuild threshold (R) 4

Keypoints per image (n) 650
Nearest neighbour ratio (ρ) 0.8

Previous images discarded (p) 30
Number of inliers (τep) Varying

New location threshold (τnn) 0.15
Loop closure node threshold (τllc) 0.65

Table 7.1: Parameters for HTMap execution

critical parameter for HTMap execution and will be deeply discussed in section 7.4.4.

• The loop closure node threshold (τllc), which affects the number of selected nodes when
searching for loop closure candidates. The higher this value, the higher the number of
nodes selected, but it implies to search in more nodes at image loop closure level. We
set this value to 0.65, which is enough to maximize the recall rates avoiding to search
in all nodes.

Note that, unlike previous solutions where the parameter τloop governed loop acceptance
decisions, in HTMap there are no thresholds for accepting final loop closures. Therefore, τep
becomes a critical parameter and has been used for plotting the precision-recall curves shown
in the next section.

7.4.2 Loop Closure Detection

For the loop closure evaluation, we use the same sequences as in the previous chapter for the
evaluation of BINMap: City Center, New College, KITTI 00, KITTI 05 and KITTI 06. As
usual, the reader is referred to section 4.2 for further details about these sequences.

Figure 7.4 shows the observation likelihood computed for the New College sequence using
HTMap. As illustrated in the figure, the likelihood results to be less noisy than for BINMap
(see Fig. 6.3), what reduces the number of false positives, as will be shown later. This effect
is inherent to the likelihood computation scheme used in HTMap, since it selects several
locations of the map by means of the similarity between global descriptors, and then only
the images inside these locations are taken into account during the likelihood computation.
Conversely, the loops are shown as peaks lower than in BINMap, but they are enough for
increasing the performance of the solution.

We evaluate the performance of the hierarchical loop closure approach for recognizing
previously seen places. The assessment is performed in terms of precision-recall. As usual, in
our validation tests we are particularly interested in the maximum recall that can be achieved
at 100% precision, what implies no false positives in any case.

120 Hierarchical Loop Closure Detection for Topological Mapping

(a) (b)

Figure 7.4: (a) Ground truth loop closure matrix for the New College sequence. (b) Likelihood
matrix computed using HTMap.

Since HTMap is based on a hierarchical combination of both BoW and global schemes, we
want to verify its performance in comparison with two solutions of each of these paradigms
executed alone. Therefore, we have performed a comparison between FAB-MAP 2.0 [165] and
SeqSLAM [43], which can be considered as state-of-the-art approaches of, respectively, each
paradigm. FAB-MAP 2.0 is evaluated using the binaries provided by the authors with default
parameters and the results are processed as explained in section 4.3.1. Conversely, SeqSLAM
is validated according to the procedure explained in section 4.3.2.

The precision-recall curves for each sequence are shown in Fig 7.5. In each plot, the curves
were plotted modifying τep in HTMap, p in FAB-MAP 2.0 and the loop closure acceptance
threshold in SeqSLAM. For an easier understanding of the curves, best results for a 100%
of precision are also shown in Table 7.2. As can be seen in the figure, the area under the
curve (AUC) of HTMap is higher than the corresponding curves for the other solutions,
outperforming them in all sequences. According to our experiments, SeqSLAM is usually
able to obtain higher recall at 100% of precision than FAB-MAP 2.0, except for New College,
where results are very similar. The performance of our approach is specially high in KITTI 00
and KITTI 06 sequences, where more than 90% of recall can be obtained at 100% of precision.
The maximum recalls obtained for the other sequences are 79.68% for City Center, 73.60%
for New College and 75.88% for KITTI 05, which are very high in comparison with the other
solutions. HTMap achieves a higher recall than BINMap in all sequences, except for the City
Center sequence (see Table 6.2). In general, the hierarchical loop closure approach used by
HTMap enhances the performance of BINMap in terms of precision-recall.

Following the same notation as the one used in section 6.5.3 for plotting the generated
maps of BINMap, the detected loops in each corresponding sequence are shown from Fig. 7.6
to Fig 7.10. Left figures show the map obtained with our approach, while the right figures
show the ideal maps that should be obtained if all the loops of the sequences were correctly

7.4. Experimental Results 121

Figure 7.5: Precision-recall curves for each sequence using HTMap, FAB-MAP 2.0 and SeqS-
LAM.

detected. As in BINMap, note that most part of the existing loops are detected, specially in
the KITTI 00 and KITTI 05 sequences. HTMap is able to succeed in cases where BINMap
is not, e.g. when the vehicle passes by a previously visited place but at a certain distance of
the original route. This is specially evident in Fig 7.7 and Fig 7.10.

122 Hierarchical Loop Closure Detection for Topological Mapping

(a) (b)

Figure 7.6: Appearance-based loop closure results for the City Center sequence. The positions
of the images are plotted as black dots. Wherever an image closes a loop with another image,
both are labelled with a red dot and linked with a green line. (a) shows the result of HTMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

(a) (b)

Figure 7.7: Appearance-based loop closure results for the New College sequence. The positions
of the images are plotted as black dots. Wherever an image closes a loop with another image,
both are labelled with a red dot and linked with a green line. (a) shows the result of HTMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

7.4. Experimental Results 123

(a) (b)

Figure 7.8: Appearance-based loop closure results for the KITTI 00 sequence. The positions
of the images are plotted as black dots. Wherever an image closes a loop with another image,
both are labelled with a red dot and linked with a green line. (a) shows the result of HTMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

(a) (b)

Figure 7.9: Appearance-based loop closure results for the KITTI 05 sequence. The positions
of the images are plotted as black dots. Wherever an image closes a loop with another image,
both are labelled with a red dot and linked with a green line. (a) shows the result of HTMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

124 Hierarchical Loop Closure Detection for Topological Mapping

HTMap FABMAPv2 SeqSLAM
Sequence TP TN FP FN Pr Re Pr Re Pr Re

City Center 447 676 0 114 100 79.68 100 38.50 100 68.98
New College 304 660 0 109 100 73.60 100 51.91 100 49.39
KITTI 00 712 3752 0 77 100 90.24 100 49.21 100 67.04
KITTI 05 365 2280 0 116 100 75.88 100 32.15 100 41.37
KITTI 06 261 832 0 832 100 97.03 100 55.34 100 64.68

Table 7.2: Results for the five sequences using HTMap, FAB-MAP 2.0 and SeqSLAM. Preci-
sion (Pr) and Recall (Re) columns are expressed as percentages. See text for details.

(a) (b)

Figure 7.10: Appearance-based loop closure results for the KITTI 06 sequence. The positions
of the images are plotted as black dots. Wherever an image closes a loop with another image,
both are labelled with a red dot and linked with a green line. (a) shows the result of HTMap,
while (b) shows the ideal map that should be obtained if all the loops present in the sequence
were correctly detected.

7.4.3 Topological Mapping and Localization

The same sequences used in the previous experiments were also employed to validate our
framework regarding mapping tasks. To this end, the topological maps obtained at 100% of
precision are shown from Fig 7.11 to Fig 7.15. For each sequence, a random color has been
assigned to each of the locations of the map. All images associated to this location during
the generation of the map are then labelled using the corresponding color. We want to verify
that the images are tagged with the same color when revisiting an already known place. As
can be seen, this is true in most cases, and it is specially evident in the City Center sequence,
where a large loop is found. In this case, despite the map contains a few locations, HTMap
does not get confused and images corresponding to already visited places are assigned to the
corresponding node. The total number of locations obtained for each sequence is 18 for City
Center, 86 for New College, 32 for KITTI 00, 19 for KITTI 05 and 20 for KITTI 06.

The effectiveness of the solution in terms of precision-recall with regard to the number of

7.4. Experimental Results 125

Figure 7.11: Generated topological map at 100% of precision for the City Center sequence.
Images belonging to the same location are labelled with the same color. The total number of
generated locations is 18.

locations of the map varies depending on the sequence. We verify the accuracy of the maps
with regard to the number of locations in the following section.

7.4.4 Sparsity

The number of locations of a map with regard to the number of images is defined as its
sparsity [218]. The lower the number of locations, the higher the sparsity, since more images
are assigned to the same place. However, more sparsity does not imply more accurate maps,
since the number of locations affects the loop closure detection. In the first level of our loop
closure approach, more location candidates are taken into account, what can induce false loop
detections. Moreover, a larger sparsity makes the binary index of each location contain more
visual words, sharing the scores among more loop closure candidate images. A good mapping
technique must balance the number of locations and the ability of detecting previously seen
places. In this section, we want to evaluate the effect of the sparsity in the performance of
HTMap.

The parameter with a major influence on the sparsity of the maps is τnn: the higher the
value of τnn, the lower the number of locations (see section 7.3.3). Since we are interested
in avoiding false positives, we fix the parameter τep to 150, which is enough to ensure 100%
of precision in all sequences. Then, we execute our approach varying τnn and the number of
locations and recalls are observed. This experiment has been performed over the City Center
and the New College sequences, since they have approximately the same length and have been
taken at the same frame rate. This is to ensure that the number of generated locations is
independent of the length of the sequence. Note that using a low value of τep can lead to
a higher recall, but in this case we are only interested in the relation existing between the

126 Hierarchical Loop Closure Detection for Topological Mapping

Figure 7.12: Generated topological map at 100% of precision for the New College sequence.
Images belonging to the same location are labelled with the same color. The total number of
generated locations is 86.

Figure 7.13: Generated topological map at 100% of precision for the KITTI 00 sequence.
Images belonging to the same location are labelled with the same color. The total number of
generated locations is 32.

7.4. Experimental Results 127

Figure 7.14: Generated topological map at 100% of precision for the KITTI 05 sequence.
Images belonging to the same location are labelled with the same color. The total number of
generated locations is 19.

Figure 7.15: Generated topological map at 100% of precision for the KITTI 06 sequence.
Images belonging to the same location are labelled with the same color. The total number of
generated locations is 20.

128 Hierarchical Loop Closure Detection for Topological Mapping

Figure 7.16: Recall of HTMap according to the number of locations at 100% of precision and
τep set to 150.

number of locations and the recall produced by HTMap under these conditions.
The results are shown in Fig. 7.16. As can be seen, a high number of locations does not

imply better performance: from approximately 100 locations, the recall starts to decrease for
both sequences. A number of locations between 10 and 80 are enough to guarantee the best
recall values, being the recall more or less stable in this interval (≈ 0.34 for City Center and
≈ 0.65 for New College). This is an interesting point, taking into account that having more
locations in the map could imply higher computational load during the first step of our loop
closure approach, where the most likely locations are retrieved. Note that minimum sparsity
is equivalent to perform loop closure detection at exclusively the image level. This proves that
our grouping approach helps during the detection of previously seen places and validates the
ability of the PHOG global descriptor to summarize the visual information that characterizes
a place.

7.4.5 Computational Times

In this section, we evaluate the performance of HTMap in terms of computational time. To
this end, we execute our approach over the KITTI 00 sequence using the parameters that
gave us the maximum recall in the previous experiments, generating a total number of 32
locations from a set of 4541 images. We have measured the execution time of the different
parts of our algorithm in this sequence, and the results are shown in Fig. 7.17 and summarized
in Table 7.3, where PHOG is the time needed to perform a global description of the image,
FAST includes the keypoint detection and the selection of the best n corners, and LDB is
the time needed to compute the binary description of these keypoints. Regarding the loop
closure detection times, Location Likelihood refers to the time required to perform the first

7.4. Experimental Results 129

Mean % Std Max Min

Image Description
PHOG 11.40 10.43 3.50 41.60 4.90
FAST 34.90 31.93 7.80 72.00 16.70
LDB 2.50 2.10 2.10 34.90 0.470

Loop Closure

Location Likelihood 3.10 2.84 3.40 16.90 0.10
Image Likelihood 48.90 44.74 37.00 267.30 0.01
Bayes Predict 3.90 3.57 3.50 19.40 0.01
Bayes Update 0.40 0.37 0.20 2.10 0.01

Epipolar Analysis 4.20 3.84 1.50 23.20 1.50
Total 109.30 38.37 477.40 23.70

Table 7.3: Computational times for HTMap on the KITTI 00 sequence. All times are ex-
pressed in milliseconds. The % column indicates the percentage of total time that approxi-
mately represents each step.

step of our hierarchical loop closure algorithm, Image Likelihood involves the computation
of the second step of our approach, Bayes Predict is the time needed to make a prediction
in the filter and Bayes Update is the time needed to update the filter using the computed
likelihood. Finally, Epipolar Analysis includes matching features and the computation of the
fundamental matrix.

