
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Analysing Termination and Consistency in the
AVB’s Stream Reservation Protocol

Daniel Bujosa∗, Inés Álvarez∗, Drago Čavka†, Julián Proenza∗
∗Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Spain,

{daniel.bujosa, ines.alvarez, julian.proenza}@uib.es
†Faculty of Electrical Engineering, University of Banja Luka, Bosnia and Herzegovina,

drago.cavka@etf.unibl.org

Abstract—The Audio Video Bridging Task Group (AVB TG)
from the IEEE proposed a series of standards to provide
Ethernet with soft real-time guarantees. Later on, the group
was renamed to Time-Sensitive Networking and its scope was
broadened to provide new services to support critical applica-
tions. The Stream Reservation Protocol (SRP) stands out among
the projects developed by the groups. Nonetheless, SRP was
originally designed for audio/video applications and does not take
into account properties that are important for critical systems;
such as termination and consistency. In this work we study the
termination and consistency of SRP at different levels, using a
model we developed of this protocol in UPPAAL . We see that SRP
does not provide termination nor consistency, we discuss how this
can impact critical applications and we propose solutions for all
the issues detected.

I. INTRODUCTION

In 2005 the IEEE Audio Video Bridging Task Group started
working to provide Ethernet with soft real-time capabilities.
The interest in the work of the group grew and in 2012
the group was renamed to Time-Sensitive Networking Task
Group (TSN TG) and its scope broadened to provide Ethernet
with hard and soft real-time communications, flexibility of the
traffic and fault tolerance mechanisms for critical applications.

One of the projects developed by the groups is the Stream
Reservation Protocol (SRP), which was originally standardised
by the AVB TG in [1] and later extended by the TSN TG in [2].
SRP provides Ethernet with support for resource reservation
between a transmitter and its receivers, e.g. reserve bandwidth
in bridges’ ports to forward certain traffic. SRP is a key piece
to support many of the projects developed by the TSN TG.
This is so because resource reservation prevents frame delays
beyond predefined limits and losses due to buffer overflow.
Furthermore, SRP allows modifying the traffic in run-time,
providing a certain degree of flexibility to the network.

Some of the applications targeted by the TSN TG are
critical. The mechanisms developed for these applications,
including those that operate at the network level, must exhibit
a series of properties to guarantee their correct operation.
Nonetheless, AVB’s distributed version of SRP was not de-
signed considering these applications and, thus, it was not
designed to fulfil these properties. Moreover, even though
the revision of SRP included two new architectures, it still
supports the distributed one with no modifications.

Due to the great relevance of the work carried out by the
TSN TG, the community has done a significant amount of
work related to the study, application and improvement of the
TSN standards, such as the ones surveyed in [3] and [4]. Many
others are focused on the study of SRP’s efficiency, such as
the work presented in [5]; while other works provide SRP with
support for reserving resources in several redundant paths [6].
Nonetheless, to the best of the authors’ knowledge, there are
no works related to the study of the adequacy of the distributed
version of SRP for its use in critical systems.

In this work we carry out a first analysis to know whether
the distributed version of SRP can be deployed in critical sys-
tems as it is included in TSN’s new standard. More precisely,
we evaluate whether it provides termination and consistency,
properties that are fundamental for critical systems. In order to
evaluate these properties, we modelled the protocol (see [7] for
a description of this model) using the UPPAAL model checker,
thanks to which we were able to detect the issues presented
in this work. We analyse the protocol assuming the absence
of faults. Transient faults would not be a problem since they
can be tolerated using mechanisms such as those shown in [8];
whereas permanent faults have been left for future work. Next
we identify scenarios in which termination and consistency for
the reservations are not achieved, we discuss the consequences
derived from the absence of these properties and we provide
a first overview of a series of mechanisms to enforce them.

