Universitat

de les Illes Balears

®

First Description of a Self-Reconfigurable
Infrastructure for Critical Adaptive Distributed
Embedded Systems

A. Ballesteros, J. Proenza, M. Barranco, L. Almeida, P. Palmer

Departament
de Ciéncies Matematiques
i Informatica

TECHNICAL REPORT

May/2019
A-03-2019

First Description of a Self-Reconfigurable Infrastructure for
Critical Adaptive Distributed Embedded Systems

Alberto Ballesteros
DMI, Universitat llles Balears
Palma de Mallorca, Spain

a.ballesteros@uib.es

Luis Almeida
CISTER / Instituto de Telecomunicagdes
Universidade de Porto, Portugal

lda@fe.up.pt

ABSTRACT

Adaptive systems, apart from fulfilling some functional re-
quirements, can modify their behaviour autonomously and
dynamically to cope with new operational requirements or
conditions. The DFT4FTT project aims at providing a self-
reconfigurable infrastructure that can support distributed
applications with real-time, reliability and adaptivity re-
quirements. This paper describes the architecture and the
set of mechanisms that make it possible to: monitor the
environment and the system itself, decide when a new con-
figuration is needed, decide on a new valid configuration
and apply said configuration. Finally, note that this self-
reconfiguration capabilities are not only interesting from a
functional perspective, but from a reliability perspective as
new we can implement dynamic fault-tolerance mechanisms.
In this regard, DFT4FTT implements a N-Modular Redun-
dancy scheme with spares, that increases the system relia-
bility if it is used from the very beginning of the mission.

1. INTRODUCTION

An Adaptive Distributed Embedded System (ADES) is a
type of Distributed Embedded System (DES) that has the
ability to modify its behaviour autonomously and dynam-
ically in response to changing operational requirements or
conditions. Some examples of potential applications of these
systems are: autonomous vehicles, exploration vehicles, ma-
chinery in a smart factory and self-repairable devices.

In a distributed system the ability to adapt is an inter-
esting feature from the point of view of the functionality,
efficiency and dependability. First, ADESs can dynamically
change their behaviour to cope with new operational require-
ments. Second, ADESs can dynamically reserve the neces-
sary computational and communication resources at every
instant, thus, avoiding the need to dimension the system
for the worst case scenario. Third, ADESs can dynamically
restore themselves by resetting faulty tasks, or even reallo-
cating them, when node in which they execute fails.

To properly implement an ADES it must be provided
with the appropriate architecture and mechanisms, that en-
sure that real-time, dependability and adaptivity require-
ments are fulfilled. The DFT4FTT (Dynamic Fault Toler-
ance for Flexible Time-Triggered Ethernet) project [6] pro-
poses a complete infrastructure that addresses all these re-
quirements both at the network and node level.

Julian Proenza
DMI, Universitat llles Balears
Palma de Mallorca, Spain

julian.proenza@uib.es

Manuel Barranco
DMI, Universitat llles Balears
Palma de Mallorca, Spain

manuel.barranco@uib.es

Pere Palmer
DMI, Universitat llles Balears
Palma de Mallorca, Spain

pere.palmer@uib.es

At the network level, DFT4FTT relies on FTTRS (Flexi-
ble Time-Triggered Replicated Star) [4], a switched-Ethernet
implementation of the Flexible Time-Triggered (FTT) com-
munication paradigm. FTT provides full flexibility in the
communications. This means, on the one hand, that it sup-
ports the exchange of periodic and aperiodic traffics with dif-
ferent real-time requirements. On the other hand, it allows
dynamically changing the real-time requirements of the traf-
fic. High reliability is achieved by means of fault tolerance.
Specifically, the network is replicated to tolerate permanent
hardware faults, while messages are proactively retransmit-
ted to tolerate transient faults. Finally, we are currently
working in adding dynamic fault-tolerance capabilities to
FTTRS, so that the number of proactive retransmissions
is autonomously and dynamically modified in response to
changing Bit Error Rates (BERs), thus, making an efficient
usage of the communication resources.

