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Abstract

Seagoing vessels have to undergo regular visual inspections in order to detect the typical defective situations affecting
metallic structures, such as cracks and corrosion. These inspections are currently performed manually by ship sur-
veyors at a great cost. Assisting them during the inspection process by means of a fleet of robots capable of defect
detection would, without doubt, decrease the inspection cost. In this paper, a novel algorithm for visual detection
of defects on vessel structures is presented. It is implemented as a generic framework that can be configured to
compute the features that perform better for the inspection at hand. Inspired by the idea of conspicuity, contrast in
intensity, color and orientation, and the isotropic symmetry, are the features selected to detect the defective situations
in the vessel structures. These features are computed at multiple scales so that the algorithm can effectively detect
the defective areas in the images despite the distance from which this has been taken. Additionally, three different
combination operators are tested in order to merge the information provided by the single features and improve the
detection performance. Several experiments are reported for the different configurations of the detection framework.
They provide better classification ratios than the state of the art methods and prove its usability with images collected
by a micro-aerial robotic platform intended for vessel visual inspection.
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1. Introduction

Vessels and ships are nowadays one of the most cost effective ways to transport goods around the world. Despite
the efforts to avoid maritime accidents and wreckages, these still occur, and, from time to time, have catastrophic con-
sequences in environmental, human and/or economic terms. Structural failures are the main cause of these accidents
and, as such, Classification Societies impose extensive inspection schemes in order to ensure the structural integrity
of vessels.

An important part of the vessel maintenance has to do with the visual inspection of the internal and external parts
of the vessel hull. They can be affected by different kinds of defects typical of steel surfaces and structures, such as
cracks and corrosion. These defects are indicators of the state of the metallic surface and, as such, an early detection
prevents the structure from buckling and/or fracturing.

To carry out this task, the vessel has to be emptied and situated in a dockyard where high scaffoldings are installed
to allow the human inspectors to access the highest parts of the vessel structure (more than 30 m high). Taking into
account the huge dimensions of some vessels, this process can mean the visual assessment of more than 600,000 m2

of steel. Besides, the surveys are on many occasions performed in hazardous environments for which the access is
usually difficult and the operational conditions turn out to be sometimes extreme for human operation. Moreover, total
expenses involved by the infrastructure needed for close-up inspection of the hull can reach up to one million dollars
for certain sorts of vessels (e.g. Ultra Large Crude Carriers, ULCC). Therefore, it is clear that any level of automation
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of the inspection process that can lead to a reduction of the inspection time, a reduction of the financial costs involved
and/or an increase in the safety of the operation is fully justified.

The European projects MINOAS1 (finished on 2012) and INCASS2 (in development until 2016) have among their
goals the development of robotic platforms to automate as much as possible the inspection process of vessels [1].
One of these robots is a micro-aerial vehicle fitted with cameras, which is in charge of collecting images that can
provide the surveyor with a global overview of the different surfaces and structures of the inspected vessel [2]. These
images are intended to be processed afterwards to autonomously detect the defective areas. Regarding the latter, this
paper presents a novel approach for automatic detection of defects in images taken from the vessel structures. A
framework is proposed as a generic classifier that can be configured to make use of different features, potentially
leading to different defect detectors each. Furthermore, the framework foresees the combination of the respective
feature responses in order to enhance the overall output quality. The conspicuousness of defects in general, together
with the kind of defects that can be expected in metallic surfaces (i.e. cracks and corrosion) and the image capture
conditions, have guided the feature selection process.

The rest of the paper is organized as follows: Section 2 provides an overview of the existing visual defect detection
techniques; Section 3 presents the generic flexible defect detection framework that we propose; Section 4 explains
how this is particularised for defect detection in vessel structures, considering contrast (4.1), symmetry (4.2) and
three alternative combinations among them (4.3); Section 5 discuss on the results of some experiments; and Section 6
concludes the paper.

2. Vision-based Techniques for Defect Detection

Vision literature contains a large list of approaches for vision-based defect detection. These can be roughly sep-
arated into two big categories: on the one hand, there are lots of contributions for industrial inspection and quality
control, that is, algorithms that are in charge of checking whether the products that result from an industrial manufac-
turing process are in good condition. These methods assume a more or less confined environment where the product
to be inspected is always situated in a similar position, while lighting conditions are controlled as well. Most of these
techniques are collected in [3–6].