As can be observed, times are substantially shorter than including the likelihood com-
putation. Regarding the image description, the computation of PHOG, which took 11.4 ms
on average, is even faster than finding features using FAST and describing them using LDB,
which took together 37.4 ms. The total time needed for describing an image is 48.8 ms on
average, which is much faster than describing an image using SIFT or SURF, as could be
expected. The highest execution time corresponds to the image likelihood computation. This
time increases with the number of nodes, since more locations must be searched. This effect
can be reduced increasing τllc for selecting less location candidates, which will reduce the re-
call, although it could be enough depending on the environment. Nonetheless, the maximum
time measured is 267.3 ms, which can be considered as a reasonable result. The computation
of the location likelihood is very fast despite the increment of the nodes in the map, taking 3.1
ms on average. In short, HTMap can process an image in 109.3 ms on average according to
our experiments, which outperforms, for instance, the state-of-the-art algorithm FAB-MAP
2.0, where, according to the experiments presented in [165], only the SURF feature extraction
takes 400 ms, approximately.

The main improvement of performance of HTMap with regard to BINMap has to do with
the recall values, since the computational times are quite similar, as can be seen in the results.
Regarding the image description times, the LDB descriptor is faster to compute than the
BRIEF descriptor used in BINMap. However, in HTMap, a PHOG descriptor is computed,
making the complete description time of an image very similar in both approaches. The
likelihood computation time in HTMap is a bit higher than in BINMap, due to the two steps
needed by the hierarchical scheme. Conversely, the Bayes steps take less time in HTMap.

130 Hierarchical Loop Closure Detection for Topological Mapping

(a) (b)

Figure 7.17: Computational times of HTMap on the KITTI 00 sequence. (a) Computational
times for describing an image. (b) Computational times for loop closure detection.

The epipolar analysis time has been included in the HTMap results since this step is always
executed in this approach, unlike the other solutions, where this step is only performed when
an image attains a probability higher than a threshold.

7.5 Discussion

In this chapter we have introduced a new topological mapping approach, HTMap, based
on a hierarchical place recognition technique. Instead of generating a dense map, where all
the images correspond to a node in the final topology, our approach builds a hierarchical
decomposition of the environment, where images with similar properties are grouped together
to form locations. Each location is represented by means of an average PHOG global descriptor
and an instance of OBIndex, which is based on a BoW scheme that can be built online.
This map representation is very useful for reducing the search space when searching for loop
closures. Then, as a key component of our topological mapping technique, we have also
presented a hierarchical loop closure detection method. First, given the current image, PHOG
global descriptors are used to obtain the most likely places in the map. After that, local binary
features are used to obtain the most likely images belonging to the places retrieved previously.
These scores are combined as a likelihood in a discrete Bayes filter. We have verified the utility
of the PHOG descriptor in place recognition tasks, showing that it can be very helpful for
summarizing the visual information that a place presents. We have validated our approach
using several public datasets, and compared our results with SeqSLAM and FAB-MAP 2.0,
verifying that our combination of global and BoW approaches performs better than two
solutions of each paradigm alone.

According to the experimental results, the hierarchical scheme used in HTMap allows us
to improve the recall values obtained with BINMap, since the algorithm selects from the map
locations similar to the query image for detecting loop closures, instead of searching in the

7.5. Discussion 131

whole map. HTMap is even faster than BINMap according to our results and can be easily
used in long-term tasks, what makes HTMap an interesting option for topological mapping.

Chapter 8

Fast Image Mosaicing using
Incremental Bags of Binary Words

This thesis has introduced several topological mapping algorithms which are based on visual
loop closure detection techniques. However, topological mapping is not the only research area
in which it is necessary an efficient place recognition method. A related problem is image
mosaicing, where the topological relationships between the images need to be determined
in order to correctly align them. These relationships are usually represented by means of a
graph, what leads to see image mosaicing as an special case of topological mapping. The
topology estimation of the environment is usually a time-demanding process, specially when
the number of images is high. This is mainly due to the lack of efficient structures for indexing
images and the use of slow image description algorithms such as SIFT [61] or SURF [62]. In
this regard, the OBIndex indexing scheme introduced in chapter 6 can be useful for detecting
overlapping pairs.

In this chapter, we propose a novel image mosaicing approach, named BIMOS (Binary
descriptor-based Image MOSaicing)1, which can produce seamless mosaics on different scenar-
ios and camera configurations in a reasonable amount of time. More precisely, we introduce a
multi-threaded architecture for image mosaicing that allows us to decouple the strategic steps
involved in the mosaicing process, speeding up the time required to estimate the final topol-
ogy. To find overlapping candidates, BIMOS employs OBIndex, as explained in chapter 6,
which is based on a Bag-Of-Words (BoW) scheme that is built in an online manner. Our
approach takes advantage of the use of the ORB detector and descriptor [58] to accelerate
the image description process. BIMOS is validated under different environments and camera
configurations, showing that it can be used on several scenarios producing coherent results.

The chapter is organized as follows: section 8.1 introduces the concept of image mosaic-
ing and the latest related works, section 8.2 presents the motion model used in BIMOS,
section 8.3 describes the mosaicing scheme of BIMOS, section 8.4 reports the experimental
results obtained, and section 8.5 concludes the chapter.

1http://github.com/emiliofidalgo/bimos

133

134 Fast Image Mosaicing using Incremental Bags of Binary Words

8.1 Background

In the last decades, cameras have been widely used for collecting information from the en-
vironment. When a robot is equipped with a camera, it is usually of interest to obtain a
large visual representation of the operating area, which can be used for close-up inspection,
for localization and even for navigation tasks. Since the field-of-view of conventional cameras
is limited, image mosaicing techniques have been developed for building a larger view of the
surveyed area. Mosaicing is then defined as the process of stitching images together to provide
a wide-area image of the scene. Generally, an image mosaicing algorithm consist of two main
steps:

• image alignment, also known as image registration, which is the process of overlaying
two or more images of the same scene taken at different times and/or from different
viewpoints into a common reference frame [228, 229], usually referred to as the mosaic
frame, and,

• image blending, which is in charge of rendering the images together in a final seamless
mosaic.

In this chapter, we are particularly interested in the image alignment step leaving image
blending techniques out of the scope of this thesis. In BIMOS, we use a generic algorithm
for blending the resulting mosaics. The reader is referred to [230] for an extensive review of
image blending techniques.

When a stream of images is the only source of information available, the alignment can be
performed concatenating the estimated transformations between consecutive pairs of images.
This simple method is called pairwise alignment. The problem is that this technique rapidly
tends to accumulate registration errors, providing a wrong trajectory of the camera, which
produces misalignments in the final mosaic. Finding correspondences between non-consecutive
images is a key step to correct the trajectory of the vehicle and to reduce this drift. Despite
the trajectory estimated by means of pairwise alignment can be used to infer overlapping
pairs, it is better to employ another source of information not affected by the accumulated
error. In our case, we use an appearance-based loop closure detection technique to detect if
an image has been previously seen. After detecting overlaps between non-consecutive images,
global alignment methods can be used to optimize the trajectory of the vehicle. This iterative
process of matching and optimization is called topology estimation and usually lasts until no
more overlapping pairs can be found [231]. For obvious reasons, graph theory is very useful
for defining and representing topologies [232, 233].

The quality and the time needed to obtain the final topology are directly related to the
method used for describing images and the ability for finding overlapping pairs. With regard
to image description, most part of image mosaicing approaches make use of SIFT or SURF,
due to their invariance properties to illumination, scale and rotation. Recently there has been

8.2. Motion Estimation 135

a growing interest in the development of binary descriptors, such as BRIEF [74], BRISK [60],
ORB [58], FREAK [75] or LDB [79], due to their lower computational cost.

In order to detect the topological relationships between images, a frame-to-frame compar-
ison approach can be used only when the number of images is low. As it grows, this approach
becomes unfeasible and an indexing scheme is needed for searching overlapping pairs in an
efficient way. A BoW approach [83], such as the one presented in chapter 6, is of application
here.

Image mosaicing drew the attention of the robotics community some years ago, specially
for mapping areas using down-looking cameras, a configuration adopted by most of the systems
presented so far. However, it is less usual to find solutions that make use of forward-looking
cameras, as described in [9] for inspecting vessels using a Micro-Aerial Vehicle (MAV) and
in [234] for inspecting hydroelectric dams using an Autonomous Underwater Vehicle (AUV).
Image mosaicing algorithms have been usually validated for a single environment. As will be
seen later, BIMOS has been tested against several kind of scenarios and camera configurations.

Image mosaicing has been extensively used for underwater environments and different
tasks. For instance, Gracias et al. [235] introduced a visual navigation approach for underwa-
ter robots based on image mosaicing. A visual servoing controller is employed for controlling
the trajectory of the vehicle, which is specified directly over the mosaic. Pizarro [236] and
Madjidi [237] present solutions to the problem of large-area global mosaicing by underwater
vehicles. More recently, Elibol et al. [238] devise a global alignment method based on graph
theory, which works on the mosaic frame and does not require non-linear optimization. Fer-
reira et al. [239] introduce a real-time mosaicing algorithm based on a SLAM system which
relies on the BRIEF descriptor.

Several image mosaicing techniques involving MAVs have recently emerged have been
validated using these kind of vehicles. Kekec et al. [240] present a real-time algorithm for
creating mosaics from aerial images. In this approach, the Separating Axis Theorem (SAT)
is used for detecting image intersections. Bulow and Birk [241] introduce a fast and robust
method for visual odometry which is then used to generate large photo maps from images
taken from a MAV. Botterill et al. [242] develope an aerial image mosaicing algorithm using
an offline BoW scheme.

8.2 Motion Estimation

The model employed to estimate the camera motion plays a key role in the image registration
process. BIMOS assumes that either the scene is planar or the distance from the camera to
the scene is high enough so as to neglect depth changes. It is also assumed that the camera
is more or less perpendicular to the scene and that keeps at a more or less constant distance.

Under these conditions, two overlapping images Ii and Ij are related by a homography, a

136 Fast Image Mosaicing using Incremental Bags of Binary Words

linear transformation represented by a 3×3 matrix iHj such that:

pi = iHj pj , (8.1)

where pi and pj are two corresponding image points from, respectively, Ii and Ij , expressed
in homogeneous coordinates. Despite BIMOS can deal with any kind of homography, we
approximate the motion of the camera by a simpler model using a similarity transformation,
which has four degrees of freedom, comprising rotation, translation and scale. iHj is expressed
as:

iHj =


s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1

 =


a −b c

b a d

0 0 1

 , (8.2)

where s is the scale, θ the rotation angle and (tx, ty) the translation vector. The estima-
tion of any of these homographies starts by matching corresponding points between images.
Maximum Likelihood Estimation Sample Consensus (MLESAC) [243] is next used robustly
to minimize the reprojection error for Eq. 8.2 and discard outliers (see Eq. 8.7 later).

Finally, for the case of a path of images Ii, Ik1 , . . . , Ikm , Ij , the associated transforma-
tion that relates frames Ii and Ij is computed by concatenating the corresponding relative
homographies:

iHj = iHk1
k1Hk2 . . .

km−1Hkm
kmHj . (8.3)

8.3 Image Mosaicing using Binary Descriptors

In this section, we describe BIMOS, whose architecture is outlined in Fig. 8.1. Inspired by
some recent SLAM solutions such as PTAM [244] and ORB-SLAM [245], BIMOS comprises
four threads that run in parallel, each one in charge of a strategic step of the algorithm. This
configuration allows us to decouple the execution of the different parts of BIMOS, reducing the
time needed to generate a mosaic. All threads interact with a shared structure called mosaic
graph, which is used to manage the topology of the environment and the synchronization
mechanisms between threads. The keyframe selector thread, which is the entry to the system,
describes the input images and decides if they should be part of the final image composite.
The loop closer thread detects overlapping image pairs and the optimizer thread reduces
the global misalignment in the graph performing a bundle adjustment process. Finally, the
blending thread is responsible for generating the final image mosaic. BIMOS is ready to work
online using a Robot Operating System (ROS) topic through which it processes images on
demand, contrary to most mosaicing algorithms, which work offline. In the following sections,
we describe the building blocks of BIMOS.

