
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Formal Verification of the FTTRS Mechanisms for

the Consistent Update of the Traffic Schedule

Daniel Bujosa

Dept. de Matemàtiques i Informàtica

Universitat de les Illes Balears

Palma de Mallorca, Spain

daniel.bujosa@uib.es

Sergi Arguimbau

Dept. de Matemàtiques i Informàtica

Universitat de les Illes Balears

Palma de Mallorca, Spain

sergi.arguimbau@uib.es

Patricia Arguimbau

Dept. de Matemàtiques i Informàtica

Universitat de les Illes Balears

Palma de Mallorca, Spain

patricia.arguimbau@uib.es

Julián Proenza

Dept. de Matemàtiques i Informàtica

Universitat de les Illes Balears

Palma de Mallorca, Spain

julian.proenza@uib.es

Manuel Barranco

Dept. de Matemàtiques i Informàtica

Universitat de les Illes Balears

Palma de Mallorca, Spain

manuel.barranco@uib.es

Abstract— Critical Adaptive Distributed Embedded Systems

(ADESs) are nowadays the focus of many researchers. ADESs

are envisioned to dynamically modify their behavior to support

changes of their real-time and dependability requirements at

runtime as the conditions of the environment in which they

operate vary. To provide ADESs with an adequate

communication infrastructure, our research group proposed the

Flexible-Time-Triggered Replicated Star (FTTRS). FTTRS

provides highly reliable communication services on top of

Ethernet, while keeping the adaptivity benefits that the Flexible-

Time-Triggered (FTT) communication paradigm offers from a

real-time perspective. This paper formally verifies, by means of

model checking, the correctness of the mechanisms FTTRS

includes to enforce consistent changes of the communication

scheduling at runtime.

Keywords— adaptivity, real-time control network, reliability,

replica-determinism, FTTRS, formal verification, UPPAAL

I. INTRODUCTION

Critical Adaptive Distributed Embedded Systems (ADESs) are
real-time and dependable control systems that are expected to
play a key role to appropriately interact with physical systems
whose operational conditions change at runtime [1,2], even in
unpredictable manners.

 Changes in the operational conditions e.g. a shift from a
given mission phase to another one, a change in the type of
terrain an autonomous vehicle has to drive through, an increase
of the bit error rate when the environment becomes more
harshly, etc., may modify the requirements an ADES has to
meet from the point of view of its real-time response and its
dependability. For instance, a change in the operational
conditions may require to shorten the deadlines of the tasks to
be executed and/or the messages to be sent, as well as to
increase the probability with which a message is guaranteed to
be consistently delivered. Therefore, an ADES has to
dynamically adjust its behavior so as to appropriately fulfill the
new requirements, e.g. re-schedule the traffic, increase the
number of times a message is proactively retransmitted, etc.

 In particular, to support this adaptivity, the communication
network an ADES relies on has to provide both real-time and
operational flexibility. Real-time flexibility consists in
supporting different types of real-time traffic (hard, soft,
periodic and aperiodic), whereas operational flexibility stands

for the ability to support changes in the traffic and its real-time
requirements without interrupting the communication services.
To the authors’ best knowledge, the only highly reliable
network that supports these two types of flexibility is the
Flexible-Time-Triggered Replicated Star (FTTRS) [3]. FTTRS
is the most reliable implementation of the Flexible-Time-
Triggered (FTT) paradigm [5] on top of Ethernet.

 FTT is a master multi-slave publisher-subscriber paradigm,
where the so-called FTT master organizes the communication
as a sequence of rounds called Elementary Cycles (ECs). The
EC starts by the FTT master broadcasting what is called the
Trigger Message (TM), which allows slaves to synchronize
with the master and which polls the periodic messages that (the
corresponding) slaves have to transmit in that EC. The time
dedicated to transmit the TM is known as the TM Window
(TMW). The TMW is followed by the Synchronous Window
(SW), in which the appropriate slaves transmit the polled
periodic messages. The last part of the EC is the Asynchronous
Window (AW), where slaves transmit aperiodic messages.

 FTT by itself does not provide high reliability and thus,
cannot be used to build systems with that kind of requirements.
To overcome this limitation, the Flexible-Time-Triggered
Replicated Star (FTTRS) aims at adding fault tolerance
mechanisms on top of FTT. The FTTRS architecture is based
on the Hard Real-Time Ethernet Switching (HaRTES) [6], a
switch-Ethernet implementation of FTT in which all the slaves
are interconnected by means of a custom software-
implemented switch embedding the FTT master.