On the other hand, there are several contributions of visual inspection techniques devised to ensure the integrity of
elements or structures that have been subjected to some kind of effort or stress. These methods are typically included
in periodical surveys to assess the need of maintenance operations. In this group, which include vessel hull inspection,
we can find algorithms for crack detection on concrete surfaces [7], defect detection on bridge structures [8], aircraft
surface inspection [9, 10], etc.

The majority of the algorithms from both categories have been devised for the detection of a specific defect on a
particular material or surface, while much less methods deal with unspecified defects on general surfaces. The short
distance from which the images must be gathered is another point in common among the majority of the algorithms.
Furthermore, to provide good results, most of them require from a learning stage or/and a tuning of their operating
parameters.

Regarding defect detection algorithms for vessel structures, just a few contributions can be found in the literature:
e.g. [11] and [12] present some detectors of cracks and corrosion in vessel structures. These algorithms do not need
close-up images of the inspected surfaces to provide good results but their drawback is again that they require a
previous training stage (e.g. to learn which is the color that corrosion usually presents) or a tuning of their working
parameters (e.g. to know how thin and elongated must be a dark collection of pixels to be considered as a crack),
whose value is typically related with the distance from which the images have been collected.

To the best of our knowledge, only one method has been published for generic defect detection in vessels structures
[13]. This approach makes use of a Bayesian framework to compute the probability for every pixel of corresponding
to some kind of defective situation. This probability is based on the information learned in a previous training stage.

1http://www.minoasproject.eu
2http://www.incass.eu
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3. A Flexible Framework for Defect Detection

The importance of feature selection during the design of any vision-based classifier is discussed in [14]. In
particular, the following questions must be answered: (1) which features are the best for a suitable classification, (2)
how many features are necessary, and (3) how should these be combined to implement the best classifier.

Taking that into account, the design of the defect detector has been oriented as a flexible framework which allows
an easy integration of different features and their combinations. To attain this level of flexibility, we consider that the
framework must cover the following aspects:

• The framework should allow computing one or more features that are potentially useful to discriminate between
defective and non-defective situations using just the input image.

• Final features response should not depend on scale.

• Different combination operators should be available to merge the information provided by the computed features
and try to find the combination (if any) that improves the individual classification performances.

• Related with the previous point, one o more normalization operators should be available to normalize the dif-
ferent features to a certain range, in order to prevent loosing information when combining them.

This generic framework has been implemented as a modular pipeline which involves different stages that can
be configured (or even removed) depending on our needs, so that different configurations result into different defect
detectors (see Fig. 1). Within the framework, each feature in intended to be computed as a different thread and the
information that they all provide can be finally combined to make up the detection output.
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Figure 1: Generic framework for defect detection.

In more detail, the framework consists of the following stages:

• Pre-feature computation. The first stage prepares the input image to provide the information necessary to
compute the features. From an input color image one can obtain, for example, the gray-scale (or intensity)
image, the red channel image, the saturation image (from HSV color space), etc. Each one of these images is
called a pre-feature map.

• Multi-scale generation. This stage scales the pre-feature maps using a range of scale factors to obtain a collec-
tion of pyramids. The computation of each pyramid level can include filtering the input map using some kind of
filter. One can compute, for example, a Gaussian pyramid which progressively low-pass filters and sub-samples
the pre-feature map, an oriented Gabor pyramid for a preferred orientation θ (using a Gabor filter), a simple
sub-sampled pyramid computed without any filtering, etc.

• Feature computation. This is the core stage within the pipeline. Each instance of this stage is in charge of
computing the value for a given feature for all the pixels of the input image. Since this can be fed with one or
more multi-scale pyramids, a feature can be computed combining the information provided at different scales.
Each output of this stage is called a feature map.

• Normalization. This stage normalizes the different feature maps to the same range of values to allow their
combination.

• Combination operator. This is the last stage of the pipeline. It is in charge of combining the normalized feature
maps in order to obtain a single map, which is called the defect map. The mean and the median are some
examples of simple combination operators. Unary operators such as unary minus or thresholding can be also
considered to modify a single feature map.