8.3. Image Mosaicing using Binary Descriptors 137

Mosaic Graph

Topology

Keyframe Selector

Image
Description

New
Keyframe?

Images

Loop Closer

Detect
Overlaps

Image
Index

Optimizer

Optimize
Mosaic Graph

Blending

Create
Mosaic

Mosaic

New KF

Add new KF

Optimize

Get Graph

New KF
Link KFs

Generate
Mosaic

Figure 8.1: BIMOS architecture. The four threads (in blue) interact with a shared structure
called mosaic graph (in green). The arrows indicate the main actions performed by the
different components. See text for further details.

8.3.1 Mosaic Graph

The topology of the environment represents the relationships that exist between the images
conforming the mosaic. In our approach, the topology is modelled by means of an undirected
graph, where nodes represent the image subset that will lead to the final mosaic and links
represent the overlaps among them. In BIMOS, the selected images are called keyframes.

The mosaic graph is a key component of BIMOS. It manages the graph that represents
the topology of the environment and provides mechanisms to ensure the exclusive access of
the different threads to this graph. In order to create the final mosaic, keyframes need to
be aligned according to a common selected frame, referred to as the mosaic frame, as stated
before. Then, each keyframe is associated to an absolute homography MHi, which relates the
correspondent keyframe i with the mosaic frame M . In this work, since BIMOS processes
images on demand and the graph is updated as new images arrive, the first keyframe is always
selected as the reference frame of the mosaic. Its absolute homography is thus the identity
matrix. A relative homography is also associated to each link, which will be used during the
pose-graph optimization step.

Several threads of the system modify concurrently the mosaic graph: the keyframe selector
thread inserts new keyframes in the graph, the loop closer thread links keyframes as it detects
overlapping image pairs and the optimizer thread globally adjusts the absolute homographies
MHi. The mosaic graph structure and its use are illustrated in Fig 8.2.

138 Fast Image Mosaicing using Incremental Bags of Binary Words

10

MH
0

3

2

MH
1

MH
2

MH
3

Figure 8.2: A simple example of a mosaic graph comprising four keyframes and their corre-
sponding absolute homographies. Keyframe 0, coloured in green, is the mosaic frame and,
therefore, MH0 is the identity. Keyframe 3 is the last keyframe inserted in the graph. The
node and the link with keyframe 2, in blue, were added by the keyframe selector thread. The
link with keyframe 0, in red, was added by the loop closer thread after detecting an overlap
between images. The optimizer thread adjusts the absolute homographies of the graph.

8.3.2 Keyframe Selection

This component is responsible for describing the input images and deciding which ones are
useful for building the final mosaic. First of all, the ORB [58] algorithm is used to detect
and describe a set of keypoints in the image. We use ORB due to its good tolerance to
rotations [245], instead of BRIEF [74] and LDB [79], used by BINMap and HTMap. However,
note that BIMOS is descriptor-independent and any detector-binary descriptor combination
can be used. Besides, to favour accurate estimation of the image transformations, a minimum
number of features (3000) is requested to be found, and they are required to cover the full
image in a more or less uniform way over a 4×4 regular grid defined over the image.

Instead of using all the input images, we apply a keyframe selection policy in order to dis-
card images which are not deemed to provide a significant contribution to the mosaic, avoiding
unnecessary drift during the alignment process. This contribution is measured as the amount
of overlap between the current image and the last keyframe inserted in the graph, so that
the higher the overlap the less relevant is the image. Note that this policy is different to the
one employed in chapter 5 since, in this application, we require to validate the visual overlap
between the two images and not only if they represent the same place. More specifically, we
compute the homography kH∗i between the current image i and the last inserted keyframe
k. Given the resulting set of inliers, we obtain the coordinates of the corresponding points in
each image. We then calculate the minimal up-right bounding rectangle for each point set,
formally rj for image j, and, next, we evaluate the percentage of overlap that this bounding
rectangle represents in the image. A simple example of the computation of these bounding
rectangles is illustrated in Fig. 8.3. The overlap is expressed as follows:

Oj = area(rj)
wj × hj

, (8.4)

8.3. Image Mosaicing using Binary Descriptors 139

Image k Image i

rk ri

Figure 8.3: An simple example of bounding rectangle computation. Red points represent the
keypoints found in each image (Ik and Ii, respectively). The surviving inliers after computing
the homography between the images (kH∗i) are indicated with a black line. The bounding
rectangles at each image are shown in black.

where the function area(·) computes the area of the bounding rectangle and wj and hj are,
respectively, the width and the height of image j in pixels. In order to take a final decision,
the overlap between the images is computed as:

kOi = min(Ok, Oi) . (8.5)

Then, if there are enough inliers and the overlap kOi is high enough, the current image
i is stored as a potential keyframe. Otherwise, the last potential keyframe found is added
to the mosaic graph, and the transformation from the current image to the new keyframe is
recomputed. This policy allows us to ensure that, despite we are discarding several images,
there exists a minimum overlap between consecutive keyframes and the topology is not broken
in different parts.

When an image i is added as keyframe into the mosaic graph, it is linked with the previous
keyframe. The link is associated to the relative homography kH∗i . Its absolute homography is
initialized concatenating the absolute homography of the previous keyframe with kH∗i . Then,
following the notation used in this chapter, if the image i is added as the keyframe k + 1 in
the graph, kH∗i becomes kHk+1 and, consequently, the initial absolute homography is given
by:

MHk+1 = MHk
kHk+1 . (8.6)

8.3.3 Loop Closing

This thread detects which keyframes close a loop with previously added keyframes. To this
end, we use OBIndex as explained in chapter 6. This component maintains an instance of
OBIndex, which indexes all the keyframes defined up to the current time. When a new
keyframe is added, it is searched in the index, obtaining a list of candidates sorted from

140 Fast Image Mosaicing using Incremental Bags of Binary Words

highest to lowest visual similarity. Next, each candidate is evaluated in descending order,
computing the homography with the current keyframe. If the number of resulting inliers is
higher than a certain threshold, a link to the corresponding keyframes is incorporated into
the graph. Otherwise, the process finishes and, if exists, the next keyframe is processed.

Since consecutive images are linked by default, we want to find overlapping pairs at far-
ther distances, which is of prime importance during the optimization step. To achieve this,
keyframes are not directly indexed as soon as they are processed. Instead, a buffer is used to
store the most recent keyframes, delaying their publication as overlapping candidates for the
following keyframes.

8.3.4 Optimization

Despite the efforts for accurately estimating the topology such as robust homography com-
putation, keyframe selection and loop closure detection, alignment errors still arise, resulting
into globally inconsistent mosaics. To correct this problem, this component is in charge of
performing a bundle adjustment step to jointly minimize the global misalignment induced by
the current absolute homographies. The reprojection error function is defined as follows:

ε =
∑
i

∑
j

n∑
k=1
‖pki − (MHi)−1 MHj p

k
j ‖ + R(MHj)

‖pkj − (MHj)−1 MHi p
k
i ‖ + R(MHi) , (8.7)

where i and j are two images related by a link, n is the total number of resulting inliers when
computing the relative homography iHj , (pki , pkj) are the corresponding points for the inlier k,
MHi and MHj are the absolute homographies for, respectively, images i and j, and R(MHi)
and R(MHj) are regularization terms. These terms prioritize homographies with scale closer
to 1 during the optimization, since BIMOS assumes that the camera moves at a more or less
constant distance from the scene. These terms are defined as follows:

R(MHi) = γ
(
a2 + b2 − 1

)
= γ

(
(s cos θ)2 + (s sin θ)2 − 1

)
(8.8)

where γ is a regularization factor, s and θ are, respectively, the scale and the orientation
contained in the homography, and a and b are defined in Eq. 8.2.

To reduce the influence of outliers, we optimize, instead of Eq. 8.7, a Huber robust error
function:

h(ε) =
{

|ε|2 if |ε| ≤ 1
2|ε| − 1 if |ε| > 1

. (8.9)

The system of non-linear equations is solved by means of the Levenberg-Marquardt al-
gorithm using the Ceres Solver library2 and the absolute homographies available so far as a

2http://ceres-solver.org/

8.4. Experimental Results 141

BIMOS Old Approach [9]
Ex. Times Rep. Error Ex. Times Rep. Error

Seq #Imgs KFs Alig Opt Blend Total Avg Std Total Avg Std
Vall1 201 80 14.4 0.4 38.7 53.5 2.2 2.2 187.5 2.7 3.0
Vall2 2504 335 330.1 0.4 2876.2 3206.7 8.1 14.8 9042.9 7.9 10.2
MAV 137 88 3.7 0.2 21.5 25.3 1.8 1.8 108.6 2.2 2.1
Air1 71 32 5.3 0.5 68.7 74.5 4.3 6.6 224.4 4.1 3.2
Air2 840 336 106.3 2.7 1008.4 1118.0 6.3 6.8 4766.7 5.9 5.3

Table 8.1: Summary of the experimental results. Times are expressed in seconds and errors
are expressed in pixels.

starting point. Usually a few iterations are needed to achieve convergence.
In BIMOS, a short optimization is executed periodically after the insertion of a certain

number of keyframes in the graph, limiting the optimization to a maximum of 30 seconds and
50 iterations. This parameter is of prime importance in the performance of the algorithm,
since excessive optimizations may slow down the process. Just before the blending step, a
longer optimization (for a maximum of 600 seconds and 1000 iterations) is also performed to
finally adjust the absolute homographies. Note that, despite the different convergence criteria,
both optimizations adjust the absolute homographies of the whole mosaic.

8.3.5 Blending

This last component makes use of a multi-band blending algorithm [246] to create the fi-
nal seamless mosaic. This step is an adaptation of the stitching module implemented in
the OpenCV library, which includes seam finding and exposure compensation. In BIMOS,
this component runs as a thread on demand, which permits generating mosaics at different
moments along the process.

8.4 Experimental Results

BIMOS has been validated under different operating conditions and using several datasets.
The results obtained for each dataset are summarized in Table 8.1, indicating the total num-
ber of images in the input set (#Imgs), the number of keyframes selected by BIMOS (KFs),
the execution times corresponding to the different phases of the algorithm —global alignment
(Alig), global optimization (Opt), blending (Blend) and the total time needed to build the
mosaic (Total)— and, finally, the average and standard deviation of the reprojection error
calculated using all the correspondences with the resulting set of homographies (Avg, Std).
Note that the global alignment time also includes the small optimizations produced during
the estimation of the topology. Given that BIMOS is the evolution of a previously released
mosaicing solution [9], we also include in the table the execution times and the reprojection
error of this algorithm in order to show the performance improvement that BIMOS repre-
sents against this solution. BIMOS goes a step further introducing a more generic mosaicing

142 Fast Image Mosaicing using Incremental Bags of Binary Words

400 600 800 1000 1200 1400

−300

−200

−100

0

100

200

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Figure 8.4: (top) Mosaic resulting for the Vall1 dataset. (bottom) Topology estimated by
BIMOS. Each keyframe is indicated using a red circle, and the mosaic frame is labelled by a
green triangle.

approach which is based on a multi-threaded architecture and a new image selection policy,
making it faster than this previous solution.

For the case of BIMOS, and differently from the other solutions introduced in this thesis,
all experiments have been performed on a desktop computer fitted with an Intel Core i7 at
4.4Ghz processor and 32GB of RAM memory.

