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Abstract

Three-dimensional visual maps of the seafloor provide objective information to reliably char-
acterise these scenes. These maps are of great study value for archaeological sites or geologi-
cally interesting areas. Often, spatial scales over 8 orders of magnitude are needed, from the
millimetre resolution to the > 100 km2, to recognise key features of interest to areas over
which they are distributed. Delivering precise resolution at scale has been an issue for the
last decade. Nowadays, new vision based sensors such as lasers and structured light pro-
vide a higher resolution than known acoustic sensors. Using these innovative sensors poses
new challenges in underwater localization as most of the mapping error comes now from the
self-localization rather than from the measurement sensor.
This thesis presents two different solutions to the visual mapping problem. The first part
of the PhD presents a novel laser-based structured light system to increase 3D perception
resolution, accuracy and frame rate when compared to acoustic counterparts and cameras.
The system consists of a laser Diffractive Optical Element (DOE) that diffracts the beam in
25 parallel planes and a camera to recover the intersected lines to the seafloor. We propose
a calibration procedure and solve the correspondence problem using a Maximum Spanning
Tree algorithm. The experimental results show that the system draws a better representation
of the objects in front and outperforms plain stereoscopy in featureless scenarios.
The second part of the thesis uses a standard laser stripe instead, to cast a single line on
the seafloor, in a bathymetric SLAM solution to correct both the navigation and overall
shape of the sensed environment. Two different algorithms are presented, one is sub-map
bathymetric SLAM, which saves small map portions to be registered at a later stage using
ICP and BPSLAM, a 2.5D grid that treats every scan as a particle in a Particle Filter to find
the position that better suits the known map. The developed bathymetric SLAM algorithms
are tested in a close-to-shore small rocky area in Valldemossa using the AUV SparusII and in
a large survey in the Hydrate Ridge using the AUV AE2000f.





Resumen

Los mapas visuales tridimensionales del fondo marino proporcionan información objetiva para
caracterizar de manera confiable dichas áreas.Estos mapas son también de gran valor de
estudio para sitios arqueológicos o áreas geológicamente interesantes. A menudo, se necesitan
escalas espaciales de más de 8 órdenes de magnitud, desde la resolución milimétrica hasta los
> 100 km2, para reconocer las características clave de interés para las áreas sobre las cuales se
distribuyen. La resolución precisa a escala ha sido un problema en la última década. Hoy en
día, los nuevos sensores basados en visión, como los láseres y la luz estructurada, ofrecen una
resolución más alta que los sensores acústicos conocidos. El uso de estos novedosos sensores
plantea nuevos desafíos en la localización subacuática, ya que la mayoría de los errores del
mapa provienen ahora de la autolocalización y no del sensor de medida.
Esta tesis presenta dos soluciones diferentes al problema del mapeo visual. La primera parte
de PhD presenta un novedoso sistema de luz estructurada basado en láser para aumentar la
resolución de percepción 3D, la precisión y la velocidad de fotogramas en comparación con sus
homólogos acústicos y cámaras. El sistema consta de un elemento óptico difractivo (DOE)
con láser que difracta el haz en 25 planos paralelos y una cámara para recuperar las líneas
intersectadas al fondo marino. Proponemos un procedimiento de calibración y resolvemos el
problema de correspondencia utilizando un algoritmo de árbol de expansión máxima. Los
resultados experimentales muestran que el sistema consigue una mejor representación de los
objetos y supera la estereoscopía simple en escenarios sin características visuales.
La segunda parte de la tesis usa un láser estándar de una línea en una solución batimétrica
SLAM para corregir tanto la navegación como la forma general del entorno detectado. Se
presentan dos algoritmos diferentes, uno es SLAM batimétrico a partir de sub-mapas, que
guarda porciones de mapa peque nas para ser registradas en una etapa posterior utilizando
ICP y BPSLAM, una cuadrícula 2.5D que trata cada medida láser como una partícula en
un filtro de partículas para encontrar la posición que mejor se adapte al mapa conocido.
Los algoritmos batimétricos desarrollados de SLAM se prueban en una peque na área rocosa
cercana a la costa en Valldemossa utilizando SparusII y en Hidrate Ridge usando AE2000f.





