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Abstract— This paper presents a robust approach to estimate
the relative motion between couples of range scans called CSoG.
The algorithm first searches prominent structural features in
one of the scans by means of a clustering algorithm. Thus, no
assumptions about the environment are made. Afterwards, it
projects the other scan into the detected feature set and uses
a score function to evaluate the projection. By optimizing the
score function the motion between the two scans is obtained.

Our approach is compared to two well known scan matchers
using real data from three different sensors: a terrestrial sonar,
a terrestrial laser and an underwater sonar. Results show a
significant improvement of CSoG with respect to the other
algorithms in the case of medium and large motions between
the scans. Accordingly, CSoG is a good choice to perform dead
reckoning from range data and to close large loops in SLAM.

I. INTRODUCTION

Localization is one of the most fundamental problems
in mobile robotics since almost any task carried out by a
robot depends on accurate pose estimates. Even though the
use of external beacons can help to solve the problem, they
are not always available. Consequently, most of the existing
solutions to localization focus on the use of sensors that do
not require artificial placement of external devices.

The most commonly used externoceptive sensors to per-
form localization are cameras [1] and range finders [2]. The
use of cameras has increased in the last years as they provide
a richer representation of the environment than range finders.
However, the same reason that makes cameras interesting
sensors to localize a mobile robot also plays against them.
Since cameras provide more information than range finders,
more computational resources are needed to properly process
the images. Thus, even though the computational power has
drastically increased in few years, low cost robots such as
autonomous vacuum cleaners can benefit from the use of
range finders.

Moreover, cameras are still not the sensor of choice in un-
derwater robotics. In spite of the remarkable results obtained
in underwater visual localization, mapping and Simultaneous
Localization and Mapping (SLAM) [3], most underwater
vehicles include sonars as primary sensors [4]. Since sound
propagates better than light in marine environments, sonar
sensors have significantly larger perception ranges than cam-
eras in that medium.

Independently of the environment being underwater or
not, most of the existing range sensors have one feature
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that makes them particularly appealing to perform local-
ization: they directly provide geometric information about
the environment. Typical sensors such as Laser Range Find-
ers (LRF), Acoustic Range Finders (ARF) or underwater
Imaging Sonars (IS), among many others, provide specific
coordinates of the obstacles surrounding the robot that can
be used to perform localization either directly or with small
pre-processing [5].

At the core of every localization system there is an
odometer, which is in charge of estimating the motion
between couples of consecutively gathered sensor readings.
By accumulating these motion estimates, a rough guess of the
robot trajectory can be obtained and subsequently refined by
means of, for example, SLAM. The measurements provided
by range sensors are usually grouped to build the so called
scans. Thus, the most common approach to odometry using
range sensors is known as scan matching [6].

Most of the existing scan matchers work at a single
reading level. That is, they estimate the robot motion by
assuming that individual range readings within each scan
are independent among them, thus neglecting the structure
of the environment. This is usually seen as an advantage,
since trying to fit the scans into certain model reduces the
autonomy of the vehicle. For example, trying to model the
scans based on straight lines confines the robot operation to
man-made structured scenarios.

In this paper we explore a new way to perform scan
matching, called Cluster-Based Sum of Gaussians (CSoG)
taking into account the structure of the environment without
compromising the robot autonomy. Our proposal is not hard-
code a specific environment structure but to let the system to
dynamically build the best representation of the environment.
This is achieved by dividing the scan in its most prominent
components using a clustering algorithm. Afterwards, the
problem of scan matching can be defined as a problem of
global optimization, which is also beneficial since it reduces
the well known problem of local minima.

II. RELATED WORK

A. Scan matching

Given two scans SA = {pi = [pxi, pyi]
T , 0 ≤ i < M}

and SB = {qj = [qxj , qyj ]
T , 0 ≤ j < N} gathered at

the coordinate frames A and B respectively, the goal of a
scan matcher is to estimate the motion XA

B = [xAB , y
A
B , θ

A
B ]T

from frame A to frame B. This motion is computed as the
one that maximizes the overlap between SA and S′B =
XA
B ⊕ SB = {q′j = [qx′j , qy

′
j ]
T , 0 ≤ j < N}, where ⊕

denotes the composition transformation. If SA and SB have



been consecutively gathered, scan matching behaves as an
odometer. If the scan matcher can properly deal with non
consecutively gathered scans, which means large motions
between SA and SB among others, it can also be used to
close loops in SLAM [7].