II. SRP OVERVIEW

As anticipated in Section I, SRP [1] is key to provide
real-time guarantees to Ethernet-based communications; as
it allows to ensure the availability of resources during the
communication. This allows to bound the end-to-end delay
of frames and to prevent packet losses due to buffer overflow.
Furthermore, SRP allows to modify the traffic in run-time,
providing certain degree of flexibility to the network. As we
said, currently there are three different architectures proposed
in the SRP standard [2]. In this work we focus on the
distributed architecture of SRP.

SRP enforces a publisher-subscriber model, where the pub-
lisher is called talker and the subscribers are called listeners.
The data communication is carried out through streams. A
stream is a logical communication channel which conveys
traffic with specific characteristics, e.g., a certain period and



frame size. In SRP’s distributed architecture, the talker is
responsible for triggering the creation of the stream.

To create a stream the talker declares its intention to
communicate by transmitting a special message called talker
advertise (TA), which is transmitted in broadcast mode. Note
that there are mechanisms that eliminate loops in order to
prevent declarations from circulating the network indefinitely.
The TA message conveys information to identify the stream
and the resources it needs. This message is processed by the
bridges, which check whether there are enough resources in
each one of their forwarding ports to create the stream. If there
are enough resources in the ports, the bridge forwards the TA
message through them; otherwise, the bridge forwards a talker
failed message (TF) through the ports with no resources. A
TF message conveys the same information as the TA message
plus the reason for the failure in the reservation and it is also
transmitted in broadcast mode. Note that, at this point, bridges
register the talker’s request, but do not reserve resources.

When a listener receives a talker message, it decides
whether it wants to bind to the stream. If the listener does
not want to bind, it does not perform any further actions
nor informs the talker about it. Conversely, if the listener
wants to bind to the stream there are three options, (i) if the
listener receives a TA message, it checks whether it has enough
resources and, if so, it transmits a listener ready message (LR);
(ii) if the listener does not have resources the listener forwards
a listener asking failed message (LAF) and (iii) if a listener
receives a TF message it also forwards an LAF message.

Bridges unify the responses from the listeners to transmit
them towards the talker. To do so, bridges first process the
responses received through each port and then generate a new
response. When a bridge receives an LR message through a
port, it checks if the port has enough resources. If there are
resources, the LR remains unaltered and the port locks the
resources; otherwise the LR becomes an LAF. On the other
hand, if a bridge receives an LAF message the value remains
unaltered and the port does not lock the resources.

Once the bridge has processed the responses, it must unify
them. If all ports have an LR, the bridge forwards an LR to
the talker; while if all ports have an LAF, the bridge forwards
an LAF. Finally, if the bridge has LR in some ports and
LAF in some other ports, it forwards a so called listener
ready failed message (LRF). During the time the talker waits
for a response, or if it receives an LAF, the stream is not
created. Nevertheless, when the talker receives an LR or an
LRF message, it creates the stream and starts transmitting.

Once the stream has been created, the talker can delete
it at any time if needed. It can do so using the unadvertise
stream mechanism, which consists in transmitting a message
that eliminates the stream from all devices. This message is
also transmitted in broadcast mode to ensure that all bridges
and listeners receive the indication to eliminate the stream.

III. EVALUATION OF THE TERMINATION

As it was introduced in Section I, termination is an impor-
tant property in critical distributed systems. Thus, TSN should

provide it in order to support this kind of systems. In this work
we differentiate two levels of termination.

The first level refers to termination for the application.
Many critical applications require to know the result of the
reservations to make important decisions. Thus, the lack of
termination can cause a malfunction of those applications. At
this level, SRP should ensure that all reservations are finished
(creating the stream or not) within a bounded time.

The second level refers to termination for the infrastructure
involved in the reservations. We understand as infrastructure
the bridges and nodes of the network. Since these devices
make decisions related to the reservations, it is important
to provide them with termination, to prevent unforeseen and
undesirable effects in future reservations.

Nevertheless, despite the importance of termination, we
found some issues in both levels even in the absence of faults.
It is important to note that the issues detected are mainly due
to the fact that in SRP listeners do not inform the bridges
nor the talker when they are not interested in binding to a
stream. We next present the problems detected and some of
the possible ways to solve them.