Resum

Els mapes visuals tridimensionals del fons marí proporcionen informació objectiva per carac-
teritzar de manera fiable aquestes àrees. Aquests mapes són també de gran valor d’estudi per
a llocs arqueològics o àrees geològicament interessants. Sovint, es necessiten escales espacials
de més de 8 ordres de magnitud, des de la resolució mil·limètrica fins als > 100 km2, per re-
conèixer les característiques clau d’interès per a les àrees sobre les quals es distribueixen. La
resolució precisa a escala ha estat un problema en l’última dècada. Avui dia, els nous sensors
basats en visió, com els làsers i la llum estructurada, ofereixen una resolució més alta que els
sensors acústics coneguts. L’ús d’aquests nous sensors planteja nous reptes en la localització
subaquàtica, ja que la majoria dels errors del mapa provenen ara de l’autolocalització i no del
sensor de mesura.
Aquesta tesi presenta dues solucions diferents al problema del mapatge visual. La primera
part presenta un nou sistema de llum estructurada basat en làser per augmentar la resolució
de percepció 3D, la precisió i la velocitat de fotogrames en comparació dels seus homòlegs
acústics i càmeres. El sistema consta d’un element òptic difractiu (DOE) amb làser que
difracta el feix en 25 plans paral·lels i una càmera per recuperar les línies intersectades al
fons marí. Proposem un procediment de calibratge i resolem el problema de correspondència
utilitzant un algoritme d’arbre d’expansió màxima. Els resultats experimentals mostren que
el sistema aconsegueix una millor representació dels objectes i supera la estereoscòpia simple
en escenaris sense característiques visuals.
La segona part de la tesi fa servir un làser estàndard d’una línia en una solució batimètrica
SLAM per corregir tant la navegació com la forma general de l’entorn detectat. Es presenten
dos algoritmes diferents, un és SLAM batimètric a partir de sub-mapes, que guarda porcions
de mapa petites per ser registrades en una etapa posterior utilitzant ICP i BPSLAM, una
quadrícula 2.5D que tracta cada mesura làser com una partícula en un filtre de partícules per
trobar la posició que millor s’adapti al mapa conegut. Els algoritmes batimètrics desenvolupats
de SLAM es proven en una petita àrea rocosa propera a la costa a Valldemossa utilitzant
SparusII i en Hidrate Ridge usant AE2000f.
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Chapter 1

Introduction

In this chapter, the objectives of the thesis are presented, followed by an introduction to the

scope and some basic concepts of this dissertation. Finally, the structure of the document

and the publications derived from this work are enumerated.

1.1 Objectives of the Thesis

The aim of this thesis is to progress towards the definition of methods to reconstruct the un-

derwater environment in 3D, even in featureless regions. Diverse methodologies are presented

suitable for applications requiring a different resolution: a one-shot reconstruction aimed to

close-range, manipulation applications and two self-consistent, high-resolution surveys using

bathymetric SLAM. A common characteristic for the methods developed is the use of laser-

based structured light sources, which allows operating in featureless regions. In particular,

the following objectives are pursued:

• To better understand underwater 3D reconstruction methods and sensors.

• To be able to map featureless objects and/or terrains.

• To achieve self-consistent underwater maps.

Two methodologies are proposed: (1) for a close-range, high frame rate and uniform

spatial resolution, a multiline laser structured light device is presented; (2) for a medium-range

survey-like environment, two existing SLAM frameworks are proposed to a novel domain, i.e.

underwater laser bathymetry.