As a first experiment, we use an underwater dataset whose images come from the Vallde-
mossa harbour seabed (Mallorca, Spain) and a hand-held down-looking camera. The dataset
consists of 201 images of 320 × 180 pixels, which comprises a large loop, what allows us to
validate the ability of our algorithm for recognizing previously seen places. A total number
of 80 images were selected by BIMOS, leading to the final mosaic and the topology shown in
Fig 8.4. Despite the reprojection error is similar to the one obtained by our previous approach,
the time needed to complete the mosaic is only 53.57 seconds in front of 187.52, which implies

8.4. Experimental Results 143

−6000 −5000 −4000 −3000 −2000 −1000 0 1000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Figure 8.5: (top) Mosaic resulting for the Vall2 dataset. (bottom) Topology estimated by
BIMOS. Each keyframe is indicated using a red circle, and the mosaic frame is labelled by a
green triangle.

an execution time 3.5 times shorter.
The second dataset, also recorded at Valldemossa harbour, is a more challenging envi-

ronment in the sense that it comprises a Posidonia meadow, characterized by a self-similar

144 Fast Image Mosaicing using Incremental Bags of Binary Words

−400 −200 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Figure 8.6: (left) Mosaic resulting for the image sequence collected by aMAV. (right) Topology
estimated by BIMOS. Each keyframe is indicated using a red circle, and the mosaic frame is
labelled by a green triangle.

texture and vegetation in continuous motion. A total number of 2504 images were obtained,
covering an area of approximately 400 m2. BIMOS selects 335 keyframes, producing the mo-
saic and the topology shown in Fig 8.5. As in the previous experiment, we obtain a coherent
mosaic in less time than our previous approach.

The third dataset was recorded using a MAV designed for vessel visual inspection [247],
which was fitted with a 752×480-pixel/58o-lens uEye UI-1221LE camera running at 10Hz.
The MAV was flying at a more or less constant distance from the scene (1.5m). Note that due
to the more aggressive dynamics of the MAV and the front-looking camera configuration, this
is a more challenging situation than the Valldemossa dataset. A total number of 137 images

8.4. Experimental Results 145

−1000 −500 0 500

500

1000

1500

2000

2500

3000

3500

4000

Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Figure 8.7: (top) Mosaic resulting for the Air1 sequence. (bottom) Topology estimated by
BIMOS. Each keyframe is indicated using a red circle, and the mosaic frame is labelled by a
green triangle.

146 Fast Image Mosaicing using Incremental Bags of Binary Words

−15000 −10000 −5000 0 5000

1

1.2

1.4

1.6

1.8

2

x 10
4 Estimated Topology

X (pixels)

Y
 (

pi
xe

ls
)

Figure 8.8: (top) Mosaic resulting for the Air2 sequence. (bottom) Topology estimated by
BIMOS. Each keyframe is indicated using a red circle, and the mosaic frame is labelled by a
green triangle.

were captured, from where BIMOS selected 88 as keyframes. As in the previous experiment,
the reprojection error is lower than for our previous approach. However, the most interesting
result has to do with the execution time of BIMOS, which is, according to our results, 4.3
times faster than our previous algorithm. The resulting mosaic and the estimated topology
are shown in Fig. 8.6.

As a fourth experiment, we employ an aerial image sequence taken at high altitude. This
dataset was taken using a bottom-looking camera attached to a teleoperated aerial vehi-

8.5. Discussion 147

cle [242]. This is also a challenging scenario because of the aggressive movement of the
vehicle, what makes the camera be far from perpendicular to the scene sometimes. We have
considered two sequences from this dataset, comprising, respectively, 71 and 840 images of size
800× 533 pixels, corresponding to areas covering several kilometres. Each sequence is identi-
fied in Table 8.1 as Air1 and Air2. The corresponding mosaics and the estimated topologies
are shown, respectively, in Fig. 8.7 and Fig. 8.8. As the other experiments, BIMOS is faster
than our previous approach keeping a similar reprojection error.

8.5 Discussion

In this chapter, we have described a novel approach for generating mosaics from images. Our
scheme, named BIMOS, is based on a multi-threaded architecture which allows us to decouple
the different parts of the algorithm, speeding up the mosaicing process. The topology of the
environment is modelled by means of an undirected graph. To find the overlapping pairs in an
efficient way, this graph is created using OBIndex, which is built online. We have validated
our approach under different operating conditions, obtaining coherent mosaics in all cases.
BIMOS is an example of application where place recognition is also needed to model the
environment.

Chapter 9

Conclusions and Future Work

This chapter summarizes the work done and provides some ideas that are planned to be
undertaken in the future in order to further improve the results presented in this dissertation.

9.1 Summary

Given the importance of mapping in autonomous mobile robotics, this dissertation has mainly
addressed the problem of developing methods for topological mapping using cameras as a
sensor. Topological maps present several benefits in front of the classic metric approaches,
specially in tasks without accuracy needs, as discussed in chapter 2. A wide range of sensors
have been used for topological mapping, but all of them (including cameras) are influenced by
noise. Therefore, using only raw sensor measurements for mapping tasks leads us to obtain
inconsistent representations of the environment. Due to this reason, loop closure detection,
understood as the ability of a robot to correctly determine that it has returned to a previously
visited place, is a fundamental component in most modern mapping systems to reduce the
uncertainty of the maps. The topological approaches introduced in this dissertation heavily
rely on loop closures, and, hence, several novel vision-based loop closure detection algorithms
have been proposed. Loop closure detection, also known as place recognition, is also an
important step in other computer vision areas such as image mosaicing, and, therefore, the
approaches presented in this dissertation can be of interest to this end. As an example
of application, we have also proposed an image mosaicing algorithm based on one of the
appearance-based loop closure detection algorithms introduced in this dissertation.

The performance of a vision-based topological mapping algorithm is mainly influenced by
the image description and indexing methods employed. In this regard, chapter 3 of this dis-
sertation surveys the most recent appearance-based topological mapping approaches emerged
the last years. Exploring the work of preceding researchers has allowed us to determine several
open research topics which inspired the different contributions of this work.

As a first mapping solution, chapter 5 has introduced an appearance-based approach for
topological mapping and localization named FEATMap (Feature-based Mapping). FEATMap
is based on a loop closure detection algorithm which uses local invariant features for image
description. To efficiently search for loop closure candidates, matchings between the current

149

150 Fast Image Mosaicing using Incremental Bags of Binary Words

image and previously visited images are determined using an index of features based on a set
of randomized kd-trees. A novel map refinement strategy has been also presented to remove
spurious nodes in the final topology. According to the results obtained, FEATMap exhibits a
better performance than FAB-MAP 2.0. However, it invests a significant amount of time in
image description and presents scalability issues as more nodes are inserted in the map.

In order to solve the issues of FEATMap, a Bag-of-Words (BoW) scheme, which quantizes
the features according to a reference visual dictionary, has been considered of particular
relevance. In detail, our interest has been: (1) exploit the benefits of binary descriptors and,
(2) avoid the training step usually needed for building these visual dictionaries, and so generate
the dictionary online. In chapter 6, we have introduced OBIndex (Online Binary Image
Index), an image index based on an incremental Bag-of-Binary-Words approach and inverted
files to obtain similar image candidates. Next, this index has been used as a key component
in a probabilistic topological mapping framework called BINMap (Binary Mapping). The
experiments performed have shown that BINMap achieves a better performance than FAB-
MAP 2.0 and, besides, solves the issues presented by FEATMap.

Despite the good performance exhibited by BINMap, another solution, called HTMap
(Hierarchical Topological Mapping) has been proposed in chapter 7. As a main innovation,
HTMap builds a hierarchical representation of the environment: images with similar visual
properties are grouped together in locations. Locations are represented by means of an average
global descriptor and an instance of OBIndex for indexing the images associated to the node.
Then, loop closure detection is performed in two steps: first, global descriptors are used
to obtain similar candidate nodes and, next, binary descriptors of the current image are
searched in the indices of the selected nodes to finally obtain a similar image candidate. This
hierarchical decomposition of the environment improves the scalability of the solution and
favours long-term tasks. According to the experimental results, HTMap presents a better
performance than FAB-MAP 2.0 and SeqSLAM, and further improves the recognition rates
achieved by BINMap.

Table 9.1 summarizes the main features of each of the approaches introduced in this disser-
tation. In comparison with other state-of-the-art solutions like FAB-MAP 2.0 or SeqSLAM,
all the solutions proposed in this thesis exhibit a better loop closure performance according
to the classical precision-recall metrics obtained. They can be used to generate visual topo-
logical maps of the environment. Moreover, none of them requires the typical training phase
of BoW approaches, as they have been devised to allow the robotic platform to adapt to its
environment. Conversely, BINMap and HTMap represent pioneering solutions using binary
features for vision-based topological mapping, which still keeps as a research area to explore,
as stated in chapter 3.

As discussed previously, place recognition is not an exclusive process of topological map-
ping. There exist other research areas where the ability of recognizing previously seen places
is of prime importance, such as, for instance, for image mosaicing. Therefore, in order to

9.2. Future Work 151

Approach Descriptor Type Descriptor Scope Indexing Method Scalability C. Times
FEATMap Real-valued Local Rand. kd-trees ∗ ∗
BINMap Binary Local Online BoW ∗∗ ∗∗
HTMap Real-valued/Binary Local/Global Hier. online BoW ∗ ∗ ∗ ∗ ∗ ∗

Table 9.1: Summary of the approaches proposed in this dissertation. More ’∗’ means better
performance regarding the corresponding attribute.

demonstrate that the appearance-based techniques developed in this dissertation can be used
for other tasks, in chapter 8 a multi-threaded image mosaicing algorithm has been proposed,
which makes use of OBIndex to find overlapping pairs between images. BIMOS has been val-
idated under different environments and camera configurations, producing coherent mosaics
in all cases in a reasonable amount of time.

9.2 Future Work

As a future work, the following tasks are planned to be carried out:

• Several improvements can be applied to all the topological mapping approaches pre-
sented in this thesis in order to further improve their performance. Initially, several
components are susceptible of being parallelized in a Graphics Processing Unit (GPU)
or in multi-processor environments, which will speed up their execution. That is the
case, for instance, of the Bayes filters and the image description steps. Next, despite
the topological nature of the solutions, adding metrical information to the edges about
the spatial relationships between the involved places will be useful for navigation tasks.
We are also intent to explore the topological mapping approaches in larger scenarios in
order to further validate their scalability and robustness.

• OBIndex is a key component of BINMap, HTMap and BIMOS. Due to this reason,
these solutions would benefit from the improvement of the performance of OBIndex. In
this regard, adding information about the spatial arrangement and the co-occurrence of
the words in a visual dictionary will improve the effectiveness when searching for similar
images. Another issue to overcome has to do with limiting the size of the dictionary.
Despite the good general performance of OBIndex, a method for purging visual words
would be also helpful for long-term tasks.

• Regarding BIMOS, there exist several improvements that can be investigated. First of
all, since the main bottleneck of the algorithm is the blending step, exploring other tech-
niques for image blending to speed up BIMOS execution is an interesting task that we
plan to tackle. Furthermore, instead of optimizing the whole graph, performing a local
optimization when a loop closure is detected will be beneficial for saving computation
time.

Bibliography

[1] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics. Cambridge
University Press, 2010.

[2] F. Bonin-Font, A. Ortiz, and G. Oliver, “Visual Navigation for Mobile Robots: A
Survey,” Journal of Intelligent and Robotic Systems, vol. 53, no. 3, pp. 263–296, 2008.

[3] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms,” IEEE Robotics and Automation Magazine, vol. 2,
pp. 99–110, 2006.

[4] C. Stachniss, G. Grisetti, D. Hähnel, and W. Burgard, “Improved Rao-Blackwellized
Mapping by Adaptive Sampling and Active Loop-Closure,” in Workshop on Self-
Organization of AdaptiVE behavior (SOAVE), pp. 1–15, 2004.

[5] H. Korrapati, Loop Closure for Topological Mapping and Navigation with Omnidirec-
tional Images. PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2013.

[6] E. Garcia-Fidalgo and A. Ortiz, “Vision-based Topological Mapping and Localization
Methods: A Survey,” Robotics and Autonomous Systems, vol. 64, pp. 1–20, 2015.

[7] E. Garcia-Fidalgo and A. Ortiz, “Vision-Based Topological Mapping and Localization
by means of Local Invariant Features and Map Refinement,” Robotica, vol. 33, no. 7,
pp. 1446–1470, 2015.