A. Termination for the Application

We first discuss termination for the application. We saw
that there are scenarios where the talker does not receive any
response from the listeners, even in the absence of faults, and
thus it waits indefinitely, e.g., if there are no listeners interested
in the stream. As said before, many critical applications require
to know the result of the reservations to make important deci-
sions. Thus, the lack of termination can cause a malfunction
of those applications, such as blocking the decision process or
leading to incorrect decisions due to the lack of knowledge.

A possible solution is to introduce a timeout in the talker.
If the talker does not receive any listener response before the
timeout expires, it should tear the stream down using the
unadvertise stream mechanism available in SRP mentioned
in Section II. The value assigned to the timeout should be
adjusted depending on the topology, to ensure that there is
enough time for the furthest listeners to communicate to the
talker their intention to bind.

B. Termination for the Infrastructure

We now discuss the second level of termination, which
corresponds to the termination for the infrastructure. A bridge
that forwards the request of a talker waits for the responses
of the listeners indefinitely. Also, bridges register talkers’
attributes in all their ports, and they do so for all the talkers
willing to transmit. Using the model we saw that there are
scenarios where a bridge sends a talker advertise and does not
receive any response, because none of the listeners connected
to the bridge (directly or indirectly) want to bind to the
stream. Furthermore, we saw that this can happen in scenarios
where the first level of termination is actually achieved by
the protocol. This can cause an unnecessary use of memory
in bridges and can later prevent the creation of streams with
listeners willing to bind due to a lack of resources.



We propose two different solutions to this problem. The
first one consists in introducing a timeout in each bridge and
listener. In a bridge, the expiration of the timeout would delete
the talker registration; whereas in a listener the expiration
would delete the talker registration if it does not want to bind.
The value assigned to the timeout in bridges should be long
enough to guarantee that listeners’ responses have time to
reach them before the registration is torn down; whereas in
listeners it should be long enough to guarantee that they can
announce their will to bind to the stream before the registration
is torn down.

The second solution could consist in introducing a timeout
only in bridges, and not in listeners. Instead, the declarations
in listeners would be removed when receiving a special frame
transmitted by bridges. Specifically, the bridge closer to the
talker with no reply from the listeners would delete the stream
registration from its memory and then transmit the frame
to trigger the elimination of the registration in the rest of
the network towards the listeners. This would be similar to
what talkers do when using the unadvertise stream mechanism
mentioned in Section II. As in the previous solution the
timeout should be long enough to guarantee that all listeners’
responses can reach the bridge before the registration is torn
down on it. Furthermore, the first timer that expires should
be the one in the bridge closer to the talker. Otherwise, more
than one bridge might start the transmission of the frame that
tears the declaration down.

The advantage of the second solution, compared to the first
one, is that nodes do not need a timer for each stream they
receive. Nevertheless, bridges must be able to create a frame
to tear the registrations down.

IV. CONSISTENCY

As it was introduced in Section I, consistency is an impor-
tant property in distributed systems for critical applications.
In this work we differentiate two levels of consistency. The
first level refers to consistency for the application. Some
of the applications targeted by TSN require the different
nodes to carry out coordinated actions. In these applications,
consistency in the communications is key to guarantee the
correct operation of the overall system. The first step towards
achieving consistent communications is to reserve the network
resources consistently. Thus, at this level, SRP should guaran-
tee that all interested listeners have resources reserved for the
communication or none of them have.

The second level refers to consistency for the infrastructure,
even if the reservation itself is not consistent. We consider this
second level to preserve SRP’s behaviour, i.e., to allow the
talker to communicate with some listeners, even if not all of
them can receive. In this sense, we provide a consistent view
of the reservations in all devices and leave for the application
the decision to use the stream or not.

We found some consistency issues in both levels even in
the absence of faults. The problems detected are mainly due
to the fact that the information related to the reservations
is propagated in a single direction. That is, the TA message

transmitted by a talker is forwarded always towards the listen-
ers. On the other hand, when listeners and bridges reply to a
stream declaration, the information is only forwarded towards
the talker. Thus, not all the devices involved in the reservation
receive the same information.