1.2 Motivation

1.2.1 Underwater exploration

The world’s oceans cover a 71% of our planet and are of great interest to mankind, although

parts of space are better known and researched than the seafloor. According to the National

Aeronautics and Space Administration (NASA) [10], the Context Camera (CTX) on NASA’s

1
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(a) 5 km (b) 1 km (c) 500 m

(d) 100 m (e) 50 m (f) 10 m

Figure 1.1: How different maps of Palma de Mallorca would look like if the island was mapped
from 5 km resolution to 10m.

Mars Reconnaissance Orbiter (MRO) has been taking images of Mars for more than 10 years

at an average resolution of 20m covering more than the 99% of the planet. The images are

sharp enough to show the shape of features as small as a tennis court (24× 10m) while being

54.6 million kilometres away from Earth.

The ocean seafloor is completely explored, although at 5 km resolution from space. Only about

a 10%-15% coverage has been mapped in situ at 100m resolution, given the high degree of

difficulty and cost in exploring our ocean using technologies such as sonar to generate maps

of the seafloor. According to the National Oceanic and Atmospheric Administration in the

United States (NOAA) [11], more than 80 percent of our ocean is unmapped, unobserved and

unexplored. The reader is encouraged to see the resolution differences between 5 km and 10m

in figure 1.1, where the island of Mallorca has been pixelated to match the scale. The figure

clearly shows that at resolutions higher than 100m it is impossible to see streets and avenues.

Even at 10 m cars or pedestrians remain unnoticeable.

In order to provide a closer look into the ocean, underwater seafloor exploration can be

accomplished using underwater submersibles and robots to capture images of the seafloor and

the environment. In the field of this research, Unmanned Underwater Vehicles (UUV) can

be mainly classified in two groups: Remotely Operated Vehicles (ROVs) and Autonomous

Underwater Vehicles (AUVs). An ROV is an unmanned underwater robot that is connected

to a ship by cables. These transmit command and control signals between the operator and

the ROV, allowing remote navigation of the vehicle. An AUV operates independently from the

ship as it has no connecting cables and carries a battery that normally is the most limiting

factor in mission endurance. The platforms are normally conceived for different kinds of
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operation. ROVs are targeted at delicate work such as rock sampling, assembly and repair

of underwater structures, vessel hull inspection among others, whilst AUVs can be useful for

long and repetitive missions such as detecting and mapping submerged wrecks, rocks, and

obstructions that can be a hazard to navigation for commercial and recreational vessels.

In the last decade, UUVs have been established as a tool for sea exploration, inspection and

intervention. The use of high-resolution seafloor bathymetry is becoming increasingly routine

in marine research. ROVs have reduced the need for manned submersibles whilst increasing

safety, mission time and repeatability. AUVs have increased their autonomy and lowered the

costs of gathering ocean data and imagery. These vehicles and the sensors they carry present

some challenges at multiple levels that still need to be addressed. In particular, underwater

imaging absorption and scattering, and the generation of high resolution bathymetry.

1.2.2 Underwater optical imaging and laser light

The performance of traditional optical imaging systems such as cameras are limited by ab-

sorption and scattering when used underwater. Absorption is a loss of direct illumination due

to the interaction of photons with water molecules, and scattering describes small changes

within the light path caused by reflections and refractions caused by temperature transitions,

suspended particles, dissolved solids or biological snow. Scattering in particular is different

for different size particles, ranging from Mie to Rayleigh, and the scattering patterns are

very different based on the ratio of wavelength to particle size [12]. To overcome absorption

one may think that the solution is to increase the light power. But that would also increase

backscattering and it might blind the receiver, losing contrast. Even when a system has been

optimized to reduce backscatter it may become limited by absorption. In this situation, the

propagating signal (light) is too weak to be detected by the corresponding sensor, and the

system is said to be power limited. If the power is increased the scattering increases. It

can increase so much that the sensor cannot differentiate the true signal from the noise. In

this case the system is said to be contrast limited and can be measured with the Signal to

Noise Ratio (SNR). Other authors have explored polarization filters to enhance underwater

images [13]. In his paper, Schechner and Kapel show how taking multiple images of the same

scene at different polarisation angles can increase contrast and colour correction.

