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Abstract— Critical Adaptive Distributed Embedded Systems 

(ADESs) are nowadays the focus of many researchers. ADESs 

are envisioned to dynamically modify their behavior to support 

changes of their real-time and dependability requirements at 

runtime as the conditions of the environment in which they 

operate vary. To provide ADESs with an adequate 

communication infrastructure, our research group proposed the 

Flexible-Time-Triggered Replicated Star (FTTRS). FTTRS 

provides highly reliable communication services on top of 

Ethernet, while keeping the adaptivity benefits that the Flexible-

Time-Triggered (FTT) communication paradigm offers from a 

real-time perspective. This paper formally verifies, by means of 

model checking, the correctness of the mechanisms FTTRS 

includes to enforce consistent changes of the communication 

scheduling at runtime. 
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I. INTRODUCTION 

Critical Adaptive Distributed Embedded Systems (ADESs) are 
real-time and dependable control systems that are expected to 
play a key role to appropriately interact with physical systems 
whose operational conditions change at runtime [1,2], even in 
unpredictable manners. 

 Changes in the operational conditions e.g. a shift from a 
given mission phase to another one, a change in the type of 
terrain an autonomous vehicle has to drive through, an increase 
of the bit error rate when the environment becomes more 
harshly, etc., may modify the requirements an ADES has to 
meet from the point of view of its real-time response and its 
dependability. For instance, a change in the operational 
conditions may require to shorten the deadlines of the tasks to 
be executed and/or the messages to be sent, as well as to 
increase the probability with which a message is guaranteed to 
be consistently delivered. Therefore, an ADES has to 
dynamically adjust its behavior so as to appropriately fulfill the 
new requirements, e.g. re-schedule the traffic, increase the 
number of times a message is proactively retransmitted, etc. 

 In particular, to support this adaptivity, the communication 
network an ADES relies on has to provide both real-time and 
operational flexibility. Real-time flexibility consists in 
supporting different types of real-time traffic (hard, soft, 
periodic and aperiodic), whereas operational flexibility stands 

for the ability to support changes in the traffic and its real-time 
requirements without interrupting the communication services. 
To the authors’ best knowledge, the only highly reliable 
network that supports these two types of flexibility is the 
Flexible-Time-Triggered Replicated Star (FTTRS) [3]. FTTRS 
is the most reliable implementation of the Flexible-Time-
Triggered (FTT) paradigm [5] on top of Ethernet. 

 FTT is a master multi-slave publisher-subscriber paradigm, 
where the so-called FTT master organizes the communication 
as a sequence of rounds called Elementary Cycles (ECs). The  
EC starts by the FTT master broadcasting what is called the 
Trigger Message (TM), which allows slaves to synchronize 
with the master and which polls the periodic messages that (the 
corresponding) slaves have to transmit in that EC. The time 
dedicated to transmit the TM is known as the TM Window 
(TMW). The TMW is followed by the Synchronous Window 
(SW), in which the appropriate slaves transmit the polled 
periodic messages. The last part of the EC is the Asynchronous 
Window (AW), where slaves transmit aperiodic messages.  

 FTT by itself does not provide high reliability and thus, 
cannot be used to build systems with that kind of requirements. 
To overcome this limitation, the Flexible-Time-Triggered 
Replicated Star (FTTRS) aims at adding fault tolerance 
mechanisms on top of FTT. The FTTRS architecture is based 
on the Hard Real-Time Ethernet Switching (HaRTES) [6], a 
switch-Ethernet implementation of FTT in which all the slaves 
are interconnected by means of a custom software-
implemented switch embedding the FTT master.  

 

Fig. 1. FTTRS architecture, reprinted from [4] 

 



 Figure 1 shows that FTTRS basically consists of a 
duplicated full-duplex Ethernet star in which each HaRTES 
switch embeds an FTT master. Each slave connects to each 
switch by means of a link composed of a separated uplink and 
downlink. Both switches are interconnected by means of 
several full duplex interlinks, through which they exchange the 
TMs and all the traffic they receive from the non-faulty slaves. 

 FTTRS deals with permanent and temporary non-malicious 
operational hardware faults [7]. First, thanks to its redundant 
paths, FTTRS tolerates permanent faults affecting the switches 
and the links (slave links and interlinks). Second, in FTTRS 
each critical message – periodic or aperiodic – can be 
proactively retransmitted to timely tolerate temporary faults 
affecting the links. In particular, each FTTRS master always 
proactively retransmits several replicas of the TM to guarantee 
its successful broadcast. 

 Faults can manifest arbitrarily, however each switch/master 
is internally duplicated to exhibit crash failure semantics. Also, 
each switch/master includes a Port Guardian (PG) per slave to 
contain the errors sent by that slave. In this way, faulty slaves 
are perceived by non-faulty ones as omitting messages or 
sending messages with an incorrect (application) payload. 
Finally, thanks to the Frame Check Sequence each Ethernet 
frame includes, faults in the links can only corrupt frames that 
then are discarded at the receiving Ethernet interfaces. 

 To appropriately provide fault tolerance, both 
masters/switches of FTTRS must act as if they were a single 
one, i.e. they must be replica determinate [8]. FTTRS includes 
several mechanisms to enforce this replica determinism [3]. 
For instance, from a time point of view, both masters 
isochronously (with a fixed intertransmission time) broadcast 
several replicas of the same TM in lockstep (quasi-
simultaneously). On the one hand, this allows both masters to 
be synchronized with each other, since they also exchange the 
TMs through the interlinks. On the other hand, this allows each 
slave to reliably synchronize with the beginning of each EC. 

 Of all the FTTRS’s replica determinism mechanisms, in 
this paper we are interested in the ones that FTTRS includes to 
consistently update the traffic schedule at runtime. This is so 
because these later mechanisms are fundamental for FTTRS to 
provide high reliability while keeping the most distinguishing 
advantage of FTT, i.e its real-time operational flexibility. In 
this sense note that [3] argues for the correctness of these 
FTTRS’s consistent schedule update mechanisms. However, 
since these mechanisms are quite complex, the use of formal 
methods provides an appropriate way to check their 
correctness. Thus, in this paper we model and formally verify 
these complex mechanisms by using a model checker called 
UPPAAL, which is specially suited for real-time systems. 

 Next, in Section II, we outline the FTTRS’s schedule 
consistent update mechanisms; followed by Section III, which 
provides a pseudocode and a set of figures to complement the 
previous section. Then, in Section IV, we introduce the 
UPPAAL model checker and its formalism; for later, in 
Section V, to explain how we modelled these consistency 
mechanisms with this tool. Once the model is presented, in 
Section VI we proceed to its verification; and finally, in 
Section VII, we conclude the paper.  

II. SCHEDULE CONSISTENT UPDATE MECHANISMS OF FTTRS  

In this Section we summarize the mechanisms that FTTRS 
provides to consistently update (at runtime) the traffic 
scheduling. A thorough description of all consistency 
mechanisms of FTTRS can be found in [4]. 

 First of all let us briefly explain the schedule update 
mechanisms of FTT. On the one hand, note that in the original 
FTT there is just one master. The master stores, within the so-
called Systems Requirements Data Base (SRDB), the real-time 
parameters (period, deadline, minimum interarrival times, 
publisher, subscribers, etc.) of every stream, i.e. of every 
message. Similarly, each slave stores, within its own Node 
Requirements Data Base (NRDB), the real-time parameters of 
just the streams it is the publisher and/or the subscriber of. On 
the other hand, when a slave wants to request a schedule 
update, e.g. to modify the period of a stream it is the publisher 
of, it does so by sending its update request to the master within 
a Slave Request Message (SRM). When the master has one or 
more update requests pending to be processed, it selects one of 
them to be processed next and subjects it to an admission 
control procedure that decides whether or not the request can 
be accepted and, if so, how the content of the SRDB and the 
NRDBs must be modified. Afterwards the master broadcasts a 
so-called Master Command Message (MCM). This message 
informs the slaves about the decision and, in case the update 
has been accepted, how to update the NRDBs accordingly. 
Finally, the master and the slaves update (commit the changes 
in) their databases and, from then on, the TM the master 
broadcasts reflects the new schedule. 

Note that the above FTT mechanisms allow to consistently 
update the SRDB and the NRDBs in FTT as long as all slaves 
receive every MCM. Thus, one of the aspects FTTRS has to 
guarantee is that all slaves receive every MCM even in the 
presence of faults. This can be achieved by proactively 
retransmitting the MCMs, as it will be explained later. 

 However, to consistently update the schedule in FTTRS, it 
is further needed to enforce that its two FTT masters both 
consistently carry out the admission control and consistently 
update their SRDBs. To achieve this, first it is necessary to 
make sure that both masters are internally replica determinated 
[8], i.e. that they produce the same outputs (admission control 
result and SRDB/NRDBs updates) as long as they are provided 
with the same inputs (update requests). FTTRS fulfills this by 
implementing the masters using the same internal hardware 
and software constructs, and by preventing any kind of internal 
non-determinism. Second, it is necessary to enforce that both 
masters are externally replica determinated [8], i.e. that they 
are provided with the same inputs (update requests). 

 Enforcing masters’ external replica determinism is 
specially challenging. Note that in FTTRS a slave that sends an 
SRM transmits it to each one of the switches. In addition, each 
switch forwards to the other one said SRM. Thus, in principle, 
both masters should receive at least one copy of any SRM. 
Unfortunately, due to different combinations of 
permanent/transient faults in the links, interlinks and/or slaves, 
it is possible that one or more SRMs are received by one 
master only. If this happens both masters will have a different 
view of which update requests are pending, and this can 



eventually lead their SRDBs to become inconsistent. For 
instance, if one master has one pending update request whereas 
the other one has none, then only one master will carry out the 
actions needed to process that update request. Similarly, if each 
master has a different set of pending update requests, each 
master can select a different request to be processed next. 

 Next, we sketch how FTTRS masters enforce the necessary 
masters’ external replica determinism and, also, how they 
interact with the slaves to consistently update the schedule 
system wide. For the sake of clarity Figure 2 depicts the 
timeline of the actions FTTRS carries out in this sense.  

 We refer both FTTRS masters to as A and B; their SRDBs 
to as SRDBA and SRDBB respectively; and the NRDB of each 
slave, Si, to as NRDBi, where 𝑖 ∈ [1, 𝑁]  and N is the total 
number of slaves. Also, respectively for each master, we refer 
its list of pending update request to as QA and QB, and the 
update request to process next as NA and NB. 

 Let us assume that, initially, no update request is pending 
nor has to be processed next, i.e. QA = QB = NA = NB = {}. 
Slaves can send SRMs whenever they want. Let us consider 
that each switch receives several SRMs directly through its 
uplinks during the TMW, SW and AW of the 1st EC. During 
this same EC the SRMs are forwarded as follows. On the one 
hand, each switch forwards to the other switch the SRMs it 
directly receives from its slaves. Note that since during the 
TMW both switches exchange a set of replicated TMs to 
appropriately synchronize with each other, each switch shapes 
the traffic so as to forward these SRMs during the SW or AW. 
On the other hand, each switch internally forwards to its own 
master the SRMs it directly receives from its slaves and the 
ones it receives from the other switch. In this case, since the 
forwarding is done internally, the switch immediately forwards 
any SRM to its master independently of which is the current 
window (TMW, SW or AW). 

 At this point consider that, due to different faults, both 
switches have received a different set of SRMs by the end of 
the 1st EC and, thus, QA ≠  QB. For instance, QA = {1, 2} and 
QB = {3, 4}. Note that each update request is identified by an 
integer that specifies its intrinsic priority total order with 
respect to the other update requests. This intrinsic priority total 

order is needed for the masters to decide which one of any two 
given requests has a higher priority. This total order can be 
implemented in several ways, but how to do it is irrelevant for 
the current discussion. 

 At the beginning of the 2nd EC each master has to select 
which update request to process next. However, since 𝑄𝐴 ≠
 𝑄𝐵 , masters have to reconcile their view of the pending update 
requests so as to consistently select the same one. For doing so 
masters proceed as follows. First each master selects its 
minimum update request, i.e. the one with the highest priority, 
from its own Q list. We refer each one of these two selected 
update requests to as the local minimum of the corresponding 
master. We denote them as min{QA} and min{QB}. In this 
example, min{QA} = 1 and min{QB} = 3.  Then each master 
piggybacks its local minimum within the replicated TM it 
generates for triggering the 2nd EC. Since each switch does not 
only send each TM replica to its slaves, but also to the other 
switch, this strategy guarantees that each switch successfully 
receives the local minimum of the other switch. In this sense, 
by the end of the TMW of the 2nd EC each master updates its 
own Q list with the other switch’s local minimum. Thus, Q’A = 
{1, 2, 3} and Q’B = {1, 3, 4}.  Next each master selects the 
minimum request from its updated list. Since Q′A =  QA ∪
 min {QB}  and Q′B =  QB ∪ min{QA}, then it follows that 

min{Q′
A} = min{Q′

B}. In this example min{1, 2, 3} =
min{1, 3, 4} =  1. In other words, at the end of the TMW both 
masters agree on the minimum pending update request to 
process next, i.e. NA = NB = {1}. We refer this update to as the 
global minimum. Then they consistently and simultaneously 
subject that global minimum to admission control, and remove 
it from their Q lists, i.e. Q’’A = {2, 3} and Q’’B = {3, 4}. 

 It is noteworthy that for masters to agree on the global 
minimum, it is further necessary that no Q list is updated with 
any new update request - sent by the slaves - during the TMW 
in which the masters carry out the just described reconciliation 
actions, i.e. during the TMW of the 2nd EC in our example. 
Each master can accomplish this by storing, within an auxiliary 
list, any new update request its switch internally forwards to it 
during that TMW. Only when that TMW ends, the master 
transfers any new request to its Q list. 

Fig. 2. Timeline of the actions carried out in FTTRS to consistently update the schedule 

 



 Also, note that if there are multiple pending update 
requests, FTTRS processes them in a stepwise manner. In other 
words, masters do not select nor process any pending update 
request until the current one has not finished the admission 
control. In our example this means that masters will not select 
and exchange a new local minimum until they decide on the 
current subjected request, i.e. on {1}. 

 Coming back to the point at issue, note that the admission 
control can take one or more ECs to finish. Both masters are 
configured to know what the worst-case execution time of the 
admission control is, so that both of them conservatively 
consider it as finished in the same EC. Let us assume they 
consider the admission control of the update request subjected 
in the 2nd EC to finish at the Nth EC. Thus, by the end of that 
EC each master builds up a Master Command Message 
(MCM) to notify (in the next EC) the slaves about the result of 
the admission control. In addition, if the admission control has 
accepted the request, each master both includes within the 
MCM the changes to be applied to the NRDBs and temporarily 
stores the changes to be applied in its SRDB. We denote these 
changes to be applied to the NRDBs as Unrdb, and the ones to 
be applied to the SRDB as Usrdb. Note that each master has its 
own copy of these updates, i.e. UnrdbA and UsrdbA in A, and 
UnrdbB and UsrdbB in B; where UnrdbA = UnrdbB and UsrdbA 
= UsrdbB. 

 Next in the N+1th EC the schedule is consistently updated 
across the whole system as follows. First, each master 
piggybacks the MCM (which includes Unrdb if needed) within 
the replicated TMs. In this way the MCM is proactively 
retransmitted, which guarantees that all non-faulty slaves 
receive the MCM at the TMW of the N+1th EC and, thus, that 
slaves are consistently informed about the result of the 
admission control and the corresponding NRDBs update. 
Second, in case the result of the admission control was 
positive, then all slaves and both masters commit the 
corresponding changes to the NRDBs and SRDBs 
simultaneously at the end of the N+1th EC. In this way the 
schedule is consistently updated across the system, so that both 
masters can trigger the N+2th EC following the new schedule 
and all slaves can correctly respond accordingly. 

 Finally, please recall that FTTRS processes update requests 
in a stepwise manner. Thus, since in our example there are 
multiple pending update requests, then in the TMW of the 
N+1th EC the masters will select, exchange, agree on and 
subject to admission control a new local minimum. 

 

III. PSEUDOCODE OF THE FTTRS SCHEDULE CONSISTENT 

UPDATE MECHANISM 

In this Section it is presented a pseudocode and a set of images 

that complements the previous section. Each of the steps of 

the mechanism is represented in the set of images (Figure 3). 

 
1st EC 

 Each slave: 

  (1) send update requests to the masters 

 Each master: 

  (2) forward update requests through 

       interlinks to the other master 

2nd EC 

 Each master during TMW: 

  (3) send TM with the local minimum 

  (4) select global minimum 

  (5) start admission control 

From 3th EC to Nth EC 

 Each master: 

  (6) evaluate admission control 

Nth EC 

 Each master at the end of the EC: 

  (7) end admission control 

N+1th EC 

 Each slave and each master: 

  (8) update NRDB and SRDB, respectively 
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Fig. 3. Interactions between switches/masters and slaves during the  

FTTRS schedule consistent update mechanism 
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IV. UPPAAL MODEL CHECKER AND FORMALISM  

UPPAAL is a model checker specially designed to formally 
model real-time systems and exhaustively verify their 
properties [9]. UPPAAL provides a formalism to model the 
system as a set of interconnected timed automata, i.e. finite-
state machines extended with clocks (that progress at the same 
pace) [9], and a formal query language to express the system’s 
properties to be verified. The model checker accepts the model 
and the queries as inputs and, then, explores all the possible 
execution paths of the model to exhaustively check whether or 
not each property holds. In case a property does not do so, the 
model checker shows a trace in which that property is violated. 
Next we summarize the formalism for the automata. Some 
hints on the query language will be provided in Section VI. 

Each one of a model’s automata is specified by means of a 
template, which can include parameters to create different 
instances of the same automaton. Basically, a template is 
constituted by a set of locations, edges, local variables and 
local clocks. The different templates can share global variables 
and clocks, and they can synchronize by using binary or 
broadcast channels. 

Each automaton progresses through a set of locations, so 
that the state of the modeled system is defined as the current 
location of all automata (and the values of all variables and 
clocks). An automaton can step from one location to another 
one by taking an edge. The time a template remains in given 
location can be upper bounded by means of an expression, 
called invariant, involving one or more clocks. Moreover, a 
location can be defined as normal, committed or urgent. A 
template can indefinitely remain in a normal location, unless it 
is upper bounded by an invariant. Conversely, a template 
immediately leaves a committed or urgent location, thereby 
modeling that the time does not elapse in that location. A 
committed location differs from an urgent one in the sense that 
the former does not allow interleaving between different 
automata, whereas the later one does. As regards edges, each 
one can be enabled or disabled by means of an expression 
called guard, which is defined on variables and clocks. 
Moreover, an edge can include assignment expressions that are 
executed when the edge is taken.  

 Finally, templates can synchronize among them by 
simultaneously taking edges labeled with the same channel. A 
channel always has one sender template, but it can have one or 
more receiver templates. In the first case the channel is binary 
and the sender and the receiver wait each other to 
simultaneously take the edge. In the second case the channel is 
a broadcast one; receivers wait for the sender, but the sender 
can take the edge even if no receiver is waiting there. 

V. MODEL OF THE FTTRS SCHEDULE CONSISTENT UPDATE 

We modeled the schedule consistent update mechanisms of 
FTTRS by means of a slave template and a switch/master 
template, which respectively model the relevant actions 
carried out by a slave and by a switch/master. The slave and 
switch/master templates are instantiated three and two times 
respectively. In this way the model is composed by three 
slaves (justification below), and two switches/masters, since  
FTTRS presents these two as a way to achieve fault tolerance.   

 The reason to instantiate three slaves is because this 
number is the minimum that originates all kinds of scenarios in 
the queues of the replicated masters. Although it is possible to 
create inconsistencies in the queues with simply one or two 
slaves, the presence of three slaves allows having different and 
common update requests simultaneously in both masters. On 
the other hand, four or more slaves would create the same kind 
of scenarios that we obtain with three slaves. By scenarios we 
mean all possible distribution of update requests in the masters. 
However, given that there are two masters, those update 
requests can only be in three different situations (only in master 
A, only in master B or in both of them). The distribution of the 
update requests on any of these three situations is what 
determines the kind of scenario. In this sense, with only three 
update requests, i.e. with three slaves, it is possible to 
encompass all possible kind of scenarios. If more than three 
update requests are present, we would only increase the 
amount of update requests in one of the three possible 
situations, without creating new kinds of inconsistency 
scenarios. 

 Before starting with the details of each template, it is 
important to clarify that we made some assumptions in order to 
keep the complexity of the model at reasonable levels without 
compromising the accuracy of the model. First, we assumed 
that the system is always synchronized. That’s because there is 
a set of mechanisms in FTTRS that guarantee this condition. 
These synchronization mechanisms are the Elementary Cycle 
Synchronization between Masters [11] and Slave Elementary 
Cycle Synchronization [12]. Secondly, we assumed that the 
TM sent from one switch to the other always reaches its 
destination, thanks in part to the capacity of FTTRS to tolerate 
faults even in the TMs [13] and to the proper management of 
the aforementioned replication of the TMs [14].   

A. Slave template 

Figure 4 depicts the slave template. Initially the slave is in the 
idle location (represented as two concentric circles). The slave 
steps to location TM_recv when masters end broadcasting the 
TMs, i.e. when the TMW ends. Note that in FTTRS masters 
quasi-simultaneously transmit the TMs during the TMW. 
However, TM transmissions may suffer from jitter and 
transient faults, and thus a slave can actually synchronize with 
either master A or B. To reflect this fact the slave can step to 
TM_recv through two different edges, each labeled with a 
different broadcast (UPPAAL) channel, namely endTM_A and 
endTM_B, whose sender is one of the masters. 

 

 Once in TM_recv, which is a committed location, the slave 
immediately comes back to idle. The slave does so by taking 
one of two different edges in a non-deterministic manner. The 
upper edge models the slave not sending any update request, 

Fig. 4. Slave template in UPPAAL 

 



whereas the bottom one models the opposite. In this sense 
note that the slave template defines a global integer variable, 
request_id, that represents the update request the slave sends 
during the current EC. When the template is instantiated, this 
variable becomes request_1, request_2 or request_3, 
depending on whether it is instantiated to represent what we 
understand as slave 1, slave 2 or slave 3 respectively. Keeping 
this in mind please note that when the slave decides not to 
send an update request it sets its corresponding request_id to 
0. Otherwise, it sets this variable to 1, 2 or 3 depending on 
which one of the three slaves it represents. 

 It is worth recalling that we instantiate only three slaves. 
Also, each slave is modeled to send a maximum of one update 
request per EC, and when it does so it always specifies the 
same one. Thus, at any EC, each master can have a quantity of 
pending update requests ranging from 0 (no pending update 
request) to 3. This strategy allows preventing the state space to 
explode, while being enough to verify the consistency. On the 
one hand, what really matters in this sense is to check that the 
schedule is consistently updated even if the set of update 
requests received by master A differs from the set received by 
master B. On the other hand, having three slaves is enough to 
generate scenarios in which each master has to select its local 
minimum among two or more update requests, i.e. scenarios in 
which this selection in both masters is not trivial. 

B. Switch/master template 

Figure 5 shows the switch/master template. Its initial location 
is endTMW, which represents the end of the TMW. From this 
location the master synchronizes with the other one (and the 
slaves) by acting either as a sender of the broadcast channel 
endTM_id or as a receiver of the broadcast channel 
endTM_other. Note that if the template represents master A, 
then endTM_id and endTM_other are respectively instantiated 
as endTM_A and endTM_B; and vice versa when the template 
represents master B. 

 The edges from location startRxUplnk to endRxUpln 
model the master successfully/unsuccessfully receiving the 
update request each slave sends during the current EC through 
its uplink. For instance, from startRxUplnk, the template non-
deterministically takes the right or the left-handed edge. The 
right-handed one represents the master successfully receiving 
the update request slave 1 sends (if so), whereas the left-
handed one models the master failing to receive that slave 
update request. Note that the master has a global array, 
instantiated as Q[] from its point of view, which represents its 
local Q list. Each one of the three positions of this array, 
namely Q[0], Q[1] and Q[2], are devoted to storing the 
update request sent by slave 1, 2 and 3 respectively. Note that 
in case a slave, Si, sends its update request and the master 
successfully receives it, then this master sets its Q[i-1] to 
value i; otherwise the master sets its Q[i-1] to 0. Also note 
that we abstract away the instants of time, within the EC, in 
which the master receives the update requests. Whether the 
master receives an update request during the TMW, SW or 
AW is irrelevant. 

 After modeling the unsuccessful/successful reception of 
the above update requests, the template steps into location 
endRxUplnk. Each one of the two outgoing edges from this 
location are labeled with a binary channel, i.e. syncM_id or 
syncM_other, which are respectively instantiated as syncM_A 
and syncM_B for master A and vice versa for B. They are 
used to force both instances to wait for each other, similarly to 
how it is done at location endTMW. Afterwards, the edges 
from startRxInlnk to endRxInlnk_startCommit model the 
master unsuccessfully/successfully receiving (in a non-
deterministic manner) the update request of each slave the 
other master forwards through the interlinks. For instance, the 
upper edge from startRxInlnk models the master failing to 
receive the update request of slave 1 the other master 
forwards. The bottom edge models the opposite situation. In 
this later case the position of Q[] that corresponds to slave 1, 
i.e. Q[0], is set to 1 if the value stored in Q_other[0] is 1 
(otherwise Q[0] keeps its own value, i.e. Q[0] := Q[0]). 
Q_other[] is the global array that, from the point of view of 
the master, instantiates the local Q list of the other master. 

 Again, analogously to what (and why) we do with the 
update requests the master receives through the uplinks, we 
abstract away the instants of time, within the EC, in which the 
master receives these forwarded update requests. 

 Once an instance of the switch/master steps into 
endRxInlnk_startCommit it waits for the other instance by 
using, again, the binary channels syncM_id and syncM_other. 
This is done to model that, at the end of the EC, both masters 
simultaneously commit a SRDB update if needed. As it will be 
explained, an update request selected as the global minimum is 
always modeled as being accepted by the admission control. 
When so the template assigns that update request’s identifier to 
the local variable Usrdb. Thus, when simultaneously exiting 
from endRxInlnk_startCommit, each template sets its local 
variable SRDB to the value of its Usrdb. As a result, if a global 
minimum was subjected to admission control, then the 
templates sets SRDB to 1, 2 or 3 depending on the update 
request selected as global minimum. Otherwise, SRDB is set to 
0, meaning that no commit needs to be carried out.  

Fig. 5. Switch/master template in UPPAAL 

 



 Location endCommit_startTMW represents the beginning 
of the TMW of the next EC. From there to endTMW each step 
models a different action to be carried out during the TMW. 
The first step models each one of the two master instances 
simultaneously selecting its local minimum. Each instance 
stores its minimum at the global variable min_id, i.e. min_A or 
min_B depending on whether it is the instance of master A or 
master B respectively. Note that if there is a pending update 
request in its local Q list, the instance will select (and assign it 
to its min_id) the one with the lowest identifier, i.e. the one 
with the highest priority. Otherwise, it assigns 0 to its min_id. 
The second step models masters exchanging their local 
minimum. Since each master piggybacks its local minimum 
within the TMs it transmits, and at least one TM always 
reaches the other switch, each master always successfully 
receives the local minimum of its counterpart. Specifically, the 
master consults the other master’s local minimum by 
accessing the global variable min_other, which is instantiated 
as min_B or min_A for master A and B respectively. When the 
other master has a pending update request min_other will be 1, 
2 or 3 depending on the update request that other master 
selected as its local minimum. If so the template assigns 
min_other to the position of its Q list devoted to allocate that 
update request identifier, i.e. Q[0], Q[1] and Q[2] 
respectively. The third step models the master selecting the 
global minimum and subjecting it to admission control. As 
explained before, we assume that the admission control 
always accepts the subjected global minimum. Note that when 
a subjected global minimum is not accepted, neither the 
masters nor the slaves modify the SRDBs and NRDBs. Thus, 
from the point of view of the consistency among the data 
bases, not accepting a global minimum is equivalent to not 
having selected any global minimum; which is modeled as not 
having any pending update request when the EC starts, i.e. 
min_id = min_other = 0. 

 Also note that we model neither the preparation of the 
MCMs nor the commit slaves carry out at their NRDBs. 
Please recall that each master piggybacks the NRDB updates 
within the TMs it sends. Thus, since each slave receives at 
least one TM from at least one master, then all slaves will 
consistently update their NRDBs as long as the masters 
consistently update their SRDBs. 

 Finally, it is worth highlighting that we immediately set 
Usrdb to the global minimum, so that the template will 
commit Usrdb to SRDB at the end of the current EC, i.e. we 
assume the admission control to finish in the same EC in 
which it begins. Coming back to Figure 2, this means that, 
from a timeline point of view, we collapse the ECs from the 
2nd to the N+1th one (both inclusive) into a single EC. This can 
be done without losing generality. On the one hand, this is 
because in this single EC both masters synchronously carry 
out the same sequence of actions - devoted to select, analyze 
and commit just one update request - they would 
synchronously perform throughout the collapsed ECs. On the 
other hand, the differences between the actions a switch 
carries out in a collapsed EC and the actions it carries out in 
another collapsed EC are the instants in which it forwards the 
update requests to its master; which as explained before can be 
abstracted away. 

VI. MODEL VERIFICATION 

As said before, UPPAAL provides a formal query language to 
express the properties to be verified. In UPPAAL there exists 
three different kinds of properties [10]: reachability (uses the 
expression E<>), safety (uses the expressions A[] and E[]) and 
liveness (uses the expression A<>). In Figure 6 we can see the 
paths that these properties check schematically. In the figure, 
the circles represent states. Each state is, as indicated above, 
the current location of all automata and the values of all 
variables and clocks. Furthermore, the green circles represent 
states in which the state formula (φ) is met. Thus, path 
formulae check certain distribution of states in which the state 
formula meets, as we will explain below. 

 The reachability properties (E<>) are the simplest ones 
since they ensure that the model can reach a certain state 
eventually. The safety properties check two different kinds of 
scenarios: the first one (A[]) ensures that a certain condition is 
always fulfilled; the second one (E[]) ensures that it always 
exists a path where certain condition is always fulfilled in all 
states of the path. Lastly, the liveness properties (A<>) ensure 
that, taking any path it will reach always a certain state, for 
example, in a communication network transmitting a message 
will eventually reach its destination whatever happens. 

 These properties also require a state formula (φ) to be 
indicated. The state formula specifies certain conditions in the 
model, for instance, i == 7 is true when the variable i equals 7. 
In this regard, depending on the code that we write for the state 
formula, we can check different properties in our model. For 
example, if we introduce the query A[] i <= 7 we are verifying 
if the variable i is always equal or lower than 7. A special kind 
of state formula is deadlock, which is true when the model is 
blocked, that is to say, it does not have any chance to change 
its state. 

We verified the correctness of the FTTRS’s schedule 
consistent update mechanisms by checking three properties.  

Fig. 6. Path formulae supported on UPPAAL, reprinted from [10] 

 



First, we verified the following safety property to check 
that the mechanisms do never lead to a deadlock: A[] not 
deadlock. This property claims that “in every state, i.e. [], of 
all reachable paths, i.e. A, it always holds that there is no 
deadlock”. Moreover, note that when two edges exit from a 
given location to model two opposite situations, e.g. to model 
whether or not a master receives a given message, the model 
non-deterministically selects one of those edges. In this sense, 
since the model iteratively progresses in an infinite loop, this 
property also checks that the model does generate all possible 
combinations of the different non-deterministic choices. 

 Second, we checked that both SRDBs are always 
consistent. For this, we verified that the following safety 
property holds: A[] MA.SRDB == MB.SRDB, where MA and 
MB respectively represent the switch/master A and B. 

Finally, to further check that the just mentioned property is 
not only fulfilled in trivial cases, i.e. not only when the SRDBs 
are not updated but also when they are, we used the following 
reachability property: E <> MA.SRDB != 0 This property 
states that “it exists at least one state, i.e. <>, of at least one 
reachable path, i.e. E, in which the SRDB of master A (and of 
B due to the previous property) has been updated, i.e. 
MA.SRDB != 0”. 

These two conditions verify that the SRDB is updated and 
its content is always equal in both switches/masters, so they 
guarantee the correctness of the consistent schedule update 
mechanism. However, it is important to note that this is 
achieved under the assumptions of correct synchronization and 
correct exchange of the TM between the switch/masters. 

VII. CONCLUSIONS 

The Flexible-Time-Triggered Replicated Star (FTTRS) 
represents a step towards developing networks that 
appropriately support future critical Adaptive Distributed 
Embedded Systems (ADESs), as depicted in Figure 7. Thanks 
to FTTRS, the FTT communication paradigm leverages on top 
of Ethernet. Now it is not only possible to take advantage from 
the real-time and operational flexibility of FTT, but also from 
the high reliability FTTRS provides. FTTRS extends FTT on 
Ethernet by means of fault-tolerance capabilities based on 
different types of redundancy, which in turn require adequate 
mechanisms to enforce consistency among replicated 
components. 

 

In this paper we formally verify the correctness of the most 
complex FTTRS’s consistency mechanism, i.e. the one that 
guarantees that the traffic schedule is consistently updated at 
runtime. For this we use UPPAAL, a model checker specially 
designed for real-time systems. In this sense this paper is the 
first one of a series of works we plan to carry out to verify the 
correctness of ADESs based on FTTRS or similar networks. 
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