At the node level, DFT4FTT proposes a centralized ap-
proach in which the so-called Node Manager (NM) decides
autonomously and dynamically how to allocate the tasks
into the available nodes of the ADES. A given allocation
of tasks and messages, together with their operational at-
tribute, such as periods or deadlines, is called configuration
of the system. The NM guarantees that the system configu-
ration fulfils the real-time and reliability requirements of the
tasks. The former is achieved by performing a schedulabil-
ity analysis, both in nodes and in the communications, while
the second is achieved by means of active replication with
majority voting. Specifically, each critical task is executed in
parallel in several nodes and task replicas periodically vote
to obtain a consensus result. Finally, note that the ability to
change on-line the configuration is not only interesting from
a functional, but from a reliability perspective. For instance,
if a task replica fails we can restore the level of replication,
thus, increasing the system reliability.

In this paper we describe the on-going work we are car-
rying out to design DFT4FTT, the first self-reconfigurable
FTT-based infrastructure, and the set of mechanisms it im-
plements to: monitor the environment and the system itself;
decide when a new configuration is needed; decide on a new
valid configuration; and apply said configuration. Addition-
ally, we describe how the these self-reconfiguration capabili-
ties enable the use of a N-Modular Redundancy scheme with
spares, and how it increases the system reliability.

2. TASK MODEL

The time during which a system has to operate, or mis-
ston time, can be divided into various phases. Each phase
defines the sub-objectives that have to be met, as well as
the operation conditions under which they have to be met.
Consequently, every phase imposes different functional and
non-functional requirements to the system.

Functional requirements are fulfilled thanks to the execu-
tion of functionalities. Some examples of car functionalities
are: the throttle control, the climate control or the infotain-
ment. Each functionality is implemented by an application
which, in turn, is composed by a set of distributed and in-
terconnected tasks that are executed in a sequential and/or
parallel manner. For instance, as can be seen in Fig. 1, a ba-
sic replicated control application could be composed of one
task for consulting the value of a sensor; a triplicated task
for determining the actuation value from the sensor value;
and a third task for voting on the replicated actuation values
and, then, performing the consensus actuation. Note that
the tasks communicate among them by exchanging messages
through the network. Thus, an application can be seen as a
sequence of task executions and message transmissions.

With what regards to the non-functional requirements,
functionalities can have different real-time and reliability re-
quirements in each of the phases of the mission.

The real-time requirements of the functionalities are ful-
filled thanks to the work presented in [2], which makes it
possible to determine, for a given application, a sequence of
task executions and message transmissions that allows them
to meet their deadlines. Moreover, this is done in a cen-
tralized, on-line and holistic manner. In the context of our
problem, as shown in Exps. 1, 2 and 3, this means that, by
providing the algorithm f with the basic real-time attributes
of the tasks (C;, T; and D;, from T), the transmission time of
the messages (Cj, from M) and the dependencies between
tasks and messages (M P;, MC;, PT; and CTL;, from T
and M), we can obtain the triggering instant of each task
(Ph;), as well as the period, triggering instant, and dead-
line of each message (Tj, Ph; and D,). Nevertheless, note
that this work does not consider the distribution of tasks.
Consequently, we will extend it with additional schedulers
to ensure that, both, the computational and communication
resources in each of the nodes and links are enough to meet
the deadlines of all the tasks and messages in execution.

To ensure that the reliability requirements of the func-
tionalities are fulfilled, we use task and message replication.
Specifically, critical tasks are executed redundantly and in
parallel in different nodes, while the messages of said tasks
are pro-actively sent several times. With this we are able
to tolerate permanent and temporary faults affecting either
the nodes or the communications. Note that the work in
[2] seamlessly supports all these mechanisms as it allows to
execute multiple tasks in parallel and the additional time
needed to transmit the message replicas can be modelled by
properly increasing the worst case transmission time.

T = {t:(Ci, Ty, Dy, MP;, MCy),i = 1..t} (1)

M = {mj(Cj,PTj,CTLj’i),j = 1.Am,7,': 1.At} (2)
{Phi,i = 1.t} U{(T}, Phj, Dj),j = L.m} = f(T,M) (3)
t: Number of tasks m: Number of messages
Cji: Worst case exec. time Cj: Worst case tx time
T;,Ty; Phi, Phy; Dy, Dj: Periods, Phases and Deadlines
M P;: Message produced MC;: Message consumed
PTj: Producer task CTLj;: Consumer task list

3. SYSTEM ARCHITECTURE

The DFT4FTT architecture is composed of various hard-
ware components, as can be seen in Fig. 2: an FTTRS net-
work, several sensors and actuators, several computational
nodes and a Node Manager.