Scan matching algorithms are usually classified in two
rough categories based on their similarity to the well known
Iterative Closest Point (ICP) [8]. In this way, ICP-based
algorithms are those that iterate three steps until convergence.
During the first step, the points in SB are transformed
according to an estimate of XA

B . This means that an initial
guess for XA

B is required. During the second step, each
point in the transformed SB is associated to the closest
pi ∈ SA. Finally, the third step is in charge of finding the
XA
B that minimizes the sum of squared distances between

associated points. Since the associations may not be correct,
the algorithm iterates under the assumption that each new
set of associations will be better than the previous one.

ICP-based algorithms mainly differ in the distance criteria
used during the second and the third step. For example,
ICP uses euclidean distance, Iterative Dual Correspondence
(IDC) [8] takes advantage of polar distances, PLICP [9]
makes use of point to line distance and Sonar Probabilistic
Iterative Correspondence (spIC) [10] relies on statistical
compatibility by means of the Mahalanobis distance. The
main problem of all these algorithms is that they can easily
fall in local minima mainly because the function they have
to optimize in the third step changes at every iteration.

The second of the above-mentioned categories refers to
those algorithms that do not follow the ICP algorithmic
structure. Most of these algorithms build a function that
represents SA and then evaluates each point of SB on that
function. A score function that aggregates these evaluations
is then defined and optimized to find XA

B . Overall, algorithms
within this category differ on how they build up the function
for SA. For example, the Normal Distributions Transform
(NDT) [11] builds a grid, computes the mean and the
standard deviation of the pi ∈ SA that lie within each
cell and then models each grid cell as a Gaussian, thus
defining a piecewise function. Other approaches, such as the
Likelihood Field with Sum of Gaussians (LFSoG) [12], focus
on reducing the problems of the discontinuities among grid
cells at the cost of larger computation times.

Our proposal, which lies in this second group, focuses on
the way in which the function that models SA is constructed
so that it dynamically takes into account the environment
structure by means of clustering techniques.

B. Clustering

Clustering is the process of grouping data samples so that
the similarity of the samples is maximum within groups and
minimum among them. This is often achieved by defining
a distance criteria between samples and also a method to
compute a representative, called centroid, of each group. For
example, K-Means [13] typically makes use of euclidean
distances and centroids are usually defined as the mean
of the samples belonging to each group. A variant of this
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Fig. 1. Example of clusters. (a) Using covariance. (b) Using modified
covariance.

algorithm is K-Medoids which basically changes the centroid
computation to guarantee that it is a data sample itself. Also,
K-Medoids has shown to exhibit better convergence rate than
K-Means.

Even though there exist approaches to clustering radically
different to K-Means and K-Medoids, such as hierarchical
clustering, the need to define a distance able to compare
data samples is a constant. Properly defining that distance is
crucial, since it constrains the shapes that clusters can have.

Our proposal is to apply a clustering algorithm to find
groups of readings in SA. Since each group will contain
readings that are similar between them but dissimilar to
other groups, each group will actually represent a salient
structural feature of the environment. Thus, a scan matcher
could take profit of that structure. However, contrarily to
other approaches [14], no assumption about the structure is
hard coded: groups are dynamically built according to the
structure of each specific scan. Moreover, this also leads to
a dimensionality reduction that will significantly reduce the
execution time of the scan matcher.

In our case, each data sample has two dimensions and rep-
resents a point of an actual object around the robot. Previous
studies have shown that Mahalanobis distance offers a fair
trade-off between the ability to properly model these kind
of spatial measurements [10] and the required computation
speed. That is why the clustering approach that will be
used in this study is K-Medoids with Mahalanobis distance.
Accordingly, our proposal differs from previous approaches
to cluster-based scan matching [13] in several points. First,
we use K-Medoids since it has interesting properties and
faster convergence rate. Second, our metrics are based on
Mahalanobis, as it better models the scans than euclidean
metrics. Third, our proposal optimizes a unique, global,
function thus reducing the local minima problem.

III. THE CLUSTER-BASED SUM OF GAUSSIANS

Our proposal operates in three steps. First, K-medoids with
Mahalanobis distance is applied to SA to find the groups of
readings that better capture the structure of that scan. Second,
a score function projects SB into the detected groups and
evaluates the goodness of the projection. Finally, the motion
that maximizes that score function is searched. That motion
is, precisely, XA

B . Next, these three steps are described.



Fig. 2. Example of scan model.