The performance in any case can be enhanced by choosing the light source wavelength

to match the optimal underwater wavelength that minimizes both absorption and scattering

coefficients. As seen in figure 1.2, absorption and scattering coefficients vary depending on

the wavelength of the light source. In order to transmit the maximum light these coefficients

have to remain low. Blue-green colour spectra present a good compromise between absorption

and scattering. Laser light is a type of light source whose wavelength can be tailored to fit

in this regard. A blue-green laser light source will not only achieve larger distances, but also

filters can be used to discard scattered light, such as bandpass filters.

A fixed-wavelength laser light source can be chosen to minimize these terms and since it is
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Figure 1.2: Absorption and scattering coefficients in pure seawater. Reproduced from Smith
and Baker (1981).

inherently collimated, a high irradiance is achieved with low backscatter interaction, increasing

the achievable imaging range underwater. This is accomplished by illuminating a small volume

of water instead of a flooding light to every direction. Laser lines, laser patterns or just

pointers would therefore illuminate a small volume of water. If the illuminated seafloor is

grabbed using an imaging sensor, sparse three-dimensional measurements will be gathered.

Particularly, in underwater manipulation where an UUV has landed or is close to the seafloor,

it is common that suspended particles increase scattering. In such conditions, being able to

recover a sparse three-dimensional model may be enough to grasp an object [14].

1.2.3 High resolution sensors

On an UUV, Inertial Navigation Systems (INS), Attitude Heading Reference Systems (AHRS),

Doppler Velocity Log (DVL), Global Positioning System (GPS), Ultra Short Baseline (USBL)

and/or Long Baseline (LBL) acoustic positioning systems all provide options for improving

navigation accuracy, each with varying levels of attainable precision [15]. A stand alone dead-

reckoning solution would naturally degrade over time with an error position of < 0.1% of the

distance travelled. This error will depend on the navigations sensor used. For example, Phins

Subsea states that their dead-reckoning will degrade up to 0.05% of the distance travelled [16].

While the instruments used to generate seafloor maps have significantly increased the spatial

resolution of bathymetric maps, this improvement is only meaningful if it can be matched by

an accurate vehicle localization.

The use of an Extended Kalman Filter (EKF) can bound estimates of position uncertainty.

As a shipboard USBL typically has an uncertainty of 1% of the slant range, the resulting

position accuracy does not produce consistent visual maps. LBL acoustic positioning also

provides navigation estimates with bounded error but this requires additional infrastructure

to be in place, as well as the LBL transponder net to be accurately surveyed in. Furthermore

LBL transponder nets are subject to a trade-off between accuracy and coverage.
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Applied directly for map making, all of these standard positioning methods will contribute

to errors and inconsistencies. Thus, it would be beneficial to develop additional positioning

constraints beyond the direct measurements to obtain visually consistent maps.

1.3 Document Overview

The dissertation is divided into six chapters as follows:

• Chapter 2 extensively reviews the background for this thesis, the published research

on imaging based underwater reconstruction and its sensors during the last fifteen years.

• Chapter 3 presents a complete three dimensional reconstruction pipeline and two cal-

ibration methods for laser-stripe-based structured light sensors.

• Chapter 4 presents a novel one-shot laser structured light sensor

• Chapter 5 describes two SLAM frameworks: a submap SLAM and a particle filter

SLAM framework. These two approaches are compared using two different AUV mis-

sions.

• Chapter 6 concludes this dissertation by summarizing the main contributions of the

thesis and by highlighting the differences of the introduced approaches with other similar

solutions. Some future work to extend the research described here is also suggested.

1.4 Related Publications

Parts of this thesis have been published in international journals and conference proceedings.