The central point of the architecture is the communica-
tion network, which enables the real-time communication
among all the other components. Moreover, it also provides
the necessary flexibility services and reliability services. As
explained in the introduction, in the current design, FTTRS
is selected as the underlying communication subsystem.

The Computational Nodes (CNs) are the components re-
sponsible for the execution the tasks. However, CNs do not
decide which tasks do they execute, as will be explained
later, it is the Node Manager the one that determines on-
line which tasks have to be executed in each of the CNs.

The sensors and the actuators (SAs) are the components
responsible for interacting with the environment. Note that,
contrary to many DES where SAs are connected to the nodes
doing the processing, in the DFT4FTT architecture they are
connected directly to the network. By doing this, SAs are
independent from the CNs, which eases the allocation of
and makes the architecture more fault tolerant. On the one
hand, there is no restriction when allocating the tasks into
the CNs, since SAs can be accessed from any CN. On the
other hand, SAs are failure independent from the CNs.

The Node Manager (NM) is the component responsible
for dynamically allocating the tasks into the CNs. The NM
constantly monitors the environment and the system itself,
identifies the situations where a new configuration is needed,
decides which tasks have to be started and/or stopped in
each of the CNs and carries out said actions. All this oper-
ation will be further described in the next sections. Finally,
note that, although the NM is represented as an indepen-
dent physical component, it is desirable that it is integrated
inside the network, specifically, inside a switch, similarly as
we have done previously for other software components [5].
By doing this the NM can take advantage of its privileged
position to better monitor the system.

As concerns the software architecture of the NM and the
CNs, Fig. 3 shows their internals. As can be seen, at the
lowest level the Communication Enabler allows to interface
with the network. Above that, several modules give sup-
port to the monitoring and configuration change processes.
The services provided by these modules can be accessed by
means of the Task Allocation Scheme (TAS) Service Inter-
face. Finally, at the top, we find the application layer, where
the Knowledge Entity in the NM and the tasks in the CNs
rely on the TAS Service Interface to instruct the changes
in the configuration of the system, when the requirements
are not fulfilled. It is noteworthy that, although the NM
must be fed, among other things, with the list of applica-
tions and their operational attributes to properly operate,
none module in the NM depends on the applications.

Comp. Comp. Comp.
Node 1 Node 2 Node 3

Node
Manager

sensor
value

Switch Ji Switch

Figure 1: App example. Figure 2: System architecture.

4. MONITORING PROCESS

The first step in the self-reconfiguration process is moni-
toring the environment and the system itself to obtain the
system state. The system state is constituted by: the status
of the architecture, i.e., the list of hardware components, how
they are interconnected among them and the fault state of
said components and their links; the failure/bit error rates,
i.e., the quantity of errors per time unit that each hardware
component and link is suffering; the status of the execution,
i.e., the list of tasks executed in each of the CNs and the
fault state of said tasks; and the status of the resources, i.e.,
the amount of computational and communication resources
being used in each of the CNs and links.

The Monitoring Manager (MM) in the NM is the compo-
nent responsible for obtaining the system state. Note that
we assume that CNs can fail in an uncontrollable manner
and, thus, the information they can provide about their sta-
tus is not reliable. Instead, we infer their status from their
outputs, i.e., the messages they generate. Next we explain
which data is gathered and and how it is processed.

To obtain the status of the architecture the MM is fed
with the initial architecture of the system, which is then
updated upon the detection of any hardware fault. Note
that the status of CNs and SAs, as well as of their links can
be gathered from the Port Guardians (PGs) of the FTTRS
switches [1]. The main purpose of the PGs is to filter some
types of communication errors so that they cannot propagate
to the other network components. However, in DFT4FTT
PGs are extended to include diagnostic features.

The failure rate of the hardware components can change
dynamically depending on the operational conditions. How-
ever, it can be determined by providing the MM with a
failure rate model of said components, like the one proposed
in the MIL-HDBK-217 handbook [3] and, then, by feeding
this model with the attributes of the environment at each
instant. The attributes of the environment can be obtained
from the sensors already available in the system, or by plac-
ing new ones. Similarly, the bit error rate of the links can
also be determined by sensing the environment. Moreover,
we can also infer the bit error rate by consulting the PGs,
which keep track of the messages that are lost.