Fig. 1. FTTRS architecture, reprinted from [4]

 Figure 1 shows that FTTRS basically consists of a
duplicated full-duplex Ethernet star in which each HaRTES
switch embeds an FTT master. Each slave connects to each
switch by means of a link composed of a separated uplink and
downlink. Both switches are interconnected by means of
several full duplex interlinks, through which they exchange the
TMs and all the traffic they receive from the non-faulty slaves.

 FTTRS deals with permanent and temporary non-malicious
operational hardware faults [7]. First, thanks to its redundant
paths, FTTRS tolerates permanent faults affecting the switches
and the links (slave links and interlinks). Second, in FTTRS
each critical message – periodic or aperiodic – can be
proactively retransmitted to timely tolerate temporary faults
affecting the links. In particular, each FTTRS master always
proactively retransmits several replicas of the TM to guarantee
its successful broadcast.

 Faults can manifest arbitrarily, however each switch/master
is internally duplicated to exhibit crash failure semantics. Also,
each switch/master includes a Port Guardian (PG) per slave to
contain the errors sent by that slave. In this way, faulty slaves
are perceived by non-faulty ones as omitting messages or
sending messages with an incorrect (application) payload.
Finally, thanks to the Frame Check Sequence each Ethernet
frame includes, faults in the links can only corrupt frames that
then are discarded at the receiving Ethernet interfaces.

 To appropriately provide fault tolerance, both
masters/switches of FTTRS must act as if they were a single
one, i.e. they must be replica determinate [8]. FTTRS includes
several mechanisms to enforce this replica determinism [3].
For instance, from a time point of view, both masters
isochronously (with a fixed intertransmission time) broadcast
several replicas of the same TM in lockstep (quasi-
simultaneously). On the one hand, this allows both masters to
be synchronized with each other, since they also exchange the
TMs through the interlinks. On the other hand, this allows each
slave to reliably synchronize with the beginning of each EC.

 Of all the FTTRS’s replica determinism mechanisms, in
this paper we are interested in the ones that FTTRS includes to
consistently update the traffic schedule at runtime. This is so
because these later mechanisms are fundamental for FTTRS to
provide high reliability while keeping the most distinguishing
advantage of FTT, i.e its real-time operational flexibility. In
this sense note that [3] argues for the correctness of these
FTTRS’s consistent schedule update mechanisms. However,
since these mechanisms are quite complex, the use of formal
methods provides an appropriate way to check their
correctness. Thus, in this paper we model and formally verify
these complex mechanisms by using a model checker called
UPPAAL, which is specially suited for real-time systems.

 Next, in Section II, we outline the FTTRS’s schedule
consistent update mechanisms; followed by Section III, which
provides a pseudocode and a set of figures to complement the
previous section. Then, in Section IV, we introduce the
UPPAAL model checker and its formalism; for later, in
Section V, to explain how we modelled these consistency
mechanisms with this tool. Once the model is presented, in
Section VI we proceed to its verification; and finally, in
Section VII, we conclude the paper.

II. SCHEDULE CONSISTENT UPDATE MECHANISMS OF FTTRS

In this Section we summarize the mechanisms that FTTRS
provides to consistently update (at runtime) the traffic
scheduling. A thorough description of all consistency
mechanisms of FTTRS can be found in [4].

 First of all let us briefly explain the schedule update
mechanisms of FTT. On the one hand, note that in the original
FTT there is just one master. The master stores, within the so-
called Systems Requirements Data Base (SRDB), the real-time
parameters (period, deadline, minimum interarrival times,
publisher, subscribers, etc.) of every stream, i.e. of every
message. Similarly, each slave stores, within its own Node
Requirements Data Base (NRDB), the real-time parameters of
just the streams it is the publisher and/or the subscriber of. On
the other hand, when a slave wants to request a schedule
update, e.g. to modify the period of a stream it is the publisher
of, it does so by sending its update request to the master within
a Slave Request Message (SRM). When the master has one or
more update requests pending to be processed, it selects one of
them to be processed next and subjects it to an admission
control procedure that decides whether or not the request can
be accepted and, if so, how the content of the SRDB and the
NRDBs must be modified. Afterwards the master broadcasts a
so-called Master Command Message (MCM). This message
informs the slaves about the decision and, in case the update
has been accepted, how to update the NRDBs accordingly.
Finally, the master and the slaves update (commit the changes
in) their databases and, from then on, the TM the master
broadcasts reflects the new schedule.

Note that the above FTT mechanisms allow to consistently
update the SRDB and the NRDBs in FTT as long as all slaves
receive every MCM. Thus, one of the aspects FTTRS has to
guarantee is that all slaves receive every MCM even in the
presence of faults. This can be achieved by proactively
retransmitting the MCMs, as it will be explained later.

