
c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

First Implementation and Test of
Reintegration Mechanisms for Node Replicas

in the FT4FTT Architecture
Alberto Ballesteros, Sinisa Derasevic, Manuel Barranco and Julián Proenza

Dept. Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain
a.ballesteros@uib.es, sinishadj@gmail.com, manuel.barranco@uib.es, julian.proenza@uib.es

Abstract—Distributed Embedded Control Systems (DECSs)
used for critical applications must usually abide by strict
real-time and dependability requirements. Correspondingly, the
FT4FTT project proposes a complete fault-tolerant (FT) architec-
ture for RT DECSs. The Flexible Time-Triggered Ethernet (FTT-
Ethernet) communication protocol fulfills the RT requirements,
while the FT mechanisms added on top of it, which are based
on channel duplication and active replication of nodes, provide
the FT behaviour. Temporary faults affecting the channel or the
nodes, which are the most probable type of faults in DESs, can
manifest in such a way that a node replica loses its coordination
with the others and, thereby, it also loses its communication
and/or computation capability from then on, leading to attrition
of the redundancy initially provided by the active replication
of nodes. This paper describes the implementation and test of
specific mechanisms that are devised to determine which replicas
are temporarily faulty and to promptly reintegrate them.

I. INTRODUCTION

A great deal of Distributed Embedded Control Systems
(DECSs) require real-time behaviour due to their firm timing
restrictions thus constituting real-time (RT) systems. When
RT DECSs are used for critical applications a high level of
reliability has to be attained.

Accordingly, the FT4FTT project has developed a fault-
tolerant (FT) architecture supporting the stringent real-time
and fault tolerance guarantees these systems require. More-
over, when operating in a dynamic environment, the protocol
used by the FT4FTT architecture also supports the on-line
modification of the RT requirements of the exchanged mes-
sages.

More specifically, the protocol used by this architecture is
FTT-Ethernet [1]. It is a publisher-subscriber protocol in which
the FTT master embedded in the Ethernet switch (HaRTES
[1]) controls the slaves’ communication. Communication is
divided into fixed-time slots called Elementary Cycles (ECs).
Each EC is further divided into two windows: synchronous
window for conveying periodic messages and asyncronous
window for conveying aperiodic ones. Each EC is started
by the FTT Master broadcasting a control message called
the Trigger Message (TM) which conveys the schedule for
periodic data messages exchanged by the nodes for that EC.

To acquire a high level of reliability FT4FTT devises fault
tolerance mechanisms at different system levels to tolerate
both permanent and temporary faults in node and channel.

Permanent faults in the channel are tolerated by switch and
link duplication [2] and node permanent faults are tolerated
by replicating the critical nodes identically, i.e. by using the
same hardware and software (active replication [3]). Replicas
then consistently exchange the input/output values after which
each replica uses a majority voting to reach an agreement
on the exchanged values and thus mask potential faults.
Correspondingly, in [4] we implemented the node replication
scheme and assessed that the mechanisms used to tolerate
permanent faults worked as intended in a real environment.

More recently, in [5] we have dealt with the effects of
temporary faults on the system. These faults have a much
higher occurrence rate than permanent ones. It is demonstrated
a temporary fault can manifest in such a way that from that
point on a replica loses its communication and/or computation
capability. In the case of multiple temporary faults, the re-
dundancy initially provided by the active replication of nodes
can be exhausted quickly, eventually leading to the system
failure. Therefore, [5] proposes additional fault diagnosis and
reintegration mechanisms used to identify temporary faulty
replicas and bring them back to a coordinated operation with
the non-faulty ones.

Note that the diagnosis and reintegration have to be done
as promptly as possible so as to be able to restore the system
FT capabilities and being able to tolerate additional faults.

The present paper extends the implementation described in
[4] to add the mechanisms from [5] and perform a thorough
experiment campaign to check in which scenarios the proposed
mechanisms allow the reintegration of replicas and obtain
some preliminary results of the time needed to reintegrate a
replica affected by temporary faults.

II. FT4FTT SYSTEM DESIGN

Our system architecture consists of M nodes interconnected
in a duplicated star topology. Critical nodes, i.e. the nodes for
which fault tolerance has to be provided for, are replicated N
times by means of active replication.

A control system in general is adapted to our existing system
architecture as depicted by Fig. 1. The controller subsystem
consists of node replicas executing the control law. These
replicas are then connected to the system to be controlled
(plant) and its instrumentation (sensors and actuators). Al-
though, the specific connection to and the fault tolerance of



Fig. 1: System Architecture

the sensors and actuators are out of the scope of this work,
in this paper we assume that sensor and actuator devices are
replicated and each sensor/actuator replica is connected to one
node replica. The control law being executed is a PID.