As concerns the status of the execution, we force tasks to
periodically send an I am alive message so that the MM
can determine which applications are running in each of the
CNs. Moreover, the MM can also detect if a task replica
is producing wrong results, i.e., it is faulty. For this, the
MM collects the results from the replicas, vote on them and
determine if any result deviates significantly. Note that,
for diagnostic purposes, tasks send their messages to the
network, even if the receiving task is in the same node.

To determine the status of the resources, each application
specifies in advance the maximum amount of computational
and communication resources that are required to execute
each of its associated tasks. With this information and the
distribution of tasks, the MM can infer the amount of re-
sources used in every CN and its links.

Finally, regarding the time needed to obtain the system
status, the time elapsed between the occurrence of a relevant
event, in the environment or in the system itself, to the
detection of said event is not negligible. However, for the
events we can detect, we know how do they propagate and,
thus, we can specify an upper bound for this elapsed time.

S. DECISION PROCESS

As introduced previously, the modules responsible for tak-
ing the decisions on when and how to switch to a new con-
figuration are the Knowledge Entity (KE) in the NM and
the tasks in the CNs. On the one hand, the KE performs
automatic configuration changes, i.e., it constantly checks
that the system state fulfils the system requirements and,
if not, it forces a new configuration. On the other hand,
tasks can also request for changes by modifying the system
requirements, which will then be applied by the KE. Next we
describe in more detail what are the system requirements,
as well as how the KE and the tasks take all these decisions.

5.1 System Requirements

The system requirements are the list of applications, to-
gether with their real-time and reliability requirements, that
have to be executed. This list is divided in two parts: the
sub-list of applications related to the phase of the mission
and the one related to the on-demand functionalities.

The phase-related applications are those indispensable ap-
plications needed to fulfil the functional requirements of a
given phase of the mission. Each phase starts as a result
of the fulfilment of a specific condition. For instance, in a
commercial flight, when the plane reaches a certain altitude
it is considered that the climb phase has finished and that
the cruise phase has started. The KE is the one that de-
termines when a new phase starts, by inspecting the system
state, and by updating the system requirements accordingly.

The on-demand-related applications are those indispens-
able and non-indispensable applications that are started as
a result of a new functional requirement not related to the
phase of the mission. For instance, the application respon-
sible for the infotainment system of a vehicle can start an
additional application to provide multimedia service to a
passenger requesting it. Another example are those critical
applications started to support some overruling command
send by the driver of said vehicle. In both cases the request
is issued by the tasks in th CNs.

5.2 Knowledge Entity

As already said, the decision process in the KE has two
steps. First, the KE constantly checks that the system state
fulfils the system requirements. For this, the KE extracts
from the system state the set of applications that are be-
ing executed and compares it against the list of tasks from
the system requirements. Moreover, the KE also deter-
mines if the real-time and reliability requirements are ful-
filled. While real-time requirement violations can be easily
detected thanks to the PGs, to determine if the reliability
requirements of an application are being violated, it is nec-
essary to determine the reliability of each of its associated
tasks. This implies compiling and processing the operational
attributes of the tasks: the fault state and the failure rate
of the nodes executing the tasks, the bit error rate and the
number of proactive retransmissions of the links conveying
data from the tasks and the number of replicas for each task.

If the KE determines that the system requirements are
not fulfilled, then, it comes the second step, where the KE
decides on the new configuration to apply. Finding a new
configuration that meets all the system requirements can
take a significant amount of time due to the number of pa-
rameters involved. Consequently, we propose a three-stage
search approach. First, the KE provides, as soon as possi-

>

[Knowl_edge] system [Task 1 [Task N]

Entity reqs O
i 1 t

o AremASEE Y Sema | oot Update NI AL e A A §
g I TAS Service Interface | | TAS Service Intgrface I °
[- Configuration Change 2i2 82 2 -
= @ Manager 0|2 a[®(28 g °
LS SEaS = 3
(] 7 7 |8 °|2 2 o
o =) -
2 Monitoring | [Main Comm| | Main Task ‘3 e Sec. Comm| | Sec. Task 2
Manager Manager Manager S Manager Manager 8_
\ \ I Yy A \ o

I Comm Enabler | | Comm Enabler I

t. PG task task
tn%efﬁc infos reggnnfq?mdv recoﬁ? cmd ¥ V V reé:c?r?f1 rt?md reco?l? cmd
NETWORK

Figure 3: Internals of the Node manager and a Computational Node.