The resultant defect map is a single-channel map where defective areas are supposed to be labelled with higher
values. A threshold τ allows to separate which areas are finally labelled as defective and which are not.
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4. Implementation of the Defect Detector for Vessel Structures

Vessel structures consist of large surfaces that usually present a regular texture. When these surfaces are inspected
from a certain distance, a defect represents a discontinuity that alters the regularity of the texture. Based on that,
texture-related features seem to be a good option to differentiate between defective and non-defective areas.

Similarly, defects can also be considered as a rare phenomena that may appear on such regular surfaces. Since
they are rare, defects will potentially attract the visual attention of the surveyor during a visual inspection process.
Following these ideas, we propose to use texture-based features typically used in cognitive models to predict human
eye fixations.

Among them, we focus on those which can be evaluated through a saliency map. A saliency map consists in a
topographic map that represents the conspicuousness of the different areas of the input image [15]. This is typically
shown as a gray-scale image where locations with higher conspicuity values are closer to white and less salient areas
are closer to black. Notice that this representation fits with our definition of defect map.

Taking all these considerations into account, contrast and symmetry have been selected as the features for detecting
defects on vessel structures. The following sections present further details about the motivations that led us to consider
these features as well as describe how the defect detector is implemented to make use of them.

4.1. The Contrast-based Defect Detector
As indicated in [16], three features have been traditionally used in computational models of attention: intensity,

color and orientation. The sudden variation of some of these features, computed as a local contrast, increases the
conspicuousness of the area producing bottom-up guidance [17].

The information resulting from the variation of these three features is typically combined into a single contrast-
based saliency map. See for example [18–21].

We propose to use this local contrast (combining intensity, color and orientation) as a first feature to locate corro-
sion and cracks on vessel structures.

The generic framework described in section 3 is of application now to design the contrast-based defect detector.
Itti et al. model [22] has been used as source of inspiration to design the different stages of the pipeline. The previous
work has been the first one describing a contrast-based model for saliency and it has resulted as inspiration for later
authors [16].

Figure 2 details the contrast-based defect detector. For its implementation, each one of the stages of the generic
pipeline has been particularised as follows:

• Pre-feature computation. Five pre-feature maps are computed: (a) an intensity map using I = (r+g+b)/3 with r,
g and b being the red, green and blue channels of the input image; (b) a red channel map using R = r− (g+b)/2;
(c) a green channel map using G = g− (r + b)/2; (d) a blue channel map by means of B = b− (r − g)/2; and (e)
a yellow channel map using Y = (r + g)/2 − |r − g|/2 − b (negative values are set to zero).

• Multi-scale generation. Nine pyramids are generated: five Gaussian pyramids for the pre-feature maps (I, R, G,
B and Y) plus four Gabor pyramids computed from the intensity map for orientations θ ∈ {0, 45, 90, 135}. All
the pyramids are computed to contain seven scales ranging from 1:1 (scale zero) to 1:128 (scale seven).

• Feature computation. The contrast level in intensity, color and orientation is found as indicated in [22]. This
process consists in computing center-surround differences between fine and coarse scales from the pyramids;
that is, it computes the difference between each pixel of a fine (or center) scale c and its corresponding pixel in
a coarse (or surrounding) scale s. In our implementation c ∈ {1, 2, 3} and s = c + δ, with δ ∈ {3, 4}.

Furthermore, the authors define a normalization operator N(.) that they use prior to combine the across-scale
differences into three conspicuity maps – I for intensity, C for color and O for orientation – and also, before
combining these maps to obtain the final saliency map as S = 1/3(N(I) + N(C) + N(O)).

• Normalization. No normalization operator is applied to the resultant map since it is not combined with any
other feature map.

• Combination operator. No combination is performed.
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Figure 2: Implementation of the contrast-based defect detector using our generic framework.

4.2. The Symmetry-based Defect Detector
Kootstra et al. presented in 2008 a saliency model based on the Gestalt principle of symmetry [23]. In their

paper, they discuss local symmetry as a measure of saliency and investigate its role in visual attention. To this end,
they use three different symmetry operators (isotropic, radial and color symmetry operators) and compare them with
human eye tracking data. The results suggest that symmetry is a salient structural feature for humans, as well as the
suitability of their method for predicting human eye fixations in complex photographic images, where symmetry is
not so evident.