The focus is to provide fault tolerance to the critical nodes
and their operation. In our FTT-based system due to node
replication and majority voting a typical control application
sense-control-actuate cycle is extended to the following 7
phases [6]:
• Sense (S). The data to be measured, i.e. the sensor values, is

acquired by each replica from the connected sensor replica.
• Exchange Sensing (ES). Each replica shares with the others

the acquired sensor value.
• Vote on Sensing (VS). Each replica executes majority

voting on the locally and externally obtained sensor values.
• Control (C). Using the sensor value resulting from the

previous vote each replica executes the control law and
calculates the actuation value.

• Exchange Actuation (EA). Each replica exchanges with the
others the calculated actuation value.

• Vote on Actuation (VA). Each replica executes majority
voting on the calculated and received actuation values.

• Actuate (A). Each replica sends its actuation value obtained
by the previous voting to the plant (actuator replica) which
in turn carries out additional voting called output consoli-
dation [7] transforming received actuation values into one,
after which the actual actuation takes place.

In order to trigger the phases, both the exchange of values
via Data Messages (DMs) and the execution of the application
tasks by the replicas, we use the network-centric approach
described in [6], i.e. the underlying network protocol triggers
the phases. Particularly, phases are mapped onto ECs and
implicitly or explicitly triggered by the FTT TM. Note that,
depending on phases and EC duration, phases can be merged
and triggered jointly by a single TM depending on application-
specific timing needs.

A. Fault classification and fault tolerance mechanisms

Node permanent faults are tolerated by the active replication
of nodes and majority voting, and permanent faults in links
and switches are tolerated by duplication [2]

Since switches play a core role in the FTT system we
force them to exhibit crash failure semantics by using internal
duplication with comparison [2]. Therefore, a temporary fault

in the switch is manifested as a permanent one (crash) and is
tolerated by the aforementioned mechanism of duplication.

Temporary faults in the links are tolerated by means of time
redundancy, i.e. critical messages are sent multiple times in
the same EC. Apart from this, the existing CVEP protocol
[8] designed to retransmit messages for voting throughout
multiple ECs grouped in a so called Voting Communication
Round (VCR) is also used to tolerate temporary faults in the
links affecting these messages.

Nodes on the other hand exhibit incorrect computation
failure semantics from the point of view of the other nodes in
the system in order to simplify the majority voting procedure.
This is done by the switch port guardians policing the traffic
and preventing the propagation of certain errors thus allowing
tolerance of Temporary Node Faults (TNF) by error compen-
sation using the existing active replication and majority voting.

However, as stated in [5], temporary faults affecting the
node replicas and the links can lead replicas to a state which
is not recoverable by the existing mechanisms, leading to
redundancy attrition. To cope with these faults we designed
additional fault diagnosis and reintegration mechanisms [5].
These mechanisms are listed below:
• When a replica looses one or more TMs, the replica’s

Internal Counter (IC) used for task dispatching [6] has
to be resynchronized. Specifically, each replica updates
its IC upon each TM reception. To recover the counter’s
value after TM losses we use an information provided by
the TM itself (TM sequence number) and the TM resync
mechanism, described in [5].

• To recover a replica whose operational state has been
corrupted, e.g. after a reset, we exchange and vote upon
additional values constituting the replicas’ operational state.
For this we use the existing vote and exchange phases.
After a faulty replica receives and votes on this state
information it is considered as reintegrated. Accordingly,
this point is called the Voting reintegration point.

• Whenever a permanent fault is exhibited, a replica is reset
and reintegrated using the mechanism described above.

• The newly introduced error counters maintained by each
replica, Discrepancy Error Counter (DEC) and Communi-
cation Error Counter (CEC), are used to diagnose when a
replica exhibits a permanent internal fault affecting appli-
cation execution and a permanent communication fault re-
spectively. This counter is increased when a corresponding
fault is detected by a replica and decreased in the absence
of faults. When a predefined threshold is reached a replica
diagnoses itself as a permanently faulty. In the case of
consecutive faults, counters’ increase rate is penalized for
quicker fault detection and decrease rate is kept constant.

• The watchdog timer mechanism detects a crash of a replica.
Watchdog timer is an external device connected to each
replica. When the timer expires the replica attached to it is
diagnosed as crashed. This timer is reset periodically with
reception of a specific You Are Alive (YAA) message that
is piggybacked on every TM.



III. IMPLEMENTATION

This section describes the extensions carried out in the
node replication implementation we did in [4], to include the
reintegration mechanisms previously presented. Specifically,
as shown in Fig. 2, we added new functionalities in the
replicas, both at the application and the FTT level.

First, the TM resync was already implemented and no
relevant modifications were needed. Specifically, the Action
triggerer in each replica triggers the execution of each of the
application phases upon the reception of a TM. It is important
to mention that here we divide the operation of the application
in five phases. More precisely, we mix phases VS and C,
as well as VA and A phases. This configuration makes the
application more robust and faster.