ble, a good new configuration for the critical applications,
i.e., a configuration that meets all the system requirements
of the critical applications. Second, we do the same but for
non-critical applications. Third, the KE provides a better
new configuration, i.e., a configuration that not only meets
all the system requirements but that is optimal, according
to some specific policy(ies), while the system is running. By
doing this, the service is restored as soon as possible, taking
into account the reliability requirements, and, after some
time, the system can operate in a more optimal manner.
To find a new configuration, in any of the three search
stages, we use the branch and bound technique together
with a greedy algorithm. The root of the search tree is the
current configuration and each branch represents a change,
like starting a task in a CN, thus generating new configu-
rations. After that, we use the greedy algorithm to deter-
mine which new configuration use for the next iteration. For
this, it includes a heuristic that selects the best promising
branch. This procedure is repeated until a valid configu-
ration is found. Specifically, that it fulfils the functional
requirements, i.e., contains the list of tasks that have to be
executed, and that it fulfils the non-functional requirements,
i.e., fulfils the real-time and reliability requirements.
Regarding the validation of the non-functional require-
ments, we follow the algorithm depicted in Fig. 4. This
algorithms checks in parallel if the configuration fulfils the
real-time requirements (top) and the reliability requirements
(bottom). On the one hand, we obtain the triggering param-
eters as described in Sec. 2, which is then used by two on-line
schedulability analysis algorithms that check if the computa-
tional and the communication resources are enough to meet
all the deadlines. On the other hand, we carry out an on-
line reliability analysis to check that the level of reliability
is the one required for the critical tasks. Note that, if any of
these validations fail, feedback can be obtained to improve
the generation of configurations and the branch selection.

c Determine Sched. analysis Sched. analysis c
o . . P o}
s s ry triggering params affected nodes communications o &
5 |l 1 1 st
23 ? $3
S I\ Reliability analysis > §
o critical apps ©

Figure 4: Decision process.

Finally, the third search stage allows to optimize the con-
figuration for some specific policy(ies), for instance: energy
consumption, reliability, performance of the network or QoS
and QoC. System designers decide which are the relevant
policies for the system, and their level of importance by giv-
ing a weight to each of them. Additionally, we provide a
function that scores configurations, according to the selec-
tion of policies and their weights. The higher the score, the
better the configuration. This function is then used together
with the searching algorithm to find a better configuration.

5.3 Tasks

The tasks executed in the CNs carry out the operation
related to the purpose of the system, i.e., they contain the
semantics of the applications. Consequently, they are the
only system modules that know what are the dynamic op-
erational requirements derived from the human commands
or the tasks themselves. Specifically, system designers can
create specific tasks that request system changes when a
user sends a command through an input device or when the
tasks themselves decide that it is necessary. The available
requests that a task is allowed to issue are to start and stop
applications, as well as to modify the real-time and reliabil-
ity requirements of the already running applications (both
phase-related and on-demand). Note, in this regard, that
modify the phase-related applications allow to do overruling.
Finally, as explained previously, these requests are trans-
formed into system requirement updates, i.e., these requests
are enforced modifying the system requirements directly.

These available requests are very powerful as they allow
to completely modify the operation of the system. However,
since we consider that CNs can fail in an uncontrollable man-
ner, requests could contain wrong information which would
result in a wrong system modification and, thus, grim for
the system. To solve this issue we restrict the scope of the
task requests, i.e., requests affecting critical applications can
only be issued in a reliable manner. For this, we propose two
different approaches. On the one hand, critical requests can
be issued by specific highly-reliable CNs. On the one hand,
when a highly-reliable CN cannot be provided, the task issu-
ing the critical request must be triplicated and said request
must be agreed among the three replicas.

6. CONFIGURATION CHANGE PROCESS

As already explained, when the KE determines that a con-
figuration change is required, due to a phase change or a task
request, a new configuration is proposed. This new config-
uration is then delivered to the Configuration Change Man-
ager (CCM) which orchestrates the low-level changes. To
carry out the changes related to the communications, the
CCM relies on the Main Communication Manager. This
module sends communication reconfiguration commands to
the Secondary Communication Manager in the CNs to cre-
ate, remove, or modify the attributes of the communications.
Similarly, the CCM relies on the Main Task Manager to
carry out the changes related to the tasks. Specifically, this
module sends task reconfiguration commands to the Sec-
ondary Task Manager in the CNs to start and stop tasks.

