
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Temporal Replication of Messages for Adaptive
Systems using a Holistic Approach

Alberto Ballesteros, Manuel Barranco, Sergi Arguimbau, Marc Costa and Julián Proenza
DMI - Universitat Illes Balears, Palma, Spain

{a.ballesteros, manuel.barranco, sergi.arguimbau, marc.costa.marquez, julian.proenza}@uib.es

Abstract—Critical Adaptive Distributed Embedded Systems
(ADES) must meet high real-time and dependability require-
ments, while autonomously rearranging themselves to operate in
dynamic operational contexts. The DFT4FTT project proposes
a self-reconfigurable complete infrastructure, whose different
architectural levels provide a set of real-time (RT), fault-tolerance
(FT) and flexibility mechanisms that collaborate to adequately
support critical ADESs. To efficiently tolerate transient faults in
the network of an ADES, this paper describes our ongoing work
on providing a dynamic temporal replication of messages that
takes into account all the DFT4FTT fault-tolerance mechanisms
from a holistic point of view.

I. INTRODUCTION

A critical Adaptive Distributed Embedded Systems (ADES),
e.g. an autonomous vehicle, must automatically rearrange
itself to adequate its operation as the operational context un-
predictability changes. The operational context encompasses
both: (1) the operational requirements, which include its
functionalities, its RT guarantees, and the reliability it has to
exhibit; and (2) the operational conditions, i.e. the environ-
ment and the system itself (which can change due to faults).

Adaptivity enables taking full advantage of the resources
so as to not over-dimension the system to face unpredictable
operational contexts, e.g. by devoting a given resource to
different purposes as the functionality changes. Moreover, by
orchestrating the resources of the different levels of the system
architecture from a holistic point of view, it is possible to
use them in an even more efficient manner. In particular
this applies to the FT mechanisms, which can dynamically
change from a system-wide perspective to tolerate faults more
efficiently than classic static FT mechanisms can do.

To support RT highly-reliable ADESs while taking into
account the above-mentioned aspects, the Dynamic Fault Tol-
erance for the Flexible Time-Triggered Ethernet (DFT4FTT)
project [1] is devoted to providing a complete infrastructure
with advanced FT capabilities. By a complete infrastructure
we refer to a set of interrelated hardware and software com-
ponents (the architecture) together with the necessary in-built
mechanisms both at the node and at the network level.

At the node level, DFT4FTT provides high reliability by
means of active replication with majority voting. Each critical
task is executed in parallel in several nodes of the ADES
(called Computational Nodes, CNs). To provide flexibility at

This work was supported by project TEC2015-70313-R (Spanish Ministerio
de economı́a y competividad) and by FEDER funding

this level, we proposed a centralized architecture in which a
so-called Node Manager (NM) can reconfigure at runtime the
allocation and replication of tasks into the CNs [1].

At the network level, DFT4FTT relies on the Flexible
Time-Triggered Replicated Star (FTTRS) [2], a switched-
Ethernet implementation of the Flexible Time-Triggered (FTT)
communication paradigm. FTT makes it possible for the nodes
of an ADES to exchange traffic with RT guarantees. Moreover,
FTT provides full flexibility in the communications to support
periodic and aperiodic traffic with different RT requirements,
as well as changes in these requirements at runtime. To
attain high reliability FTTRS both replicates the network to
tolerate permanent network faults, and proactively retransmits
the critical messages to tolerate transient ones.

However the temporal replication of messages in DF4FTT
was static so far. Such static replication can be inefficient,
or even ineffective, when facing the changing operational
conditions in which ADESs operate. Thus, in this paper we
propose how to make the proactive retransmission mechanism
of DFT4FTT dynamic. Specifically, we propose to change at
runtime the number of message replicas to be sent (referred to
as k hereafter) depending on the current operational context,
which also includes the available FT mechanisms at the
different levels of the architecture.

It is important to highlight that, although all this work has
been developed in the scope of the DFT4FTT project, the
ideas herein presented are quite generic and, thus, they can be
applied in different communication subsystems.