Furthermore, the authors use the saliency model by Itti et al. as a reference for comparison. Their results show
that, on many occasions, their symmetry operators outperform the contrast-saliency model.

For all these reasons, symmetry is the second feature that has been selected for this study. Figure 3 shows our
implementation of the symmetry-based defect detector using the generic framework, where each stage is particularised
as follows:

• Pre-feature computation. It just computes an intensity map as I = (r + g + b)/3.

• Multi-scale generation. This stage computes a simple sub-sample pyramid with 5 scales, ranging from 1:1
(scale zero) to 1:32 (scale five).

• Feature computation. The symmetry level is computed for each level of the pyramid using the isotropic operator.
We have chosen that operator because it is easier to implement and no significant improvement was observed
when using the radial or color symmetry operators for predicting human eye fixations [24].

To obtain the final symmetry map, the five responses (one per pyramid level) are normalized using the normal-
ization operator N(.) and finally added together across-scale into an scale 1:1 map.

• Normalization. No normalization operator is applied to the resultant map since it is not combined with any
other feature map.

• Combination operator. No combination is performed.

4.3. Combination of Contrast and Symmetry
In order to deeper explore the possibilities of the selected features, the generic framework has been also used to

combine the information that they convey. To this end, the pipeline has been configured in the following way:

• Pre-feature computation. Five pre-feature maps are computed as described for contrast.

• Multi-scale generation. It generates ten pyramids, nine for contrast plus one for symmetry, as detailed in the
respectively sections 4.1 and 4.2.
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• Feature computation. It consists now of two threads, one for each feature. They proceed as indicated for the
single feature versions of the detector.

• Normalization. The normalization operator N(.) of section 4.1 is used in this stage to promote the areas from
the feature maps that are indicated as potentially defective by any of the features.

• Combination operator. We initially propose two operators. The first one consists in a linear combination of the
contrast and symmetry maps:

CombOR =
1
2

(Co + S y) (1)

This combination allows any defective point in any of the maps to be promoted so that it stands out in the final
defective map. Since this combination implements, in a certain sense, the logical OR function, it will be referred
to as the OR combination from now on.

The second combination operator that we propose merges the contrast and symmetry maps so that defective
regions in the resulting defect map are required to be simultaneously indicated as potentially defective in both
contrast and symmetry maps, implementing, in a certain sense, the logical AND operator:

CombAND = Co × S y (2)

This operator will be referred to as the AND combination from now on.

In addition to these feature-combined detectors, a third version has been considered which intends to explore
the contribution provided by the different contrast channels, that is, intensity, color and orientation.

The implementation of this third combined detector requires to split the contrast computation stage into three
threads, one for each contrast channel. After normalizing all the feature maps (including the symmetry map)
using the normalization operator N(.), these are combined using a modified version of the OR combination,
which will be referred to as the ORA (Or-Alternative) combination:

CombORA =
1
4

(I + C + O + S y) (3)

Figure 4 shows the pipeline for the three versions of the contrast-symmetry combined defect detector.

5. Assessment of the Defect Detector

In this study we have used a dataset comprising 73 images of vessel structures including defective areas (cracks,
coating breakdown and different kinds of corrosion). The images have been collected at different distances and at
different lighting conditions. This dataset is available online3 and also includes the ground truth, consisting in black
and white images where defects are labelled in white (see Fig. 6:B).

In a first kind of experiment, we have assessed the suitability of using contrast and symmetry to differentiate be-
tween defective and non-defective areas. To this end, the probability distribution of these two features has been com-
puted for the two classes, defective area and non-defective area. To estimate these PDFs, the Parzen windows method
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[14] has been applied to the histograms computed for combinations contrast/defect, symmetry/defect, contrast/non-
defect and symmetry/non-defect. The resulting PDFs are shown in Fig. 5.

Looking at the PDFs some conclusions can be drawn:

1. Non-defective pixels present low values of contrast and symmetry (below 10 for contrast and around 15 for
symmetry) while defective pixels tend to present higher values of both features (around 25 for both features).

2. Contrast peaks are farther from each other than symmetry peaks. This could indicate that contrast will perform
better than symmetry when classifying pixels as defective or non-defective. In other words, contrast seems to
be more discriminative than symmetry when describing defective areas on vessel structures.