The Configuration Change process starts by liberating all
the computational and communication resources that are
no longer required, according to the new configuration. It
is noteworthy that this is a critical procedure since stopping
tasks abruptly can leave the system in a unsafe state. Two
aspects to consider in this regard are the false errors that
can be detected and the state of the actuators.

On the one hand, stopping tasks without any specific or-
der can provoke scenarios that can be interpreted as errors
by the Monitoring Manager. For instance, if the commu-
nication resources are removed before the associated tasks
are stopped, it will happen that a task will try to use these
resources provoking, thus, an error, although this task is
no longer needed. Consequently, the tasks and their com-
munication resources are stopped taking into account their
interdependencies and, in some cases, specific monitoring
features are disabled for the affected applications.

On the other hand, stopping tasks without any knowl-
edge about the semantics of the applications can cause the
state of the associated actuators to be wrong. For instance,
when a semi-automatic vehicle switches from automatic to
manual mode, it can be necessary to leave some of the ac-
tuators in a specific state, so that the manual mode starts
properly. The state in which the actuators associated to
an application have to be left, in order to perform a safe
termination, we call it termination condition. In some ap-
plications the termination condition consists in leaving the
associated actuators in a predefined state, while in others
consists in finishing the application cycle, so that the state
of the associated actuators is the last one as calculated.

When all the computational and communication resources
that are no longer required have been released, the CCM in-
structs the reservation of the new resources. To deal with
the dependency issues, this is done in the opposite order of
the liberation. First, the new communications are created
and, then, the associated tasks are started. Note that nei-
ther the tasks nor the communications start to operate right
after being created. As explained in Sec. 2, there is a trig-
gering plan that has to be fulfilled. More precisely, when all
the computational and communication resources have been
reserved, the NM triggers the execution of the tasks and the
transmission of messages in the appropriate order.

Finally, as concerns the time needed to change the config-
uration, note that the set of steps required to change from
one configuration to another can be determined in advance.
Moreover, we can determine the time of each individual
change. Consequently, we can establish an upper bound
for the time necessary to change the configuration.

7. RECONFIGURATION FOR RELIABILITY

The self-reconfiguration capabilities of this infrastructure
make it possible to change the set of applications being
executed in the system in response to changes in the sys-
tem state or in the system requirements. However, self-
reconfiguration is also interesting in the scope of the reliabil-
ity of the tasks. On the one hand, tasks can be dynamically
started, which avoids the need to overprovision resources
according to the worst-case assumptions. This is particu-
larly interesting for critical tasks which are typically tripli-
cated and, thus, require three times the amount of resources.
On the other hand, the NM manager automatically restarts
faulty tasks. For instance, this is useful when a tasks suf-
fers a temporary error that corrupts its internal state, thus,
preventing it from operating correctly from now on.

Another scenario in which this feature is useful, is when a
task cannot continue its execution due to a permanent fail-
ure affecting the CN in which it is being executed and, thus,
it is reallocated. For non-critical (non-replicated) tasks, this
means that we can continue delivering the service after some
downtime, the reconfiguration time. For critical (replicated)
tasks, this means that we have redundancy preservation.
Specifically, we are able to implement a N-Modular Redun-
dancy (NMR) scheme with several spares. In this scheme
each critical task is replicated, typically triplicated, and ex-
ecuted in a different CN. If any of the task replicas fails,
the NM can automatically start a new replica for substi-
tuting it. Moreover, since we have software spares we can
continuously allocate new replicas on-line, as long as there
are enough communication and computational resources.

Regarding the time needed to restore the level of replica-
tion of a critical task, note that we provide cold spares, i.e.,
the procedure is not instantaneous. We have to reserve the
required communication and computational resources, pro-
vide the new replica with an updated internal state of the
task and, then, trigger its execution at the right instant.

In Fig. 5 we show the level of reliability that we can obtain
if we use from the very beginning of the mission Triple Mod-
ular Redundancy (TMR) with 0, 1, 2 and 3 spares. These
values were calculated using a Stochastic Activity Network
that models a basic application with three task replicas, each
of which having a failure rate of le — 5 per hour. When a
replica fails it is automatically substituted by one of the
spares, which also have a failure rate of le — 5 per hour
although they are idle. Note, however, that this model con-
tains various simplifications. On the one hand, we consider
that we can always detect the failure of a task replica. On
the other hand, we consider that the detection and the re-
configuration time is negligible, and this is not true.