II. RELATED WORK

During the last decades several architectures have been
proposed to provide RT and FT services for the execution
and/or the communication of tasks in distributed systems,
e.g. MAFT, FTP-AP, Delta-4, GUARDS, EMC2, DREAMS
[3]. Some of them like Delta-4 and DREAMS [4] do even
provide services to reallocate and reschedule tasks at run-
time. However, some of these architectures require complex
communication protocols at the application or transport layer
to provide node FT, others require costly adhoc network
topologies, while others are generic architectures not providing
any specific strategy for replicating the nodes or the network.

On the other hand, several Ethernet protocols do provide
some RT and/or FT properties. Some of the newer ones such as
PRP, AFDX, TTEthernet and specific TSN standards can even
provide zero recovery times by means of spatial redundancy,



e.g. TSN’s IEEE 802.1CB. However, none of these protocols
provide temporal replication of messages to efficiently tolerate
transient link faults, i.e. at most, they use proactive message
replication to send critical messages through the available
redundant paths so as to tolerate permanent link faults. More-
over, they either do not support online reconfiguration or imply
a latency for doing so, e.g. in the CUC/CNC approach of TSN
[5], that is not adequate [2] to timely react to critical situations.

III. OVERVIEW OF DFT4FTT

As just said, DFT4FTT relies on FTTRS [2] to implement
the communication subsystem. As Fig. 1 shows, the Computa-
tional Nodes (CNs) are interconnected by means a duplicated
star to tolerate permanent network faults. Each switch embeds
a replica of the FTTRS master, which organizes the com-
munication in fixed-duration slots called Elementary Cycles
(ECs). The EC starts with the master transmitting the so-called
Trigger Message (TM), and it is divided into windows each
accommodating a different kind of traffic. Transient network
faults are tolerated by proactively retransmitting k times in
advance the critical messages [2].

At the node level, each functionality in the system is
implemented by means of an application that is composed of
several interconnected tasks that can be executed in parallel or
sequential manner. A task is the minimum unit of computation
and can be deployed in any CN. As an example, Fig. 2 shows a
control application composed of three tasks: a sensing task (S);
a triplicated control task (C), where each one of its replicas
executes in parallel; and an actuation task (A).

Note that an application is executed as a set of phases
involving execution of tasks and transmission of messages.
Thus, a given system configuration basically includes the
allocation and replication of tasks, the number of proactive
retransmissions of critical messages (k), and the schedule of
tasks and messages.

The Node Manager (NM) is the responsible for reconfig-
uring the system at runtime when necessary. Since it is still
to be duplicated to tolerate its own faults, it is depicted as a
separate component; however, we plan to embed each one of
its replicas in the FTTRS switches.

IV. DYNAMIC MESSAGE REPLICATION

We propose to dynamically replicate the messages according
to the holistic approach outlined in Sec. I. Specifically, the
NM must make its decisions on how to temporally replicate
messages considering the operational context from the per-
spective of the whole system, i.e. considering the mechanisms

Fig. 1: System architecture. Fig. 2: App example.

of the different levels of the DFT4FTT architecture that are
still available to tolerate node [6] and network [2] faults. We
believe that this dynamic replication strategy is more efficient
than others in which the decisions on how to temporally
replicate messages are taken exclusively from a network-level
perspective, e.g. by considering the quality of the links [7].

Next we explain each one of the steps in which we propose
to divide the dynamic replication of messages, namely: (1)
detecting when the operational context changes; (2) determin-
ing, accordingly, on the specific number of message replicas
for each type of message; and, finally, (3) propagating the new
replication parameters to the nodes of the ADES.

A. Detection of the need for changes

Next we outline which changes of the operational context
make it necessary to update the number of message replicas
to be proactively retransmitted, i.e. k, as well as which
information can be monitored to detect these changes.

