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Abstract One of the main problems to solve in multi-robot systems is to select the
best robot to execute each task (task allocation). Several ways to address this prob-
lem have been proposed in the literature. This paper focuses on one of them, the
so-called response threshold methods. In a recent previous work, it was proved that
the possibilistic Markov chains outperform the classical probabilistic approaches
when they are used to implement response threshold methods. This previous study
only takes into account a celebrated possibility response/transition function. In this
paper we use a new possibility transition function and we make several experiments
in order to compare both, the new one and the tested before. The experiments show
that the number of steps that a possibilistic Markov chain needs to converge does
not depend on the response function used. In contrast, the aforementioned number
seems to be very related to the placement of the tasks in the environment and it
differs when each aforesaid response functions are under consideration. This paper
also emphasizes that theses possibility transition functions are indistinguishably op-
erators and, thus, that indistinguishability operators could be useful in the modeling
of response functions in Swarm Multi-Robot Task Allocation Problem.
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1 Introduction

Multi-robot systems, and in general multi-agent systems, are defined as systems
with two or more robots (or agents) that perform the same mission or task. These
systems provide several advantages regarding single-robot systems, for example:
robustness, flexibility and efficiency. To make its benefits several problems have to
be addressed. This paper focuses on the problem commonly referred to as “Multi-
robot Task Allocation” (MRTA for short) which consists in selecting the best robots
to execute each one of the tasks that must be performed.

MRTA is still an open problem and due to its significance, a lot of research has
been done to solve this problem in the last years (see [10]). Some of the proposed
solutions are based on swarm intelligence, where the cooperative behaviour emerges
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from the interaction of very simple behaviours running on each robot. Due to its sim-
plicity, scalability and robustness, several swarm like algorithms have been proposed
but, nowadays, those based on the so-called Response Threshold Method (RTM for
short) are probably the most broadly used. In these methods, each involved robot
has associated a task response threshold and a task stimuli. The task stimuli value
indicates how much attractive is the task for the robot. When the task stimuli, as-
sociated to a task, takes a value greater than a certain threshold, the robot starts
its execution following a probability function. This is a Markov process, where the
probability of executing a task only depends on the current task (state). This proba-
bilistic approach presents a lot of disadvantages: problems with the selection of the
probability function when more than two tasks are considered, asymptotic converge,
and so on.

In the light of the above-mentioned inexpedient associated to the probabilistic
RTM for task allocation, in [9] a new possibilistic theoretical formalism for a RTM
was proposed and its utility for the MRTA problem was also proved. In this case,
the RTM is implemented considering transitions possibilities instead of transitions
probabilities and this fact implies that in the intrinsic decision process, the possi-
bilistic Markov chains (also known as fuzzy Markov chains), play the role of the
probabilistic ones. The theoretical and empirical results demonstrated that fuzzy
Markov chains applied to task allocation problem require a very few number of
steps to converge to a stable state. In all cases the transition possibility from one
task to another one was modeled by a widely accepted response function (see (1)).
This paper extends our previous work about RTM and studies the impact of other
kind of transition possibilistic functions, concretely the exponential one. An exten-
sive number of experiments has been carried out with different threshold values and
several kind of tasks distributions using Matlab. These experiments show that the
convergence time does not depend on the possibility transition function (response
function) used. However, it depends on the distribution of the tasks in the environ-
ment and, thus, it differs when each aforesaid response functions are under con-
sideration. It must be stressed that theses possibility transition functions are both
indistinguishably operators in the sense of [13] and, thus, that indistinguishability
operators could be useful in the modelling of response functions in Swarm Multi-
Robot Task Allocation Problem.

The remainder of the paper is organized as follows: Section 2 reviews the basics
of the MTRA problem. Section 3 shows the experiments carried out to validate our
approach and, finally, Section 4 presents the conclusions and future work.

2 Multi-Robot task allocation

This section introduces the main concepts about multi-robot task allocation and the
RTM approaches and review the previous works made in this field.
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2.1 Probabilistic response threshold methods

As pointed out in Section 1, the response threshold methods are a very promising
approach in order to face up realistic tasks in a decentralized way. According to [1],
the classical response threshold method defines for each robot ri and for each task
t j, a stimuli sri,t j ∈ R that represents how suitable t j is for ri, where R stands for the
set of real numbers. When sri,t j exceeds a given threshold θri (θri ∈ R), the robot ri
starts to execute the task t j. To avoid relying on the threshold value to an excessive
degree, the task selection is usually modeled by a probabilistic response function.
Thus, a robot ri will select a task t j to execute with a probability P(ri, t j) according
to a probabilistic Markov decision chain. There are different kind of probabilities
response functions that defines a transition, but one of the most widely used (see
[4, 15]) is given by

P(ri, t j) =
sn

ri,t j

sn
ri,t j +θn

ri

, (1)

where n ∈ N, where N stands for the set of natural numbers. It must be pointed out
that the preceding response function has been also used in [9]. In this paper we test
another transition function that presents similar characteristics to the given in (1)
and which is given by:

P(ri, t j) = e
−

θn
ri

sn
ri ,t j (2)

It is not hard to check that the above-mentioned transitions functions are indistin-
guishably operators whenever sri,t j only depends on the distance between the robot
and the task as follows:

sri,t j =
1

d(ri, t j)
.