1,000 ez L

0,999 ~ -~
0,998 S ~
0,997 :
0,996 kY N ~

0,995 kS \ N

0,994 A N

0,993 3 \ N
0,992 % \
0,991

Reliability

7

0,990
o

1.030
2.060
3.090
4.120
5150
6.1801""""
7.210
8.240
9.270

10.300

11330

12.360

13.390

14.420

15.450

17,510

18,540

19,570

20.600

21.630

22.660

23.690

24.720

25.750

26.780

27.810

28.840

29.870

30.900

31.930

32.960

33.990

o
@
<
<
-
F

{ours
~~~~~~~ TMR = = = TMR+1 TMR+2 — - - TMR+3

Figure 5: Reliability analysis.



8. CONCLUSIONS

In this paper we describe the on-going work we are carry-
ing out to construct a self-reconfigurable infrastructure for
systems with real-time, reliability and adaptivity require-
ments. At the network level, this infrastructure relies on
FTTRS, a network that provides the necessary communi-
cation services to fulfil all these requirements. Specifically,
FTTRS not only provides a means to exchange real-time
traffic, while it allows to change on-line the attributes of the
communications. Moreover, it provides high-reliability by
means of channel and message replication.

At the node level, this infrastructure allows to execute the
functionalities of the system. Each these functionalities has
specific real-time and reliability requirements and is imple-
mented by means of an application, which is composed of
tasks executed in a sequential and/or parallel manner. We
have designed a set of mechanisms that make it possible to
dynamically allocate tasks in the nodes performing the com-
putation. A given allocation of tasks and messages, together
with their operational attributes, is called configuration, and
a change in the configuration can be triggered by a change
in the system requirements or in the system state.

To ensure that the real-time requirements of the func-
tionalities are always fulfilled, every time a new configura-
tion is needed, the system searches for a configuration that
makes all the tasks and messages meet their deadlines. As
concerns the reliability requirements, critical tasks are repli-
cated using the N-Modular Redundancy with spares tech-
nique. Thus, when searching for the new configuration, we
ensure that critical tasks have enough replicas.

9. FUTURE WORK

One of the most important aspects to address as future
work is the single point of failure that the Node Manager
represents. To solve this issue we plan to duplicate the Node
Manager and introduce mechanisms to make both replicas
replica determinate, so that they can operate in parallel and
seamlessly tolerate the failure of one of them.

Another aspect we are working on is the characterization
of the self-reconfiguration time. This is a very important
system attribute, from a real-time perspective, since it de-
termines how fast the the system can react to changes. As
explained, the self-reconfiguration is done in three steps: de-
tect the need for a new configuration, determine a new valid
configuration and apply said configuration. While the first
and the third steps are deterministic and, thus, we can find
an upper bound, we do not have yet any mechanism to de-
termine how much time it takes find a valid configuration
using the searching algorithm proposed.

10. ACKNOWLEDGMENTS

This work was supported by project TEC2015-70313-R
(Spanish Ministerio de economia y competividad), by FEDER
funding and by the Portuguese Government through FCT
grant UID/EEA /50008,/2013 - Instituto de Telecomunicagdes.

11. REFERENCES

[1] A. Ballesteros, D. Gessner, J. Proenza, M. Barranco,
and P. Pedreiras. Towards preventing error propagation
in a real-time Ethernet switch. In Proc. 18th IEEE Int.
Conf. on Emerging Tech. and Factory Autom. (ETFA),
Cagliary, 2013.

[2] M. J. B. Calha. A Holistic Approach Towards Flezible
Distributed Systems. PhD thesis, Universidade de
Aveiro, 2006.

[3] DOD. MIL-HDK-217F-2 Military Handbook, Reliability
Prediction Of Electronic Equipment. Department of
Defense Washington DC, 1995.

[4] D. Gessner. Adding Fault Tolerance To a Flexible
Real-Time Ethernet Network for Embedded Systems.
PhD thesis, University of the Balearic Islands, 2017.

[5] D. Gessner, J. Proenza, M. Barranco, and L. Almeida.
Towards a Flexible Time-Triggered Replicated Star for
Ethernet. In Proc. 18th IEEE Int. Conf. on Emerging
Tech. and Factory Autom. (ETFA), Cagliary, 2013.

[6] J. Proenza, M. Barranco, A. Ballesteros, I. Alvarez,

D. Gessner, S. Derasevic, and G. Rodriguez-Navas.
DFT4FTT Project.