Since the system must be (re)configured in a holistic man-
ner, which changes trigger the update of k must be explained
from a system-wide perspective. At system’s start-up the NM
sets k to a conservative value, considering the different FT
mechanisms of DFT4FTT, but assuming that the network has
to deal with the harshest environment in which the system
is going to operate. Then, the NM decides to dynamically
reconfigure the system, including k, when it encounters the
following situations. First, if the environment actually becomes
more benign, then the NM can reduce k to save energy, or to
ease future configurations in which it could need to fit new
messages (e.g. if new tasks are put into execution). In any
case, k should always be conservative enough to prevent the
system from failing while, in the future, it reconfigures itself
to increase k again so as to deal with an increasingly harshly
environment. In this later case, if the network has no available-
enough bandwidth to increase k (e.g. if it had to accommodate
new tasks and their messages), then the NM would need to
reconfigure the system at its other levels. This reconfiguration
can consist in evicting non-critical tasks (or even reduce the
number of task replicas), and thus their messages, to free
bandwidth so as to accommodate higher values of k. In any
case, the NM has to find a configuration in which the FT
mechanisms at the different levels of its architecture guarantee,
as a whole, the desired system reliability. Second, if the
system loses (spatial) redundancy at any of its other levels
due to faults - e.g. if a node, task, or link fails -, then the
NM should increase k taking into account the just-mentioned
considerations about the available bandwidth. Analogously,
if the system regains redundancy thanks to its reintegration
mechanisms [6], then the NM can conservatively reduce k
as explained before. Third, if the operational requirements
(functionality, RT guarantees, or reliability) of the system
change, then the NM may need to change the set of tasks
to be executed (and with them their interdependencies and
messages). If so, it will need to find a new configuration
(including a conservative value for k).



It is important to note that it may be impossible to find a
new configuration that fulfills all the requirements when the
operational context changes. If so, the NM needs to find a new
configuration in which the system provides its services with
an adequate/acceptable level of reliability (even though it is in
a degraded manner from the functional point of view).

To detect changes in the environment affecting the network,
the NM can use different mechanisms. First, it can use several
radiation sensors to measure how harshly the environment is
and then estimate, e.g. using a failure rate model like [8],
the expected rate of transient link faults. Second, the NM can
estimate the rate of transient faults affecting each link through
which it receives messages, by using the counter of dropped
incoming messages (due to errors in the channel) provided
by the Ethernet card of the corresponding switch port. Third,
each task within a CN periodically transmits an I Am Alive
(IAA) message which piggybacks information contained in
the TM. The NM can use the percentage of IAA omissions to
estimate the probability with which the transmitted TM does
not reach a CN and, thus, the rate of transient faults affecting
the link through which it transmits messages to that CN. Fi-
nally, DFT4FTT includes a retransmission mechanism - called
CVEP [6] - to tolerate bursts, which requires task replicas to
send ACK messages. The NM can use the omissions of ACKs
to estimate the rate of transient link faults as well.

To detect changes in the available spatial redundancy, the
NM can use the just-mentioned mechanisms (except the first
one). For instance, if a task omits its expected IAA during
a given period of time, the NM will diagnose that task as
permanently faulty. Conversely, if that task reintegrates and
successfully transmits its IAA, then the NM will detect that
the task is available again.

Finally, to detect changes in the operational requirements,
the NM includes application-dependant knowledge about the
environment and how the system should operate accordingly
[1], e.g. in an autonomous vehicle, the NM can use this
knowledge to detect different terrains and, then, determine the
new operational requirements to adequately drive.

B. Determination of the new configuration

To determine a new system configuration we propose that
the NM searches among all the possible configurations to find
a valid one, i.e. one that fulfills all the operational require-
ments. Some of the search techniques we are considering for
this are: heuristic-based techniques like branch and bound with
a greedy algorithm, metaheuristic-based techniques like Tabu
search [9] and solvers like SMT solvers [10].

In particular, a valid configuration must fulfill the tasks and
messages RT requirements as well as the needed reliability.
Thus, the search technique must include a holistic scheduler
and a reliability analyzer. In any case, the search can require
more or less computation time and storage capacity. The num-
ber of configurations can be huge depending on the number
of considered aspects. Moreover, the scheduling and reliabil-
ity analyses of each configuration can take a non-negligible
amount of time. Thus, we are assessing the performance of

the above-mentioned search techniques so as to decide whether
the search should be done at runtime or completely/partially
pre-calculated offline.

Independently of the search techniques the NM will finally
use, next we outline the strategy we propose to decide how
many replicas should be proactively retransmitted for each
type of message. In this sense, we differentiate among data
messages, the Trigger Message (TM) and control messages.