The following list gives an overview about the individual publications.

Journal Articles

• Miquel Massot Campos and Gabriel Oliver-Codina, Optical Sensors and Meth-

ods for Underwater 3D Reconstruction, MDPI Sensors, Dec. 2015, vol. 15, no.

12, pp. 31525-31557. DOI: 10.3390/s151229864 [17].

• Francisco Bonin-Font, Gabriel Oliver, Stephan Wirth, Miquel Massot Campos, Pep

Luís Negre, and Joan Pau Beltran, Visual Sensing for Autonomous Underwater

Exploration and Intervention Tasks, Ocean Engineering, 2014, vol. 93, pp. 25-44.

DOI: 10.1016/j.oceaneng.2014.11.005 [18].

Conference Proceedings and Workshops

• Miquel Massot Campos, Blair Thornton and Gabriel Oliver. Laser stripe bathymetry

using particle filter SLAM, in IEEE/MTS Oceans, 2019, in press.
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• Michael Leat, Adrian Bodenmann, Miquel Massot Campos and Blair Thornton,

Analysis of Uncertainty in Laser-Scanned Bathymetric Maps in IEEE/OES

Autonomous Underwater Vehicles (AUV), 2018 [19].

• Miquel Massot Campos, Gabriel Oliver, Adrian Bodenmann and Blair Thornton,
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DOI: 10.1109/AUV.2016.7778669 [20].
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strumentation Viewpoint, 2016, no. 19, pp. 31-33. ISSN: 1886-4864 [21].
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Bonin-Font, Structured light and stereo vision for underwater 3D reconstruc-

tion, in IEEE/MTS Oceans, 2015, DOI: 10.1109/OCEANS-Genova.2015.7271433 [22]

.

• Miquel Massot Campos and Gabriel Oliver Codina, One-Shot Underwater 3D

Reconstruction, in Proc. 19th IEEE International Conference on Emerging Technolo-

gies and Factory Automation (ETFA 2014), 2014, DOI: 10.1109/ETFA.2014.7005282 [23].

• Miquel Massot Campos and Gabriel Oliver Codina, Underwater laser-based

structured light system for one-shot 3D reconstruction, in Proc. IEEE Sen-
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1.5 Unrelated Publications

In parallel to this work, European and National projects such as TRIDENT, TRITON or

MERBOTS were developed. Publication in other fields not directly related to this thesis, but
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Journal Articles
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L. Negre Carrasco. Evaluating the impact of sewage discharges on the marine
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Chapter 2

State of the art on underwater 3D

sensing methods

In this chapter we review the state of the art of three dimensional reconstruction sensors and

techniques, especially visual sensors, applied to underwater mapping and object reconstruc-

tion. The text is partially based on [17], a review article from the thesis’ author. Most surveys

existing in the literature are centred in underwater sensors and imaging techniques, but only

few examples can be found focusing on underwater 3D reconstruction and seafloor mapping,

which is the aim of this chapter.

The chapter is structured as follows: section 2.2 presents sensing methods to gather 3D

data, section 2.3 reviews the different types of hardware sensors and techniques, section 2.4

shows some commercial solutions and finally, in section 2.5 a discussion is held.

The most used sensors and techniques are studied: Lidar, Stereo Vision (SV), Structure

from Motion (SfM), Structured Light (SL), Laser Stripe (LS) and Laser Line Scanning (LLS)

are described in detail, while sonar is only presented as a reference to be compared with.

Features such as range, resolution and ease of assembly are given for underwater conditions.

2.1 Introduction

Jaffe et al [27] surveyed in 2001 the different prospects in underwater imaging, foreseeing the

introduction of blue-green lasers and multidimensional Photo Multiplier Tubes (PMT) arrays.

An application of these prospects is shown in Foley and Mildell [28], who covered in 2002 the

technologies for precise archaeological surveys in deep water such as image mosaicking and

acoustic three-dimensional bathymetry.