A. Clustering

Let GA = {(µi,Σi), 0 ≤ i < NG} denote the result of
applying K-Medoids to SA, where µi and Σi are the mean
and the covariance, respectively, of the points assigned to
cluster i. Due to the spatial distribution of the scan points,
it can be expected that some Σi are near singular (Figure 1-
a) thus leading to further numerical problems. To avoid this
problem, we impose an additional constraint to Σi: if the
lowest eigenvalue is smaller than one fourth of the largest
one, we force it to that value. The result is exemplified in
Figure 1-b.

B. The score function

Our proposal is to model SA using the set of Gaussians
defined by the means and the covariances in GA. In this way,
we can represent SA as a sum of Gaussians. Accordingly,
we define the function f(p) as follows:

f(p) =
∑

(µi,Σi)∈GA

e(−(p−µi)
T Σ−1

i (p−µi)) (1)

where p is a point in the space. The normalization factor
has been removed to improve the efficiency since it is not
necessary in this case. Figure 2 shows an example of how
the previous Equation evaluates for one specific scan. As it
can be observed, larger values spread through the regions
where the original measurements were located (Figure 1).

We can now define a score function that evaluates the
goodness of a motion X from the reference frame of SA to
the reference frame of SB . Since f(p) provides larger values
for points that are close to the actual obstacles, our proposal
is to transform the points in SB by means of X , evaluate
each of these projected points by means of Equation 1 and
sum all these evaluations. In this way, the better is X , the
larger the obtained value will be. That is, the proposed score
function s(X) is as follows:

s(X) =
∑
qj∈SB

f(X ⊕ qj) (2)

C. Optimization

Since the score function in Equation 2 has been defined
so that the better the X the larger the output, the goal now
is to find the X that maximizes the score. Just to ease

further numeric methods, let us transform this problem into a
minimization one by changing the sign of the score function.
That is, the motion XA

B from SA to SB can be computed as:

XA
B = arg min

X

− ∑
qj∈SB

f(X ⊕ qj)

 (3)

Our proposal to perform this optimization is to use a trust-
region algorithm. To this end, the gradient and the Hessian
matrix of the score function to be minimized are required.
Since the score function is defined as a sum of exponentials,
both the gradient vector and the Hessian matrix can be
computed by summing the gradient vectors and the Hessian
matrices of the addends respectively. Following explanation
focuses on one addend involving (µi,Σi) and qj . To ease
notation, let us define α = X ⊕ qj − µi so that one addend
of the score function can be written as:

g(X) = − exp(−αTΣ−1
i α) (4)

One addend of the gradient vector is as follows:

∇g(X) =
∂g

∂X
= 2 exp(−αTΣ−1

i α)αTΣ−1
i

∂α

∂X
(5)

where

∂α

∂X
=

[
1 0 −qxj sin θAB − qyj cos θAB
0 1 qxj cos θAB − qyj sin θAB

]
(6)

Note that there is no need to compute the third row since
points do not have a θ component. As for the Hessian matrix,
one addend is as follows:

H =

 H00 H01 H02

H10 H11 H12

H20 H21 H22

 (7)

where

Hrc =
∂2g

∂xr∂xc
= 2 exp(−αTΣ−1

i α) ·

·
[
−2αTΣ−1

i

∂α

∂xc
αTΣ−1

i

∂α

∂xr
+

+

(
∂α

∂xc

)T
Σ−1
i

∂α

∂xr
+ αTΣ−1

i

∂2α

∂xr∂xc

]
(8)

The notation xi in this Equation refers to each of the
components of the transformation X , so that x0 and x1

denote the x and y displacements respectively and x2 denotes
the rotation angle. Accordingly, ∂α

∂xi
corresponds to the i-th

column of the Jacobian matrix shown in Equation 6. As for
the second partial derivatives of α, it is easy to see that they
are zero except for H22. That is:
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Fig. 3. Examples of scans used in the experiments. (a) Terrestrial sonar
and laser. (b) Underwater sonar.

∂2α

∂xr∂xc
=



[
−qxj cos θAB + qyj sin θAB
−qxj sin θAB − qyj cos θAB

]
r = c = 2

[
0
0

]
otherwise

(9)
It is important to emphasize that, being g(x) of class

C1 (i.e. continuously differentiable), the Hessian matrix will
be symmetric. This fact can be used to slightly reduce the
computation time.