A. Consistency for the Application

As said before, in this level of consistency it is important
that all listeners interested in the stream can receive the
same data. This is specially important for nodes that carry
out coordinated actions. However, as explained in Section II,
in SRP resources can be reserved for a subset of listeners,
even when there are listeners willing to communicate that
do not have resources to do it. In this case, the talker only
communicates to a subset of listeners, generating an unnoticed
inconsistency in the exchange of data. This means that actually
starting a stream (with some listeners) has priority over doing
it consistently (with either all or none of them).

Furthermore, even when all listeners willing to bind have
enough resources to do so, there are scenarios where consis-
tency for the application is not guaranteed all the time. This
can happen for two reasons, first the paths between a talker and
different listeners may differ in length and end-to-end delay
and, second, the talker starts transmitting as soon as it receives
the response of one listener ready to receive. Therefore, some
listeners willing to bind to the stream, with enough resources
throughout the whole path towards the talker, may miss the
first frames transmitted by the talker.

One possible solution could be to use a timeout in the
talker which should be adjusted depending on the topology,
to ensure that there is enough time for the furthest listeners to
communicate to the talker their intention to bind. When the
timeout expires the talker checks the result of the reservation.
If the reservation failed for one or more listeners (the talker
receives an LRF or an LF message) or no listeners are
interested in the stream (the talker does not receive response)
the talker will tear the stream down. On the other hand, if the
reservation was successful for all listeners (the talker receives
an LR message), the talker will start communicating. In this
way we ensure consistency for the application, as whether all
nodes have a successful reservation or none of them have.

B. Consistency for the Infrastructure

Although the previous solution eliminates the inconsisten-
cies for the application it also restricts some features of SRP
that may be interesting for certain applications. For this reason,
we now abandon the all-or-nothing approach of the previous
subsection, and instead we aim at guaranteeing that all devices
share the same view of the network, i.e., all devices know
which listeners can bind and which ones cannot. Note that SRP
does not provide this level of consistency neither; as talkers
know that there are listeners willing to bind that cannot do it,
but do not know which listeners they are.

Furthermore, not all devices receive the same information.
This also affects bridges as they make reservations using local
information mostly and provide limited information about their



results to other bridges. This can lead to inconsistencies in the
reservations also in bridges, as the information two bridges
receive from another bridge changes depending on whether
they are on the path to the talker or to the listener.

Let us use an example to illustrate the type of problems
that this can cause in bridges. Let us assume we have a
talker attached to a listener through two bridges in a line
topology (T-B1-B2-L). When the listener replies to a stream
declaration and bridge B2 has enough resources, B2 reserves
them. However, if bridge B1 does not have resources it cannot
reserve them, but it does not inform bridge B2. Thus, B2
reserved resources but the stream is actually not created.

One solution could consist in introducing two lists in the
listener responses, in bridges and in talkers. One of the
lists would contain the IDs of listeners which can receive
(hereinafter list of nodes with resources or LNR) and the
other one would contain the IDs of listeners which cannot
receive (hereinafter list of nodes with no resources or LNnR).
Listeners interested in the stream would include their node ID
in their listener response in the corresponding list, according
to their resources and the talker attribute received (TA or TF).

Bridges would update their internal lists when receiving a
listener response. If the response from the listener is not modi-
fied in the bridge (see Section II for details) the bridge updates
its internal lists with the received node IDs accordingly, i.e.,
a node ID from the LNR would be saved in the bridge’s LNR
and one from the LNnR in the bridge’s LNnR. On the other
hand, if a bridge modifies the listener response due to a lack
of resources in the receiving port, it would add the received
node IDs in its own LNnR. Furthermore, the talker would also
update its own lists upon receiving a listener response. In this
way the talker would know which nodes could bind and which
ones could not.