[8] E. Garcia-Fidalgo, A. Ortiz, F. Bonnin-Pascual, and J. P. Company, “Fast Image Mo-
saicing using Incremental Bags of Binary Words,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 1174–1180, 2016.

[9] E. Garcia-Fidalgo, A. Ortiz, F. Bonnin-Pascual, and J. P. Company, “A Mosaicing
Approach for Vessel Visual Inspection using a Micro Aerial Vehicle,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015.

[10] E. Garcia-Fidalgo and A. Ortiz, “On the Use of Binary Feature Descriptors for Loop
Closure Detection,” in Emerging Technologies and Factory Automation (ETFA), pp. 1–
8, 2014.

[11] E. Garcia-Fidalgo and A. Ortiz, “Probabilistic Appearance-Based Mapping and Local-
ization Using Visual Features,” in Iberian Conference on Pattern Recognition and Image
Analysis (IBPRIA), (Funchal (Portugal)), pp. 277–285, 2013.

153

154 Bibliography

[12] E. Garcia-Fidalgo, A. Ortiz, F. Bonnin-Pascual, and J. P. Company, “A Multi-Threaded
Architecture for Fast Topology Estimation in Image Mosaicing,” Tech. Rep. A-05-2015,
Department of Mathematics and Computer Science, University of the Balearic Islands,
2015.

[13] E. Garcia-Fidalgo, A. Ortiz, F. Bonnin-Pascual, and J. P. Company, “Vessel Visual
Inspection: A Mosaicing Approach,” Tech. Rep. A-01-2015, Department of Mathematics
and Computer Science, University of the Balearic Islands, 2015.

[14] E. Garcia-Fidalgo and A. Ortiz, “State-of-the-Art in Vision-Based Topological Mapping
and Localization Methods,” Tech. Rep. A-01-2014, Department of Mathematics and
Computer Science, University of the Balearic Islands, 2014.

[15] E. Garcia-Fidalgo and A. Ortiz, “Vision-Based Topological Mapping and Localization
by means of Local Invariant Features and Map Refinement,” Tech. Rep. A-04-2013,
Department of Mathematics and Computer Science, University of the Balearic Islands,
2013.

[16] E. Garcia-Fidalgo and A. Ortiz, “A Solution for Bayesian Visual Loop Closure Detection
Based on Local Invariant Features,” Tech. Rep. A-01-2013, Department of Mathematics
and Computer Science, University of the Balearic Islands, 2013.

[17] E. Garcia-Fidalgo and A. Ortiz, “Indexing Invariant Features for Topological Mapping
and Localization,” in Workshop on Field Robotics (euRathlon/ARCAS), 2014.

[18] D. Busquets, A Multi-Agent Approach to Qualitative Navigation in Robotics. PhD thesis,
Universitat Politècnica de Catalunya, 2003.

[19] J. Wu and J. M. Rehg, “CENTRIST: A Visual Descriptor for Scene Categoriza-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8,
pp. 1489–1501, 2011.

[20] A. Bosch, A. Zisserman, and X. Munoz, “Representing Shape with a Spatial Pyramid
Kernel,” Image Processing, vol. 5, no. 2, pp. 401–408, 2007.

[21] E. Fazl-Ersi and J. K. Tsotsos, “Histogram of Oriented Uniform Patterns for Robust
Place Recognition and Categorization,” International Journal of Robotics Research,
vol. 31, no. 4, pp. 468–483, 2012.

[22] L. Zhou, Z. Zhou, and D. Hu, “Scene Classification using a Multi-Resolution Bag-of-
Features Model,” Pattern Recognition, vol. 46, no. 1, pp. 424–433, 2013.

[23] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in
Computer Vision and Pattern Recognition (CVPR), pp. 886–893, 2005.

[24] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor, “Omni-directional Vision for
Robot Navigation,” in IEEE Workshop on Omnidirectional Vision, pp. 21–28, 2000.

[25] J. Gaspar, N. Winters, and J. Santos-Victor, “Vision-Based Navigation and Envi-
ronmental Representations with an Omnidirectional Camera,” IEEE Transactions on
Robotics and Automation, vol. 16, no. 6, pp. 890–898, 2000.

BIBLIOGRAPHY 155

[26] I. Ulrich and I. Nourbakhsh, “Appearance-Based Place Recognition for Topological Lo-
calization,” in IEEE International Conference on Robotics and Automation (ICRA),
vol. 2, pp. 1023–1029, 2000.

[27] J. Kosecka, L. Zhou, P. Barber, and Z. Duric, “Qualitative Image Based Localization in
Indoors Environments,” in Computer Vision and Pattern Recognition (CVPR), vol. 2,
pp. II–3–II–8, 2003.

[28] D. Bradley, R. Patel, N. Vandapel, and S. Thayer, “Real-Time Image-Based Topological
Localization in Large Outdoor Environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3670–3677, 2005.

[29] C. Weiss and A. Masselli, “Fast Outdoor Robot Localization using Integral Invariants,”
in International Conference on Computer Vision (ICCV), pp. 1–10, 2007.

[30] J. Wang, H. Zha, and R. Cipolla, “Efficient Topological Localization Using Orientation
Adjacency Coherence Histograms,” in International Conference on Pattern Recognition
(ICPR), pp. 271–274, 2006.

[31] A. Pronobis, B. Caputo, P. Jensfelt, and H. Christensen, “A Discriminative Approach to
Robust Visual Place Recognition,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3829–3836, 2006.

[32] A. Oliva and A. Torralba, “Modeling the Shape of the Scene : A Holistic Representation
of the Spatial Envelope,” International Journal of Computer Vision, vol. 42, no. 3,
pp. 145–175, 2001.

[33] A. C. Murillo, P. Campos, J. Kosecka, and J. Guerrero, “Gist Vocabularies in Om-
nidirectional Images for Appearance Based Mapping and Localization,” in Workshop
on Omnidirectional Vision, Camera Networks and Non-classical Cameras (RSS), pp. –,
2010.

[34] N. Sunderhauf and P. Protzel, “BRIEF-Gist - Closing the Loop by Simple Means,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1234–1241, 2011.

[35] A. Chapoulie, P. Rives, and D. Filliat, “Appearance-Based Segmentation of Indoors and
Outdoors Sequences of Spherical Views,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 1946–1951, 2013.

[36] P. Lamon, I. Nourbakhsh, B. Jensen, and R. Siegwart, “Deriving and Matching Image
Fingerprint Sequences for Mobile Robot Localization,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), vol. 2, pp. 1609–1614, 2001.

[37] M. Liu, D. Scaramuzza, C. Pradalier, R. Siegwart, and Q. Chen, “Scene Recogni-
tion with Omnidirectional Vision for Topological Map using Lightweight Adaptive De-
scriptors,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 116–121, 2009.

[38] M. Liu and R. Siegwart, “DP-FACT: Towards Topological Mapping and Scene Recog-
nition With Color for Omnidirectional Camera,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 3503–3508, 2012.

156 Bibliography

[39] E. Menegatti, T. Maeda, and H. Ishiguro, “Image-Based Memory for Robot Naviga-
tion using Properties of Omnidirectional Images,” Robotics and Autonomous Systems,
vol. 47, no. 4, pp. 251–267, 2004.

[40] E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro, “Image-Based Monte Carlo
Localisation with Omnidirectional Images,” Robotics and Autonomous Systems, vol. 48,
no. 1, pp. 17–30, 2004.

[41] D. Prasser and G. Wyeth, “Probabilistic Visual Recognition of Artificial Landmarks
for Simultaneous Localization and Mapping,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 1, pp. 1291–1296, 2003.

[42] M. Milford and G. Wyeth, “Mapping a Suburb With a Single Camera Using a Biologi-
cally Inspired SLAM System,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1038–
1053, 2008.

[43] M. Milford and G. Wyeth, “SeqSLAM: Visual Route-Based Navigation for Sunny Sum-
mer Days and Stormy Winter Nights,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 1643–1649, 2012.

[44] W. L. D. Lui and R. Jarvis, “A Pure Vision-Based Approach to Topological SLAM,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3784–3791, 2010.

[45] W. L. D. Lui and R. Jarvis, “A Pure Vision-based Topological SLAM System,” Inter-
national Journal of Robotics Research, vol. 31, no. 4, pp. 403–428, 2012.

[46] H. Badino, D. Huber, and T. Kanade, “Real-Time Topometric Localization,” in IEEE
International Conference on Robotics and Automation (ICRA), pp. 1635–1642, 2012.

[47] H. Lategahn, J. Beck, B. Kitt, and C. Stiller, “How to Learn an Illumination Robust
Image Feature for Place Recognition,” in IEEE Intelligent Vehicles Symposium (IV),
pp. 285–291, 2013.

[48] N. Nourani-Vatani, P. Borges, J. Roberts, and M. Srinivasan, “On the Use of Optical
Flow for Scene Change Detection and Description,” Journal of Intelligent and Robotic
Systems, vol. 74, no. 3, pp. 817–846, 2014.

[49] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey,”
Foundations and Trends R© in Computer Graphics and Vision, vol. 3, no. 3, pp. 177–
280, 2007.

[50] A. Schmidt, M. Kraft, and A. Kasinski, “An Evaluation of Image Feature Detectors and
Descriptors for Robot Navigation,” in International Conference on Computer Vision and
Graphics (ICCVG), vol. 6375 of Lecture Notes in Computer Science, pp. 251–259, 2010.

[51] O. Miksik and K. Mikolajczyk, “Evaluation of Local Detectors and Descriptors for
Fast Feature Matching,” in International Conference on Pattern Recognition (ICPR),
pp. 2681–2684, 2012.

[52] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of Local Descriptors,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615–
1630, 2005.

BIBLIOGRAPHY 157

[53] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Alvey Vision
Conference, pp. 147–151, 1988.

[54] J. Shi and C. Tomasi, “Good Features to Track,” in Computer Vision and Pattern
Recognition (CVPR), pp. 593–600, 1994.

[55] S. Smith and M. Brady, “SUSAN - A New Approach to Low Level Image Processing,”
International Journal of Computer Vision, vol. 23, no. 1, pp. 45–78, 1997.

[56] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detection,”
in European Conference on Computer Vision (ECCV), pp. 430–443, 2006.

[57] E. Rosten, R. Porter, and T. Drummond, “Faster and Better: A Machine Learning
Approach to Corner Detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, pp. 105–19, Jan. 2010.

[58] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An Efficient Alternative
to SIFT or SURF,” in International Conference on Computer Vision (ICCV), vol. 95,
pp. 2564–2571, 2011.

[59] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive and Generic
Corner Detection Based on the Accelerated Segment Test,” in European Conference on
Computer Vision (ECCV), vol. 6312 of Lecture Notes in Computer Science, pp. 183–196,
2010.

[60] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary Robust Invariant Scalable
Keypoints,” in International Conference on Computer Vision (ICCV), pp. 2548–2555,
2011.

[61] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[62] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in Eu-
ropean Conference on Computer Vision (ECCV), vol. 3951 of Lecture Notes in Computer
Science, pp. 404–417, 2006.

[63] M. Agrawal, K. Konolige, and M. R. Blas, “CenSurE: Center Surround Extremas for Re-
altime Feature Detection and Matching,” in European Conference on Computer Vision
(ECCV), vol. 5305, pp. 102–115, 2008.

[64] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit, and P. Fua,
“View-Based Maps,” International Journal of Robotics Research, vol. 29, no. 8, pp. 941–
957, 2010.

[65] M. Ebrahimi and W. Mayol-Cuevas, “SUSurE: Speeded Up Surround Extrema Feature
Detector and Descriptor for Realtime Applications,” in Computer Vision and Pattern
Recognition (CVPR), pp. 9–14, 2009.

[66] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in European Con-
ference on Computer Vision (ECCV), pp. 214–227, 2012.

[67] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast Explicit Diffusion for Accelerated
Features in Nonlinear Scale Spaces,” in British Machine Vision Conference (BMVC),
pp. –, 2013.

158 Bibliography

[68] J.-M. Morel and G. Yu, “ASIFT: A New Framework for Fully Affine Invariant Image
Comparison,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 438–469, 2009.

[69] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide Baseline Stereo from
Maximally Stable Extremal Regions,” in British Machine Vision Conference (BMVC),
pp. 1–10, 2002.