We refer the reader to [13] for the definition of this kind of operators. Moreover,
in general for both response functions, the equality ∑

m
j=1 P(rk, t j) = 1 does not hold

and, hence, the transition does not meet the axioms of the probability theory. In order
to avoid this disadvantage normalization processes can be introduced although they
imply to impose system modifications with possible implications in the behavior of
the system.

2.2 Possibilistic Markov chains: theory

As was proved in [9], possibilistic Markov chains provide a lot of advantages and
outperform its probabilistic counterpart. This section summarizes the main theoreti-
cal concepts of possibilistic Markov chains and the new aforementioned (possibility)
exponential transition response function is introduced.

Following [2, 16] we can define a possibility Markov (memoryless) process as
follows: let S = {s1, . . . ,sm} (m ∈ N) denote a finite set of states. If the system is in
the state si at time τ (τ∈N), then the system will move to the state s j with possibility



4 José Guerrero, Juan-José Miñana, and Oscar Valero

pi j at time τ+ 1. Let x(τ) = (x1(τ), ...,xm(τ)) be a fuzzy state set, where xi(τ) is
defined as the possibility that the state si will occur at time τ for all i = 1, . . . ,m.
Notice that

∨m
i=1 xi(τ) ≤ 1 where ∨ stands for the maximum operator on [0,1]. In

the light of the preceding facts, the evolution of the fuzzy Markov chain in time is
given by

xi(τ) =
m∨

j=1

p ji∧ x j(τ−1),

where ∧ stands for the minimum operator on [0,1]. The preceding expression admits
a matrix formulated as follows:

x(τ) = x(τ−1)◦P = x(0)◦Pτ, (3)

where P = {pi j}m
i, j=1 is the fuzzy transition matrix, ◦ is the matrix product in the

max-min algebra ([0,1],∨,∧) and x(τ) = (x1(τ), . . . ,xm(τ)) for all τ ∈ N is the pos-
sibility distribution at time τ.

Taking into account the preceding matrix notation and following [2], a possibility
distribution x(τ) of the system states at time n is said to be stationary, or stable,
whenever x(τ) = x(τ)◦P.

One of the main advantages of the possibilistic Markov chains with respect to
their probabilistic counterpart is given by the fact that under certain conditions, pro-
vided in [5], the system converges to a stationary state in a finite number of steps.

2.3 Possibilistic Response Threshold

In this section we will see an example of how to use possibilistic Markov chains
for developing a RTM in order to allocate a set of robots to tasks. We will assume
that the tasks are randomly placed in an environment and the robots are initially
randomly placed too. Furthermore, we will assume that each robot allocation, that is
the stimulus, only depends on the distance between the robot and the task. Consider
the position space endowed with a distance (metric) d. Then, denote by d(ri, t j)
the distance between the current position of ri. It is assumed that when a robot is
assigned to a task the position of this task and the robot’s position are the same
and therefore, the distance between the task and the robot is 0. Following the RTM
notation, define the stimulus of the robot rk to carry out task t j as follows:

srk,t j =

{ Ut j
d(rk,t j)

if d(rk, t j) 6= 0

∞ if d(rk, t j) = 0
. (4)

This stimulus srk,t j allows us to obtain, by means of (1), the following possibility
response function,

prk,i j =
Un

t j

Un
t j +d(rk, t j)nθn

rk

. (5)
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If the same stimulus srk,t j is used in (2), then the following exponential possibility
response function is obtained:

prk,i j = e
−

θn
rk d(rk ,t j)

n

Un
t j . (6)

For convenience to our subsequent discussion we will reference the response
function given by (6) as Exponential Possibility Response Function (EPRF for short)
and the response function given by (5) as Original Possibility Response Function
(OPRF for short). As stated in Section 2.1, both possibility response functions
are also indistinguishably operators. Therefore, we will use interchangeably the
concepts of indistinguishably operator and possibility response/transition functions
when we reference the former.

In [9], it was demonstrated that the response function given by (5) fulfills smooth
conditions (column diagonally dominant and power dominant) that guarantee the
finite convergence (see [5] for a detailed description of such notions) provided that
all tasks have the same utility Ut j . Therefore, fixed rk ∈ R, the possibilistic Markov
chain obtained by means of the OPRF converges to a stationary non-periodic state
in finite time (exactly in at most m−1 steps). Following similar arguments to those
given in [9] one can prove easily that the possibilistic Markov chain obtained by
means of EPRF also converges to a stable state in at most m−1 steps.

3 Experimental Results

In this section we will explain the experiments performed to compare the number of
steps required to converge to a stationary state using probabilistic and possibilistic
Markov chains induced from the indistinguishability operators given in (5) and (6).

