
Tr
eb

al
lF

in
al

d
e

G
ra

u

GRAU D’ENGINYERIA ELECTRÒNICA INDUSTRIAL I
AUTOMÀTICA

Implementation and Validation of the
Fundamental Mechanisms of the Flexible

Time-Triggered Communication Paradigm
for Ethernet-based Highly-Reliable Systems

SERGI ARGUIMBAU GUARINOS

Tutor
Alberto Ballesteros Varela

Escola Politècnica Superior
Universitat de les Illes Balears

Palma, October 2017

Quiero agradecer este trabajo de final de grado a mi familia por todo el apoyo que
me han dado. A mi madre por su cariño y amor que me da fuerzas para continuar. A mi
padre por guiarme siempre por el mejor camino para llegar hasta el objetivo. Y a mi
hermana por su constante apoyo moral.

En especial quiero agradecer a mi tutor Alberto por todas las ayudas que me ha
ofrecido para completar el TFG. Sobre todo agradecer todo el tiempo que me ha podido
dedicar para responder a todas mis dudas. Agradeciendo cada una de sus explicaciones
detalladas de los conceptos técnicos que tengo que conocer. Y por su puesto su ayuda
a la hora de resolver los problemas y cuestiones que han ido surgiendo durante el TFG.

CONTENTS

Contents iii

List of Figures v

Acronyms vii

Abstract ix

1 Introduction 1
1.1 Background and motivation . 1
1.2 Project objective . 2
1.3 Realized tasks . 3

2 Previous work 5

3 Design 9
3.1 Master . 9
3.2 Slave . 10

4 Implementation 13
4.1 Used tools/technology . 13
4.2 Master . 15

4.2.1 Ethernet Layer . 16
4.2.2 Core Layer . 16

4.3 Slaves . 20
4.3.1 Ethernet Layer . 20
4.3.2 Core Layer . 20
4.3.3 Interface Layer . 24
4.3.4 Apps . 25

4.4 Generic modules . 28
4.4.1 Ethernet . 28
4.4.2 Timespec . 29

4.5 Common FTT modules . 30
4.5.1 FTT messages . 30
4.5.2 Stream DataBase (DB) . 32

5 Functional Verification 37
5.1 Simple setup . 37

iii

iv CONTENTS

5.2 Advanced setup . 41

6 Conclusions 47
6.1 Summary . 47
6.2 Future work . 48

A Annex A: The DFT4FTT architecture 49

B Annex B: Apps of the second experiment 51
B.1 App 1 . 52
B.2 App 2 . 53
B.3 App 3 . 55

C Annex C: Terminal emulator output text in second experiment 57
C.1 Master . 57
C.2 Slave 1 . 62
C.3 Slave 2 . 65
C.4 Slave 3 . 69

Bibliography 73

LIST OF FIGURES

1.1 DFT4FTT architecture . 2

2.1 FTT architecture . 5
2.2 Stream-based communication scheme . 6
2.3 Elementary Cycle structure . 6
2.4 Master scheduler formula . 7

3.1 Master design . 9
3.2 Slave design . 10

4.1 Start screen in Wireshark . 14
4.2 Wireshark interface . 15
4.3 "master.c" libraries . 15
4.4 Code executed by the master_core thread . 17
4.5 Initialize Trigger Message (TM) message . 18
4.6 Master scheduler implementation . 18
4.7 Master dispatcher implementation . 19
4.8 Master sending TM . 19
4.9 "slave.c" libraries . 20
4.10 Initial part of slave_core thread . 21
4.11 Slave receives TM from master . 22
4.12 Slave dispatcher implementation . 23
4.13 Slave sending Synchronous Data Message (SDM) 23
4.14 Slave receives SDM from other node . 23
4.15 Initialize TM message . 24
4.16 Functions of "buffer_txrx.h" library . 24
4.17 Array of buffers Tx/Rx . 25
4.18 Functions of "ftt_iface.h" library . 25
4.19 Functions in "node_apps.h" library . 26
4.20 General start/wait functions selected with application ID 26
4.21 Structure of start and wait functions of any application 27
4.22 Example of send application . 27
4.23 Example of receive application . 28
4.24 Initialize TM message . 29
4.25 Content of the "ts.h" generic library . 29
4.26 Ethernet frame structure . 30
4.27 Ethernet message in the code . 31

v

vi List of Figures

4.28 FTT message identifiers and FTT message head structure 31
4.29 Trigger Message structure . 31
4.30 TM struct . 32
4.31 Synchronous Data Message structure . 32
4.32 SDM struct . 32
4.33 Stream structe . 33
4.34 Stream struct internally in database . 33
4.35 Functions to search inside the database . 34
4.36 unctions to make changes in Stream DB . 34
4.37 Functions to consult the Stream DB . 35

5.1 Virtual switch master and three slaves . 38
5.2 Stream DB one stream . 38
5.3 Start slave 1 . 39
5.4 Start slave 2 . 39
5.5 Start slave 3 . 39
5.6 Start master . 39
5.7 Results EC=0 . 40
5.8 Results EC=1 and EC=2 . 40
5.9 Experiment setup . 41
5.10 Stream DB initial creation . 42
5.11 Dynamic update of Stream DB . 43
5.12 Interaction between slaves . 44
5.13 Wireshark global output (1) . 45
5.14 Wireshark global output (2) . 46

A.1 DFT4FTT architecture . 50

ACRONYMS

ADM Asynchronous Data Message

AM Asynchronous Message

AW Asynchronous Window

CAN Controller Area Network

DB DataBase

DECS Distributed Embedded Control Systems

DFT4FTT Dynamic Fault Tolerance for Flexible Time Triggered

EC Elementary Cycle

FTT Flexible Time-Triggered

FTT-CAN Flexible Time-Triggered Controller Area Network

FTT-SE Flexible Time-Triggered Switched Ethernet

HaRTES Hard Real-Time Ethernet Switching

MCM Master Command Message

SM Synchronous Message

SRM Slave Request Message

SW Synchronous Window

SDM Synchronous Data Message

TM Trigger Message

vii

ABSTRACT

Ethernet is nowadays the most widespread communication standard for local networks
in the domestic and office environment. Its main advantages are: high bandwidth, low
price of its components and compatibility with other communication standards. For
that reason it is considered interesting to use Ethernet in industrial systems.

Industrial systems have additional requirements not present in domestic or office
environments. Specifically, they have real-time and dependability (reliability, avail-
ability and/or security) requirements. In addition, it is not uncommon that this kind
of systems are deployed in dynamic environments, that is, environments where the
operational conditions can change unexpectedly. Unfortunately, Ethernet by itself does
not provide the necessary services to fulfil all these requirements.

To overcome this limitation, the Dynamic Fault Tolerance for Flexible Time Trig-
gered (DFT4FTT) project aims at providing a complete infrastructure to support applica-
tions with real-time, reliability and adaptivity requirements. Specifically, the DFT4FTT
architecture is based on the Flexible Time-Triggered (FTT) communication paradigm.
FTT makes it possible to exchange periodic and aperiodic traffic with different criticality
levels in a real-time manner. Moreover, it allows to modify the real-time attributes of the
traffic dynamically. The DFT4FTT architecture modifies FTT to achieve high reliability
by means of fault-tolerance mechanisms. This is done by replicating the network and
the nodes.

The main problem when implementing the DFT4FTT architecture is that FTT was
not designed having fault tolerance in mind. Moreover, fault tolerance mechanisms are
typically not orthogonal to the operation of the system. Consequently, it is very costly
to extend the FTT software to include these mechanisms. In this regard, it was decided
to implement FTT from a new design which removes unnecessary and non-reliable
functionalities, and makes room for the new fault tolerance mechanisms.

This project represents the first step towards a new implementation of FTT for
highly-reliable systems. Specifically, this project consisted in the implementation and
validation of a basic FTT network which can then be easily extended to implement the
necessary fault tolerance mechanisms.

ix

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Background and motivation

Nowadays Ethernet is the most widespread communication standard for local networks
in the domestic and office environment. The main advantages [1] that it presents are:
high bandwidth, low price of its components and compatibility with other communica-
tion standards. For that reason it is considered interesting to use Ethernet in other areas,
like industrial systems. An example of these systems are the Distributed Embedded
Control Systems (DECS), where a set of interconnected devices with specific purpose
hardware cooperate to control a certain system. Some examples of DECS are: the
control system of an aircraft or a car, the automatic assembly chain in factories and the
domotic systems in a building.

Industrial systems have additional requirements not present in domestic or office
environments. Specifically, they have real time and dependability (reliability, avail-
ability and/or security) requirements. In addition, it is not uncommon that this kind
of systems are deployed in dynamic environments, that is, environments where the
operational conditions can change unexpectedly. Unfortunately, Ethernet does not
provide services to fulfil these requirements. To take advantage of the benefits Eth-
ernet can provide, complying with the requirements of the new environments, new
Ethernet-based protocols and standards have been developed. An example is the Flexi-
ble Time-Triggered (FTT) [2], a master/multi-slave communication paradigm, which
makes it possible for the nodes of a DECS to exchange real-time traffic. In particular,
FTT supports the transmission of periodic and aperiodic messages with different crit-
icality levels. Moreover, the flexibility of FTT comes from the fact that the real-time
attributes of the traffic can be dynamically modified by requests issued by the nodes.

In FTT, the communication is divided in several fixed-duration time slots called
Elementary Cycles (ECs). Each EC starts with the master transmitting the Trigger
Message (TM). The purpose of this message is twofold. On the one hand, it marks the

1

1. INTRODUCTION

start of the EC. On the other hand, it contains the EC-schedule, which is the set of data
messages slaves must transmit in said EC. In response to the TM slaves transmit the
requested messages. The source and destination of the data messages are applications
executed inside the slave nodes.

FTT by itself does not provide highly-reliability and thus, cannot be used to imple-
ment systems with reliability requirements. To overcome this limitation, the Dynamic
Fault Tolerance for Flexible Time Triggered (DFT4FTT) [3] project aims at adding dy-
namic fault tolerance mechanisms on top of FTT. The DFT4FTT architecture is based
on the Hard Real-Time Ethernet Switching (HaRTES) [4], a switch-Ethernet implemen-
tation of FTT in which all the slaves are interconnected by means of a custom software
switch embedding the master. As can be seen in figure 1.1, two of the most important
modifications performed on HaRTES to achieve high reliability were the replication of
the network and the slaves. On the one hand, to tolerate permanent errors affecting
the network the switch is replicated. On the other hand, to tolerate permanent errors
affecting critical nodes the corresponding slaves are also replicated.

Figure 1.1: DFT4FTT architecture (reprinted as it appears in [5] Fig. 1)

HaRTES was not designed having fault tolerance in mind. Moreover, fault tolerance
mechanisms are typically not orthogonal to the operation of the system. Consequently,
it is very costly to extend the FTT software to include these mechanisms. In this regard,
the main responsible for the development of the DFT4FTT architecture have decided
to implement HaRTES from a new design which removes unnecessary and non-reliable
functionalities, and makes room for new fault tolerance functionalities.

1.2 Project objective

The purpose of this project is to implement in software a basic FTT network, which can
be easily extended to implement the necessary fault tolerance mechanisms. With basic
we mean that only the core functionalities of the master and slaves are implemented.
The implementation of low-level communication mechanisms and the dynamic fea-
tures of DFT4FTT are out of the scope of this project. On the one hand, the HaRTES
custom switch is not implemented. Instead, to prototype we use the Flexible Time-
Triggered Switched Ethernet (FTT-SE) configuration [6], that is, the master and nodes

2

1.3. Realized tasks

are interconnected by means of a legacy switch. On the other hand, the real-time
attributes of the traffic are predefined and kept static.

Specifically, this bachelor thesis has three goals:

• Implement a basic FTT master capable of storing the traffic requirements of the
slaves for the periodic messages, as well as producing and transmitting the TMs
at the beginning of every EC with the correct EC-schedule.