Data messages are used by CNs to transmit the application-
level data among tasks. Of those messages, we propose to
temporally replicate only the critical ones, e.g. the ones that
replicated tasks use to exchange the data they need to reliably
vote on. To reduce the complexity of finding an adequate sys-
tem configuration, the NM must calculate a conservative value
of k that is common to all critical data messages. However, this
value should not be calculated based on the transient failure
rate of the most error-prone link. This is because the cause for
a link to be specially error-prone is not necessary a harshly
environment, but it can also be a local mechanical/electrical
defect of that link. Thus, the common value of k should be
based on the radiation sensors’ measurements or on a trimmed
mean of the estimated link transient failure rates. Then, if a
given link shows to be more error-prone than expected, the
NM should find a new configuration with a higher value of
k for that specific link. In any case, to prevent unnecessary
reconfigurations, the DFT4FTT fault diagnosis mechanisms
[6] should diagnose a specially error-prone link as permanently
faulty and, then, discard it from the system.

The TM triggers the communications and, thus, it is vital
to transmit it in a reliable manner. However, we already
constructed a reliability model of FTTRS and made sensitivity
analyses to determine the impact of the replication of the TM
in the system reliability [6]. The results showed that the system
reliability improves as the k of the TM increases; but that this
improvement starts to become negligible when k is increased
from 3 to 4. Moreover, the difference in bandwidth usage when
using 2 or 4 TM replicas is also negligible. Thus, to reduce
the need for reconfigurations, we propose to use a constant
value of k = 4 for the TM.

Control messages convey the data needed for managing
the reconfigurations, e.g. the IAA message (see Sec. IV-A)
and the Master Command Message (MCM) described later
in Sec. IV-C. We propose to temporally replicate only the
control messages that are critical. In principle these messages
should be dynamically replicated as critical data messages
are. However, to reduce the need for reconfigurations, if the
difference in the bandwidth used by the message starts to be
negligible when k increases from i to j, we propose to use
a constant value of k = j for it. For instance this is the case
of the MCM, which is rarely transmitted since it is used to
consistently propagate new configurations (as explained next).

C. Propagation of the configuration

Once the NM has decided on a new configuration (including
the values of k), it needs to propagate it to the CNs. In particu-
lar, the new ks are then used by each CN to both transmit and



check the reception of the correct number of message replicas.
Here we propose a mechanism to reliably and consistently
propagate a new configuration, i.e. to guarantee that the NM
and the CNs update their databases with the corresponding
configuration information at an equivalent time. We describe it
in terms of the databases used to store the messages’ attributes;
but everything said here can be applied to the other databases.

The messages database of the NM and each CN is composed
of two databases: (1) the read database, which is used in
normal operation; and (2) the write database, which keeps
all the changes needed to step into the new configuration.

Once the NM has introduced all the changes of a new
configuration into its write database, it broadcasts - in an
aperiodic control message called Master Command Message
(MCM) - the full list of changes. The MCM is proactively
retransmitted several times to ensure that it is received by all
the CNs and, thus, that there is no data inconsistency.

Upon the reception of the MCM, each CN updates its write
database with the content of said message. After that, the NM
decides in which EC the read databases should be updated
with respect to the write databases. Then, the NM sends a
commit order inside the TM of said EC. This order indicates
that the NM is going to update its read database at the end
of the EC and, thus, instructs each CN to do so with its own
read database. Specifically, the NM and the CNs update their
read database in a new dedicated window placed at the end
of the EC, we call the Commit Window. Neither the NM nor
the CNs are operating with their databases during this window
and, thus, they can update the read database without any risk.

V. EXPERIMENTATION

Since DFT4FTT is an ongoing project, its implementation
is subjected to the fully definition of its mechanisms. Thus,
we have implemented all the work presented here in a real
prototype; except the mechanism that make it possible for the
NM to search a new configuration. This is because we are still
deciding on the most suitable search algorithm to efficiently
determine, among other parameters, the value of k for each
message. In this sense, what we have specifically implemented
in the context of the present work (the dynamic replication of
k), are the mechanisms that make it possible for each kind of
message to: generate k message replicas, modify k at runtime,
and propagate the new k to the CNs.