 However, to consistently update the schedule in FTTRS, it
is further needed to enforce that its two FTT masters both
consistently carry out the admission control and consistently
update their SRDBs. To achieve this, first it is necessary to
make sure that both masters are internally replica determinated
[8], i.e. that they produce the same outputs (admission control
result and SRDB/NRDBs updates) as long as they are provided
with the same inputs (update requests). FTTRS fulfills this by
implementing the masters using the same internal hardware
and software constructs, and by preventing any kind of internal
non-determinism. Second, it is necessary to enforce that both
masters are externally replica determinated [8], i.e. that they
are provided with the same inputs (update requests).

 Enforcing masters’ external replica determinism is
specially challenging. Note that in FTTRS a slave that sends an
SRM transmits it to each one of the switches. In addition, each
switch forwards to the other one said SRM. Thus, in principle,
both masters should receive at least one copy of any SRM.
Unfortunately, due to different combinations of
permanent/transient faults in the links, interlinks and/or slaves,
it is possible that one or more SRMs are received by one
master only. If this happens both masters will have a different
view of which update requests are pending, and this can

eventually lead their SRDBs to become inconsistent. For
instance, if one master has one pending update request whereas
the other one has none, then only one master will carry out the
actions needed to process that update request. Similarly, if each
master has a different set of pending update requests, each
master can select a different request to be processed next.

 Next, we sketch how FTTRS masters enforce the necessary
masters’ external replica determinism and, also, how they
interact with the slaves to consistently update the schedule
system wide. For the sake of clarity Figure 2 depicts the
timeline of the actions FTTRS carries out in this sense.

 We refer both FTTRS masters to as A and B; their SRDBs
to as SRDBA and SRDBB respectively; and the NRDB of each
slave, Si, to as NRDBi, where 𝑖 ∈ [1, 𝑁] and N is the total
number of slaves. Also, respectively for each master, we refer
its list of pending update request to as QA and QB, and the
update request to process next as NA and NB.

 Let us assume that, initially, no update request is pending
nor has to be processed next, i.e. QA = QB = NA = NB = {}.
Slaves can send SRMs whenever they want. Let us consider
that each switch receives several SRMs directly through its
uplinks during the TMW, SW and AW of the 1st EC. During
this same EC the SRMs are forwarded as follows. On the one
hand, each switch forwards to the other switch the SRMs it
directly receives from its slaves. Note that since during the
TMW both switches exchange a set of replicated TMs to
appropriately synchronize with each other, each switch shapes
the traffic so as to forward these SRMs during the SW or AW.
On the other hand, each switch internally forwards to its own
master the SRMs it directly receives from its slaves and the
ones it receives from the other switch. In this case, since the
forwarding is done internally, the switch immediately forwards
any SRM to its master independently of which is the current
window (TMW, SW or AW).

 At this point consider that, due to different faults, both
switches have received a different set of SRMs by the end of
the 1st EC and, thus, QA ≠ QB. For instance, QA = {1, 2} and
QB = {3, 4}. Note that each update request is identified by an
integer that specifies its intrinsic priority total order with
respect to the other update requests. This intrinsic priority total

order is needed for the masters to decide which one of any two
given requests has a higher priority. This total order can be
implemented in several ways, but how to do it is irrelevant for
the current discussion.

 At the beginning of the 2nd EC each master has to select
which update request to process next. However, since 𝑄𝐴 ≠
 𝑄𝐵 , masters have to reconcile their view of the pending update
requests so as to consistently select the same one. For doing so
masters proceed as follows. First each master selects its
minimum update request, i.e. the one with the highest priority,
from its own Q list. We refer each one of these two selected
update requests to as the local minimum of the corresponding
master. We denote them as min{QA} and min{QB}. In this
example, min{QA} = 1 and min{QB} = 3. Then each master
piggybacks its local minimum within the replicated TM it
generates for triggering the 2nd EC. Since each switch does not
only send each TM replica to its slaves, but also to the other
switch, this strategy guarantees that each switch successfully
receives the local minimum of the other switch. In this sense,
by the end of the TMW of the 2nd EC each master updates its
own Q list with the other switch’s local minimum. Thus, Q’A =
{1, 2, 3} and Q’B = {1, 3, 4}. Next each master selects the
minimum request from its updated list. Since Q′A = QA ∪
 min {QB} and Q′B = QB ∪ min{QA}, then it follows that

min{Q′
A} = min{Q′

B}. In this example min{1, 2, 3} =
min{1, 3, 4} = 1. In other words, at the end of the TMW both
masters agree on the minimum pending update request to
process next, i.e. NA = NB = {1}. We refer this update to as the
global minimum. Then they consistently and simultaneously
subject that global minimum to admission control, and remove
it from their Q lists, i.e. Q’’A = {2, 3} and Q’’B = {3, 4}.