IV. EXPERIMENTAL RESULTS

Data from three very different range finders has been used
to perform the experiments. The first tested sensor suite is
a set of 16 terrestrial Polaroid ARF. The data using these
sensors was gathered in indoor and semi-outdoor areas in
our university using a Pioneer 3-DX robot. The angular
uncertainty of these sensors (' 30o) combined with the
existing multi-path reflections was responsible for a large
amount of wrong measurements. To alleviate this problem,
readings farther than 5 m have been discarded. Also, because
of their low firing rate, measurements had to be grouped
along small trajectories to build the scans. In this way we
obtained a total of 473 sonar scans involving a mean of 409
readings per scan.

The second tested sensor is a Hokuyo URG-04LX LRF
with a maximum range of 5 meters. The sensor was attached
to the same robot used to gather sonar data, so that both
sensors captured the same environment. Among the gathered
laser scans, we selected those that were obtained exactly
when the sonar grouping method built one sonar scan. In
this way we have a one to one correspondence between the
sonar and the laser scans. That is, we also have 473 laser
scans. The average number of readings per scan is 378 in
this case and their quality is extremely high when compared
to the ARF. Figure 3-a shows one scan obtained with the
LRF and the corresponding scan gathered with the ARF.

The third tested sensor is an underwater IS. In particular,
we have used the data from a Mechanically Scanned Imaging
Sonar (MSIS) obtained by [15] in an abandoned marina
in the Costa Brava (Spain). The MSIS data has been pre-
processed in two ways. On the one hand, range readings
have been extracted using the technique described in [10].
On the other hand, similarly to the terrestrial sonar, readings

have been grouped along small trajectories to build scans. In
this case we have 218 scans with an average of 101 readings
per scan. The maximum sensor range in this case is 50 m.
Figure 3-b show one of the scans obtained with this sensor.

In order to evaluate our approach, we will compare it to
the most representative scan matchers in the two categories
mentioned in Section II-A: ICP and NDT, which also are the
most widely used approaches to scan matching nowadays.
The maximum number of iterations has been set to 1000 for
all three algorithms. This means that ICP will re-establish
correspondences a maximum of 1000 times and that NDT
and CSoG numerical optimization methods will perform a
maximum of 1000 iterations. The clustering step in our
proposal uses a fixed number of 10 and 20 clusters with
underwater and terrestrial data respectively. As for NDT, we
used the improved method that builds four overlapping grids
and a cell size of 1 m.

For each sensor type (terrestrial ARF, terrestrial LRF and
underwater sonar) we proceed as follows. First, each scan is
split into two different scans. In this way, we simulate having
couples of scans gathered at the same exact position. Thus,
the motion between the two scans in each couple is perfectly
known to be [0, 0, 0]T . Then, a random roto-translation X =
[x; y; θ]T is applied to one of the two scans to represent the
misalignment between the two scans.

We have defined five levels of misalignment between
scans. In level 1, x and y are chosen according to a uniform
distribution between -0.01 and 0.01 times the maximum
sensor range. The orientation θ comes from a uniform
distribution between -5 degrees and 5 degrees. These values
increase with the misalignment level, lying between -0.05
and 0.05 times the maximum sensor range in x and y and
between -25 degrees and 25 degrees in θ in level 5. All
the tested methods are fed with these scans and their output
recorded. The process has been repeated 100 times per scan
and misalignment level, which means a total of 582000
executions per tested algorithm.

The output of each scan matcher has been classified as true
positive (the algorithm converged to a correct motion esti-
mate), true negative (the algorithm did not converge and the
estimate at the last iteration was wrong), false positive (the
algorithm converged to a wrong motion estimate) or false
negative (the algorithm did not converge but the estimate at
the last iteration was correct). To do this classification, an
estimate is considered correct if its error is below 10% of
the maximum sensor range in X and Y and below 10 degrees
in orientation.

The results for each scan matcher and dataset are shown in
Figure 4. Overall it can be observed that, even though ICP
reaches almost 100% of true positives for small misalign-
ments between the scans, its accuracy decreases fast with
the misalignment level. The NDT behaves similarly to ICP
with slightly better accuracies for largely misaligned scans.

Our proposal, the CSoG, exhibits a slightly lower accuracy
for levels 1 and 2 but clearly surpasses all the other methods
with all the sensors from misalignment level 3 onward. For
example, whilst ICP and NDT have a 42.5% and a 45.6%
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Fig. 4. Comparison in terms of true and false positives and negatives. X axes correspond to the five misalignment levels and Y axes are percentages.

of true positives with misalignment level 5 using terrestrial
ARF, the CSoG reaches the 70.7%. A similar behaviour can
be observed with the other sensors. Whereas ICP and NDT
provide a 40.3% and a 41.4% of true positives in LRF level 5,
CSoG reaches a 60.1%. The 40.2% and the 40.9% obtained
by ICP and NDT with MSIS data in level 5 is also clearly
surpassed by the 53.7% of CSoG.