[70] Y. Ke and R. Sukthankar, “PCA-SIFT: A More Distinctive Representation for Local
Image Descriptors,” in Computer Vision and Pattern Recognition (CVPR), pp. 506–513,
2004.

[71] H. Andreasson and T. Duckett, “Topological Localization for Mobile Robots using
Omnidirectional Vision and Local Features,” in IFAC Symposium on Intelligent Au-
tonomous Vehicles (IAV), pp. –, 2008.

[72] E. Tola, V. Lepetit, and P. Fua, “DAISY: An Efficient Dense Descriptor Applied to Wide
Baseline Stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 5, pp. 815–830, 2010.

[73] M. S. Sarfraz and O. Hellwich, “Head Pose Estimation in Face Recognition Across Pose
Scenarios,” in International Conference on Computer Vision Theory and Applications,
pp. 235–242, 2008.

[74] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF : Binary Robust Independent
Elementary Features,” in European Conference on Computer Vision (ECCV), vol. 6314
of Lecture Notes in Computer Science, pp. 778–792, 2010.

[75] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK : Fast Retina Keypoint,” in Com-
puter Vision and Pattern Recognition (CVPR), pp. 510–517, 2012.

[76] T. Trzcinski and V. Lepetit, “Efficient Discriminative Projections for Compact Binary
Descriptors,” in European Conference on Computer Vision (ECCV), vol. 7572 of Lecture
Notes in Computer Science, pp. 228–242, 2012.

[77] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua, “LDAHash: Improved
Matching with Smaller Descriptors,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 34, no. 1, 2012.

[78] T. Trzcinski, C. Christoudias, P. Fua, and V. Lepetit, “Boosting Binary Keypoint De-
scriptors,” in Computer Vision and Pattern Recognition (CVPR), pp. 2874–2881, 2013.

[79] X. Yang and K.-T. Cheng, “Local Difference Binary for Ultrafast and Distinctive Feature
Description,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 1, pp. 188–94, 2014.

[80] L.-C. Geng, P.-M. Jodoin, S.-Z. Su, and S.-Z. Li, “CBDF: Compressed Binary Discrim-
inative Feature,” Neurocomputing, pp. –, 2015.

[81] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hash-
ing,” in International Conference on Very Large Data Bases, pp. 518–529, 1999.

[82] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for Fast Image Descriptor Match-
ing,” in Computer Vision and Pattern Recognition (CVPR), pp. 1–8, 2008.

BIBLIOGRAPHY 159

[83] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval Approach to Object Match-
ing in Videos,” in International Conference on Computer Vision (ICCV), pp. 1470–1477,
2003.

[84] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual Simultaneous
Localization and Mapping: A Survey,” Artificial Intelligence Review, vol. 43, no. 1,
pp. 55–81, 2015.

[85] E. Olson, J. Leonard, and S. Teller, “Fast Iterative Alignment of Pose Graphs with
Poor Initial Estimates,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 2262–2269, 2006.

[86] U. Frese and L. Schroder, “Closing a Million-Landmarks Loop,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 5032–5039, 2006.

[87] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous Localization and Mapping
Via Square Root Information Smoothing,” International Journal of Robotics Research,
vol. 25, no. 12, pp. 1181–1203, 2006.

[88] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental Smoothing and Map-
ping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

[89] G. Grisetti, C. Stachniss, andW. Burgard, “Nonlinear Constraint Network Optimization
for Efficient Map Learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 10, no. 3, pp. 428–439, 2009.

[90] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vincent,
“Efficient Sparse Pose Adjustment for 2D Mapping,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 22–29, 2010.

[91] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: In-
cremental Smoothing and Mapping with Fluid Relinearization and Incremental Variable
Reordering,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 3281–3288, 2011.

[92] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A General
Framework for Graph Optimization,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 3607–3613, 2011.

[93] J. Wu, H. Christensen, and J. Rehg, “Visual Place Categorization: Problem, Dataset,
and Algorithm,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 4763–4770, 2009.

[94] F. Werner, F. Maire, and J. Sitte, “Topological SLAM using Fast Vision Techniques,”
in Advances in Robotics, pp. 187–196, 2009.

[95] G. Singh and J. Kosecka, “Visual Loop Closing using Gist Descriptors in Manhattan
World,” in IEEE Workshop on Omnidirectional Vision, Camera Networks and Non-
classical Camera, pp. –, 2010.

[96] A. Rituerto, A. C. Murillo, and J. Guerrero, “Semantic Labeling for Indoor Topological
Mapping using a Wearable Catadioptric System,” Robotics and Autonomous Systems,
vol. 62, pp. 685–695, 2013.

160 Bibliography

[97] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, J. Yebes, and S. Gamez, “Bidirectional
Loop Closure Detection on Panoramas for Visual Navigation,” in IEEE Intelligent Ve-
hicles Symposium (IV), pp. 1378–1383, 2014.

[98] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, J. J. Yebes, and S. Bronte, “Fast and
Effective Visual Place Recognition using Binary Codes and Disparity Information,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014.

[99] Y. Liu and H. Zhang, “Visual Loop Closure Detection with a Compact Image Descrip-
tor,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1051–1056, 2012.

[100] A. Chapoulie, P. Rives, and D. Filliat, “Topological Segmentation of Indoors/Outdoors
Sequences of Spherical Views,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4288–4295, 2012.

[101] A. Tapus, N. Tomatis, and R. Siegwart, “Topological Global Localization and Map-
ping with Fingerprints and Uncertainty,” in International Symposium on Experimental
Robotics, pp. 18–21, 2004.

[102] A. Tapus and R. Siegwart, “Incremental Robot Mapping with Fingerprints of Places,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2429–2434, 2005.

[103] L. Payá, L. Fernández, A. Gil, and O. Reinoso, “Map Building and Monte Carlo Local-
ization using Global Appearance of Omnidirectional Images.,” Sensors, vol. 10, no. 12,
pp. 11468–97, 2010.

[104] A. Ranganathan, E. Menegatti, and F. Dellaert, “Bayesian Inference in the Space of
Topological Maps,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 92–107, 2006.

[105] M. Milford, G. Wyeth, and D. Prasser, “RatSLAM: A Hippocampal Model for Simulta-
neous Localization and Mapping,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 403–408, 2004.

[106] D. Prasser, M. Milford, and G. Wyeth, “Outdoor Simultaneous Localisation and Map-
ping using RatSLAM,” in Field and Service Robotics (FSR), pp. 143–154, 2005.

[107] A. Glover, W. Maddern, M. Milford, and G. Wyeth, “FAB-MAP + RatSLAM:
Appearance-based SLAM for Multiple Times of Day,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 3507–3512, 2010.

[108] D. Xu, H. Badino, and D. Huber, “Topometric Localization on a Road Network,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014.

[109] M. Milford, “Visual Route Recognition with a Handful of Bits,” in Robotics: Science
and Systems (RSS), pp. –, 2013.

[110] M. Milford, “Vision-Based Place Recognition: How Low Can You Go?,” International
Journal of Robotics Research, vol. 32, no. 7, pp. 766–789, 2013.

[111] E. Pepperell, P. Corke, and M. Milford, “All-Environment Visual Place Recognition
with SMART,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 1612–1618, 2014.

BIBLIOGRAPHY 161

[112] J. Wu, H. Zhang, and Y. Guan, “An Efficient Visual Loop Closure Detection Method
in a Map of 20 Million Key Locations,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 861–866, 2014.

[113] C. Siagian and L. Itti, “Rapid Biologically-Inspired Scene Classification using Features
Shared with Visual Attention,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 2, pp. 300–12, 2007.

[114] J. Kosecka and X. Yang, “Location Recognition and Global Localization Based on Scale-
Invariant Keypoints,” inWorkshop on Statistical Learning in Computer Vision (ECCV),
pp. –, 2004.

[115] J. Kosecka and F. Li, “Vision Based Topological Markov Localization,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), vol. 2, pp. 1481–1486, 2004.

[116] F. Li and J. Kosecka, “Probabilistic Location Recognition Using Reduced Feature Set,”
in IEEE International Conference on Robotics and Automation (ICRA), pp. 3405–3410,
2006.

[117] H. Zhang, “BoRF: Loop-Closure Detection with Scale Invariant Visual Features,” in
IEEE International Conference on Robotics and Automation (ICRA), pp. 3125–3130,
2011.

[118] H. Zhang, “Indexing Visual Features: Real-Time Loop Closure Detection Using a Tree
Structure,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 3613–3618, 2012.

[119] P. Rybski, F. Zacharias, J.-F. Lett, O. Masoud, M. Gini, and N. Papanikolopoulos,
“Using Visual Features to Build Topological Maps of Indoor Environments,” in IEEE
International Conference on Robotics and Automation (ICRA), vol. 1, pp. 850–855,
2003.

[120] X. He, R. Zemel, and V. Mnih, “Topological Map Learning from Outdoor Image Se-
quences,” Journal of Field Robotics, vol. 23, no. 11-12, pp. 1091–1104, 2006.

[121] D. G. Sabatta, “Vision-Based Topological Map Building and Localisation using Persis-
tent Features,” in Robotics and Mechatronics Symposium, pp. 1–6, 2008.

[122] E. Johns and G.-Z. Yang, “Global Localization in a Dense Continuous Topological Map,”
in IEEE International Conference on Robotics and Automation (ICRA), pp. 1032–1037,
2011.

[123] A. Kawewong, S. Tangruamsub, and O. Hasegawa, “Position-Invariant Robust Features
for Long-Term Recognition of Dynamic Outdoor Scenes,” IEICE T. Inf. Syst., vol. E93-
D, no. 9, pp. 2587–2601, 2010.

[124] A. Kawewong, N. Tongprasit, S. Tangruamsub, and O. Hasegawa, “Online and In-
cremental Appearance-based SLAM in Highly Dynamic Environments,” International
Journal of Robotics Research, vol. 30, no. 1, pp. 33–55, 2011.

[125] N. Tongprasit, A. Kawewong, and O. Hasegawa, “PIRF-Nav 2: Speeded-Up Online and
Incremental Appearance-Based SLAM in an Indoor Environment,” in IEEE Workshop
on Applications of Computer Vision, pp. 145–152, 2011.

162 Bibliography

[126] H. Morioka, S. Yi, and O. Hasegawa, “Vision-Based Mobile Robot’s SLAM and Naviga-
tion in Crowded Environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3998–4005, 2011.

[127] C. Valgren, A. Lilienthal, and T. Duckett, “Incremental Topological Mapping Using
Omnidirectional Vision,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3441–3447, 2006.

[128] C. Valgren, T. Duckett, and A. Lilienthal, “Incremental Spectral Clustering and Its
Application to Topological Mapping,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 10–14, 2007.

[129] C. Valgren and A. Lilienthal, “SIFT, SURF and Seasons: Long-term Outdoor Localiza-
tion Using Local Features,” in European Conference on Mobile Robots (ECMR), vol. 128,
pp. 1–6, 2007.

[130] A. Ascani, E. Frontoni, A. Mancini, and P. Zingaretti, “Feature Group Matching for
Appearance-Based Localization,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3933–3938, 2008.

[131] R. Anati and K. Daniilidis, “Constructing Topological Maps using Markov Random
Fields and Loop-Closure Detection,” in Advances in Neural Information Processing Sys-
tems, pp. 37–45, 2009.

[132] Z. Zivkovic, B. Bakker, and B. Krose, “Hierarchical Map Building Using Visual Land-
marks and Geometric Constraints,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2480–2485, IEEE/RSJ, 2005.

[133] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation Using an Appearance
Based Topological Map,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 3927–3932, 2007.

[134] O. Booij, Z. Zivkovic, and B. Krose, “Efficient Data Association for View Based SLAM
using Connected Dominating Sets,” Robotics and Autonomous Systems, vol. 57, no. 12,
pp. 1225–1234, 2009.

[135] F. Dayoub, G. Cielniak, and T. Duckett, “A Sparse Hybrid Map for Vision-Guided
Mobile Robots,” in European Conference on Mobile Robots (ECMR), pp. 213–218, 2011.