The prototype consists of 3 CNs connected to a central
embedded device that includes both the NM and the FTTRS
master/switch. The central device has a Celeron processor,
4 GB of RAM, and 10 Ethernet interfaces. Each CN is
implemented separately in a dedicated embedded device with
an Intel Atom processor and 2 GB of RAM. The operating
system running in the central device and in each CN is Ubuntu
16.04. The Elementary Cycle (EC) is 20 ms long.

We have used this prototype to test the correct operation of
the just-mentioned mechanisms in conjunction, by switching
between configurations where k varies for all kind of mes-
sages. These tests demonstrated that these mechanisms worked
as intended, thereby demonstrating their feasibility.

For instance, one test consisted in running a single task
(in a given CN) and, then, instruct the NM to apply a new
configuration in which this task becomes critical so that (1)
the task is triplicated, (2) each one of its replicas runs in
a different CN, and (3) the message of each replica is also
triplicated. Specifically, in the i th EC we instructed the NM
to reconfigure the system so as to apply the new configuration.
Then, we observed the following autonomous actions: (1) the
NM propagates all the changes to the CNs during the i + 1
th EC; (2) the NM and all the CNs consolidate the changes
in their read databases at the end of that i+ 1 th EC; (3) the
NM triggers the execution of the new task replicas and their
messages in the i+2 th EC; (4) and each task replica executes
and transmits 3 replicas of its message accordingly in that EC.

VI. CONCLUSIONS

In this paper we present the design and partial implementa-
tion of the DFT4FTT mechanism for the dynamic temporal
replication of messages. This mechanism has the potential
to increase ADESs tolerance to transient network faults in a
cost-effective manner; by taking advantage not only from the
temporal redundancy of messages, but also from the FT mech-
anisms of the different levels of the DFT4FTT architecture.

We explain how the system can detect when to reconfigure
itself to adequately tolerate transient faults; the guidelines for
how to decide on a proper number of replicas for each kind
of message in any new configuration; and how to reliably and
consistently propagate such a configuration to all the nodes of
the ADES. Then, we outline the tests we carried out in our
ongoing prototype of DF4FTT to demonstrate the feasibility
of the ideas presented here.

In the short term we will propose how to use an adequate
search technique to find proper system reconfigurations by
considering, among other aspects, the degree of temporal
redundancy of messages (k).

REFERENCES

[1] A. Ballesteros, J. Proenza, and P. Palmer, “Towards a Dynamic Task
Allocation Scheme for Highly-Reliable Adaptive Distributed Embedded
Systems,” in Proc. 22th IEEE ETFA, Limassol, 2017.

[2] D. Gessner, J. Proenza, M. Barranco, and A. Ballesteros, “A fault-
tolerant ethernet for hard real-time adaptive systems,” IEEE TII, May
2019.

[3] I. Álvarez, A. Ballesteros, M. Barranco, D. Gessner, S. Derasevic, and
J. Proenza, “Fault Tolerance in Highly-Reliable Ethernet-based Industrial
Systems,” in Proceedings of the IEEE (Early Access), 2019.

[4] A. Larrucea, I. Martinez, J. Perez, V. Brocal, S. Peiró, H. Ahmadian, and
R. Obermaisser, “DREAMS: Cross-Domain Mixed-Criticality Patterns,”
in WMC 2016, Nov. 2016.

[5] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, “Runtime
Reconfiguration of Time-Sensitive Networking (TSN) Schedules for Fog
Computing,” in 2017 IEEE FWC, Oct 2017.

[6] S. Derasevic, “Node Fault Tolerance for Distributed Embedded Systems
based on FTT-Ethernet,” Ph.D. dissertation, UIB, 2018.

[7] I. Álvarez, M. Barranco, and J. Proenza, “Mixing Time and Spatial
Redundancy over Time Sensitive Networking,” in Proc. 48th IEEE/IFIP
Int. Conf. on Depend. Systems and Networks (DSN), Luxemburg, 2018.

[8] DOD, MIL-HDK-217F-2 Military Handbook, Reliability Prediction Of
Electronic Equipment. Department of Defense Washington DC, 1995.

[9] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers & Operations Research, vol. 13, no. 5, 1986.

[10] W. Steiner, “An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-hop Networks,” in 31st IEEE RTSS, Nov 2010.