The results with the LRF are particularly interesting. In
this case, CSoG shows significant amounts of false negatives:
11.7%, 16.5% and 20.9% in levels 3, 4 and 5. Since these
situations correspond to the cases in which CSoG did not
achieve convergence but the estimation in the last iteration
was correct, this suggests that improving the convergence
criteria or using a better optimization algorithm could sig-
nificantly improve the CSoG performance.

To provide a clearer understanding of the algorithm’s
behaviour in front of the misalignments, Figure 5 shows the
mean errors of the true positive estimates also as a function
of the misalignment level. In particular, the distance error,
defined as the euclidean distance from the provided estimate
to the ground truth, and the orientation error, defined as
the absolute difference between the estimated angle and the
ground truth angle, are shown.

Overall, the distance errors are similar between the three
algorithms in terrestrial environments but significantly worse
for CSoG when using underwater sonar data. As for the ori-
entation error, CSoG provides clearly better results than the
other approaches both in the terrestrial and the underwater
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scenarios.
These results lead to some interesting conclusions. First,

the ICP and probably ICP-based approaches in general, are
the algorithms of choice in front of small misalignments.
In these cases, the established correspondences are good
enough to guarantee convergence to an accurate solution.
Thus, ICP-based algorithms are particularly good to provide
odometric estimates. However, the fast drop in performance
with the misalignment level makes ICP-based approaches
less interesting when it comes to loop closing in SLAM. To
the contrary, CSoG performs significantly better than ICP
and NDT in presence of largely misaligned scans. Thus, it is
well suited to close loops in SLAM, where larger motion
errors between non consecutively gathered scans can be
expected.

Second, even though there are some differences depend-
ing on the sensor being ARF, LRF or MSIS, the relative
behaviour between algorithms remain similar independently
of the dataset: ICP is the best for small misalignments and
CSoG surpasses the NDT for largely misaligned scans.

Taking these facts into account, a future line of research
arises: by combining CSoG and an ICP-based approach, ac-
curate results in front of very high noises could be achieved.
For example, an initial estimate could be obtained by means
of CSoG and used to feed an ICP-based algorithm. In this
way, the robustness of CSoG in front of noise could also
lead to high accuracy thanks to ICP-based approaches.

V. CONCLUSION

In this paper we have presented a robust approach to
estimate the relative motion between couples of range scans
called CSoG. The approach operates in two steps. First, it
searches prominent structural features in one of the scans.
This search is performed by means of a clustering algorithm
and, thus, no assumptions about the environment are made.
Second, it projects the other scan into the detected feature
set and evaluates the goodness of the projection by means
of a score function. By optimizing that score function, the
motion between the two scans is obtained.

The proposal has been compared to well known represen-
tatives of different scan matching approaches. On the one
hand, the ICP, that establishes point to point correspondences
between scans. On the other hand, the NDT, which also
defines a score function similarly to CSoG. All the algo-
rithms have been tested with three different range sensors: a
terrestrial sonar, a terrestrial laser and an underwater sonar.

Results have shown that, even though ICP surpasses CSoG
in front of low initial errors, its results are not good when
the motion between the scans is large. In these cases, NDT
and CSoG exhibit better results, being those of CSoG the
best ones. Thus, CSoG is a promising algorithm to perform
robust loop closing in SLAM.

Future work goes now in two ways. On the one hand, a
method to dynamically select the optimal number of clusters
would be interesting. Though using a fixed number worked
well in the experiments, dynamically tuning it could benefit
our approach. On the other hand, we feel that combining

the robustness of CSoG with the accuracy of ICP-based
approaches in low noise conditions could lead to extremely
accurate loop closing. That is, using CSoG to reduce the
error in the initial estimate and then refining it with an ICP-
based algorithm could clearly benefit SLAM based on range
readings.

Additionally, some other clustering algorithms could be
tested. Some initial experiments with an improved K-Means
based on Mahalanobis distance have already been performed,
exhibiting promising results. Also, hierarchical clustering
approaches would make it possible to represent a single scan
with different granularities thus allowing to refine the motion
estimate depending on the available computational resources.
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