In [29], Kocak et al outlined the advances in the field of underwater imaging from 2005 to

2008, basing their work on a previous survey [30]. Caimi et al [31] centred their survey in 2008

on underwater imaging as well, and summarized different extended range imaging techniques

as well as spatial coherency and multi-dimensional image acquisition. Years later, Bonin

et al [32] surveyed in 2011 different techniques and methods to build underwater imaging and

illuminating systems.

Finally, Bianco et al [33] focused in underwater 3D reconstruction on close-range underwater

objects in 2013, but only comparing structured light and passive stereo. The same year,

11
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Erič et al [34] explored 3D reconstruction from the point of view of the documentation of

underwater heritage sites. The methods presented there are structure from motion, gathered

from divers carrying a camera, and structured light for the modelling of underwater statues

and busts. Structure from motion is also compared by Jordt [35], who included in 2014

different surveys on 3D reconstruction, image correction calibration and mosaicking on her

PhD memorandum, where she studied structure from motion and stereoscopy.

2.2 Sensing Methods

Three dimensional sensors can be classified in three major classes depending on the measuring

method: Triangulation, Time of Flight and Modulation. A sensor can belong to more than one

class, which means that it uses different methods or a combination of them to obtain three

dimensional data, as depicted in figure 2.1. There is also another traditional classification

depending on whether the sensing device is active or passive. All methods in the figure are

active except for passive imaging.

These methods and devices will be compared in terms of range, resolution, precision and

accuracy when available. The relationship between precision and accuracy is explained in

figure 2.2.

2.2.1 Active or Passive

Sensors can also be classified as passive or active depending on whether they interact or not

with the medium.

Active sensors are those that either illuminate, project or cast a signal to the environment

in order to measure the data to gather. An example of an active system is sonar, where a

sonic pulse is sent onto the scene to reconstruct.

Passive methods only get data from the measurable signals in the underwater environment,

with no alteration or change on the scene. An example of that is Structure from Motion, where

a monocular camera travels looking for features for a posterior 3D triangulation. Camera-

based sensors are the only ones that can be passive for 3D reconstruction, as the other are

based on sound or on light projection.

2.2.2 Time of Flight

Time discrimination methods are based on controlling the time the signal travels. By knowing

the speed of the signal in the medium where it travels, the distance can be inferred. These

methods achieve longer distances, especially sonar, but can be affected by changes in water

temperature, salinity and pressure, as the speed of sound changes with them.

At shorter distances, a small time delay in the timing can cause a big error in the mea-

surement. Furthermore, some sensors require a minimum distance at which they can measure

depending on their geometry.
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Figure 2.2: Accuracy vs precision: the target on the left has been shot with a precise, non
accurate weapon, whereas the target in the centre has been shot with an accurate, non precise
weapon. What is desired is an accurate and precise target as shown on the right. Accuracy
accounts for the average error to the target and precision for its dispersion.

Sonar, Lidar and Pulse Gated Laser Line Scanning (PG-LLS) are some examples of sensor

hardware using this principle to acquire 3D data.

2.2.3 Triangulation

Triangulation methods are based on measuring the distance from two or more devices to a

common feature or target with some known parameters.

For example, two cameras can obtain depth (e.g. a stereo rig) by searching on the right

camera features found on the left. Once these features have been matched and filtered, the

remaining features can be projected on the world as light rays coming from these two cameras.

The triangle formed between the feature in the space, and the two cameras is the basis of

triangulation. In these methods, artificial lights (lamps and spotlights, for example) are used

just to illuminate the scene if needed, and are not employed in the triangulation of the 3D

points, which, in turn, is based on the knowledge of similar points in the image sequence,

found through stereo matching algorithms.

The limitation of triangulation sensors is their field of view. Triangulation-based devices

tend to be better at close distances and worse at far. Also, the bigger is the separation of

the cameras (baseline), the better is the z resolution, provided there exists a common view

region [36].