Finally, the talker would propagate the information through
the network. Specifically, it would use a timeout to bound
the time it waits for a response from the listeners, while
guaranteeing that they have enough time to transmit it. Once
the timeout expires, the talker would transmit the lists to the
rest of devices so all have the same view of the network.
This solves the asymmetry in the information that different
devices receive. Thus, the application can now make decisions
having a complete view of the network, and bridges can delete
registrations when these are not going to be used.

Nevertheless, this solution can be complex and requires a
significant amount of changes to SRP. Thus, if it is not required
for nodes to have a consistent view of the reservations, but we
want to prevent bridges from wasting resources we could use a
simpler solution. Specifically, a bridge that received a listener
response stating that there are enough resources in the path
towards the listener, but did not have enough resources in the
receiving port, would inform the rest of devices about it.

V. CONCLUSIONS AND FUTURE WORK

The AVB Task Group started a set of projects to provide
standard Ethernet with soft real-time capabilities. The interest
in the work of the group reached areas with tighter constrains

in terms of timing guarantees and fault-tolerance. For this rea-
son, the group was renamed to TSN and its scope broadened
to provide hard and soft real-time guarantees, flexibility of the
traffic and fault tolerance mechanisms.

Among the projects carried out by the groups, we find the
standardisation of the Stream Reservation Protocol. SRP is key
to provide timing guarantees, as it supports the reservation of
resources. SRP proposes three different architectures to carry
out the resource reservation. In this work we focus on the
distributed architecture of SRP proposed in AVB.

We have performed a first analysis to evaluate whether the
distributed architecture is adequate for the critical applications
targeted by TSN. Specifically, we focus on the termination
and consistency in the reservations. We identified two different
levels in both properties. The first one refers to the application
level, while the second one refers to the infrastructure level.
We detected problems in both levels for both properties and
proposed a series of solutions based on timeouts and additional
exchange of messages in order to solve them.

As future work we plan to model the proposed solutions in
the mentioned UPPAAL model of SRP we developed [7].

ACKNOWLEDGMENT

This work is supported in part by the Spanish Agencia
Estatal de Investigación (AEI) and in part by FEDER funding
through grant TEC2015-70313-R (AEI/FEDER, UE). Drago
Čavka was supported by a scholarship of the EUROWEB+
Project, which is funded by the Erasmus Mundus Action II
programme of the European Commission.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP),” IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), Sept 2010.

[2] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements,” IEEE Std 802.1Qcc-
2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pp. 1–208, Oct 2018.

[3] M. D. Johas Teener, A. N. Fredette, C. Boiger, P. Klein, C. Gunther,
D. Olsen, and K. Stanton, “Heterogeneous networks for audio and video:
Using ieee 802.1 audio video bridging,” Proceedings of the IEEE, vol.
101, no. 11, pp. 2339–2354, Nov 2013.

[4] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-Low Latency (ULL) Networks:
The IEEE TSN and IETF DetNet Standards and Related 5G ULL
Research,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp.
88–145, Firstquarter 2019.

[5] D. Park, J. Lee, C. Park, and S. Park, “New Automatic De-Registration
Method Utilizing a Timer in the IEEE802.1 TSN,” in 2016 First IEEE
International Conference on Computer Communication and the Internet
(ICCCI), Oct 2016, pp. 47–51.

[6] O. Kleineberg, P. Fröhlich, and D. Heffernan, “Fault-Tolerant Ethernet
Networks with Audio and Video Bridging,” in ETFA2011, Sept 2011, pp.
1–8.

[7] D. Bujosa, D. Čavka, I. Álvarez, and J. Proenza, “First Analysis
of the AVB’s Stream Reservation Protocol in the Context of TSN,”
University of the Balearic Islands (UIB), Tech. Rep. A-02-2019,
May 2019. [Online]. Available: http://srv.uib.es/first-analysis-of-the-avbs-
stream-reservation-protocol-in-the-context-of-tsn/

[8] I. Álvarez, J. Proenza, and M. Barranco, “Towards a Time Redun-
dancy Mechanism for Critical Frames in Time-Sensitive Networking,”
in ETFA2017, Sept 2017, pp. 1–4.