Second, the Voting Reint. Point was partially implemented.
Specifically, apart from voting on the sensor and actuation
values in the VS and VA phases, respectively, we already
voted on the control status during the VS phase to ensure that
the control is done consistently. For this new implementation
the control status is also voted in the VA phase to give
more chances to reintegrate during a given control cycle.
Additionally, we also include the setpoint in the voting.

Third, the Communication Error Counter (CEC) was im-
plemented at the FTT level so that it can update its value
upon the reception of a new TM. Every TM conveys the MS-
vector which contains information about the DMs exchanged
by the replicas and it serves to diagnose communication errors.
If any communication error is detected, the value of the
counter is increased, otherwise it is decreased unless it is
zero. The value of this counter can be read by the application,
which resets itself if it surpasses a certain threshold. Note
that, for simplicity we perform a soft reset, which consists
in reinitializing the operational state information rather than
reinitializing the hardware components of the replica.

Fourth, the Discrepancy Error Counter (DEC) is similar
to the CEC but for errors affecting the application. It is
implemented at the application level and increases its value
each time the result of the voting is different from what the
replica populated.

Finally, the You Are Alive (YAA) watchdog is a software
module that resets the application when several consecutive
TMs are not received, that is, the replica is completely lost
and it cannot reset itself.

Fig. 2: Implementation of the reintegration mechanisms

IV. TESTING THE SYSTEM

Here we present some of the tests we have carried out to
check that the implementation of the fault tolerance mech-
anisms was done properly and that the design is correct.
Moreover, we get some preliminary measurements of the
reintegration time when temporary faults affecting the links
or the replica itself do occur. The reintegration time can be
defined as the time elapsed since the fault stops provoking
errors until the operational state of the affected replica is
consistent with the ones of the other replicas.

The experimental set-up used was a real prototype [4]
composed of two FT4FTT switches and three node replicas.
Each switch executes an F4FTT master, whereas each replica
executes an FT4FTT slave implementing a typical control ap-
plication. This application cyclically performs the five phases
previously introduced, each one taking one EC. It is important
to mention that in each of the tests we provoke errors in
one of the replicas. Moreover, for each test we carry out
several experiments in order to analyze the effects of the
provoked errors in each of the phases of the application. This
entails a first step towards a compete characterization of the
reintegration time.

Next we describe each of the tests we conducted. To assist
in the explanation Table I summarizes the error injection, that
is, the type of error provoked and the instant in which it is
injected. We finish this section by presenting the reintegration
times registered for each test and the conclusions we have
extracted from them.

S ES VS/C EA VA/A S ES VS/C EA VA/A
TM

TM DM
TM

TM DM
TM

Mem Mem Mem
Mem Mem

Mem
Mem Mem

Mem Mem Mem

TABLE I: Error injection for tests 1, 2, 3 and 4.

A. Tests conducted

In test 1 we simulate temporary link faults that prevent the
replica from receiving some of the TMs (see top-left part of
Table I). This causes the replica to not execute the associated
phases. In order to reintegrate, the replica uses the TM resync
mechanism, so that the subsequent phases can be executed
normally. In some cases, not executing a given phase results
in the replica not properly voting, which leads to a loss of
consistency with the other replicas. In these cases the replica
also uses the Voting Reint. Point. mechanism.

In test 2 we simulate temporary link faults that prevent the
replica from transmitting and/or receiving DMs. Specifically,
this test is composed of three sub-tests in which we analyze
the behaviour of the replica when it is not able to receive them,
transmit them and receive nor transmit them, during one phase.
It is noteworthy that, as shown in the top-right part of Table I,



we only inject these error during the ES and EA phases, that is,
when replicas exchange messages. In any other phase the fault
does not manifest. Communication problems involving DMs
result in the replica voting with a different subset of messages,
leads to an inconsistent operational states. When so, the replica
uses the Voting Reint. Point. mechanism to reintegrate.

In test 3 we simulate temporary node faults that corrupt the
operational state of the replica. Specifically, as shown in the
bottom-left part of Table I, in each phase we inject an error
that modifies the values used and generated by the replica. As
a result, said replica uses the Voting Reint. Point. mechanism
to achieve consistency again.

In test 4 we simulate a replica crash that prevents it from
correctly voting until it is restarted by the DEC mechanism.
For this, as shown in the bottom-right part of Table I, we
corrupt the voting values during several consecutive voting
phases. Every time the replica is not able to correctly vote the
DEC is increased and, once reached a threshold, the replica
resets itself. After this reset the replica uses the TM resync
and the Voting Reint. Point. mechanisms to reintegrate in the
time and in the value domain, respectively.