Different sensors exist that compute 3D information by triangulation: Structured Light,

Laser Stripe and Photometric stereo (PhS) from active imaging, Structure from Motion and

Stereo Vision from passive imaging and Continuous Wave Laser Line Scanning (CW-LLS)

from Laser Line Scanning.

2.2.4 Modulation

While the time domain approach uses amplitude and time to discriminate multiple scattered,

diffused photons, the frequency domain uses the differences in amplitude and phase of a

modulated signal to perform this task. The diffused photons that undergo many scattering

events produce temporal spreading of the transmitted pulse. Only low frequency components
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are efficiently transmitted whilst high frequency components are lost.

It is known that coherent modulation/demodulation techniques at optical frequencies in

underwater environments fall apart due to the high dispersion in the sea water path [29],

as well as for the different absorption and scattering coefficients depending on the optical

wavelength. There is a minimum for these coefficients in the blue-green colour spectra. Thus,

intensity modulation of a laser carrier is the most used modulation technique in underwater

reconstruction. This method has been reported in the literature both from airborne plat-

forms and from underwater vehicles. They usually modulate the amplitude in frequencies

in the order of GigaHertz, thus requiring very sensitive sensors and accurate time scales.

The receivers are usually Photomultiplier Tubes (PMT) or modern photon counters made of

avalanche photodiodes (APD). These sensors are triggered during a time window and incom-

ing light is integrated. After the demodulation step, 3D information can be obtained from

phase difference.

2.3 Types of sensors

2.3.1 Sonar

The term sonar is an acronym for sound, navigation and ranging. There are two major kinds

of sonars, active and passive.

Passive sonar systems usually have large sonic signature databases. A computer system

frequently uses these databases to identify classes of ships, actions (i.e. the speed of a ship,

or the type of weapon released), and even particular ships. These sensors are evidently not

used for 3D reconstructions, thus they are not considered in this study.

Active sonars create a pulse of sound, often called a “ping”, and then listen for reflections

of the pulse. The pulse may be at constant frequency or a chirp of changing frequency.

If a chirp, the receiver correlates the frequency of the reflections to the known signal. In

general, long-distance active sonars use lower frequencies (1 - 600 kHz) whilst short-distance

high-resolution sonars use high frequencies (1 - 3 MHz).

In the active sonar category, we can find three major representative types of sonars: Side

Scan Sonar (SSS), Multi-Beam Sonar (MB) and Single Beam sonar (SB). If the across track

angle is wide, they are usually called imaging sonars. Otherwise, they are commonly named

profiling sonars as they are mainly used to gather bathymetric data. Moreover, these sonars

can be mechanically operated to perform a scan, towed or mounted on a vessel or underwater

vehicle.

Sound propagates in water faster than in air, although its speed is also influenced by water

temperature and salinity. One of the main advantages of sonar soundings is its long range

compared to electromagnetic waves, making them a feasible sensor to gather bathymetry data

from a surface vessel, even for thousands of meters’ depth. At this distance, a resolution of

tenths of meters per sounding is a good result, whilst if an AUV is sent to fly at 40 m to
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perform a survey, a resolution of less than a meter can be achieved.

One of the clearest examples of bathymetric data gathering is performed using MB sonar,

as in [37]. This sensor can also be correlated to a colour camera to obtain not only 3D but

also colour information, as in [38], where its authors scan a pool using this method. However,

in this case, its range lowered to the visual available range.

SB scanning sonars can carry out a 3D swath by slowly rotating their head [39], as if the

SB was a 1D range sensor mounted on a pan and tilt head. The data retrieval is not as fast

as with a MB.

MB sonars can also be mounted on pan and tilt systems to perform a complete 3D scan.

They are usually deployed using a tripod or mounted on an ROV, requiring the ROV to

remain static while the sweep is done, like in [40].