[136] J. L. Blanco, J. A. Fernandez-Madrigal, and J. Gonzalez, “Towards a Unified Bayesian
Approach to Hybrid Metric-Topological SLAM,” IEEE Transactions on Robotics,
vol. 24, no. 2, pp. 259–270, 2008.

[137] J. L. Blanco, J. Gonzalez, and J. A. Fernandez-Madrigal, “Subjective Local Maps for
Hybrid Metric-Topological SLAM,” Robotics and Autonomous Systems, vol. 57, no. 1,
pp. 64–74, 2009.

[138] S. Tully, H. Moon, D. Morales, G. Kantor, and H. Choset, “Hybrid Localization using
The Hierarchical Atlas,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2857–2864, 2007.

BIBLIOGRAPHY 163

[139] S. Tully, G. Kantor, H. Choset, and F. Werner, “A Multi-Hypothesis Topological SLAM
Approach for Loop Closing on Edge-Ordered Graphs,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 4943–4948, 2009.

[140] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette, “A Mapping and Localization
Framework for Scalable Appearance-Based Navigation,” Computer Vision and Image
Understanding, vol. 113, no. 2, pp. 172–187, 2009.

[141] A. Ramisa, A. Tapus, D. Aldavert, R. Toledo, and R. Lopez de Mantaras, “Robust
Vision-Based Robot Localization using Combinations of Local Feature Region Detec-
tors,” Autonomous Robots, vol. 27, no. 4, pp. 373–385, 2009.

[142] H. Badino, D. Huber, and T. Kanade, “Visual Topometric Localization,” in IEEE In-
telligent Vehicles Symposium (IV), pp. 794–799, 2011.

[143] F. Dayoub and T. Duckett, “An Adaptive Appearance-Based Map for Long-Term Topo-
logical Localization of Mobile Robots,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 3364 – 3369, 2008.

[144] B. Bacca, J. Salvi, J. Batlle, and X. Cufi, “Appearance-Based Mapping and Localisation
Using Feature Stability Histograms,” Electronics Letters, vol. 46, no. 16, p. 1120, 2010.

[145] B. Bacca, J. Salvi, and X. Cufi, “Appearance-Based Mapping and Localization for
Mobile Robots using a Feature Stability Histogram,” Robotics and Autonomous Systems,
vol. 59, no. 10, pp. 840–857, 2011.

[146] B. Bacca, J. Salvi, and X. Cufi, “Long-Term Mapping and Localization using Feature
Stability Histograms,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1539–
1558, 2013.

[147] A. Romero and M. Cazorla, “Topological SLAM Using Omnidirectional Images: Merg-
ing Feature Detectors and Graph-Matching,” in Advanced Concepts for Intelligent Vi-
sion Systems, vol. 6474 of Lecture Notes in Computer Science, pp. 464–475, 2010.

[148] A. Romero and M. Cazorla, “Topological Visual Mapping in Robotics,” Cognitive Pro-
cessing, vol. 13, no. 1, pp. 305–308, 2012.

[149] A. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza, “MAV Urban Localization from
Google Street View Data,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3979–3986, 2013.

[150] M. Saedan, C. W. Lim, and M. Ang, “Appearance-Based SLAM with Map Loop Clos-
ing using an Omnidirectional Camera,” in IEEE/ASME International Conference on
Advanced Intelligent Mechatronic (AIM), pp. 1–6, 2007.

[151] J. Kessler, A. König, and H.-M. Gross, “An Improved Sensor Model on Appearance
Based SLAM,” in Autonome Mobile Systeme, vol. 216487, pp. 153–160, 2009.

[152] L. Maohai, W. Han, S. Lining, and C. Zesu, “Robust Omnidirectional Mobile Robot
Topological Navigation System using Omnidirectional Vision,” Engineering Applications
of Artificial Intelligence, vol. 26, no. 8, pp. 1942–1952, 2013.

164 Bibliography

[153] H. Zhang, B. Li, and D. Yang, “Keyframe Detection for Appearance-Based Visual
SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2071–2076, 2010.

[154] B. Lisien, D. Morales, D. Silver, G. Kantor, I. M. Rekleitis, and H. Choset, “The
Hierarchical Atlas,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 473–481, 2005.

[155] S. Tully, G. Kantor, and H. Choset, “A Unified Bayesian Framework for Global Lo-
calization and SLAM in Hybrid Metric/Topological Maps,” International Journal of
Robotics Research, vol. 31, no. 3, pp. 271—-288, 2012.

[156] R. C. Atkinson and R. M. Shiffrin, “Human Memory: A Proposed System and Its
Control Processes,” The Psychology of Learning and Motivation: Advances in Research
and Theory, vol. 2, pp. 89–105, 1968.

[157] J. Wang, R. Cipolla, and H. Zha, “Vision-Based Global Localization using a Visual
Vocabulary,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 4230–4235, 2005.

[158] J. Wang, H. Zha, and R. Cipolla, “Coarse-to-Fine Vision-Based Localization by Indexing
Scale-Invariant Features,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 36, no. 2, pp. 413–422, 2006.

[159] F. Fraundorfer, C. Engels, and D. Nister, “Topological Mapping, Localization and Nav-
igation Using Image Collections,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3872–3877, 2007.

[160] M. Cummins and P. Newman, “Probabilistic Appearance Based Navigation and Loop
Closing,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 2042–2048, 2007.

[161] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization and Mapping in
the Space of Appearance,” International Journal of Robotics Research, vol. 27, no. 6,
pp. 647–665, 2008.

[162] M. Cummins and P. Newman, “Accelerated Appearance-Only SLAM,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 1828–1833, 2008.

[163] M. Cummins and P. Newman, “Accelerating FAB-MAP With Concentration Inequali-
ties,” IEEE Transactions on Robotics, vol. 26, no. 6, pp. 1042–1050, 2010.

[164] M. Cummins and P. Newman, “Highly Scalable Appearance-Only SLAM - FAB-MAP
2.0.,” in Robotics: Science and Systems (RSS), pp. 1–8, 2009.

[165] M. Cummins and P. Newman, “Appearance-Only SLAM at Large Scale with FAB-MAP
2.0,” International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123, 2011.

[166] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei, I. Posner, R. Shade,
D. Schroeter, L. Murphy, W. Churchill, D. Cole, and I. Reid, “Navigating, Recogniz-
ing and Describing Urban Spaces With Vision and Lasers,” International Journal of
Robotics Research, vol. 28, pp. 1406–1433, July 2009.

BIBLIOGRAPHY 165

[167] W. Maddern, M. Milford, and G. Wyeth, “Continuous Appearance-Based Trajec-
tory SLAM,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 3595–3600, 2011.

[168] W. Maddern, M. Milford, and G. Wyeth, “CAT-SLAM: Probabilistic Localisation and
Mapping Using a Continuous Appearance-based Trajectory,” International Journal of
Robotics Research, vol. 31, no. 4, pp. 429–451, 2012.

[169] W. Maddern, M. Milford, and G. Wyeth, “Towards Persistent Indoor Appearance-based
Localization, Mapping and Navigation using CAT-Graph,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4224–4230, 2012.

[170] R. Paul and P. Newman, “FAB-MAP 3D: Topological Mapping with Spatial and Visual
Appearance,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 2649–2656, 2010.

[171] E. Johns and G.-Z. Yang, “Feature Co-occurrence Maps: Appearance-based Localisation
Throughout the Day,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 3212–3218, 2013.

[172] E. Johns and G.-Z. Yang, “Dynamic Scene Models for Incremental, Long Term, Ap-
pearance Based Localisation,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 2731–2736, 2013.

[173] D. Galvez-Lopez and J. Tardos, “Real-Time Loop Detection with Bags of Binary
Words,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 51–58, 2011.

[174] D. Galvez-Lopez and J. Tardos, “Bags of Binary Words for Fast Place Recognition in
Image Sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[175] R. Mur-Artal and J. D. Tardos, “Fast Relocalisation and Loop Closing in Keyframe-
Based SLAM,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 846–853, 2014.

[176] A. Ranganathan and F. Dellaert, “Online Probabilistic Topological Mapping,” Interna-
tional Journal of Robotics Research, vol. 30, no. 6, pp. 755–771, 2011.

[177] C. Cadena, D. Galvez-Lopez, F. Ramos, J. Tardos, and J. Neira, “Robust Place Recogni-
tion with Stereo Cameras,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5182–5189, 2010.

[178] T. Ciarfuglia, G. Costante, P. Valigi, and E. Ricci, “A Discriminative Approach for
Appearance Based Loop Closing,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3837–3843, 2012.

[179] A. Majdik, D. Galvez-Lopez, G. Lazea, and J. Castellanos, “Adaptive Appearance Based
Loop-Closing in Heterogeneous Environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1256–1263, 2011.

[180] G. Schindler, M. Brown, and R. Szeliski, “City-Scale Location Recognition,” in Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–7, 2007.

166 Bibliography

[181] S. Achar, C. Jawahar, and K. Madhava Krishna, “Large Scale Visual Localization in
Urban Environments,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 5642–5648, 2011.

[182] J. H. Lee, G. Zhang, J. Lim, and I. H. Suh, “Place Recognition using Straight Lines for
Vision-Based SLAM,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 3799–3806, 2013.

[183] D. Filliat, “A Visual Bag of Words Method for Interactive Qualitative Localization and
Mapping,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 3921–3926, 2007.

[184] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Real-Time Visual Loop-Closure
Detection,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 1842–1847, 2008.

[185] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “A Fast and Incremental Method for
Loop-Closure Detection Using Bags of Visual Words,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 1027–1037, 2008.

[186] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, “Incremental Vision-Based Topolog-
ical SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1031–1036, 2008.

[187] M. Labbe and F. Michaud, “Memory Management for Real-Time Appearance-Based
Loop Closure Detection,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1271–1276, 2011.

[188] M. Labbe and F. Michaud, “Appearance-Based Loop Closure Detection for Online
Large-Scale and Long-Term Operation,” IEEE Transactions on Robotics, vol. 29, no. 3,
pp. 734–745, 2013.

[189] T. Nicosevici and R. Garcia, “On-line Visual Vocabularies for Robot Navigation and
Mapping,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 205–212, 2009.

[190] T. Nicosevici and R. Garcia, “Automatic Visual Bag-of-Words for Online Robot Nav-
igation and Mapping,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 886–898,
2012.

[191] S. Khan and D. Wollherr, “IBuILD: Incremental Bag of Binary Words for Appearance-
Based Loop Closure Detection,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 5441–5447, 2015.

[192] L. Murphy and G. Sibley, “Incremental Unsupervised Topological Place Discovery,” in
IEEE International Conference on Robotics and Automation (ICRA), pp. 1312–1318,
2014.

[193] K. MacTavish and T. D. Barfoot, “Towards Hierarchical Place Recognition for Long-
Term Autonomy,” in IEEE International Conference on Robotics and Automation
(ICRA), 2014.

BIBLIOGRAPHY 167

[194] M. Mohan, D. Galvez-Lopez, C. Monteleoni, and G. Sibley, “Environment Selection
And Hierarchical Place Recognition,” in IEEE International Conference on Robotics
and Automation (ICRA), 2015.

[195] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual Categorization
with Bags of Keypoints,” in European Conference on Computer Vision (ECCV), vol. 1,
pp. 1–22, 2004.

[196] F.-F. Li and P. Perona, “A Bayesian Hierarchical Model for Learning Natural Scene
Categories,” in Computer Vision and Pattern Recognition (CVPR), pp. 524–531, 2005.

[197] D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary Tree,” in Com-
puter Vision and Pattern Recognition (CVPR), vol. 2, pp. 2161–2168, 2006.

[198] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth, “Open-
FABMAP: An Open Source Toolbox for Appearance-based Loop Closure Detection,” in
IEEE International Conference on Robotics and Automation (ICRA), pp. 4730 – 4735,
2012.

[199] A. Ranganathan and F. Dellaert, “A Rao-Blackwellized Particle Filter for Topological
Mapping,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 810–817, 2006.

[200] Y. Latif, C. Cadena, and J. Neira, “Realizing, Reversing, Recovering : Incremental Ro-
bust Loop Closing over Time Using the iRRR Algorithm,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4211–4217, 2012.