In a second kind of experiments we evaluate the performance of the proposed defect detector. Figure 6 presents
some examples of defect maps provided by the five versions of the defect detector, namely, the contrast-based detector,
the symmetry-based detector and the three versions which combine these two features using, respectively, the OR,
AND and ORA combination operators.

At first sight, it can be observed that all the different versions of the defect detector tend to label in lighter gray
the areas that are indicated as defective in the ground truth image. This suggests that the different versions can attain
good classification rates.

In order to perform a quantitative evaluation, the True Positive Rate (TPR), or sensitivity, and the False Positive
Rate (FPR), or fall-out, have been computed for the five versions of the defect detector. These have been calculated for

3http://dmi.uib.es/~xbonnin/resources
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Figure 6: Test images with their associated ground truth and saliency maps. A: original image. B: ground truth. C and D: respectively, defect maps
obtained for contrast and symmetry-based models. E, F and G: respectively, defect maps obtained from the OR, AND and ORA combinations.

different values of the threshold τ to obtain the corresponding ROC curves, which are presented in Fig. 7. Furthermore,
to complete the assessment, the values for the Area Under the Curve (AUC) [25] have been calculated for all the ROC
curves, obtaining the values also shown in Fig. 7.

Comparing the different ROC curves and AUC values, some interesting results can be stated:

• The five versions of the defect detector present good performances during the classification task: on the one
hand, their ROC curves are above the diagonal, what represents good classification results (better than random)
and relatively close to the (0,1) corner of the ROC space, which corresponds to perfect classification; on the
other hand, the AUC attains a high value above 0.8 for all curves.

• As predicted previously, contrast performs better than symmetry for the dataset employed in this study. This
suggests that contrast provides more information to discriminate between defective and non-defective areas.

• The three versions which combine both contrast and symmetry information provide slightly better results than
the version only based on contrast. This suggests that symmetry provides complementary information that
improves the contrast-based detector. The combination operator that provides the higher AUC value is ORA.

In a third kind of experiments, the performance of the defect detector presented in this paper has been compared
with the attained by some state of the art defect detectors. Each comparative assessment is performed using ROC
curves, which are provided in separate figures to simplify their interpretation. In a first experiment, we have compared
with the WCCD algorithm [11]. This algorithm was devised for corrosion detection in images taken from vessel
structures. It consists in a cascade classifier that combines texture (described as the energy of a gray-level co-ocurrence
matrix downsampled to 32×32 gray levels) and colour information, and has proved to outperform other more complex
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Figure 7: ROC curves and AUC values obtained for the five versions of the defect detector.

weak-classifier combinations, such as the ABCD algorithm [12], which combines Laws’ texture energy filters within
an AdaBoost framework. Notice that both WCCD and ABCD follow a supervised classification scheme so they
require from a previous training stage.

The WCCD algoritm has been slightly modified to compute the energy for all the pixels of the image instead of
computing it at a patch level (the same energy value was originally used within a 15 × 15 pixels patch), in order to
obtain finer classification results.

To perform the assessment, the original dataset has been reduced to just consider the images which contain cor-
rosion. The resultant dataset, containing 49 images, has been evaluated using the five versions of the defect detector,
as well as the WCCD algorithm. The ROC curves have been computed for the different detectors and are provided in
Fig. 8.
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Figure 8: Comparison between our five versions of the defect detector and WCCD algorithm, when looking for corroded areas.

As can be observed, the ROC curve for WCCD is comparable to the one obtained using the symmetry-based
detector, but is considerable below the obtained using all the other versions of the defect detector. The version using
the ORA combination operator is again the one which provides the best classification results.

In a second comparative assessment, we have used the defect detector presented in [13]. This algorithm combines
contrast and symmetry information through the Bayesian framework SUN [26] to provide a saliency value for every
pixel in the image. In this approach, defective areas are supposed to result more salient. To be precise, the saliency at
a given point z is defined as:

S z =
1

p(F = fz)
p(F = fz|C = 1) (4)

where F represents the visual features associated to a point (contrast and symmetry), fz represents the feature values
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observed at z, and C denotes whether a point belongs to the target class or not (1 = defective area). Using this
formulation, the saliency of a given point z decreases as the probability of features fz is higher, and increases as the
probability of fz in defects increases. To estimate these probabilities, the Parzen windows method is applied to the
histograms obtained for the different features computed for all the images of the training set.