3.1 Experimental Framework

The experiments have been carried out under different conditions: position of the
objects (placement of tasks), parameters of the possibility response functions (θrk

and n) and number of tasks. All the experiments have been carried out using MAT-
LAB with different synthetic environments following a uniform distribution to gen-
erate the position of the tasks. Figure 1 represents a set of experiments where the
task have been placed randomly in the environment, where each blue dot is a task.
Furthermore, all the environments have the same dimension (width=600 units and
high=600 units). In the shake of simplicity, we assume that all the tasks have the
same utility, i.e, Ut j = 1 for all j = 1, . . . ,m.

Following the reasoning made in [11], the θrk must depend on the environment
conditions. During the performed experiments the θrk will depend on the maximum
distance between tasks as follows:

θrk =
nT H
dmax

, (7)
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Fig. 1 Kind of environments with 100 task randomly placed. Blue dots represents the position of
the tasks or objects.

where dmax is the maximum distance between two objects and nT H is a parameter of
the system. Due to the above-mentioned environment dimensions, dmax is constant
and equals to 800.5 units. For the first time, the nT H parameter has been introduced
with respect to previous papers (see [11]) in order to analyze how the threshold
value impact on the system performance. All the experiments have been performed
with 500 different environments, with different number of tasks (m = 50,100) and
different values of the power n in the expression of possibility response functions
(see (5) and (6)). The threshold θrk values under consideration are obtained from (7)
setting nT H = 2,4,8.

Whichever possibility response function is used, the given by either (5) or (6),
the possibilistic transition matrix, Prk , must be converted into a probabilistic matrix,
in order to be comparable the possibilistic and probabilistic Markov chain results.
To make this conversion we use the transformation proposed in [14], where each
element of Prk is normalized (divided by the sum of all the elements in its row)
meeting the conditions of a probability distribution.

Figure 2 shows some results obtained with 100 randomly placed tasks using
OPRF given by (5), and EPRF given by (6). Figure 2(a) shows the percentage of
experiments that with the probabilistic Markov process does converge. If the pro-
cess does not converge after 10,000 iterations we assume that it will never converge.
As can be seen, in all probabilistic cases around 50% of experiments converges. Al-
though it is not graphically represented, the experiments that converges need 256.8
steps on average to do it. Figure 2(b) shows the mean number of steps required to
converge using fuzzy Markov chains. Let us recall that, all fuzzy Markov chains
under consideration converge. As can be seen, there are no significance differences
between the experiments that use OPRF (Original labeled bars) and those that use
EPRF (Exponential labeled bars). Moreover, the nT H parameter or the power value
n do not have any impact on this results. Therefore, we can conclude that when
the tasks are randomly placed in the environment, both possibility response func-
tions provide similar results on average and both seems not to be affected by its
parameters nT H or n. Moreover, the possibilitics Markov chains, whichever pos-
sibility response functions is used, needs much lower number of steps to converge
compared to their probabilsitic counterpart.

Table 1 shows the standard deviation, σ, of the number of steps required to con-
verge with 100 tasks when fuzzy Markov chains are considered. Thus, this table
represents the standard deviation of the results given in Figure 2(b). From these
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(a) Percentage of experiments that, using probabilistic
Markov process, do converge.
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(b) Number of steps required to converge with fuzzy
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Fig. 2 Experimental results with 100 tasks.

results, we can state that in most cases the use of EPRF produces a decrease of
the standard deviation compared to the values of σ obtained when ORPF is used.
Similar results, regarding mean and standard deviation, have been obtained after
performing experiments with 50 tasks (m = 50).

Function n=1, nTH=2 n=2, nTH=2 n=1, nTH=4 n=2, nTH=4 n=1, nTH=8 n=2, nTH=8
OPRF 3.59 3.48 3.56 3.58 3.7 3.52
EPRF 3.58 3.6 3.35 3.57 3.47 3.47

Table 1 Standard deviation (σ) of the number of steps required to converge with fuzzy Markov
chains.

4 Conclusions and Future Work
This paper has presented an empirical comparative analysis of two indistinguisha-
bility operators (or possibility response function) applied to the convergence of pos-
sibilistic Markov chains where the goal of the system is to allocate tasks to a colony
of robots using response-threshold methodologies. As was proved in [9], possibilis-
tic Markov chains outperforms its probabilistic counterpart when they are used to
model response-threshold multi-robot systems. This paper extends the aforemen-
tioned work. In addition, it shows how the use of the aforementioned possibility
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response functions in modeling fuzzy Markov chains provides similar results and
they are very robust with respect to their parameters. In the light of the obtained
results a lot of new challenges, problems and improvements must be addressed as
future work. For the time begin, we focus on provide a deeper analysis about how the
position of the tasks impacts on the convergence time, both from theoretical and em-
pirical point of view. Other conversions from possibilistic distribution to probabilis-
tic are also under consideration. Furthermore, the implementation of these methods
using real robots is carrying out by the authors.
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