• Implement a basic FTT slave capable of receiving, decoding and processing the
TMs in order to transmit the requested periodic messages.

• Implement an application interface so that the application in a given slave can
deliver its messages for transmitting, as well as receive the messages addressed
to said application.

The outcome is a functional prototype with one master and several slaves each one
executing a specific application devoted to transmit or receive messages.

1.3 Realized tasks

In this section we detail all the tasks that were done to accomplish with the project
objective:

Familiarize with the concepts of FTT and FTT-SE

The first step was to study several documents about the FTT basics [2, 6] and some of
its main concepts: the Elementary Cycle (EC), the utility of the Trigger Message (TM),
and periodic and aperiodic messages. All these concepts will be explained further in
this document in the following section 2.

Prepare a virtual environment for communication

Instead of using a legacy switch and physical node connections, it was possible to test
all the functioning in a single computer thanks to a virtual switch [7] set up in a Linux
environment. The virtual switch is easily modifiable to test different cases and in overall
it facilitates this work.

Create and define a stream database

The stream DataBase (DB) provides full control of the messages that are scheduled in
the system. Due to using a static database in this project, the same stream DB structure
was defined in the master and the slaves.

Software implementation of a reduced master

The logic of the master was implemented progressively during the working period of
this project. As some general files were inherited from a previous work, it was important
to understand how to use them and then if necessary, modify some parts.

3

1. INTRODUCTION

Software implementation of a reduced slave

Once we gained the needed experience with the master implementation previously
described, our objective was to implement the slaves. The logic of the slaves is more
complex than the one from the master because they do several actions at the same time.
Slaves have to receive the Trigger Message (TM) sent by the master, process it and then
if required, send Synchronous Data Messages (SDMs) to other slaves. Another difficulty
was that slaves have to interact with custom applications they execute.

Create an interface between an application and a slave

As we said before, the slaves have to interact with custom applications they execute. To
accomplish this, we provide them with inter middle buffers that store the data of the
streams they have to interact with.

Create simple applications to test the project

Every slave executes a custom application that represents its role in the system. These
applications could be individual tasks such as the ones of a control system: Sampling,
Control and Actuation. Two applications were created to test this project. The first one
simulates the sampling of a sensor by generating and transmitting random data. The
second one simulates a control application by receiving outputting the data received.
To simplify it, the output will just be showing the data received as we are only interested
in the correct transmission and reception of the messages.

4

C
H

A
P

T
E

R

2
PREVIOUS WORK

In this section we explain briefly the previous work which constitutes the basis for the
developing of the current project. Specifically, we will explain more in detail the basics
of the Flexible Time-Triggered (FTT) communication paradigm.

The FTT paradigm, proposed at the University of Aveiro (Portugal), is a communi-
cation model that supports the exchange of data in a flexible manner. For this purpose,
FTT provides mechanisms to ensure that the communication requirements can be
managed dynamically.

The FTT architecture follows a master/multi-slave scheme (see figure 2.1). There
is a master node which manages and coordinates the communication. The rest of the
nodes are the slaves, which follow the master instructions to exchange data through
streams.

Figure 2.1: FTT architecture (reprinted as it appears in [6] Fig. 1)

Nodes perform their communications by means of virtual communication channels
called streams. A particular stream has one publisher and several subscribers (see figure
2.2). The publisher node is the only transmitter of the stream; and the nodes that receive
the data containing that stream are the so-called subscribers. Each stream is identified
with a stream ID and has a set of real-time attributes associated: period, offset, deadline,
priority...

5

2. PREVIOUS WORK

Figure 2.2: Stream-based communication scheme (reprinted as it appears in [6] Fig. 5)

The master organizes the communications in time slots called Elementary Cycles
(ECs). The start of the EC is marked by the master with the Trigger Message (TM),
which contains the list of messages that the slaves have to exchange between each
other. The messages sent by the slaves can be either transmitted in the Synchronous
Window (SW) or the Asynchronous Window (AW), depending if they are time-triggered
or event-triggered, respectively. We can observe the structure of a EC in the figure 2.3:

Figure 2.3: Elementary Cycle structure (reprinted as it appears in [2] Fig. 1)

The messages appearing in the SW are periodic and are called Synchronous Mes-
sages (SMs). In contrast to the messages appearing in the AW, which are aperiodic
and are called Asynchronous Messages (AMs). All the SMs are Synchronous Data Mes-
sages (SDMs), that is the messages used by the slaves to convey periodic application
data. Regarding the AMs, they can be divided in two types of messages. On the one
hand, the Asynchronous Data Messages (ADMs) are the messages used by the slaves to
convey aperiodic application data. On the other hand, the AMs can also be control mes-
sages, such as Slave Request Messages (SRMs) or Master Command Messages (MCMs).
The SRMs are messages sent by the slaves to notify the master about the modification of
the communication requirements. The master receives the SRMs and decides whether
to accept or reject these changes depending on the availability of the resources (band-
width, duration of EC...). If the changes are accepted the master responds with a MCM,
forcing the slaves to modify their local stream databases with the new configuration.

Regarding the scheduling of periodic messages, each EC is identified with a se-
quence number, included as a part of the TM. This sequence number is used by the
master to schedule the messages that will be sent in the current EC. Specifically, streams
have a period and an offset. With the period, we define the periodicity in ECs with
messages are transmitted; and with the offset, we are able to delay the transmission
of the messages to a specific EC. The master scheduling condition formula is the one
appearing in figure 2.4:

6

Figure 2.4: Master scheduler formula

Finally, FTT can be used on different communication protocols. It has been already
defined for the Controller Area Network (CAN), the Flexible Time-Triggered Controller
Area Network (FTT-CAN) [8] and another approach for Ethernet with the FTT-Ethernet
[9]. The more relevant FTT implementation, based on Ethernet, are FTT with switched-
Ethernet, that is FTT-SE [6], which avoids message collisions thanks to a legacy switch
that serializes all the messages; and HaRTES [4], which is the evolution of FTT-SE, inte-
grating the master with the legacy switch to improve its global network synchronization,
among other benefits. This project is focused on a basic FTT-Ethernet to further im-
plement the fault tolerance mechanisms that will provide high reliability in the project
DFT4FTT.

7

C
H

A
P

T
E

R

3
DESIGN

In this section we will show the designed scheme of the master and the slave, and also
explain how they work. Some important notes on this section are that most of the
design was specified by the people that are behind the main project, which is DFT4FTT.
Part of my work was to discuss this design, which can be found in the Annex A, and
adapt it to the requirements of my project goal.

3.1 Master

In first place we will show the designed scheme of the Master (see figure 3.1):

Figure 3.1: Master design

9

3. DESIGN

Described shortly, the master marks the start of a new Elementary Cycle sending
the Trigger Message through Ethernet. In more detail, the master consists in two layers:
Core layer and Ethernet layer.

Note that the Ethernet layer is painted in gray because it has not been directly part
of my work; instead, it was just utilized to transmit or receive Ethernet messages.

Regarding the Core layer, each EC is triggered with a time event called EC time.
It executes the Scheduler, block that reads the Stream DataBase (DB) and generates
the EC-schedule, which is the list of the messages that have to be sent in the current
EC. After this is done, the Dispatcher is executed, which takes the EC-schedule and
constructs the content of the TM. Finally, this TM is transmitted through the Ethernet
layer, ready to be received by all the slaves.

3.2 Slave

Coming up next, the design of the Slaves (see figure 3.2):

Figure 3.2: Slave design

10

3.2. Slave

In the same way as before, we will describe in brief the functionality of the slaves:
every slave receives the Trigger Message and checks if it has to send any message. If
that is the case, said slave constructs and sends a Synchronous Data Message (SDM)
identified with a stream ID. This SDM is then received by all the slaves subscribed to
that stream ID.

The design of a slave consists in three layers and applications: the applications
represent the tasks that need to be executed by the slaves, so they are very diverse and
can make anything that the user wants. In this example are showed simple Send and
Receive applications to see more clearly its interaction with the slaves through the
Interface layer. The slave layers from the top to the bottom are: Interface layer, Core
layer and Ethernet layer.

The principal layer that represents the functionality of the slave is the Core layer,
so we will start from here. Initially, each slave receives the TM from the Ethernet layer
(which is the same as the one used in the master). It is analyzed by the Receiver module
with the help of the Stream DB, which in this case contains the streams that the slave is
a publisher or a subscriber. The TM received contains a list of the messages that have
to be sent in the current EC. Specifically, this is a list of the node IDs and the stream IDs
for every message. If the slave is the publisher of any of these stream IDs, said slave has
to send a SDM with the data associated to this stream.

The SDM is constructed in the Dispatcher module, which takes the data stored in
the Buffer Tx from the Interface layer. This Buffer Tx has been previously written by any
application that has to send data, for example the simple Send Application. Note that
the there is one Buffer Tx and Buffer Rx associated to each of the streams, so multiple
streams can be accessed in the same EC. Once the Dispatcher has ended constructing
the SDM with the corresponding data, it proceeds transmitting this message using the
Transmitter module and sending it through the Ethernet layer.

Slaves, at the same time, can also receive a SDM from other slave. Following the
same steps as before, the SDM comes through the Ethernet layer and is received with
the Receiver module, checking in the Stream DB if the node ID is subscribed to the
received stream. If that is the case, the final step is to save the received data in the Buffer
Rx of the Interface layer, ready to be read by the Receive Application.

11

C
H

A
P

T
E

R

4
IMPLEMENTATION

In this chapter we explain the implementation of the developed project. To put in
context the implementation, an initial section will be dedicated to explain the tools
and technology used in the project. Then, the master implementation is explained,
followed by implementation of the slaves. And finally, it is explained the additional
libraries that complement the master and slaves, which are the generic and common
FTT libraries.

4.1 Used tools/technology

This software project was developed using C language compiled with the CMake tool,
running on a computer with Linux OS. To test the correct functionality of the project
during its development two main tools were used, first one is the own terminal emulator,
using commands in the console to compile, run and debug the project; and second
one is Wireshark, which helps to control precisely the timing and value of the Ethernet
frames sent or received by our links.

The tools and technologies used to carry out this project are described in more
detail below.

Linux OS

The entire project was developed with Linux OS, which is an open source operating
system and it is commonly used in embedded systems [10] since it allows controlling
many electronic devices at low level. The versatility and compatibility it provides with
the technology used in this project makes it the optimal OS to work with. Concretely,
we have used the Ubuntu 16.04 version.

13

4. IMPLEMENTATION

C programming language

This programming language is one of the most widely used nowadays [11]. Especially
it is the preferred one when having to develop embedded systems due to the really
low, hardware level control and support that it provides, without entering in long and
tedious assembler programs.

The generated code is also compatible with many different compilers and oper-
ating systems, facilitating a cross-platform programming and thus providing a better
flexibility.

CMake tool

This one is the preferred tool to compile all the project files. Before using this tool, we
compiled our code with the tool Makefile [12], but with the addition of new folders and
subfolders to the project, the difficulty to write the Makefile properly, increased. In
brief, we can just say that CMake is more user friendly in the end, that is why it was
chosen.

To use CMake correctly, we have to edit the "CMakeLists.txt" file [13]. There is a
principal file with this name that compiles the entire project. Additionally, there are
additional files to compile libraries in the different subfolders of the project.

Wireshark

Wireshark is an open source Network Analyzer [14] that can be used for network trou-
bleshooting and communications protocol development, amongst other applications.
From its interface it is possible to select the link to be monitored, as depicted in figure
4.1. When selecting an Ethernet capture, we observe the exact time and value of the
sent Ethernet frames (see figure 4.2).

Figure 4.1: Start screen in Wireshark

Wireshark also has useful utilities like the option to filter the displayed frames or
also to color them depending on certain conditions, to facilitate its differentiation.

14

4.2. Master

Figure 4.2: Wireshark interface

4.2 Master

The reduced master we have implemented is divided in two layers: the Ethernet layer,
which manages sent or received Ethernet frames; and the Core layer, which contains
the basic behavior of the master itself.

The main code of this reduced master is found in the "master.c" file, which follows
the design showed in the previous chapter. Of course, this file is not independent, as it
needs other libraries to get the correct functionality. These libraries are shown in figure
4.3:

Figure 4.3: "master.c" libraries

15

4. IMPLEMENTATION

We find that the master uses generic and common FTT libraries. These libraries are
explained in detail in sections 4.4 and 4.5, respectively. The "eth.h" library provides
functions for Ethernet communications. The "ts.h" library provides functions for time
control. The "ftt_msg.h" library has structs and defines to manage Ethernet and FTT
messages. Finally, the "stream_db.h" library let us create, access and edit a stream
database.

4.2.1 Ethernet Layer

This is the layer where the communications take place through Linux sockets. These
sockets, formerly called Unix domain sockets [15] create an endpoint for communica-
tion to exchange data between processes on the same machine.

The messages are sent and received with Ethernet so a library for this purpose was
added to the project, which name is "eth.h". This library is explained with more detail
in the section 4.4.1.

In the "master.c" file, we use the Eth_raw_init function of the mentioned library
to initialize the Linux sockets. Moreover, we use the Eth_send function to send the
messages, which, in this case, are exclusively Trigger Messages.

4.2.2 Core Layer

This layer is the responsible to coordinate the communications with the connected
slave nodes, sending informative TM at the start of a new EC. For this purpose, the
master sends these messages in broadcast mode, in this way, all the slaves are supposed
to receive it.

Before entering in the "master.c" file to see the Core Layer implementation, we
should know that the master needs some input parameters to start its execution. These
parameters are the following: EC size, Interlink name, Link name and Master Role.
The EC size is the duration of the EC, measured in milliseconds. The Interlink name
is the communication link connected between two masters. The Link name is the
communication link that, in our case, is connected to the legacy switch. Finally, the
Master Role, as its own name describes, configures the master with a certain role, with
the possibility to be Leader, Follower or Standalone.

The input of these parameters is directly performed with commands from the Linux
terminal emulator, as shown in table 4.1

Parameter Command Content Example

EC size -e Number (value in ms) -e 1000
Interlink name -I String (ilink name) -I ilink1
Link name -i String (link name) -i mst
Master Role -L / -F / -S Leader / Follower / Standalone -S

Table 4.1: Master parameters

16

4.2. Master

Some of these parameters, like the Interlink name and the Master Role, are not
utilized for this project but are there for future expansions. The Interlink will be omitted
and the Master Role will always be Standalone, without any effect whatsoever.

Therefore, the command to start a master would be: sudo ./master -e 1000 -i mst -S
In this example, the Elementary Cycles would last 1000 ms and the Ethernet communi-
cations will be done using the link named ’mst’. The Standalone (-S) indication does
not affect in the current project.

Once the master program is initiated, it saves all the parameters received and
starts a thread called master_core that will have a permanent cycle until the process is
terminated [16]. The code structure of the thread is found in figure 4.4:

Figure 4.4: Code executed by the master_core thread

At the start, the stream DataBase (DB) is initialized making use of the STREAM_DB_init
function, which is part of "stream_db.h" library. More details about this library are
found in section 4.5.2. Then, the stream DB is defined at the start with create_streamDB,
creating the streams with a certain stream ID, period, offset and message size; also
configuring which are the publisher and the list of subscribers of these streams. A final
note about the stream DB is that it has the possibility to be updated at the start of every
Elementary Cycle, using the update_streamDB function. The possible updates that can
be done in this function are: create a new stream, modify the period, offset or message
size of an active stream, change the publisher node, add new subscribers, delete a
subscriber, erase the list of subscribers or delete an active stream.

Before entering in the loop, a general structure for the TM is defined with the
init_TM_msg, as observed in figure 4.5:

In the init_TM_msg function, the ETH_MSG and FTT_MSG_TM struct data types
are used. These structs belong to the "ftt_msg.h" library, which is explained with all the
details in section 4.5.1. The ETH_MSG is a struct that contains the fields of an Ethernet
message (see figure 4.27) and the same for the ETH_MSG_TM (see figure 4.30), but

17

4. IMPLEMENTATION

Figure 4.5: Initialize TM message

containing the fields of a Trigger Message. Looking at the init_TM_msg function we
can see that the Header of the Ethernet message (source, destination and Ethertype) is
determined, because it will not be modified during the execution. Finally, the TM is
defined as the Payload of the Ethernet message, which has the type and the EC time
determined too. The TM structure message can be observed with more detail in the
figure 4.29. The rest of the TM fields will be modified in the infinite loop on every EC,
in fact, a cycle in the infinite loop is a EC.

In the infinite loop, the master determines the list of streams that need to be trans-
mitted in the current EC and stores them into the EC _schedule array, which is a global
variable. This is done in M_scheduler function, shown in the figure 4.6:

Figure 4.6: Master scheduler implementation

Note that the M_scheduler function always starts with zero number of synchronous
messages (nsm). In the for loop, the master searches into the stream DB all the active
streams configured in the stream DB. For every stream found, the master uses the
Scheduler condition formula, previously commented in figure 2.4. When the condition
is met, the stream ID is saved into the EC-schedule array, followed by the increase of
the nsm, which, in the end is the same as the EC-schedule size. The next step is to
read the content of the array EC_schedule to construct the TM, this is what is called the
M_dispatcher (see figure 4.7):

18

4.2. Master

Figure 4.7: Master dispatcher implementation

In the M_dispatcher function, the rest of the TM fields are constructed. One of the
fields that is updated in the TM is the sequence number of the EC (ec_no variable). The
rest of the TM fields are related to the EC-schedule array previously constructed in the
M_scheduler function. The TM contains for every nsm the stream ID and its corre-
sponding publisher slave (node ID). In the M_dispatcher function we also print debug
information to see which EC the master is handling. Additionally, we also show infor-
mation of all the streams triggered in each EC thanks to the STREAM_DB_show_stream
function.

Once the TM is properly constructed, it is sent to the other slave nodes in broadcast
mode, executing the send_TM function (see figure 4.8). This function consists in a for
loop that sends the messages through the Ethernet Layer using the Eth_send function.
The loop is executed as many times as Link names have been defined (remember Table
4.1).

Figure 4.8: Master sending TM

Finally, after all this process has been done, the master waits the time until the
next EC starts, waiting ec_time (in ms). To have consistent EC durations, we use the
clock_nanosleep function that let us sleep until a certain timespec (see section 4.4.2).
At the start, we get an initial timespec value corresponding to the current time. Then,
in every EC we use the timespec_add_ns function, which belongs to the generic "ts.h"
library, to add the ec_time to the timespec value we have already saved. The updated
timespec value is the absolute time that the clock_nanosleep function will have to wait.
When the time arrives, the number of EC is increased by one unity and the process of
sending the TM starts again.

19

4. IMPLEMENTATION

4.3 Slaves

The reduced slaves we have implemented are structured in three layers: Ethernet layer,
to send or receive Ethernet frames; the Slave Core layer, which is the logical behavior of
the slaves; and the Slave Interface layer, capable of communicating with the custom
apps slaves execute.

Slave implementation is programmed in the "slave.c" file and it includes the follow-
ing libraries:

Figure 4.9: "slave.c" libraries

The slave uses generic, common FTT and slave-app libraries. As the generic and
common FTT libraries were commented in the previous 4.2 section, we will explain
directly the slave-app libraries which are the new ones in this file. The "ftt_iface.h"
library provides functions to communicate an application with a slave using the data
streams. The "node_apps.h" library has all the available applications to be executed for
the slaves.

4.3.1 Ethernet Layer

This layer works in the exact same way as in the previous 4.2.1 section, utilizing the
"eth.h" generic library. The slaves use the Ethernet communications to send SDM to
other nodes, and they also receive the FTT messages sent by the master or other nodes,
which can be either the TM from the master or a SDM from other node.

In the "slave.c" file, we use the Eth_raw_init function to initialize the Linux sockets,
the Eth_recv function to receive the FTT messages (TM or SDM) and also the Eth_send
function to send SDM.

4.3.2 Core Layer

The reduced slaves have a different behavior than the master in its core. Slaves nodes
receive the TM sent by the master, process it and if necessary, they send another FTT
message with the stream data, this message is called Synchronous Data Message (SDM).
The data contained in the SDM has as source or destination the applications that the
own slaves execute.

Before entering in the "slave.c" file to see the Core Layer implementation, we
should know that the slaves need some input parameters to start its execution. These

20

4.3. Slaves

parameters are: Link name, Node ID and App ID. The Link name is the communication
link connected to the legacy switch. The Node ID is the unique identifier for the slaves,
so that this ID can be used to identify which slaves are publishers or subscribers for the
streams. The App ID indicates which application the slave has to execute, as there is a
list of the available apps identified with this number (see section 4.3.4).

The input of these parameters is directly performed with commands from the Linux
terminal emulator, as shown in table 4.2:

Parameter Command Content Example

Node ID -n Number (ID value) -n 3
App ID -a Number (ID value) -a 1 ilink1
Link name -i Character (link name) -i slv

Table 4.2: Slave parameters

Therefore, the command to start a slave would be: sudo ./slave -n 3 -a 1 -i slv
In this example, the selected slave will have a node ID = 3 and execute the application
with ID = 1. The Ethernet communications would be done using the Ethernet link
named ’slv’.

Entering in the implementation, the slave executes a thread called slave_core once
the start slave command is executed. We can see the initial part of this thread in figure
4.10:

Figure 4.10: Initial part of slave_core thread

As we can see in the figure 4.10, the initial step of the slave_core thread is initializing
and creating the same stream database than in the master. Then it is known that
an Ethernet message will be received at some point of the execution, that is why it
calls read_Eth_msg, which waits until an Ethernet message is received. This Ethernet
message is just checked by its etype and if it is equal to the FTT Ethertype (0x8FF0), the

21

4. IMPLEMENTATION

message payload is structured as an FTT message. After this process is done, there are
two possible options in the FTT message type, which are differentiated in the switch.

The first case is that the received FTT message is a Trigger Message (see figure 4.11):

Figure 4.11: Slave receives TM from master

In the case that the slave has received the TM from the master, it will proceed to
read this TM with the function read_TM, then the content of this TM is printed through
the terminal emulator with print_TM to facilitate the visibility of its content, which, at
the same time acts as a debug tool to guarantee a correct functionality. Next step for the
slave is to check if its own node ID appears in the list of messages that have to be sent in
the current EC, and also, verifying that it is actually the publisher of the corresponding
stream ID too. Whenever this situation happens, the slave has to send a SDM with
the corresponding data for the selected stream ID. Starting with the init_SDM_msg
function, the basic information of the SDM is set up. Then, the slave calls S_dispatcher
to fill the SDM with the data that its own executing application can provide, as we can
see in the figure 4.12:

The slave dispatcher simply reads the transmitted data that its own application has
written in the transmission buffer, which is identified with the stream ID. To access the
data, the slave uses the Slave-App Interface FTT_IFACE_recv_slave function, which is
explained in more detail in section 4.3.3. Additionally, the data size that the streams
have is defined in the stream DB so, if they do not match with the specified size, the
terminal will show eventual Warnings or Errors regarding this issue. These Warnings or
Errors do not appear in the figure 4.12 as they are too long to show up. In either case,
when the data size is more than zero, it means that there was data in the transmission
buffer, so the slave proceeds to copy it to the SDM which will be transmitted. Once
the SDM is constructed, it is sent with the function send_SDM (see figure 4.13), also in
broadcast mode, in this way all the nodes will be able to receive it.

22

4.3. Slaves

Figure 4.12: Slave dispatcher implementation

Figure 4.13: Slave sending SDM

The other case that can be found in the switch is that the FTT message corresponds
to a Synchronous Data Message (see figure 4.14):

Figure 4.14: Slave receives SDM from other node

The received SDM is sent by other node and contains only the stream ID and the
data, as we can observe in the figure 4.31. The slave in first place has to read the SDM
to find if it is subscribed to the received stream ID. If indeed is subscribed, the data
is saved, or in other words, the data is sent to the application that the current slave is

23

4. IMPLEMENTATION

executing. To implement it, we can observe the function save_SDM function in the
figure 4.15:

Figure 4.15: Initialize TM message

The save_SDM function sends the data contained in the SDM to its application
using the Slave-App Interface FTT_IFACE_send_slave function, which is described in
next section.

4.3.3 Interface Layer

This layer is the one that allows the communication between the slaves and the apps.
As we can see in the slave design (see figure 3.2), it uses transmission and reception
buffers, which are identified by the stream IDs and are capable of storing the data
of these streams. For the implementation of this layer, two libraries were created:
"ftt_iface.h" and "buffer_txrx.h". The first library mentioned is the principal one for the
FTT interface, and their functions are the necessary ones to access the data streams
from the slave or the apps. The library "buffer_txrx.h" is a secondary library that
represents the internal work of the "ftt_iface.h" functions.

Let’s take a look in the figure 4.16 at the functions available in the "buffer_txrx.h"
because they will be used later for the implementation of the main library:

Figure 4.16: Functions of "buffer_txrx.h" library

Basically, we have a init function to prepare the transmission/reception buffers.
The most important part of this library is the read/write functions in the reception
(Rx) or transmission (Tx) buffers. In the "buffer_txrx.c" file, an array of these buffers is
created (see figure 4.17) and the index for the array is the stream ID.

The functions of the "buffer_txrx.h" library are directly used in the "ftt_iface.h"
library, which is the one actually used by the apps or the slaves. The content of the
"ftt_iface.h" is the one we can see in figure 4.18:

24

4.3. Slaves

Figure 4.17: Array of buffers Tx/Rx

Figure 4.18: Functions of "ftt_iface.h" library

As we can see, comparing both libraries, is that they present the same structure
because indeed they are directly related. The only addition is the blocking possibility in
the recv_app function, useful to only receive data when the slave has in fact interacted
with the Buffer Rx.

The names of the functions describe their functionality (send or recv) and where they
can be used (slave or app). Below there is a quick relationship between the functions of
the libraries:

• Send_slave →writeRx

• Recv_slave →readTx

• Send_app →writeTx

• Recv_app → readRx

4.3.4 Apps

In these section will be shown two examples of simple applications that can interact
with the slaves, but it has to be clear that the complexity of the apps is not limited by
any means. In this project the apps realized are as simple as a Send App, which just
emulates sending data (random values) through the Interface layer; and also a Receive
App, which just receives the data available from the Interface layer and prints it in the
console.

25

4. IMPLEMENTATION

Some relevant information about the apps in general is that there is a library called
"node_apps.h" which stores the list of the available apps (see figure 4.19), so if any ap-
plication is created, it must be included in said file. The apps are executed continuously
as threads, so for every application two functions are necessary: a start function to
activate the thread; and a wait function to indicate the join of the same thread. In the
library "node_apps.h" there is also a general function to start or wait any application,
using the application ID. The configuration of the application IDs is managed inside
the functions in "node_apps.h" library file, as can be seen in figure 4.20:

Figure 4.19: Functions in "node_apps.h" library

Figure 4.20: General start/wait functions selected with application ID

The general code structure of the start and wait functions of any application is
observed in figure 4.21:

26

4.3. Slaves

Figure 4.21: Structure of start and wait functions of any application

So the only difference between apps is the code executed in the "name_app" func-
tion thread.

As we commented previously, we did two simple apps to test this functionality,
one for sending random data and the other for receiving data and printing it. We have
configured both apps so that they interact with the same stream (ID = 0). These apps are
called send_app and recv_app, they can be found in figures 4.22 and 4.23, respectively.

Figure 4.22: Example of send application

For the implementation of the send_app, the application needs a buffer array and a
buffer size variable. The buffer size variable should coincide with the specified data size
of the stream ID in the stream DB. To simulate the reading of a sensor, the application
generates random values to fill the buffer array. Right after, the data is sent with the
FTT_IFACE_send_app function, which as we know will put the data into the Transmis-
sion buffer array, indexed in the 0 position as it is the selected stream ID. Finally, the
application waits 200 ms to generate again the values in the buffer. This wait time is
arbitrary, but it has a meaning. The sensors of DECS work at a certain speed, and it

27

4. IMPLEMENTATION

is important to adequate the EC time in the system in a way that the sensor does not
makes an excessive oversampling or otherwise, that the EC time is shorter than the
sample, which would cause no available data to be transmitted.

Figure 4.23: Example of receive application

For the implementation of the recv_app, the application at least needs a buffer array
and a buffer size variable. We can also select to block or not block the FTT_IFACE_recv_app
function to wait until the data is received or just check if there is data available, and if
that is not the case, continue executing the rest of the code. With the mentioned func-
tion we will receive the data available from the Reception buffer array of the Interface
Layer. The only condition to check if new data was received is if the buffer size variable
is greater than zero. If the condition is met, the application shows the data received
using the terminal emulator and clears the buffer size.

4.4 Generic modules

In this section it will be explained the generic libraries used in this project. These
libraries were directly added to the project, so its implementation was not mine. The
included libraries are: Ethernet and Timespec. The Ethernet library is mainly used to
send or receive Ethernet messages. The Timespec library has several functions that can
operate the timespec struct [17].

4.4.1 Ethernet

The Ethernet library, called "eth.h", provides functions for Ethernet communications.
In the project, the Ethernet layer is implemented with the use of this library. The content
of this library is shown in figure 4.24:

28

4.4. Generic modules

Figure 4.24: Initialize TM message

As we can see, the library has several defines, highlighting the ETH_MAC_LENGTH
(value=6), which is the length of a MAC direction; the ETH_MAX_FRAME_SIZE (value=1514),
which is the maximum length of an Ethernet frame; and the BCAST_MAC, which is the
MAC that we have to use if we want to send a message in broadcast mode.

Regarding the functions, we have functions to open or close Linux Sockets; and
then functions to send or receive Ethernet messages using these sockets.

4.4.2 Timespec

The Timespec library, called "ts.h", provides functions for time control. Basically it
contains functions to operate the timespec struct, as we can see in the figure 4.25:

Figure 4.25: Content of the "ts.h" generic library

The timespec struct contains a precise time in the following format: absolute time
in seconds and the nanoseconds value of that second. The library contains defines
such as the NSEC_PER_SEC and NSEC_PER_MS, which are conversion factors between
nanoseconds-seconds and nanoseconds-milliseconds.

We are not going to explain all of the available functions in the library, but we will

29

4. IMPLEMENTATION

highlight the timespec_add function, which operates the sum of two timespecs; the
timespec_add_ns, which adds a nanoseconds value to a certain timespec. In the same
way we have the substract operator, with the timespec_sub and timespec_sub_ns. And a
useful function also could be the timespec_diff, which returns the value of the difference
between two timespecs, in nanoseconds.

4.5 Common FTT modules

In this section it will be explained the common FTT libraries used in this project. These
libraries are used in both master and slaves. The included libraries are: FTT messages
and Stream DB. The library of FTT messages has several structs and defines to construct
the messages like TM, SDM, or even a general Ethernet message. The Stream DB library
has all the necessary functions to create, modify, delete or consult streams.

4.5.1 FTT messages

This library has the name "ftt_msg.h" in the source code. As we previously commented,
this library has structs and defines to manage all related to the structures of FTT mes-
sages.

To start with this library, we will look at the general Ethernet frame structure in the
figure 4.26:

Figure 4.26: Ethernet frame structure

When we have to handle Ethernet messages we just have to use the part colored in
blue, corresponding to the Header and the Payload. The Header is composed by three
parts: Destination MAC Address (6 bytes), Source MAC Address (6 bytes) and Ethertype
(2 bytes). The final part of the frame is the Data, which can be from a minimum of 46
bytes to a maximum of 1500 bytes. In our case, we will use the Payload part to build our
own FTT messages; and they will be identified with an Ethertype equal to 0x8FF0. To
see the Ethernet struct in the code see figure 4.27:

As we commented, in the Ethernet frame Payload we will build the FTT message, so
it is necessary a field that identifies the different kind of FTT messages (see figure 4.28).
In addition, we can use a general structure for an FTT message that only contains this
identifier (1 byte). The general structure is useful when another component receives a
FTT message. For example, the slaves use it when they receive the message and they do
not know if it is a TM or SDM until they read the identifier.

30

4.5. Common FTT modules

Figure 4.27: Ethernet message in the code

Figure 4.28: FTT message identifiers and FTT message head structure

For instance, the TM has the first byte of the FTT message equal to 0; and the SDM
equal to 1. There are more identifiers that are not used in this project, such as the ADM
which would be equal to 2.

The FTT messages that we use in this project are TM and SDM. Every one of these
messages have a particular format. The structure of a TM is the one shown in the figure
4.29:

Figure 4.29: Trigger Message structure

As we can see from the above figure, the TMs will always start with a 0 that identifies
them. The next field is the number of EC, which uses 4 bytes to have a wide range of
values. Another informative field is the EC duration, using 2 bytes and represented in
milliseconds. In the last part of the TM, there are fields that inform about the messages
that have to be sent: one byte tells how many synchronous messages (nsm) are sent

31

4. IMPLEMENTATION

in the current EC. And then the scheduling part has a length corresponding to 2 times
the nsm value. For every nsm, the scheduling indicates which stream ID has to be sent,
also indicating which node ID is the publisher of that stream.

In the library, we are interested in a struct that formats the TM properly (see figure
4.30):

Figure 4.30: TM struct

And the other FTT message that we also use in the project is the SDM, which has a
much simpler format, as it is just composed by the FTT Type equal to 1, then one byte
to identify the stream ID and finally the data of said stream. The SDM structure can be
seen in figure 4.31 and its implementation in the code in figure 4.32:

Figure 4.31: Synchronous Data Message structure

Figure 4.32: SDM struct

4.5.2 Stream DB

The Stream DB is a library called "stream_db.h", which has several functions to manage
the stream database. The logic of these functions is programmed in its respective

32

4.5. Common FTT modules

"stream_db.c" file. But as there is a wide variety of functions we will just show them
and explain in which situations can be useful.

Starting with the Stream DB library, we have to define the parameters that form a
stream. In this case, the only streams available are data streams, but in future extensions
there could be also control streams that could have other parameters. The data streams
have the parameters: period, offset, message size (bytes), publisher (node ID), list of
subscribers (node IDs) and the quantity of subscribers. We can see the struct of the
stream in figure 4.33:

Figure 4.33: Stream struct

As we can see from the above figure, the stream ID is not one of those parameters.
Instead, the stream ID is saved internally inside the stream DB. To implement it, in the
.c file there is an array of all the streams that uses another struct called T_STREAM_ITEM
(see figure 4.34), being the index the stream ID.

Figure 4.34: Stream struct internally in database

The T_STREAM_ITEM struct is composed by the T_STREAM struct (figure 4.33)
in addition with a variable "used" that identifies if a particular stream is active or not.
The database is limited by the MAX_STREAMS number, which is set to 20, but can
be modified if necessary. This would mean that the available stream ID values are, a
minimum of 0 and a maximum of 19, and any number superior would be out of the
range of the stream_db array and would cause an error. The goal of the "used" variable
for every stream is simple, when a stream is created is set to true, and when deleted is
set to false.

When another module, for example the master, has to search inside the stream DB
without knowing what streams are online, it has the functions of the figure 4.35 to cover
this necessity:

33

4. IMPLEMENTATION

Figure 4.35: Functions to search inside the database

Both functions search inside the Stream DB and return values of active stream
IDs. If the database does not find more active stream IDs, then they return an IN-
VALID_STREAM_ID (value=255). An example of usage of these functions can be seen in
the Dispatcher module (see figure 4.7).

The rest of the Stream DB functions can be divided in two big blocks: on one hand,
functions to make changes in the stream DB (see figure 4.36); and on the other hand,
functions to consult the stream DB (see figure 4.37).

Figure 4.36: unctions to make changes in Stream DB

In the first block we find a function to initiate the stream DB, of course functions to
create and delete an stream, then functions to manage the publisher and subscribers of
the streams and last but not least, functions to make modifications in certain stream
parameters, such as the period, offset and the message size.

In this second block we find functions to get concrete stream parameters, such as
period, offset, message size, the publisher and the list of subscribers of any stream. We
also have the option to get the full stream with the get_stream function, which will
return the struct of the figure 4.33. And if we want to print the stream parameters on

34

4.5. Common FTT modules

Figure 4.37: Functions to consult the Stream DB

screen, we can use the show_stream function. Finally, there are slave oriented functions,
that let the slaves know if they are publisher or subscribers of a particular stream.

35

C
H

A
P

T
E

R

5
FUNCTIONAL VERIFICATION

In this chapter we describe the set of experiments carried out to verify the correct
functionality of the project’s final state. For any experiment that can be done with this
project, there are in total three variable parameters: the first one is change the content
of the Stream DB, which defines the interaction between the slaves through the streams;
the second one is the number of slaves, which adds complexity to the system; and the
third one is the application these slaves execute, which defines the role of every slave in
the system.

First, during the implementation phase, we did small and specific experiments to
verify the correctness of the individual components, such as the master, the slaves or
the applications. For instance, once the Stream DB was finished, we tested if the master
was constructing and sending correctly the Trigger Messages in every EC.

When the project was built in its entirety, we performed two final experiments
to verify that it worked correctly. In the first experiment a slave transmits a periodic
message to other two slaves, verifying the correct functioning of the basic mechanisms.
The setup for this experiment is simple as it is performed in the same machine using
a virtual switch. In the second experiment the infrastructure is hardware and allows
us to demonstrate that the system is able to deal with different types of traffic in a real
environment.

5.1 Simple setup

Our goal in this first experiment is to test the communication between three slaves
through a single stream, one being the publisher and other two, the subscribers. The
master will indicate to the publisher to transmit the data associated with the stream
every 2 ECs and the subscribers will receive it.

Regarding the setup for this experiment, both the master and slaves are executed in
the same computer. More specifically, the project was tested in my laptop Sony VAIO

37

5. FUNCTIONAL VERIFICATION

model SVF1531C4E, which has a processor Intel Core i7-4500U @ 1,80 GHz and 8 GB of
RAM. In my case, to run the project in Linux (Ubuntu), the Oracle VM VirtualBox was
used on top of Windows 8.1.

The master and the three slaves communicate with a virtual switch configured with
the terminal emulator as shown in figure 5.1:

Figure 5.1: Virtual switch master and three slaves

Before running the program for each of these links, the Stream DB needs to be
modified with the required parameters. This Stream DB is static and can only be
modified in the code, using the function create_streamDB (see figure 5.2). In this case,
the update_streamDB function will be empty as we do not want to make any changes.

Figure 5.2: Stream DB one stream

As observed in figure 5.2, we are just interested in adding one stream that is sent
every 2 ECs, without offset and with a data size of 4 bytes. Then, for this same stream ID,
the publisher is set to the slave with ID=2, and there are multiple subscribers, including
slaves with ID=1 and ID=4. Note that the ID values are arbitrary.

Next step is to decide which are the applications that slaves will execute. This deci-
sion is important, because it will determine the whole functionality of the setup. For this
experiment, the applications used will be: for the publisher slave, an application that
generates random data (4 bytes, which is the stream data size); and for the subscriber
slaves, the selected application is the same for both of them, it will just receive the data
of the subscribed stream and print the data received in the console. These applications
are the same as we can see in the figures 4.22 and 4.23, respectively.

Once all has been setup, we just have to start the slaves, giving them the parameters
of the Table 4.2 to start functioning. We can see the executed commands to start slave
1, 2 and 3 in the figures 5.3, 5.4 and 5.5:

38

5.1. Simple setup

Figure 5.3: Start slave 1

Figure 5.4: Start slave 2

Figure 5.5: Start slave 3

When every slave is started, they do not do any action because they are waiting to
receive FTT messages like TM or SDM. So the final step is to start the master (see figure
5.6) with the parameters of the Table 4.1, which will start sending the Trigger Messages:

Figure 5.6: Start master

Now that everything is running, the TM will be sent every 2 seconds (2000 ms).
Every EC is identified by a sequence number, which defines the periodicity of every
stream. As we previously introduced, in this experiment there is only one stream, which
is the stream 0 with a period of 2 and an offset of 0. Consequently, the transmission of
the messages associated to this stream will be triggered in every even EC.

To see the results at a glance, all four windows are placed in the screen at the same
time, as we can see in the figures 5.7 and 5.8; being the top-left corner the master,
top-right corner the slave 1, bottom-left corner the slave 2 and in the bottom-right
corner the slave 3.

39

5. FUNCTIONAL VERIFICATION

Figure 5.7: Results EC=0

Figure 5.8: Results EC=1 and EC=2

The results of the above figures show printed text which was generated during the
execution of the program. When the master prints "—EC num X—" it indicates the
start of a new EC; showing right below the information of the scheduled streams that
contain the TM. Additionally, when the TM is sent through Ethernet, it prints the TM
size in bytes.

About the slaves, when a slave prints "—Slave EC num X—" it means that the slave
has received the TM, and as the own TM contains the sequence number of the EC, the
slaves just have to read it to know in which EC they are. Below that message, slaves

40

5.2. Advanced setup

print the rest of the content of the TM, which are: number of synchronous messages
(nsm), list of stream IDs sent in the current EC and their respective publishers. Slaves
can also print "*Send stream X*" or "*Save stream X*" to indicate that they have sent or
received an SDM.

In the figure 5.7, it is displayed the output of the EC 0, in which the master indicates
that the TM only contains 1 nsm, being the stream 0 the one that is going to be trans-
mitted. All the three slaves print that they have received this same TM in the current
EC. This particular TM indicates that the stream 0 has to be sent by the slave with node
ID=2. The slave that has this ID is the slave 1, so it indicates with a "*Send stream 0*"
that is going to send it with the corresponding data (4 bytes). Immediately after, the
slaves 2 (ID=1) and 3 (ID=4) receive and save the SDM sent by the slave 1, we can see it
because both of them print "*Save stream 0*" as both are subscribed to the stream 0.
The last print is from their respective applications, showing the received data for this
stream, which coincides with the original data sent by the publisher.

In the figure 5.8 we can observe the next EC, which is the EC 1. In this EC the master
does not have any stream scheduled to be sent, so the total number of nsm is zero.
Slaves receive the info but do not have to do anything more. The sequence is repeated
for all the following EC numbers, as we can see for example in the EC 2, which does the
same as the EC 0 but with different data values.

5.2 Advanced setup

The goal in this final experiment is ensure that the project works in a real environment,
with more communication between the slaves and also testing the flexibility. The setup
in this case will be with physical components as shown in the figure 5.9:

Figure 5.9: Experiment setup (reprinted as it appears in [18] Fig. 1a)

This setup is composed by a master and three slaves. The hardware of the master
is a desktop computer with a processor Intel Core i7-4770 CPU @ 3,40 GHz to take
the most advantage of the parallelism and 8 GB of RAM. Additionally, this PC has a
network card Intel Ethernet I350-T4 that allows modifying low-level communication

41

5. FUNCTIONAL VERIFICATION

parameters. The slaves have all the same hardware, a slave is an embedded computer
with a processor Intel Atom CPU D525 @ 1,80 GHz and 2 GB of RAM.

All the hardware components can be accessed in remote mode from any computer
connected in the network. It is important to clarify that this setup is not designed and
mounted by myself, as it has been used for the development of other projects.

For the three slaves that form this setup, they have the following role:

• Slave 1 (ID=1): Publisher of the stream 0 and 2. Not subscribed to any stream

• Slave 2 (ID=2): Publisher of the stream 1. Subscribed to stream 0, 2* and 3

• Slave 3 (ID=3): Publisher of the stream 3. Subscribed to stream 0, 1 and 2

2*: the slave 2 is subscribed 1 EC after the stream is added in the Stream DB

The Stream DB will be created at the start (see figure 5.10) and will be updated in
every Elementary Cycle (see figure 5.11). In this project, the update of the Stream DB is
checked at the start of a new EC, before the Scheduling module. This update wants to
prove some future mechanisms that provide flexibility in communications.

Figure 5.10: Stream DB initial creation

We will configure the streams so that there are multiple ways of communication
between the slaves:

• Multicast: a slave will send a stream to multiple slaves

• Unicast: a slave will send a stream to another slave

• Bidirectional: two slaves will interact between them, for example to simulate a
synchronization. To satisfy this communication they need two streams, one per
slave.

To carry out this experiment four streams will be used. The streams 0, 1 and 3 will
be added from the start, but the stream 2 will appear in EC 3. This new stream could
mean that a new event occurred in the system and it needs to transmit this information

42

5.2. Advanced setup

Figure 5.11: Dynamic update of Stream DB

to the slaves, but it starts only having one subscriber (node ID=3). Then in the next
EC it will be added one subscriber more (node ID=2), and later, in the EC 7, this same
stream will be deleted.

Also, we can observe that in the EC 10 the period of the stream 0 will be changed
to 5 ECs, so it will be transmitted less frequently compared to the initial period, which
was 3 ECs. This change could mean that the requirements of the system changed, and
in the consequence the period of this stream was modified.

With this configuration, we have that the slave 1 is performing a multicast commu-
nication using the stream 0, received by slaves 2 and 3. At the same time, the slaves 2
and 3 are alternating EC to communicate between them with the streams 1 and 3, this
is the bidirectional communication. And finally there is the special case for the stream
2, which appears online in the EC 3 but only with the slave 3 subscribed; as there is only
one transmitter and one receiver, it is a unicast communication. But then in the next
EC, with the new subscription of the slave 2, the stream 2 transforms into multicast, as
there is more than one receiver. Finally this stream is deleted in the EC 7, meaning that
its last appearance is in the EC 6. The interactions between the slaves are represented
in the figure 5.12:

Each of the slaves executes a custom application, which are the app1, app2 and
app3, respectively. These applications are just a combination of the simple Send and
Receive applications (see section 4.3.4), because in this case a slave will have to send
or receive several streams simultaneously. Since we are only interested in checking if
the SDMs are correctly transmitted and received, they contain random data. These
applications can be seen with more detail in Annex B.

At this point the experiment is ready to start. We proceed to compile the project in
the hardware of the respective master and slaves. The master and the slaves are started
with the commands that we already know from the Tables 4.1 and 4.2. These are the
commands executed for every one of the components:

43

5. FUNCTIONAL VERIFICATION

Figure 5.12: Interaction between slaves

• Master → sudo ./master -e 1000 -i slave4 -S

• Slave 1 → sudo ./slave -n 1 -a 1 -i eth2

• Slave 2 → sudo ./slave -n 2 -a 2 -i eth2

• Slave 3 → sudo ./slave -n 3 -a 3 -i eth2

We decided that every EC lasts 1 second (1000 ms) and, for the slaves, we use
intuitive node and application IDs to avoid confusions with them. Also we can observe
that all the slaves use the same link, which is the "eth2". This is because all three slaves
have identical hardware and, thus, the name of the interface connected to the switch is
the same.

With this experiment we obtain two different kinds of outputs: one is the own
terminal text output and the other is the Wireshark network capture that registered all
the Ethernet messages transmitted during the execution

The output of the terminal is very useful because we can observe directly on the
console all the details on what is happening while it is executing, but as the complexity
raised compared to the first experiment, it would be tedious to verify all the cases in
this way, although this output can be found in the Annex C.

Instead, we will use Wireshark because it will show all the FTT messages sent by the
master and the slaves. Just registering the activity of the master is enough because all
the messages are sent in Broadcast mode, so including the TM sent by itself, it will also
receive the SDM messages sent by the slaves. For a better visual comparison, we can
use the Wireshark coloring rules to color the messages. The TM will be colored in black
and the stream 0, 1, 2 and 3 will be colored in red, green, blue and yellow, respectively.
With Wireshark all the interesting output can be showed in just 2 screenshots, which
are the figures 5.13 and 5.14:

With the Wireshark output we can see very clearly the messages thanks to the
colors displayed. Remember that every EC start with a TM, which is a black message
in the figures. Below every TM, there are one or several SDMs properly colored as we
previously described, according with the Stream DB.

44

5.2. Advanced setup

Figure 5.13: Wireshark global output (1)

In figure 5.13 we show from EC 0 to 13, that is, when all the stream DB updates take
place. More concretely, we can observe that the stream 1 (yellow) and stream 3 (green)
is alternating every 2 ECs. Moreover, the stream 0 (red) is sent with a period of 3 ECs,
but in the EC 10 the period of this stream is changed to 5 ECs, that is why the stream 0
is sent in the EC 9 and in the EC 10, as expected. Also, the stream 2 (blue) appears right
when expected, at the EC 3, and lasts with a period of 1 EC until the EC 6.

Finally, in the figure 5.14 we can see the pattern that will continually follow the
experiment, as there are not more changes programmed to the Stream DB. The stream
1 and 3 keep alternating every EC and the stream 0 (red) is sent less frequently, every 5
ECs.

Another interesting information that we can observe from the Wireshark output is
related to the ’Time’ column. This column shows for every message the relative time
(in microseconds) compared to the previous one. Observing only the Trigger Messages,
its duration is always approximately 1 second, which is the duration of a Elementary
Cycle.

But we can actually go further with this information and analyze which is the
average delay (in microseconds) in the slaves to receive the TM, decode it and send the
corresponding SDM. This time could also be called the response time of the slaves. To
make this measurement we just have to calculate the mean between several values of a
particular SDM, which is sent by a particular slave. We can indeed observe the node ID

45

5. FUNCTIONAL VERIFICATION

Figure 5.14: Wireshark global output (2)

in the last digit of the source MAC. The results are available in Table 5.1.

Slave Delay (µs)

1 126
2 131
3 124

Table 5.1: Response time of the slaves

The slaves have the same hardware so the response time should be similar between
them. The mean response time of a slave is around 127 µs, which is faster enough to
ensure Elementary Cycles of 1 ms (minimum EC time).

46

C
H

A
P

T
E

R

6
CONCLUSIONS

In this chapter we expose the conclusions of the project. First, we will make a summary
of the project current state and all the goals accomplished. Finally, it is proposed a
future work that would improve the functionalities of the project.

6.1 Summary

This project consisted in the implementation of a basic FTT network on top of Ethernet.
The outcome is a functional prototype with a master, scheduling the messages that the
slaves have to send in time periods called ECs; and the slaves sending those messages
that the master is indicating for every EC. The data contained in the slave messages
has as source or destination the applications that the own slaves are executing, which
represent a particular task that the slave is performing in the system.

To ensure the correct functioning of the project we made a functional verification us-
ing both a virtual and a real environment. In the virtual environment a single computer
was used to execute the master and several slaves interconnect by means of a virtual
switch. This configuration was very handy to use during the phase of implementation.
In the real environment the master and each of the slaves was executed in a dedicated
computer and all of them were connected to a legacy switch. This configuration is more
realistic than the virtual one and allowed us to take real measures of the performance.
The results obtained from the experiments showed that the implementation operates
as expected, so it is ready to be expanded with future additions to reach the objectives
of the DFT4FTT final goal.

Finally, I want to say that this project has been an overall great academic experience
due to the new knowledge acquired and the more it can be obtained regarding the topic
we are dealing with. Also, the decision of writing this report in English was to follow
the line of the other related FTT projects, in this way it can be fully understandable for
anyone that knows this language, although it is not my native language.

47

6. CONCLUSIONS

Concluding, this project is only a fraction of a bigger project that wants to reach a
new functional protocol for highly-reliable systems. It is motivating for me to discover
the laboratory workplace where all these investigations happen and of course, be part
of it.

6.2 Future work

This project can be expanded to make improvements or add more functionalities. Some
of the future additions that can be made to the current project are the following:

• Extend the App-Slave Interface: More functions could be added in the Interface
Layer of the slave to let the applications know more about the state of the system.
For instance, applications might want to know which is the EC duration, when is
the exact time EC starts or in which EC they are currently. These functions would
improve the applications capabilities because they could do the tasks according
to the EC defined in the system..

• Implement the transmission of Asynchronous Data Messages (ADMs): In the cur-
rent project we just use the TM and the SW in the EC. But as we explained in
the section 2, the EC has an Asynchronous Window (AW) that it was not used
in this project. In the AW the ADMs could be sent. The difference compared to
the SDMs is that these messages are event-triggered, for instance, an alarm. To
make this point, we would have to consider in the Slave Core, the possibility to
convey this kind of messages after all the SDMs are sent. Additionally, streams
with different parameters would need to be defined. The period and offset are not
useful parameters in an event-triggered message, instead, we could set a priority
and a deadline, measured in ECs.

• Implement the dynamic management of the communication requirements: Right
now the management of the communication requirements is static, as it can
only be modified inside the code. The next step would be to implement the
mechanisms that let the slaves ask for changes in the stream DB. Consequently,
we would need to create the SRM and MCM types of FTT messages. As a result of
this implementation, we would also separate the stream DB of the master and
the slaves, being the one in the slaves more reduced and personalized, as it only
would contain the streams they are publishers or subscribers.

• Implement fault tolerance mechanisms: One of the first fault tolerance mecha-
nisms that could be implemented is the Reliable TM mechanism, based on the
replication of the TM in k copies. This replication is done because, if the TM is
not transmitted successfully, the slaves would misunderstand what to do in the
current EC, resulting in a failure of the system. Due to the replicated TM, the
slaves need to coordinate the reception of the TMs and determine when they
have to start sending their messages in the SW.

Finally, as we already know, this project will be expanded to reach new objectives, which
is having the DFT4FTT protocol in working conditions. All the mentioned points in this
section should help with this final goal, as they can even be considered previous steps
to start with the full implementation of DFT4FTT.

48

A
P

P
E

N
D

I
X

A
ANNEX A: THE DFT4FTT ARCHITECTURE

The scheme shown in figure A.1 represents the architecture of the DTF4FTT project. As
the project is in development, this is not the definitive version, but it is a good approach
of the architecture that will be finally implemented. We will not focus on a detailed
explanation of the scheme, just a quick explanation.

The master is structured in Interface Layer, Core Layer and Ethernet Layer. Ad-
ditionally, there is a Master Manager which is capable of modifying the Stream DB
externally. The Interface Layer is capable of making the communication possible be-
tween the Master Manager and the Core Layer. The Core Layer is the layer that contains
the behavior of the master. And the Ethernet Layer is an implementation of a software
switch.

The slaves are structured in FT4FTT Layer, Interface Layer, Core Layer and Ethernet
Layer. Moreover, the slaves execute Applications which make a certain task in the
system. The FT4FTT Layer has Transmission and Reception modules that let the Appli-
cations communicate with the Core Layer. The Interface Layer of the slave abstracts
the FTT services for the Applications. The Core Layer has all the logic behavior of the
slave. Finally, the Ethernet Layer is an implementation of a software switch configured
specially for the slaves.

49

A. ANNEX A: THE DFT4FTT ARCHITECTURE

Figure A.1: DFT4FTT architecture

50

A
P

P
E

N
D

I
X

B
ANNEX B: APPS OF THE SECOND EXPERIMENT

The app IDs (configured in "node_apps.c" file) are the following:

void start_app (uint8_t app_id) {
switch (app_id) {

case 1 : start_app1_app () ; break ;
case 2 : start_app2_app () ; break ;
case 3 : start_app3_app () ; break ;
default : break ;

}
}

void wait_app (uint8_t app_id) {
switch (app_id) {

case 1 : wait_app1_app () ; break ;
case 2 : wait_app2_app () ; break ;
case 3 : wait_app3_app () ; break ;
default : break ;

}
}

51

B. ANNEX B: APPS OF THE SECOND EXPERIMENT

B.1 App 1

void *app1_app ()
{

uint8_t buffer_send1 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_send1_size ;
uint8_t send1_stream_id =0;

uint8_t buffer_send2 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_send2_size ;
uint8_t send2_stream_id =22;

while (1) {
/ / generate data f o r stream 0
buffer_send1_size =8;
buffer_send1 [0] = rand () % 25;
buffer_send1 [1] = rand () % 8 ;
buffer_send1 [2] = rand () % 3 ;
buffer_send1 [3] = rand () % 62;
buffer_send1 [4] = rand () % 25;
buffer_send1 [5] = rand () % 8 ;
buffer_send1 [6] = rand () % 3 ;
buffer_send1 [7] = rand () % 62;

FTT_IFACE_send_app (
send1_stream_id ,
buffer_send1 ,
buffer_send1_size

) ;

/ / generate data f o r stream 2
buffer_send2_size =1;
buffer_send2 [0] = rand () % 10 + 50;

FTT_IFACE_send_app (
send2_stream_id ,
buffer_send2 ,
buffer_send2_size

) ;

usleep (300*1000); / / wait 300 ms
}
pthread_exit (NULL) ;

}

52

B.2. App 2

B.2 App 2

void *app2_app ()
{

bool blocking = f a l s e ;

uint8_t buffer_rcv1 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_rcv1_size ;
uint8_t rcv1_stream_id =0;

uint8_t buffer_rcv2 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_rcv2_size ;
uint8_t rcv2_stream_id =2;

uint8_t buffer_rcv3 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_rcv3_size ;
uint8_t rcv3_stream_id =3;

uint8_t buffer_send [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_send_size ;
uint8_t send_stream_id =1;

while (1) {
/ / r e c e i v e stream 0
FTT_IFACE_recv_app (

rcv1_stream_id , buffer_rcv1 ,
&buffer_rcv1_size , blocking

) ;
i f (buffer_rcv1_size >0){

print_recv_data (rcv1_stream_id , buffer_rcv1 , buffer_rcv1_size) ;
buffer_rcv1_size =0;

}

/ / r e c e i v e stream 2
FTT_IFACE_recv_app (

rcv2_stream_id , buffer_rcv2 ,
&buffer_rcv2_size , blocking

) ;
i f (buffer_rcv2_size >0){

print_recv_data (rcv2_stream_id , buffer_rcv2 , buffer_rcv2_size) ;
buffer_rcv2_size =0;

}

/ / r e c e i v e stream 3
FTT_IFACE_recv_app (

rcv3_stream_id , buffer_rcv3 ,
&buffer_rcv3_size , blocking

53

B. ANNEX B: APPS OF THE SECOND EXPERIMENT

) ;
i f (buffer_rcv3_size >0){

print_recv_data (rcv3_stream_id , buffer_rcv3 , buffer_rcv3_size) ;
buffer_rcv3_size =0;

}

/ / generate data f o r stream 1
buffer_send_size =2;
buffer_send [0] = rand () % 5 ;
buffer_send [1] = rand () % 3 ;

FTT_IFACE_send_app (send_stream_id , buffer_send , buffer_send_size) ;

usleep (100*1000); / / wait 100 ms
}
pthread_exit (NULL) ;

}

s t a t i c void print_recv_data (
uint8_t rcv_stream_id ,
uint8_t buffer_rcv [] ,
uint16_t buffer_rcv_size

) {
p r i n t f (" \n\n* * *APP2 RCV MESSAGE %u* * * \n" , rcv_stream_id) ;
p r i n t f (" Data_rcv : ") ;
for (uint8_t i =0; i <buffer_rcv_size ; i ++){

p r i n t f ("%u " , buffer_rcv [i]) ;
}
p r i n t f (" \n") ;

}

54

B.3. App 3

B.3 App 3

void *app3_app ()
{

bool blocking = f a l s e ;

uint8_t buffer_rcv1 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_rcv1_size ;
uint8_t rcv1_stream_id =0;

uint8_t buffer_rcv2 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_rcv2_size ;
uint8_t rcv2_stream_id =1;

uint8_t buffer_rcv3 [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_rcv3_size ;
uint8_t rcv3_stream_id =2;

uint8_t buffer_send [ETH_MAX_FRAME_SIZE] ;
uint16_t buffer_send_size ;
uint8_t send_stream_id =3;

while (1) {
/ / r e c e i v e stream 0
FTT_IFACE_recv_app (

rcv1_stream_id , buffer_rcv1 ,
&buffer_rcv1_size , blocking

) ;
i f (buffer_rcv1_size >0){

print_recv_data (rcv1_stream_id , buffer_rcv1 , buffer_rcv1_size) ;
buffer_rcv1_size =0;

}

/ / r e c e i v e stream 1
FTT_IFACE_recv_app (

rcv2_stream_id , buffer_rcv2 ,
&buffer_rcv2_size , blocking

) ;
i f (buffer_rcv2_size >0){

print_recv_data (rcv2_stream_id , buffer_rcv2 , buffer_rcv2_size) ;
buffer_rcv2_size =0;

}

/ / r e c e i v e stream 2
FTT_IFACE_recv_app (

rcv3_stream_id , buffer_rcv3 ,
&buffer_rcv3_size , blocking

55

B. ANNEX B: APPS OF THE SECOND EXPERIMENT

) ;
i f (buffer_rcv3_size >0){

print_recv_data (rcv3_stream_id , buffer_rcv3 , buffer_rcv3_size) ;
buffer_rcv3_size =0;

}

/ / generate data f o r stream 3
buffer_send_size =2;
buffer_send [0] = rand () % 5 ;
buffer_send [1] = rand () % 3 ;

FTT_IFACE_send_app (send_stream_id , buffer_send , buffer_send_size) ;

usleep (100*1000); / / wait 100 ms
}
pthread_exit (NULL) ;

}

s t a t i c void print_recv_data (
uint8_t rcv_stream_id ,
uint8_t buffer_rcv [] ,
uint16_t buffer_rcv_size

) {
p r i n t f (" \n\n* * *APP3 RCV MESSAGE %u* * * \n" , rcv_stream_id) ;
p r i n t f (" Data_rcv : ") ;
for (uint8_t i =0; i <buffer_rcv_size ; i ++){

p r i n t f ("%u " , buffer_rcv [i]) ;
}
p r i n t f (" \n") ;

}

56

A
P

P
E

N
D

I
X

C
ANNEX C: TERMINAL EMULATOR OUTPUT

TEXT IN SECOND EXPERIMENT

C.1 Master

===============
== Arguments ==
===============
EC time : 1000 ms
Slave i f a c e (s) : ’ slave4 ’
Role : standalone

* *
Successful ly opened socket : 3
Successful ly got i n t e r f a c e index : 2
Host MAC address : 0 0 : 1 1 : 1 1 : 1 1 : 1 1 : 0 8

−−−−−−−−EC num 0−−−−−−−−
* * * Stream 0 info * * *
Period : 3 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3

Number of subs : 1
L i s t of subs : 2

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 1−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

57

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

−−−−−−−−EC num 2−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 3−−−−−−−−
* * * Stream 0 info * * *
Period : 3 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

* * * Stream 2 info * * *
Period : 1 ECs
Offset : 0 ECs
Size : 1 bytes
Publisher node : 1
Number of subs : 1
L i s t of subs : 3

TM s i z e (3 nsm) : 28 bytes

−−−−−−−−EC num 4−−−−−−−−
* * * Stream 2 info * * *
Period : 1 ECs
Offset : 0 ECs
Size : 1 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 3 2

* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes

Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 5−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

* * * Stream 2 info * * *
Period : 1 ECs
Offset : 0 ECs
Size : 1 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 3 2

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 6−−−−−−−−
* * * Stream 0 info * * *
Period : 3 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 2 info * * *
Period : 1 ECs
Offset : 0 ECs
Size : 1 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 3 2

* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (3 nsm) : 28 bytes

−−−−−−−−EC num 7−−−−−−−−

58

C.1. Master

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 8−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 9−−−−−−−−
* * * Stream 0 info * * *
Period : 3 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 10−−−−−−−−
* * * Stream 0 info * * *
Period : 5 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs

Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 11−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 12−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 13−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 14−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 15−−−−−−−−

59

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

* * * Stream 0 info * * *
Period : 5 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 16−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 17−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 18−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 19−−−−−−−−

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 20−−−−−−−−
* * * Stream 0 info * * *
Period : 5 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 21−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 22−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 23−−−−−−−−

60

C.1. Master

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 24−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 25−−−−−−−−
* * * Stream 0 info * * *
Period : 5 ECs
Offset : 0 ECs
Size : 8 bytes
Publisher node : 1
Number of subs : 2
L i s t of subs : 2 3

* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (2 nsm) : 26 bytes

−−−−−−−−EC num 26−−−−−−−−
* * * Stream 3 info * * *

Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 27−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 28−−−−−−−−
* * * Stream 3 info * * *
Period : 2 ECs
Offset : 0 ECs
Size : 2 bytes
Publisher node : 3
Number of subs : 1
L i s t of subs : 2

TM s i z e (1 nsm) : 24 bytes

−−−−−−−−EC num 29−−−−−−−−
* * * Stream 1 info * * *
Period : 2 ECs
Offset : 1 ECs
Size : 2 bytes
Publisher node : 2
Number of subs : 1
L i s t of subs : 3

TM s i z e (1 nsm) : 24 bytes

61

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

C.2 Slave 1

===============
== Arguments ==
===============
Slave i f a c e (s) : ’ eth2 ’
Node ID : 1
Run app : 1

* *
slave_cnt : 1
Successful ly opened socket : 3
Successful ly got i n t e r f a c e index : 4
Host MAC address : 0 0 : 3 0 : 1 8 :B0: 0D: 1A
slave_devs : eth2

−−−Slave EC num 0−−−−
nsm: 2
streams : 0 3
pubs : 1 3

Send stream 0
Data_send : 17 1 1 2 13 4 1 10
SDM s i z e (8 data) : 24 bytes

−−−Slave EC num 1−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 2−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 3−−−−
nsm: 3
streams : 0 1 2
pubs : 1 2 1

Send stream 0
Data_send : 7 6 0 10 2 3 0 36
SDM s i z e (8 data) : 24 bytes

Send stream 2
Data_send : 52
SDM s i z e (1 data) : 17 bytes

−−−Slave EC num 4−−−−
nsm: 2

streams : 2 3
pubs : 1 3

Send stream 2
Data_send : 58
SDM s i z e (1 data) : 17 bytes

−−−Slave EC num 5−−−−
nsm: 2
streams : 1 2
pubs : 2 1

Send stream 2
Data_send : 51
SDM s i z e (1 data) : 17 bytes

−−−Slave EC num 6−−−−
nsm: 3
streams : 0 2 3
pubs : 1 1 3

Send stream 0
Data_send : 12 6 1 53 6 2 1 42
SDM s i z e (8 data) : 24 bytes

Send stream 2
Data_send : 52
SDM s i z e (1 data) : 17 bytes

−−−Slave EC num 7−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 8−−−−

62

C.2. Slave 1

nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 9−−−−
nsm: 2
streams : 0 1
pubs : 1 2

Send stream 0
Data_send : 0 2 1 20 24 5 1 21
SDM s i z e (8 data) : 24 bytes

−−−Slave EC num 10−−−−
nsm: 2
streams : 0 3
pubs : 1 3

Send stream 0
Data_send : 15 7 1 22 14 6 0 6
SDM s i z e (8 data) : 24 bytes

−−−Slave EC num 11−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 12−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 13−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 14−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 15−−−−
nsm: 2
streams : 0 1
pubs : 1 2

Send stream 0
Data_send : 17 5 1 21 2 3 2 4
SDM s i z e (8 data) : 24 bytes

−−−Slave EC num 16−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 17−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 18−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 19−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 20−−−−
nsm: 2
streams : 0 3
pubs : 1 3

Send stream 0
Data_send : 6 0 0 15 3 6 2 16
SDM s i z e (8 data) : 24 bytes

−−−Slave EC num 21−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 22−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 23−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 24−−−−
nsm: 1
streams : 3

63

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

pubs : 3

−−−Slave EC num 25−−−−
nsm: 2
streams : 0 1
pubs : 1 2

Send stream 0
Data_send : 2 1 0 22 1 3 1 58
SDM s i z e (8 data) : 24 bytes

−−−Slave EC num 26−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 27−−−−
nsm: 1
streams : 1
pubs : 2

−−−Slave EC num 28−−−−
nsm: 1
streams : 3
pubs : 3

−−−Slave EC num 29−−−−
nsm: 1
streams : 1
pubs : 2

64

C.3. Slave 2

C.3 Slave 2

===============
== Arguments ==
===============
Slave i f a c e (s) : ’ eth2 ’
Node ID : 2
Run app : 2

* *
slave_cnt : 1
Successful ly opened socket : 3
Successful ly got i n t e r f a c e index : 4
Host MAC address : 0 0 : 3 0 : 1 8 :AF : 3 9 : C2
slave_devs : eth2

−−−Slave EC num 0−−−−
nsm: 2
streams : 0 3
pubs : 1 3

* Save stream 3*
* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 17 1 1 2 13 4 1 10

* * *APP2 RCV MESSAGE 3***
Data_rcv : 3 0

−−−Slave EC num 1−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 4 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 2−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 0 1

−−−Slave EC num 3−−−−

nsm: 3
streams : 0 1 2
pubs : 1 2 1

Send stream 1
Data_send : 2 1
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 7 6 0 10 2 3 0 36

−−−Slave EC num 4−−−−
nsm: 2
streams : 2 3
pubs : 1 3

* Save stream 2*
* Save stream 3*

* * *APP2 RCV MESSAGE 2***
Data_rcv : 58

* * *APP2 RCV MESSAGE 3***
Data_rcv : 0 0

−−−Slave EC num 5−−−−
nsm: 2
streams : 1 2
pubs : 2 1

Send stream 1
Data_send : 1 1
SDM s i z e (2 data) : 18 bytes

65

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

* Save stream 2*

* * *APP2 RCV MESSAGE 2***
Data_rcv : 51

−−−Slave EC num 6−−−−
nsm: 3
streams : 0 2 3
pubs : 1 1 3

* Save stream 3*
* Save stream 0*
* Save stream 2*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 12 6 1 53 6 2 1 42

* * *APP2 RCV MESSAGE 2***
Data_rcv : 52

* * *APP2 RCV MESSAGE 3***
Data_rcv : 4 1

−−−Slave EC num 7−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 2 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 8−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 0 1

−−−Slave EC num 9−−−−
nsm: 2
streams : 0 1
pubs : 1 2

Send stream 1
Data_send : 4 2
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 0 2 1 20 24 5 1 21

−−−Slave EC num 10−−−−
nsm: 2
streams : 0 3
pubs : 1 3

* Save stream 3*
* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 15 7 1 22 14 6 0 6

* * *APP2 RCV MESSAGE 3***
Data_rcv : 0 2

−−−Slave EC num 11−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 4 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 12−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 3 2

−−−Slave EC num 13−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 0 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 14−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

66

C.3. Slave 2

* * *APP2 RCV MESSAGE 3***
Data_rcv : 0 2

−−−Slave EC num 15−−−−
nsm: 2
streams : 0 1
pubs : 1 2

Send stream 1
Data_send : 4 2
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 17 5 1 21 2 3 2 4

−−−Slave EC num 16−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 1 0

−−−Slave EC num 17−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 3 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 18−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 0 1

−−−Slave EC num 19−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1

Data_send : 3 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 20−−−−
nsm: 2
streams : 0 3
pubs : 1 3

* Save stream 3*
* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 6 0 0 15 3 6 2 16

* * *APP2 RCV MESSAGE 3***
Data_rcv : 2 0

−−−Slave EC num 21−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 0 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 22−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 2 2

−−−Slave EC num 23−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 4 2
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 24−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

67

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

* * *APP2 RCV MESSAGE 3***
Data_rcv : 4 0

−−−Slave EC num 25−−−−
nsm: 2
streams : 0 1
pubs : 1 2

Send stream 1
Data_send : 0 2
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP2 RCV MESSAGE 0***
Data_rcv : 2 1 0 22 1 3 1 58

−−−Slave EC num 26−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 3 2

−−−Slave EC num 27−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 0 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 28−−−−
nsm: 1
streams : 3
pubs : 3

* Save stream 3*

* * *APP2 RCV MESSAGE 3***
Data_rcv : 4 1

−−−Slave EC num 29−−−−
nsm: 1
streams : 1
pubs : 2

Send stream 1
Data_send : 4 2
SDM s i z e (2 data) : 18 bytes

68

C.4. Slave 3

C.4 Slave 3

===============
== Arguments ==
===============
Slave i f a c e (s) : ’ eth2 ’
Node ID : 3
Run app : 3

* *
slave_cnt : 1
Successful ly opened socket : 3
Successful ly got i n t e r f a c e index : 4
Host MAC address : 0 0 : 3 0 : 1 8 :B0: 0 8 : 7 2
slave_devs : eth2

−−−Slave EC num 0−−−−
nsm: 2
streams : 0 3
pubs : 1 3

Send stream 3
Data_send : 3 0
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 17 1 1 2 13 4 1 10

−−−Slave EC num 1−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 4 0

−−−Slave EC num 2−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 0 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 3−−−−
nsm: 3

streams : 0 1 2
pubs : 1 2 1

* Save stream 0*
* Save stream 2*
* Save stream 1*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 7 6 0 10 2 3 0 36

* * *APP3 RCV MESSAGE 1***
Data_rcv : 2 1

* * *APP3 RCV MESSAGE 2***
Data_rcv : 52

−−−Slave EC num 4−−−−
nsm: 2
streams : 2 3
pubs : 1 3

Send stream 3
Data_send : 0 0
SDM s i z e (2 data) : 18 bytes

* Save stream 2*

* * *APP3 RCV MESSAGE 2***
Data_rcv : 58

−−−Slave EC num 5−−−−
nsm: 2
streams : 1 2
pubs : 2 1

69

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

* Save stream 2*
* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 1 1

* * *APP3 RCV MESSAGE 2***
Data_rcv : 51

−−−Slave EC num 6−−−−
nsm: 3
streams : 0 2 3
pubs : 1 1 3

Send stream 3
Data_send : 4 1
SDM s i z e (2 data) : 18 bytes

* Save stream 0*
* Save stream 2*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 12 6 1 53 6 2 1 42

* * *APP3 RCV MESSAGE 2***
Data_rcv : 52

−−−Slave EC num 7−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 2 0

−−−Slave EC num 8−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 0 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 9−−−−
nsm: 2
streams : 0 1
pubs : 1 2

* Save stream 0*

* Save stream 1*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 0 2 1 20 24 5 1 21

* * *APP3 RCV MESSAGE 1***
Data_rcv : 4 2

−−−Slave EC num 10−−−−
nsm: 2
streams : 0 3
pubs : 1 3

Send stream 3
Data_send : 0 2
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 15 7 1 22 14 6 0 6

−−−Slave EC num 11−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 4 1

−−−Slave EC num 12−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 3 2
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 13−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 0 0

−−−Slave EC num 14−−−−

70

C.4. Slave 3

nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 0 2
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 15−−−−
nsm: 2
streams : 0 1
pubs : 1 2

* Save stream 1*
* Save stream 0*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 17 5 1 21 2 3 2 4

* * *APP3 RCV MESSAGE 1***
Data_rcv : 4 2

−−−Slave EC num 16−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 1 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 17−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 3 1

−−−Slave EC num 18−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 0 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 19−−−−
nsm: 1

streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 3 1

−−−Slave EC num 20−−−−
nsm: 2
streams : 0 3
pubs : 1 3

Send stream 3
Data_send : 2 0
SDM s i z e (2 data) : 18 bytes

* Save stream 0*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 6 0 0 15 3 6 2 16

−−−Slave EC num 21−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 0 0

−−−Slave EC num 22−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 2 2
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 23−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 4 2

−−−Slave EC num 24−−−−
nsm: 1

71

C. ANNEX C: TERMINAL EMULATOR OUTPUT TEXT IN SECOND EXPERIMENT

streams : 3
pubs : 3

Send stream 3
Data_send : 4 0
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 25−−−−
nsm: 2
streams : 0 1
pubs : 1 2

* Save stream 1*
* Save stream 0*

* * *APP3 RCV MESSAGE 0***
Data_rcv : 2 1 0 22 1 3 1 58

* * *APP3 RCV MESSAGE 1***
Data_rcv : 0 2

−−−Slave EC num 26−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 3 2
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 27−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 0 0

−−−Slave EC num 28−−−−
nsm: 1
streams : 3
pubs : 3

Send stream 3
Data_send : 4 1
SDM s i z e (2 data) : 18 bytes

−−−Slave EC num 29−−−−
nsm: 1
streams : 1
pubs : 2

* Save stream 1*

* * *APP3 RCV MESSAGE 1***
Data_rcv : 4 2

72

BIBLIOGRAPHY

[1] “Ethernet in Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/
Ethernet 1.1

[2] P. Pedreiras and L. Almeida, “The flexible time-triggered (FTT) paradigm: an
approach to QoS management in distributed real-time systems,” in Proceedings
International Parallel and Distributed Processing Symposium. IEEE Comput. Soc,
2003, p. 9. [Online]. Available: http://ieeexplore.ieee.org/document/1213243/ 1.1,
1.3, 2.3

[3] “DFT4FTT Project.” [Online]. Available: http://srv.uib.es/dft4ftt/ 1.1

[4] R. Santos, “Enhanced Ethernet Switching Technology for Adaptive Hard Real-Time
Applications,” Ph.D. dissertation, Universidade Aveiro, 2011. 1.1, 2

[5] A. Ballesteros, S. Derasevic, M. Barranco, and J. Proenza, “First Implementation
and Test of Reintegration Mechanisms for Node Replicas in the FT4FTT Architec-
ture,” in Proc. 21st IEEE Int. Conf. on Emerging Tech. and Factory Autom. (ETFA),
Berlin, 2016. 1.1

[6] A. Ballesteros and J. Proenza, “A description of the FTT-SE protocol,” Tech. Rep.,
2013. 1.2, 1.3, 2.1, 2.2, 2

[7] “Virtual Distributed Ethernet - VDE Switch in Wikipedia.” [Online]. Available:
https://en.wikipedia.org/wiki/Virtual{_}Distributed{_}Ethernet{#}VDE{_}switch
1.3

[8] L. Almeida, P. Pedreiras, and J. A. G. Fonseca, “The FTT-CAN protocol: Why and
how,” IEEE Transactions on Industrial Electronics, vol. 49, no. 6, pp. 1189–1201,
dec 2002. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1097741 2

[9] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo, “FTT-Ethernet: a flexible
real-time communication protocol that supports dynamic QoS management on
Ethernet-based systems,” IEEE Transactions on Industrial Informatics, vol. 1, no. 3,
pp. 162–172, 2005. 2

[10] “Linux on Embedded Systems in Wikipedia.” [Online]. Available: https:
//en.wikipedia.org/wiki/Linux{_}on{_}embedded{_}systems 4.1

73

https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Ethernet
http://ieeexplore.ieee.org/document/1213243/
http://srv.uib.es/dft4ftt/
https://en.wikipedia.org/wiki/Virtual{_}Distributed{_}Ethernet{#}VDE{_}switch
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1097741
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1097741
https://en.wikipedia.org/wiki/Linux{_}on{_}embedded{_}systems
https://en.wikipedia.org/wiki/Linux{_}on{_}embedded{_}systems

BIBLIOGRAPHY

[11] “The 2017 Top Programming Languages in IEEE Spec-
trum.” [Online]. Available: https://spectrum.ieee.org/computing/software/
the-2017-top-programming-languages 4.1

[12] “Make Software.” [Online]. Available: https://en.wikipedia.org/wiki/
Make{_}(software) 4.1

[13] “CMake Tutorial.” [Online]. Available: https://cmake.org/cmake-tutorial/ 4.1

[14] “Wireshark in Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/
Wireshark 4.1

[15] “Unix Domain Sockets in Wikipedia.” [Online]. Available: https://en.wikipedia.
org/wiki/Unix{_}domain{_}socket 4.2.1

[16] “Signal - SIGINT in Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/
Signal{_}(IPC){#}SIGINT 4.2.2

[17] “Timespec definition in cppreference.” [Online]. Available: http://en.cppreference.
com/w/c/chrono/timespec 4.4

[18] I. Alvarez, L. Almeida, and J. Proenza, “A first qualitative comparison of the
admission control in FTT-SE, HaRTES and AVB,” in 2016 IEEE World Conference
on Factory Communication Systems (WFCS). IEEE, may 2016, pp. 1–4. [Online].
Available: http://ieeexplore.ieee.org/document/7496524/ 5.9

74

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://en.wikipedia.org/wiki/Make{_}(software)
https://en.wikipedia.org/wiki/Make{_}(software)
https://cmake.org/cmake-tutorial/
https://en.wikipedia.org/wiki/Wireshark
https://en.wikipedia.org/wiki/Wireshark
https://en.wikipedia.org/wiki/Unix{_}domain{_}socket
https://en.wikipedia.org/wiki/Unix{_}domain{_}socket
https://en.wikipedia.org/wiki/Signal{_}(IPC){#}SIGINT
https://en.wikipedia.org/wiki/Signal{_}(IPC){#}SIGINT
http://en.cppreference.com/w/c/chrono/timespec
http://en.cppreference.com/w/c/chrono/timespec
http://ieeexplore.ieee.org/document/7496524/

	Contents
	List of Figures
	Acronyms
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Project objective
	1.3 Realized tasks

	2 Previous work
	3 Design
	3.1 Master
	3.2 Slave

	4 Implementation
	4.1 Used tools/technology
	4.2 Master
	4.2.1 Ethernet Layer
	4.2.2 Core Layer

	4.3 Slaves
	4.3.1 Ethernet Layer
	4.3.2 Core Layer
	4.3.3 Interface Layer
	4.3.4 Apps

	4.4 Generic modules
	4.4.1 Ethernet
	4.4.2 Timespec

	4.5 Common FTT modules
	4.5.1 FTT messages
	4.5.2 Stream DB

	5 Functional Verification
	5.1 Simple setup
	5.2 Advanced setup

	6 Conclusions
	6.1 Summary
	6.2 Future work

	A Annex A: The DFT4FTT architecture
	B Annex B: Apps of the second experiment
	B.1 App 1
	B.2 App 2
	B.3 App 3

	C Annex C: Terminal emulator output text in second experiment
	C.1 Master
	C.2 Slave 1
	C.3 Slave 2
	C.4 Slave 3

	Bibliography