In test 5 we simulate a replica crash that prevents it from
executing any action until it is restarted by the YAA watchdog.
For this we force the replica to not receive several consecutive
TMs. This error injection is similar to the one carried out
in test 1 (see the top-left part of Table I) but with the loss
affecting several phases. As in test 4, once the watchdog
resets the replica, the TM resync and the Voting Reint. Point.
mechanisms make it possible to achieve consistency again in
the time and in the value domain, respectively.

B. Results

In each of the tests executed the faulty replica was able to
correctly reintegrate in a number of ECs shown in Table II.
Each row corresponds to one of the tests and each of the first
five columns corresponds to one of the experiments conducted
for each of these tests. Specifically, each of these columns
refers to the phase in which the fault finishes. Finally, the last
two columns show, for each test, the maximum and average of
the reintegration time. Next we present the main conclusions
we extracted from the tests and Table II.

Last phase affected by the fault Statistics
S ES VS/C EA VA/A max avg

1 2 3 2 0 0 3 1
2 - 3 - 0 - 3 1.5
3 2 3 2 0 0 3 1.4
4 - - 2 - 3 3 2.5
5 2 3 2 4 3 4 2.8

TABLE II: Time to reintegrate (in ECs) for every test and exp.

As can be concluded, the time needed to reintegration is the
time until the next successful voting. Specifically, according
to the Voting Reint. Point mechanism, this happens after
receiving the DMs from the other replicas and voting on them.
In this sense, as can be seen in Table II, the values for each
column are almost identical. The only difference occurs when
injecting errors after voting on the sensor values.

A temporary communication fault occurring after the VS/C
phase does not make the replica inconsistent. This is because
the actuation is already calculated and it must be identical in
all the replicas. In contrast, when a restart is needed to stop
the error, the initialization of the operational state forces the
replica to wait for the next reintegration point, which occurs
in the next application cycle.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented the first implementation and test
of the FT4FTT fault diagnosis and reintegration mechanisms,
which make it possible to recover faulty node replicas that
suffered from temporary faults, in order to restore the initial
redundancy and, thus, fault tolerance of the system. For this
we extended the FT4FTT prototype we already developed for a
previous work, in which we added new functionalities, mostly
at application level but also at and the communication level.
Finally, we performed various tests to assess the correctness
of the design and implementation, as well as to get some
preliminary measurements of the reintegration time.

The next steps involve implementing the YAA watchdog in
hardware and also the hard reset. With this, the measurements
of the reintegration time will also contain the time needed
to start the application and to enter into the communication.
Finally, we also intend to carry out a dependability evaluation
of the entire system and measure its reliability.

ACKNOWLEDGMENTS

This work was supported by grants DPI2011-22992 and TEC2015-
70313-R funded by the Spanish Ministerio de Economia y Com-
petitividad (MINECO) and by the Fondo Europeo de Desarrollo
Regional (FEDER). Sinisa Derasevic was supported by a scholar-
ship of the EUROWEB Project, which is funded by the Erasmus
Mundus Action II programme of the European Commission.

REFERENCES

[1] R. Santos, “Enhanced Ethernet switching technology for adaptive hard
real-time applications,” Ph.D. dissertation, PhD Thesis, University of
Aveiro, Aveiro, Portugal, 2010.

[2] D. Gessner, J. Proenza, and M. Barranco, “A proposal for master replica
control in the flexible time-triggered replicated star for Ethernet,” in Proc.
10th IEEE World Conf. on Factory Comm. Systems (WFCS), 2014.

[3] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding replication in databases and distributed systems,” in Proc.
20th Int. Conf. on Distributed Computing Systems. IEEE, 2000.

[4] A. Ballesteros, S. Derasevic, D. Gessner, F. Francisca, I. lvarez, M. Bar-
ranco, and J. Proenza, “First Implementation and Test of a Node Repli-
cation Scheme on top of the FTTRS,” in Proc. 12th IEEE World Conf.
on Factory Comm. Systems (WFCS), 2016.

[5] S. Derasevic, M. Barranco, and J. Proenza, “Designing fault-diagnosis
and reintegration to prevent node redundancy attrition in highly reliable
control systems based on FTT-Ethernet,” in Proc. 12th IEEE World Conf.
on Factory Comm. Systems (WFCS), 2016.

[6] S. Derasevic, J. Proenza, and M. Barranco, “Using FTT-ethernet for the
coordinated dispatching of tasks and messages for node replication,” in
Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory Automation
(ETFA), 2014.

[7] D. Powell et al., A generic fault-tolerant architecture for real-time
dependable systems. Springer, 2001.

[8] S. Derasevic, M. Barranco, and J. Proenza, “Appropriate consistent
replicated voting for increased reliability in a node replication scheme
over FTT,” in Proc. 19th IEEE Int. Conf. on Emerging Tech. and Factory
Automation (ETFA), 2014.