 It is noteworthy that for masters to agree on the global
minimum, it is further necessary that no Q list is updated with
any new update request - sent by the slaves - during the TMW
in which the masters carry out the just described reconciliation
actions, i.e. during the TMW of the 2nd EC in our example.
Each master can accomplish this by storing, within an auxiliary
list, any new update request its switch internally forwards to it
during that TMW. Only when that TMW ends, the master
transfers any new request to its Q list.

Fig. 2. Timeline of the actions carried out in FTTRS to consistently update the schedule

 Also, note that if there are multiple pending update
requests, FTTRS processes them in a stepwise manner. In other
words, masters do not select nor process any pending update
request until the current one has not finished the admission
control. In our example this means that masters will not select
and exchange a new local minimum until they decide on the
current subjected request, i.e. on {1}.

 Coming back to the point at issue, note that the admission
control can take one or more ECs to finish. Both masters are
configured to know what the worst-case execution time of the
admission control is, so that both of them conservatively
consider it as finished in the same EC. Let us assume they
consider the admission control of the update request subjected
in the 2nd EC to finish at the Nth EC. Thus, by the end of that
EC each master builds up a Master Command Message
(MCM) to notify (in the next EC) the slaves about the result of
the admission control. In addition, if the admission control has
accepted the request, each master both includes within the
MCM the changes to be applied to the NRDBs and temporarily
stores the changes to be applied in its SRDB. We denote these
changes to be applied to the NRDBs as Unrdb, and the ones to
be applied to the SRDB as Usrdb. Note that each master has its
own copy of these updates, i.e. UnrdbA and UsrdbA in A, and
UnrdbB and UsrdbB in B; where UnrdbA = UnrdbB and UsrdbA
= UsrdbB.

 Next in the N+1th EC the schedule is consistently updated
across the whole system as follows. First, each master
piggybacks the MCM (which includes Unrdb if needed) within
the replicated TMs. In this way the MCM is proactively
retransmitted, which guarantees that all non-faulty slaves
receive the MCM at the TMW of the N+1th EC and, thus, that
slaves are consistently informed about the result of the
admission control and the corresponding NRDBs update.
Second, in case the result of the admission control was
positive, then all slaves and both masters commit the
corresponding changes to the NRDBs and SRDBs
simultaneously at the end of the N+1th EC. In this way the
schedule is consistently updated across the system, so that both
masters can trigger the N+2th EC following the new schedule
and all slaves can correctly respond accordingly.

 Finally, please recall that FTTRS processes update requests
in a stepwise manner. Thus, since in our example there are
multiple pending update requests, then in the TMW of the
N+1th EC the masters will select, exchange, agree on and
subject to admission control a new local minimum.

III. PSEUDOCODE OF THE FTTRS SCHEDULE CONSISTENT

UPDATE MECHANISM

In this Section it is presented a pseudocode and a set of images

that complements the previous section. Each of the steps of

the mechanism is represented in the set of images (Figure 3).

1st EC

 Each slave:

 (1) send update requests to the masters

 Each master:

 (2) forward update requests through

 interlinks to the other master

2nd EC

 Each master during TMW:

 (3) send TM with the local minimum

 (4) select global minimum

 (5) start admission control

From 3th EC to Nth EC

 Each master:

 (6) evaluate admission control

Nth EC

 Each master at the end of the EC:

 (7) end admission control

N+1th EC

 Each slave and each master:

 (8) update NRDB and SRDB, respectively

 7

Fig. 3. Interactions between switches/masters and slaves during the

FTTRS schedule consistent update mechanism

 8

 5

 6

 3

 4

 1

 2

IV. UPPAAL MODEL CHECKER AND FORMALISM

UPPAAL is a model checker specially designed to formally
model real-time systems and exhaustively verify their
properties [9]. UPPAAL provides a formalism to model the
system as a set of interconnected timed automata, i.e. finite-
state machines extended with clocks (that progress at the same
pace) [9], and a formal query language to express the system’s
properties to be verified. The model checker accepts the model
and the queries as inputs and, then, explores all the possible
execution paths of the model to exhaustively check whether or
not each property holds. In case a property does not do so, the
model checker shows a trace in which that property is violated.
Next we summarize the formalism for the automata. Some
hints on the query language will be provided in Section VI.

Each one of a model’s automata is specified by means of a
template, which can include parameters to create different
instances of the same automaton. Basically, a template is
constituted by a set of locations, edges, local variables and
local clocks. The different templates can share global variables
and clocks, and they can synchronize by using binary or
broadcast channels.

Each automaton progresses through a set of locations, so
that the state of the modeled system is defined as the current
location of all automata (and the values of all variables and
clocks). An automaton can step from one location to another
one by taking an edge. The time a template remains in given
location can be upper bounded by means of an expression,
called invariant, involving one or more clocks. Moreover, a
location can be defined as normal, committed or urgent. A
template can indefinitely remain in a normal location, unless it
is upper bounded by an invariant. Conversely, a template
immediately leaves a committed or urgent location, thereby
modeling that the time does not elapse in that location. A
committed location differs from an urgent one in the sense that
the former does not allow interleaving between different
automata, whereas the later one does. As regards edges, each
one can be enabled or disabled by means of an expression
called guard, which is defined on variables and clocks.
Moreover, an edge can include assignment expressions that are
executed when the edge is taken.

 Finally, templates can synchronize among them by
simultaneously taking edges labeled with the same channel. A
channel always has one sender template, but it can have one or
more receiver templates. In the first case the channel is binary
and the sender and the receiver wait each other to
simultaneously take the edge. In the second case the channel is
a broadcast one; receivers wait for the sender, but the sender
can take the edge even if no receiver is waiting there.

V. MODEL OF THE FTTRS SCHEDULE CONSISTENT UPDATE

We modeled the schedule consistent update mechanisms of
FTTRS by means of a slave template and a switch/master
template, which respectively model the relevant actions
carried out by a slave and by a switch/master. The slave and
switch/master templates are instantiated three and two times
respectively. In this way the model is composed by three
slaves (justification below), and two switches/masters, since
FTTRS presents these two as a way to achieve fault tolerance.

 The reason to instantiate three slaves is because this
number is the minimum that originates all kinds of scenarios in
the queues of the replicated masters. Although it is possible to
create inconsistencies in the queues with simply one or two
slaves, the presence of three slaves allows having different and
common update requests simultaneously in both masters. On
the other hand, four or more slaves would create the same kind
of scenarios that we obtain with three slaves. By scenarios we
mean all possible distribution of update requests in the masters.
However, given that there are two masters, those update
requests can only be in three different situations (only in master
A, only in master B or in both of them). The distribution of the
update requests on any of these three situations is what
determines the kind of scenario. In this sense, with only three
update requests, i.e. with three slaves, it is possible to
encompass all possible kind of scenarios. If more than three
update requests are present, we would only increase the
amount of update requests in one of the three possible
situations, without creating new kinds of inconsistency
scenarios.

 Before starting with the details of each template, it is
important to clarify that we made some assumptions in order to
keep the complexity of the model at reasonable levels without
compromising the accuracy of the model. First, we assumed
that the system is always synchronized. That’s because there is
a set of mechanisms in FTTRS that guarantee this condition.
These synchronization mechanisms are the Elementary Cycle
Synchronization between Masters [11] and Slave Elementary
Cycle Synchronization [12]. Secondly, we assumed that the
TM sent from one switch to the other always reaches its
destination, thanks in part to the capacity of FTTRS to tolerate
faults even in the TMs [13] and to the proper management of
the aforementioned replication of the TMs [14].

A. Slave template

Figure 4 depicts the slave template. Initially the slave is in the
idle location (represented as two concentric circles). The slave
steps to location TM_recv when masters end broadcasting the
TMs, i.e. when the TMW ends. Note that in FTTRS masters
quasi-simultaneously transmit the TMs during the TMW.
However, TM transmissions may suffer from jitter and
transient faults, and thus a slave can actually synchronize with
either master A or B. To reflect this fact the slave can step to
TM_recv through two different edges, each labeled with a
different broadcast (UPPAAL) channel, namely endTM_A and
endTM_B, whose sender is one of the masters.

 Once in TM_recv, which is a committed location, the slave
immediately comes back to idle. The slave does so by taking
one of two different edges in a non-deterministic manner. The
upper edge models the slave not sending any update request,

Fig. 4. Slave template in UPPAAL

whereas the bottom one models the opposite. In this sense
note that the slave template defines a global integer variable,
request_id, that represents the update request the slave sends
during the current EC. When the template is instantiated, this
variable becomes request_1, request_2 or request_3,
depending on whether it is instantiated to represent what we
understand as slave 1, slave 2 or slave 3 respectively. Keeping
this in mind please note that when the slave decides not to
send an update request it sets its corresponding request_id to
0. Otherwise, it sets this variable to 1, 2 or 3 depending on
which one of the three slaves it represents.

 It is worth recalling that we instantiate only three slaves.
Also, each slave is modeled to send a maximum of one update
request per EC, and when it does so it always specifies the
same one. Thus, at any EC, each master can have a quantity of
pending update requests ranging from 0 (no pending update
request) to 3. This strategy allows preventing the state space to
explode, while being enough to verify the consistency. On the
one hand, what really matters in this sense is to check that the
schedule is consistently updated even if the set of update
requests received by master A differs from the set received by
master B. On the other hand, having three slaves is enough to
generate scenarios in which each master has to select its local
minimum among two or more update requests, i.e. scenarios in
which this selection in both masters is not trivial.

B. Switch/master template

Figure 5 shows the switch/master template. Its initial location
is endTMW, which represents the end of the TMW. From this
location the master synchronizes with the other one (and the
slaves) by acting either as a sender of the broadcast channel
endTM_id or as a receiver of the broadcast channel
endTM_other. Note that if the template represents master A,
then endTM_id and endTM_other are respectively instantiated
as endTM_A and endTM_B; and vice versa when the template
represents master B.

 The edges from location startRxUplnk to endRxUpln
model the master successfully/unsuccessfully receiving the
update request each slave sends during the current EC through
its uplink. For instance, from startRxUplnk, the template non-
deterministically takes the right or the left-handed edge. The
right-handed one represents the master successfully receiving
the update request slave 1 sends (if so), whereas the left-
handed one models the master failing to receive that slave
update request. Note that the master has a global array,
instantiated as Q[] from its point of view, which represents its
local Q list. Each one of the three positions of this array,
namely Q[0], Q[1] and Q[2], are devoted to storing the
update request sent by slave 1, 2 and 3 respectively. Note that
in case a slave, Si, sends its update request and the master
successfully receives it, then this master sets its Q[i-1] to
value i; otherwise the master sets its Q[i-1] to 0. Also note
that we abstract away the instants of time, within the EC, in
which the master receives the update requests. Whether the
master receives an update request during the TMW, SW or
AW is irrelevant.

 After modeling the unsuccessful/successful reception of
the above update requests, the template steps into location
endRxUplnk. Each one of the two outgoing edges from this
location are labeled with a binary channel, i.e. syncM_id or
syncM_other, which are respectively instantiated as syncM_A
and syncM_B for master A and vice versa for B. They are
used to force both instances to wait for each other, similarly to
how it is done at location endTMW. Afterwards, the edges
from startRxInlnk to endRxInlnk_startCommit model the
master unsuccessfully/successfully receiving (in a non-
deterministic manner) the update request of each slave the
other master forwards through the interlinks. For instance, the
upper edge from startRxInlnk models the master failing to
receive the update request of slave 1 the other master
forwards. The bottom edge models the opposite situation. In
this later case the position of Q[] that corresponds to slave 1,
i.e. Q[0], is set to 1 if the value stored in Q_other[0] is 1
(otherwise Q[0] keeps its own value, i.e. Q[0] := Q[0]).
Q_other[] is the global array that, from the point of view of
the master, instantiates the local Q list of the other master.

 Again, analogously to what (and why) we do with the
update requests the master receives through the uplinks, we
abstract away the instants of time, within the EC, in which the
master receives these forwarded update requests.

 Once an instance of the switch/master steps into
endRxInlnk_startCommit it waits for the other instance by
using, again, the binary channels syncM_id and syncM_other.
This is done to model that, at the end of the EC, both masters
simultaneously commit a SRDB update if needed. As it will be
explained, an update request selected as the global minimum is
always modeled as being accepted by the admission control.
When so the template assigns that update request’s identifier to
the local variable Usrdb. Thus, when simultaneously exiting
from endRxInlnk_startCommit, each template sets its local
variable SRDB to the value of its Usrdb. As a result, if a global
minimum was subjected to admission control, then the
templates sets SRDB to 1, 2 or 3 depending on the update
request selected as global minimum. Otherwise, SRDB is set to
0, meaning that no commit needs to be carried out.

Fig. 5. Switch/master template in UPPAAL

 Location endCommit_startTMW represents the beginning
of the TMW of the next EC. From there to endTMW each step
models a different action to be carried out during the TMW.
The first step models each one of the two master instances
simultaneously selecting its local minimum. Each instance
stores its minimum at the global variable min_id, i.e. min_A or
min_B depending on whether it is the instance of master A or
master B respectively. Note that if there is a pending update
request in its local Q list, the instance will select (and assign it
to its min_id) the one with the lowest identifier, i.e. the one
with the highest priority. Otherwise, it assigns 0 to its min_id.
The second step models masters exchanging their local
minimum. Since each master piggybacks its local minimum
within the TMs it transmits, and at least one TM always
reaches the other switch, each master always successfully
receives the local minimum of its counterpart. Specifically, the
master consults the other master’s local minimum by
accessing the global variable min_other, which is instantiated
as min_B or min_A for master A and B respectively. When the
other master has a pending update request min_other will be 1,
2 or 3 depending on the update request that other master
selected as its local minimum. If so the template assigns
min_other to the position of its Q list devoted to allocate that
update request identifier, i.e. Q[0], Q[1] and Q[2]
respectively. The third step models the master selecting the
global minimum and subjecting it to admission control. As
explained before, we assume that the admission control
always accepts the subjected global minimum. Note that when
a subjected global minimum is not accepted, neither the
masters nor the slaves modify the SRDBs and NRDBs. Thus,
from the point of view of the consistency among the data
bases, not accepting a global minimum is equivalent to not
having selected any global minimum; which is modeled as not
having any pending update request when the EC starts, i.e.
min_id = min_other = 0.

 Also note that we model neither the preparation of the
MCMs nor the commit slaves carry out at their NRDBs.
Please recall that each master piggybacks the NRDB updates
within the TMs it sends. Thus, since each slave receives at
least one TM from at least one master, then all slaves will
consistently update their NRDBs as long as the masters
consistently update their SRDBs.

 Finally, it is worth highlighting that we immediately set
Usrdb to the global minimum, so that the template will
commit Usrdb to SRDB at the end of the current EC, i.e. we
assume the admission control to finish in the same EC in
which it begins. Coming back to Figure 2, this means that,
from a timeline point of view, we collapse the ECs from the
2nd to the N+1th one (both inclusive) into a single EC. This can
be done without losing generality. On the one hand, this is
because in this single EC both masters synchronously carry
out the same sequence of actions - devoted to select, analyze
and commit just one update request - they would
synchronously perform throughout the collapsed ECs. On the
other hand, the differences between the actions a switch
carries out in a collapsed EC and the actions it carries out in
another collapsed EC are the instants in which it forwards the
update requests to its master; which as explained before can be
abstracted away.

VI. MODEL VERIFICATION

As said before, UPPAAL provides a formal query language to
express the properties to be verified. In UPPAAL there exists
three different kinds of properties [10]: reachability (uses the
expression E<>), safety (uses the expressions A[] and E[]) and
liveness (uses the expression A<>). In Figure 6 we can see the
paths that these properties check schematically. In the figure,
the circles represent states. Each state is, as indicated above,
the current location of all automata and the values of all
variables and clocks. Furthermore, the green circles represent
states in which the state formula (φ) is met. Thus, path
formulae check certain distribution of states in which the state
formula meets, as we will explain below.

 The reachability properties (E<>) are the simplest ones
since they ensure that the model can reach a certain state
eventually. The safety properties check two different kinds of
scenarios: the first one (A[]) ensures that a certain condition is
always fulfilled; the second one (E[]) ensures that it always
exists a path where certain condition is always fulfilled in all
states of the path. Lastly, the liveness properties (A<>) ensure
that, taking any path it will reach always a certain state, for
example, in a communication network transmitting a message
will eventually reach its destination whatever happens.

 These properties also require a state formula (φ) to be
indicated. The state formula specifies certain conditions in the
model, for instance, i == 7 is true when the variable i equals 7.
In this regard, depending on the code that we write for the state
formula, we can check different properties in our model. For
example, if we introduce the query A[] i <= 7 we are verifying
if the variable i is always equal or lower than 7. A special kind
of state formula is deadlock, which is true when the model is
blocked, that is to say, it does not have any chance to change
its state.

We verified the correctness of the FTTRS’s schedule
consistent update mechanisms by checking three properties.

Fig. 6. Path formulae supported on UPPAAL, reprinted from [10]

First, we verified the following safety property to check
that the mechanisms do never lead to a deadlock: A[] not
deadlock. This property claims that “in every state, i.e. [], of
all reachable paths, i.e. A, it always holds that there is no
deadlock”. Moreover, note that when two edges exit from a
given location to model two opposite situations, e.g. to model
whether or not a master receives a given message, the model
non-deterministically selects one of those edges. In this sense,
since the model iteratively progresses in an infinite loop, this
property also checks that the model does generate all possible
combinations of the different non-deterministic choices.

 Second, we checked that both SRDBs are always
consistent. For this, we verified that the following safety
property holds: A[] MA.SRDB == MB.SRDB, where MA and
MB respectively represent the switch/master A and B.

Finally, to further check that the just mentioned property is
not only fulfilled in trivial cases, i.e. not only when the SRDBs
are not updated but also when they are, we used the following
reachability property: E <> MA.SRDB != 0 This property
states that “it exists at least one state, i.e. <>, of at least one
reachable path, i.e. E, in which the SRDB of master A (and of
B due to the previous property) has been updated, i.e.
MA.SRDB != 0”.

These two conditions verify that the SRDB is updated and
its content is always equal in both switches/masters, so they
guarantee the correctness of the consistent schedule update
mechanism. However, it is important to note that this is
achieved under the assumptions of correct synchronization and
correct exchange of the TM between the switch/masters.

VII. CONCLUSIONS

The Flexible-Time-Triggered Replicated Star (FTTRS)
represents a step towards developing networks that
appropriately support future critical Adaptive Distributed
Embedded Systems (ADESs), as depicted in Figure 7. Thanks
to FTTRS, the FTT communication paradigm leverages on top
of Ethernet. Now it is not only possible to take advantage from
the real-time and operational flexibility of FTT, but also from
the high reliability FTTRS provides. FTTRS extends FTT on
Ethernet by means of fault-tolerance capabilities based on
different types of redundancy, which in turn require adequate
mechanisms to enforce consistency among replicated
components.

In this paper we formally verify the correctness of the most
complex FTTRS’s consistency mechanism, i.e. the one that
guarantees that the traffic schedule is consistently updated at
runtime. For this we use UPPAAL, a model checker specially
designed for real-time systems. In this sense this paper is the
first one of a series of works we plan to carry out to verify the
correctness of ADESs based on FTTRS or similar networks.

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish Agencia Estatal

de Investigación (AEI) and in part by FEDER funding through

grant TEC2015-70313-R (AEI/FEDER, UE).

REFERENCES

[1] T. Brade, G. Jaeger, S. Zug, J. Kaiser. “Sensor and Environment
Dependent Performance Adaptation for Maintaining Safety
Requirements”. In: Computer Safety, Reliability, and Security. Springer
Int. Publishing, pp. 46-54, 2014.

[2] A. Beck, C. Lisbôa, L. Carro. “Adaptable Embedded Systems”. Springer
New York, 2013.

[3] D. Gessner, J. Proenza, M. Barranco, A. Ballesteros. “A Fault-Tolerant
Ethernet for Hard Real-Time Adaptive Systems”. In: IEEE Transactions
on Industrial Informatics, 2019.

[4] D. Gessner, J. Proenza, M. A. Barranco. “Adding Fault Tolerance To a
Flexible Real-Time Ethernet Network for Embedded Systems”. PhD
Thesis, Universitat de les Illes Balears, 2017.

[5] P. Pedreiras and L. Almeida, “The flexible time-triggered (FTT)
paradigm: an approach to QoS management in distributed real-time
systems”. In: Proceedings International Parallel and Distributed
Processing Symposium. IEEE Comput. Soc, 2003.

[6] R. Santos, “Enhanced Ethernet Switching Technology for Adaptive
Hard Real-Time Applications”. PhD Thesis, Universidade Aveiro, 2010.

[7] Algirdas Avižienis et al. “Basic Concepts and Taxonomy of Dependable
and Secure Computing”. In: IEEE Transactions on Dependable and
Secure Computing, pp. 11–33, 2004.

[8] S. Poledna. “Fault-Tolerant Real-Time Systems. The Problem of Replica
Determinism”. The Springer International Series in Engineering and
Computer Science, Springer US, 1996.

[9] K. Larsen, P. Pettersson, W. Yi. “Uppaal in a nutshell”. In: International
Journal on Software Tools for Technology Transfer, Springer-Verlag,
pp. 135-152, 1997.

[10] G. Behrmann, A. David, K.G. Larsen. “A Tutorial on Uppaal”. In:
Formal Methods for the Design of Real-Time Systems. Lecture Notes in
Computer Science, vol 3185. Springer, Berlin, Heidelberg, 2004.

[11] A. Ballesteros, J. Proenza, D. Gessner, G. Rodríguez-Navas, T. Sauter.
“Achieving Elementary Cycle Synchronization between Masters in the
Flexible Time-Triggered Replicated Star for Ethernet”. In: Proceedings
of the 19th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2014), Barcelona, Spain, 2014.

[12] D. Gessner, I. Álvarez, A. Ballesteros, M. A. Barranco, J. Proenza.
“Towards an Experimental Assessment of the Slave Elementary Cycle
Synchronization in the Flexible Time-Triggered Replicated Star for
Ethernet”. In: Proceedings of the 19th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA 2014),
Barcelona, Spain, 2014.

[13] D. Gessner, A. Ballesteros, A. Adrover, J. Proenza. “Experimental
Evaluation of Network Component Crashes and Trigger Message
Omissions in the Flexible Time-Triggered Replicated Star for Ethernet.”
In: Proceedings of the 2015 IEEE World Conference on Factory
Communication Systems (WFCS), Palma de Mallorca, Spain, 2015.

[14] D. Gessner, J. Proenza, M. A. Barranco. “A Proposal for Managing the
Redundancy Provided by the Flexible Time-Triggered Replicated Star
for Ethernet.” In: Proceedings of the 10th IEEE International Workshop
on Factory Communication Systems (WFCS), Toulouse, France, 2014.

Fig. 7. Evolution step by step towards ADES