[201] E. Eade and T. Drummond, “Unified Loop Closing and Recovery for Real Time Monoc-
ular SLAM,” in British Machine Vision Conference (BMVC), pp. 1–10, 2008.

[202] T. Botterill, S. Mills, and R. Green, “Bag-of-Words-Driven, Single-Camera Simultaneous
Localization and Mapping,” Journal of Field Robotics, vol. 28, no. 2, pp. 204–226, 2011.

[203] V. Pradeep, G. Medioni, and J. Weiland, “Visual Loop Closing using Multi-Resolution
SIFT Grids in Metric-Topological SLAM,” in Computer Vision and Pattern Recognition
(CVPR), pp. 1438–1445, 2009.

[204] T. Goedemé, M. Nuttin, T. Tuytelaars, and L. Van Gool, “Markerless Computer Vi-
sion Based Localization using Automatically Generated Topological Maps,” in European
Navigation Conference, pp. 235–243, 2004.

[205] T. Goedemé, M. Nuttin, T. Tuytelaars, and L. Van Gool, “Omnidirectional Vision
Based Topological Navigation,” International Journal of Computer Vision, vol. 74, no. 3,
pp. 219–236, 2007.

[206] A. C. Murillo, C. Sagues, and J. Guerrero, “From Omnidirectional Images to Hierar-
chical Localization,” Robotics and Autonomous Systems, vol. 55, no. 5, pp. 372–382,
2007.

[207] A. C. Murillo, J. Guerrero, and C. Sagues, “SURF Features for Efficient Robot Local-
ization with Omnidirectional Images,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 3901–3907, 2007.

168 Bibliography

[208] J. Wang and Y. Yagi, “Efficient Topological Localization Using Global and Local Feature
Matching,” International Journal of Advanced Robotic Systems, vol. 10, no. 153:2013,
pp. –, 2013.

[209] C. Weiss, A. Masselli, and A. Zell, “Fast Vision-Based Localization for Outdoor Robots
using a Combination of Global Image Features,” in IFAC Symposium on Intelligent
Autonomous Vehicles (IAV), pp. 119–124, 2007.

[210] C. Weiss, H. Tamimi, A. Masselli, and A. Zell, “A Hybrid Approach for Vision-Based
Outdoor Robot Localization using Global and Local Image Features,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1047–1052,
2007.

[211] C. Siagian and L. Itti, “Biologically Inspired Mobile Robot Vision Localization,” IEEE
Transactions on Robotics, vol. 25, no. 4, pp. 861–873, 2009.

[212] A. Chapoulie, P. Rives, and D. Filliat, “A Spherical Representation for Efficient Visual
Loop Closing,” in International Conference on Computer Vision (ICCV), pp. 335–342,
2011.

[213] M.-L. Wang and H.-Y. Lin, “A Hull Census Transform for Scene Change Detection and
Recognition Towards Topological Map Building,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 548–553, 2010.

[214] H.-Y. Lin, Y.-H. Lin, and J.-W. Yao, “Scene Change Detection and Topological Map
Construction Using Omnidirectional Image Sequences,” in International Conference on
Machine Vision Applications (MVA), pp. 4–7, 2013.

[215] J. Wang and Y. Yagi, “Robust Location Recognition based on Efficient Feature Inte-
gration,” pp. 97–101, 2012.

[216] L. Maohai, S. Lining, H. Qingcheng, C. Zesu, and P. Songhao, “Robust Omnidirectional
Vision based Mobile Robot Hierarchical Localization and Autonomous Navigation,” Inf.
Tech. J., vol. 10, no. 1, pp. 29–39, 2011.

[217] H. Korrapati, F. Uzer, and Y. Mezouar, “Hierarchical Visual Mapping with Omnidi-
rectional Images,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3684–3690, 2013.

[218] H. Korrapati and Y. Mezouar, “Vision-Based Sparse Topological Mapping,” Robotics
and Autonomous Systems, vol. 62, no. 9, pp. 1259–1270, 2014.

[219] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories,” in Computer Vision and Pattern
Recognition (CVPR), vol. 2, pp. 2169–2178, 2006.

[220] J. Hou, W.-X. Liu, X. E, Q. Xia, and N.-M. Qi, “An Experimental Study on the Uni-
versality of Visual Vocabularies,” Journal of Visual Communication and Image Repre-
sentation, vol. 24, no. 7, pp. 1204–1211, 2013.

[221] A. Ortiz and G. Oliver, “On the Use of the Overlapping Area Matrix for Image Segmen-
tation Evaluation: A Survey and New Performance Measures,” Pattern Recogn. Lett.,
vol. 27, no. 16, pp. 1916–1926, 2006.

BIBLIOGRAPHY 169

[222] J. Davis and M. Goadrich, “The Relationship Between Precision-Recall and ROC
Curves,” in ICMLA, pp. 233–240, 2006.

[223] A. Geiger, P. Lenz, and R. Urtasun, “Are We Ready for Autonomous Driving? The
KITTI Vision Benchmark Suite,” in Computer Vision and Pattern Recognition (CVPR),
pp. 3354–3361, 2012.

[224] N. Sünderhauf, P. Neubert, and P. Protzel, “Are We There Yet? Challenging SeqSLAM
on a 3000 km Journey Across All Four Seasons,” Workshop on Long-Term Autonomy,
ICRA, 2013.

[225] K. Sparck Jones, “A Statistical Interpretation of Term Specificity and its Application
in Retrieval,” J. Doc., vol. 28, pp. 11–21, 1972.

[226] R. Salakhutdinov and G. Hinton, “Semantic Hashing,” International Journal of Approx-
imate Reasoning, vol. 50, pp. 969–978, July 2009.

[227] M. Muja and D. G. Lowe, “Fast Matching of Binary Features,” in Conference on Com-
puter and Robot Vision, pp. 404–410, 2012.

[228] R. Szeliski, “Image Alignment and Stitching: A Tutorial,” Foundations and Trends R©
in Computer Graphics and Vision, vol. 2, no. 1, pp. 1–104, 2006.

[229] B. Zitova and J. Flusser, “Image Registration Methods: A Survey,” Image and Vision
Computing, vol. 21, no. 11, pp. 977–1000, 2003.

[230] R. Prados, R. Garcia, and L. Neumann, Image Blending Techniques and their Applica-
tion in Underwater Mosaicing. Springer, 2014.

[231] A. Elibol, N. Gracias, and R. Garcia, Efficient Topology Estimation for Large Scale
Optical Mapping, vol. 82. Springer, 2012.

[232] H. S. Sawhney, S. Hsu, and R. Kumar, “Robust Video Mosaicing through Topology
Inference and Local to Global Alignment,” in European Conference on Computer Vision
(ECCV), pp. 103–119, 1998.

[233] R. Marzotto, A. Fusiello, and V. Murino, “High Resolution Video Mosaicing with Global
Alignment,” in Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I–692–
I–698 Vol.1, 2004.

[234] P. Ridao, M. Carreras, D. Ribas, and R. Garcia, “Visual Inspection of Hydroelectric
Dams using an Autonomous Underwater Vehicle,” Journal of Field Robotics, vol. 27,
no. 6, pp. 759–778, 2010.

[235] N. Gracias, S. van der Zwaan, A. Bernardino, and J. Santos-Victor, “Mosaic-Based Nav-
igation for Autonomous Underwater Vehicles,” IEEE Journal of Oceanic Engineering,
vol. 28, no. 4, pp. 609–624, 2003.

[236] O. Pizarro and H. Singh, “Toward Large-Area Mosaicing for Underwater Scientific Ap-
plications,” IEEE Journal of Oceanic Engineering, vol. 28, no. 4, pp. 651–672, 2003.

[237] H. Madjidi and S. Negahdaripour, “Global Alignment of Sensor Positions with Noisy
Motion Measurements,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1092–1104,
2005.

170 Bibliography

[238] A. Elibol, R. Garcia, and N. Gracias, “A New Global Alignment Approach for Under-
water Optical Mapping,” Ocean Eng., vol. 38, no. 10, pp. 1207–1219, 2011.

[239] F. Ferreira, G. Veruggio, M. Caccia, E. Zereik, and G. Bruzzone, “A Real-Time Mo-
saicking Algorithm Using Binary Features for ROVs,” in Mediterranean Conference on
Control and Automation (MED), pp. 1267–1273, 2013.

[240] T. Kekec, A. Yildirim, and M. Unel, “A New Approach to Real-Time Mosaicing of Aerial
Images,” Robotics and Autonomous Systems, vol. 62, no. 12, pp. 1755–1767, 2014.

[241] H. Bulow and A. Birk, “Fast and Robust Photomapping with an Unmanned Aerial Ve-
hicle (UAV),” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3368–3373, 2009.

[242] T. Botterill, S. Mills, and R. Green, “Real-Time Aerial Image Mosaicing,” in IVCNZ,
pp. 1–8, 2010.

[243] P. H. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application
to Estimating Image Geometry,” Computer Vision and Image Understanding, vol. 78,
no. 1, pp. 138–156, 2000.

[244] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,”
in IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR),
pp. 225–234, 2007.

[245] R. Mur-Artal and J. D. Tardos, “ORB-SLAM: Tracking and Mapping Recognizable
Features,” in Workshop on Multi-View Geometry in Robotics (RSS), 2014.

[246] P. J. Burt and E. H. Adelson, “A Multiresolution Spline with Application to Image
Mosaics,” ACM Trans. Graph., vol. 2, no. 4, pp. 217–236, 1983.

[247] F. Bonnin-Pascual, A. Ortiz, E. Garcia-Fidalgo, and J. P. Company, “A Micro-Aerial
Platform for Vessel Visual Inspection based on Supervised Autonomy,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 46–52, 2015.

	Abstract
	Resumen
	Resum
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Symbols and Notation
	Introduction
	Motivation
	Basic Concepts
	Mobile Robot Navigation
	Mapping, Localization and SLAM
	Loop Closure Detection

	Contributions
	Document Structure
	Associated Publications

	Background
	Topological Mapping
	Appearance-based Loop Closure Detection
	Image Description
	Image Indexing

	Literature Review
	Methods based on Global Descriptors
	Histograms
	The Gist Descriptor
	Vertical Regions
	Discrete Fourier Transform
	Biologically-Inspired Approaches
	Other Approaches

	Methods based on Local Features
	Methods based on Bag-of-Words Schemes
	Offline Visual Vocabulary Approaches
	Online Visual Vocabulary Approaches

	Methods based on Combined Approaches
	Discussion

	Experimental Setup
	Performance Metrics
	Datasets
	Lip6 Dataset
	Oxford Dataset
	KITTI Dataset
	UIB Dataset

	Reference Solutions
	FAB-MAP 2.0
	SeqSLAM

	Loop Closure Detection using Local Invariant Features and KD-Trees
	Image Description
	Map Representation
	Topological Mapping Framework
	Algorithm Overview
	Probabilistic Loop Closure Detection
	Map Refinement

	Experimental Results
	Parameter Configuration
	Loop Closure Detection
	Topological Mapping and Localization
	Map Refinement
	Computational Times

	Discussion

	Loop Closure Detection using Incremental Bags of Binary Words
	Incremental Bag-of-Binary-Words
	Fast Matching of Binary Features
	Online Binary Image Index

	Image Description
	Map Representation
	Topological Mapping Framework
	Algorithm Overview
	Probabilistic Loop Closure Detection

	Experimental Results
	Parameter Configuration
	Loop Closure Detection
	Topological Mapping and Localization
	Computational Times

	Discussion

	Hierarchical Loop Closure Detection for Topological Mapping
	Image Description
	Global Feature Description
	Local Feature Description

	Map Representation
	Topological Mapping Framework
	Algorithm Overview
	Hierarchical Loop Closure Detection
	New Location Policy

	Experimental Results
	Parameter Configuration
	Loop Closure Detection
	Topological Mapping and Localization
	Sparsity
	Computational Times

	Discussion

	Fast Image Mosaicing using Incremental Bags of Binary Words
	Background
	Motion Estimation
	Image Mosaicing using Binary Descriptors
	Mosaic Graph
	Keyframe Selection
	Loop Closing
	Optimization
	Blending

	Experimental Results
	Discussion

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography

