
©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Reconfiguration Strategies for Critical
Adaptive Distributed Embedded Systems

Alberto Ballesteros∗, Julián Proenza∗, Manuel Barranco∗ and Luis Almeida†
∗DMI, Universitat de les Illes Balears, Spain and †CISTER, Universidade do Porto, Portugal,

{a.ballesteros, julian.proenza, manuel.barranco}@uib.es and lda@fe.up.pt

Abstract—This paper describes the architecture and mech-
anisms proposed in the context of the DFT4FTT project for
implementing Adaptive Distributed Embedded Systems (ADESs),
that is, distributed systems with real-time, dependability and
adaptivity requirements. The focus is on the reconfiguration
strategies that allow, not only to change the system behaviour,
but to improve its tolerance to permanent hardware faults.

I. INTRODUCTION

An Adaptive Distributed Embedded System (ADES) is a
type of Distributed Embedded System (DES) that has the
ability to reconfigure itself dynamically in response to chang-
ing operational requirements and conditions. Some examples
of potential applications of these systems are: autonomous
vehicles, exploration vehicles, machinery in a smart factory
and self-repairing devices.

Adaptivity brings interesting benefits from the point of
view of the functionality, efficiency and dependability. First,
ADESs can dynamically change their behaviour to cope with
new demands. Second, ADESs can dynamically reserve the
necessary resources at each instant thus avoiding the need
to overprovision resources according to pessimistic worst-
case assumptions. Third, ADESs can recover themselves by
reallocating the tasks of a faulty node to a non-faulty one.

To properly implement an ADES it must be provided with
the appropriate architecture and mechanisms, that make it
possible to fulfil its real-time, dependability and adaptivity
requirements. In this regard, the DFT4FTT (Dynamic Fault
Tolerance for Flexible Time-Triggered Ethernet) project [1]
proposes a complete infrastructure that addresses all these
requirements both at the network and node level.

At the network level, DFT4FTT is based on FTTRS [2],
a switched-Ethernet implementation of the Flexible Time-
Triggered (FTT) communication paradigm. FTT allows to
exchange real-time traffic, while providing the necessary flexi-
bility to support the operation of an adaptable system. By flex-
ibility we mean that FTT supports the transmission of periodic
and aperiodic messages, with different and dynamic real-time
requirements. To provide high reliability, FTTRS extends FTT
with fault tolerance capabilities. Specifically, the network is
replicated to tolerate permanent hardware faults, while mes-
sages are proactively retransmitted to tolerate transient faults.
We are currently working in adding dynamic fault-tolerance
capabilities to FTTRS, so that we can dynamically modify
the number of proactive retransmissions to efficiently tolerate
transient faults due to changing Bit Error Rates (BERs).

At the node level, DFT4FTT proposes a centralized ap-
proach in which the so-called Node Manager (NM) manages
on-line the allocation of tasks in the nodes of the ADES.
Specifically, the NM monitors the environment and the system
itself, determines when and how to change the task allocation
(from now on configuration) and starts/stops/reallocates the
tasks in the nodes. To ensure that the tasks meet their real-
time requirements, the NM performs a schedulability analysis
before any allocation. To achieve high-reliability, active repli-
cation with majority voting is used. Specifically, each critical
task is redundantly executed in several nodes and task replicas
periodically vote to obtain a consensus result. This allows to
tolerate permanent and temporary hardware faults affecting
the nodes and the tasks. Moreover, DFT4FTT includes fault-
diagnosis and reintegration mechanisms to prevent the redun-
dancy attrition provoked by temporary hardware faults [3].

This paper describes the design of DFT4FTT, the first self-
reconfigurable FTT-based infrastructure for highly-reliable
ADES, which allows to change the allocation of tasks, as well
as their real-time and reliability attributes in an automatic and
dynamic manner, to fulfil the system requirements.

II. THE TASK MODEL

DESs operate thanks to the execution of multiple function-
alities, each of which implemented by one application. In
turn, each application is a set of interconnected tasks that are
executed in a sequential and/or parallel manner, for example,
sensing, control and actuation tasks in a distributed feedback
control loop. Note that distributed tasks communicate among
them thanks to the exchange of messages through the network.
Consequently, the operation of a an application is carried out
as a sequence of task executions and message transmissions.

Functionalities can have different non-functional require-
ments. In this sense, tasks can have different real-time and
reliability requirements, inherited from the application they
belong to. To fulfil the real-time requirements, we rely on the
work presented in [4], which allows to adequately determine
the triggering instants of tasks and messages in a holistic and
on-line manner. Moreover, from the reliability perspective,
this work suits our task model as it seamlessly supports
the replication of tasks. It is noteworthy, however, that we
have to extend it to also consider the scheduling of several
tasks being executed in a given node, as well as the fault
tolerance mechanisms necessary to ensure the required level
of reliability at the network level.



III. THE SYSTEM ARCHITECTURE

The DFT4FTT architecture is composed of several com-
ponents. The central element is an FTTRS network which
interconnects all the other components. The Computational
Nodes (CNs) are responsible for executing the tasks. Sensors
and Actuators (SAs) provide the means for interacting with
the environment. Finally, the Node Manager (NM) manages
dynamically the allocation of tasks to the CNs.

In DFT4FTT the self-reconfiguration process [5] is carried
out in three phases: monitoring, to obtain the system state;
decision, to determine when and how to switch to a new con-
figuration; and configuration change to carry out the system
modifications. To explain how this complete process is carried
out, the internals of the NM and a CN are shown in Fig. 1.

There are different levels in the software architecture. At the
lowest level the Communication Enabler allows to interface
with the network. Above that, we find the modules that give
support to the reconfiguration process. The services provided
by these modules can be accessed by means of the Task
Allocation Scheme (TAS) Service Interface. At highest level
we find the applications that can make use of these services.

The NM determines the system state [5] thanks to the
Monitoring Manager, which gathers and processes the network
traffic. The system state includes, for example, the list of faulty
CNs and links, as well as the tasks executed in each CN.

The decision process is carried out automatically and col-
laboratively in the NM by the Knowledge Entity (KE), using
predefined rules, and the Wisdom Entity (WE), using machine
learning. Additionally, tasks in the CNs can also ask for
changes. In this paper the focus is on the KE, which constantly
verifies that the system requirements, that is, the set of tasks
that have to be executed together with their real-time and
reliability requirements, are fulfilled. If they are not met, due to
a change in the system state or in the requirements themselves,
the KE commands a configuration change.

When a configuration change is needed, the Configuration
Change Manager orchestrates the appropriate changes that the
Main Communication Manager and the Main Task Manager
have to apply on the communications and tasks respectively.
Note that the changes carried out by these components are
supported by their counterparts in the CN side.

Fig. 1. Internals of the Node manager and a Computational Node.

IV. RECONFIGURATION STRATEGIES

As introduced previously, the KE constantly compares the
system state with the system requirements. In case the re-
quirements are not met, due to a change in the state or in the
requirements themselves, a new configuration is enforced.

The reconfiguration time has a great impact in the response
time of the system to changes. That is why, we propose a
two-step process that reduces the reconfiguration time. First,
the KE provides, as fast as possible, a new configuration that
meets the requirements. The policy for allocating the tasks is
load balancing, that is, new tasks are allocated in CNs where
the computational and network resources are underused. The
selection of the CNs is fast since we can keep track of the
available resources, and the resulting configuration can be still
easily modified in case new tasks have to be allocated. Second,
KE searches for the best configuration while the system is
running. The definition of the best configuration depends on
the goal of the system and is given by different configuration
attributes like the performance or energy consumption.

From a reliability perspective, the reconfiguration capabili-
ties of the NM allow us to reallocate the tasks being executed
in one CN to another, when the first one suffers a permanent
failure. For non-critical tasks this means we can continue
delivering the service, after a minimum downtime. For critical
(replicated) tasks this means we have redundancy preservation,
that is, we can maintain the level of replication. This is equiv-
alent to a N-Modular Redundancy scheme with several spares,
where the spares are the available computational resources
in the CNs. It is well know that this technique allows to
significantly increase the reliability.

V. ON-GOING WORK

We are currently finishing the specification of the reconfig-
uration process. We will address issues like how to determine
a valid configuration from all the possible ones.

Apart from that, we are evaluating the feasibility of dy-
namically changing the replication scheme and the number of
replicas, to achieve the best reliability level while making use
of the available resources in an efficient manner.

ACKNOWLEDGMENT

This work was supported by project TEC2015-70313-R (Spanish
Ministerio de economı́a y competividad) and by FEDER funding.

REFERENCES

[1] J. Proenza et al., “DFT4FTT Project.” [Online]. Available:
http://srv.uib.es/dft4ftt/

[2] D. Gessner, “Adding Fault Tolerance To a Flexible Real-Time Ethernet
Network for Embedded Systems,” Ph.D. dissertation, University of the
Balearic Islands, 2017.

[3] S. Derasevic, M. Barranco, and J. Proenza, “Designing fault-diagnosis
and reintegration to prevent node redundancy attrition in highly reliable
control systems based on FTT-Ethernet,” in Proc. 12th IEEE World
Conf. on Factory Comm. Systems (WFCS), Aveiro, 2016.

[4] M. J. B. Calha, “A Holistic Approach Towards Flexible Distributed
Systems,” Ph.D. dissertation, Universidade de Aveiro, 2006.

[5] A. Ballesteros, J. Proenza, and P. Palmer, “Towards a Dynamic Task
Allocation Scheme for Highly-Reliable Adaptive Distributed Embedded
Systems,” in Proc. 22th IEEE Int. Conf. on Emerging Tech. and Factory
Autom. (ETFA), Limassol, 2017.