Notice that, despite both approaches use contrast and symmetry as features to describe the defective areas, they
present two main differences: on the one hand, the defect detector based on the framework SUN requires from a
training stage to estimate the probability distributions, while our framework does not require any previous stage; on
the other hand, the SUN-based detector combines the feature information within a probabilistic formulation, while we
propose three different combinations inspired by logical operators.

To perform the assessment, the complete dataset has been used. Three different configurations of the SUN-
based detector have been considered: using just contrast, using just symmetry and using both features. These three
configuration have been evaluated through Leave-One-Out-Cross-Validation [27] and their corresponding ROC curves
have been computed. Figure 9 compares these ROC curves with the ones obtained for the corresponding three versions
of our flexible framework: using just contrast (left), using just symmetry (middle) and using both features combined
through the ORA operator (right).
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Figure 9: Comparison between our defect detector and the SUN-based algorithm: (left) using just contrast information, (middle) using just
symmetry information, (right) using both contrast and symmetry information.

As can be observed, the results obtained with the defect detector presented in this paper are very similar to the
ones obtained using the SUN-based defect detector. This indicates that a successful defect detection can be attained
using contrast and symmetry information without performing any training stage.

In a last kind of experiment, we have checked the usability of the defect detector with images taken by the aerial
robotic platform presented in [2]. This vehicle is based on the supervised autonomy paradigm, so that the user is
introduced in the position control loop to enlarge the range of inspection operations that can robustly be carried out.
Its control architecture provides different autonomous functions, including obstacle detection and collision prevention,
avoidance of getting too far from the wall under inspection, avoidance of flying too high, etc. This is achieved through
an extensive use of behavior-based technology. Regarding the vessel inspection, the user can activate an inspection
mode which moves the vehicle at a constant and reduced speed (if it is not hovering) while keeps a constant distance
and orientation with regard to the front wall, to improve the image capture.

To perform the experiment, the vehicle was flown in front of a 2.5 × 4 m surface containing corroded areas
while its vision system was taking pictures at 10 Hz. The 87 collected images were then processed by the image
mosaicing algorithm presented in [28], which managed to produce the seamless composite shown in Fig. 10 (left).
Finally, the mosaic was analysed by the ORA version of the defect detector which provided the defect map shown in
Fig. 10 (right), where a successful detection of the defective areas can be observed.
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6. Conclusions

A novel algorithm for defect detection on vessel structures have been presented. This has been devised as a generic
framework that can be configured ad hoc, selecting the features (and the way to combine them) that provide a more
successful classification of the defective and non-defective areas. The detection framework can merge multi-scale
information of the selected features so that a proper estimation of such features can be computed despite the distance
from which the images have been collected.

Regarding the features, the selection for our particular problem has been inspired by the idea of conspicuity and
taking into account the kind of defects that appear in the vessel metallic structures (mainly cracks and corrosion), as
well as the range of operating conditions in which the images are captured (lighting and distance). The contrast in
intensity, color and orientation and isotropic symmetry have been the features selected. Three different combinations
of these features inspired by logical operators have been also considered, in order to merge their information and
provide a better description of the defective situations.

The different versions of the defect detector have provided good classification performances, improving the re-
sults obtained with previous detectors. In comparison with other solutions, the presented algorithm does not require
from tuning a large set of working parameters nor performing a previous training stage. Besides, since contrast and
symmetry essentially describe the texture of a given neighbourhood, these features result more robust to changes in
lighting conditions than features purely based in intensity or color information.

The usability of the proposed solution has been also evaluated using images collected by a micro-aerial robotic
platform devised for vessel inspection. The experimental results have shown that the algorithm is able to successfully
detect the defective situations in mosaics generated from these images. During a vessel inspection campaign, the use
of mosaics allows us to extract more information about the state of the inspected surface since defective areas are not
divided over multiple images.
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Figure 10: Visual inspection performance: (left) mosaic built from images collected by the aerial vehicle [contrast tuned for visualization purposes],
(right) defect detection result provided by the ORA combination [lighter pixels are likelier to correspond to defects].
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