Profiling can also be done with SSS, which is normally towed or mounted in an AUV

to perform a gridded survey. The SSS is mainly used on-board of a constant speed vehicle

describing straight transects. Even though SSS can be considered as a 2D imaging sonar, 3D

information can be inferred from it, as depicted in [41].

Imaging sonars differ from MB or SB sonar by a broadened beam angle (e.g. they capture

an image of the sea bottom instead of a thin profile). For instance, in [42] Brahim et al use

an imaging sonar with a field of view of 29◦(azimut)× 10.8◦(elevation) producing 96× 512 px

azimut by range sonar images.

Other exotic systems have been researched, combining imaging sonar with conventional

cameras to enhance the 3D output and to better correlate the sonar correspondences. In [43],

Negahdaripour uses a stereo system formed by a camera and a imaging sonar. Correspon-

dences between the two images are described in terms of conic sections. In [44] a forward

looking sonar and camera use manually provided correspondences between the sonar image

and the camera image to perform reconstructions.

Other solutions prove that imaging sonars can be used to recover depth information. For

example, in [45] 3D data is recovered from a set of images using SfM; and in [46] the same

information is inferred from the shadow casted by an object sounded by a forward looking

sonar.

The basics in sonar or in time of flight methods is depicted by equation (2.1).

d =
v∆t

2
(2.1)

where d is the distance between the target and the receiver, v is the speed of sound

underwater and ∆t is the time passed between the pulse and its echo being received. Bearing

can be estimated via two means: using an array sensor or by a moving platform. If there

is more than one receiver with calibrated relative positioning, the relative bearing of the

target can be computed using the time difference of arrival. Alternatively, if there is only one

receiver, target bearing can be estimated from two different receiving positions (e.g. if a ship

carrying the sonar moves along whilst sending sonar pulses).
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Table 2.1 shows a comparison of the 3D reconstruction techniques using sonar. In the

references where the resolution has been obtained from graphic plots provided by the authors

or similar information, a less than (<) symbol has been used.

References Sonar Type Scope Accuracy

Pathak [37] MB Rough map for path planning 1 m at 100 m
Rosenblum [47] MB Small object reconstruction 8 cm at 1 m
Hurtos [38] MB + Camera Projects images on 3D surfaces 2.3 cm at 1.5 m
Guo [39] SB Small target 3D reconstruction 2.6 cm at 1 m
Coiras [41] SSS Seabed elevation with UW pipe 13 ± 19 cm at 124m
Brahim [42] IS Sparse scene geometry 0.5 m at 10 m
Aykin [46] IS Smooth surfaces 3D reconstruction -
Negahdaripour [43–45] IS + Camera Alternative to optical stereo systems < 5 cm

Table 2.1: Sumary of Sonar 3D reconstruction solutions. Note that not all authors provide
measures of accuracy. The annotated values have been taken from their publication.

2.3.2 Lidar

Lidar, an acronym for Airborne scanning Light Detection And Ranging, is widely used as a

mapping tool for coastal and near shore ocean surveys. Similar to LLS, but surveyed from an

aircraft, a laser line is scanned throughout the landscape and the ocean. Depending on the

laser wavelength, Lidar is capable of recovering both the ocean surface and the sea bottom.

In this particular case, a green 532 nm laser that penetrates the ocean water over 30 m [48]

is used in combination with a red or infrared laser. Both lasers return the echo from the sea

surface, but only one reaches the underwater domain.

Lidar has been used for Underwater Target Detection (UWTD), usually mines, as well as

for coastal bathymetry [49,50]. It is normally surveyed at heights of hundreds of meters (Pellen

et al survey mostly uniformly at 300 m [50]) with a swath of 100 to 250 m. Its accuracy is in

the order of decimeters. In [48] an accuracy of 0.7 m is achieved. Moreover, Lidar signal can

be modulated, enhancing its range capabilities and rejecting underwater backscatter [51,52].

Although this chapter focuses on underwater sensors, Lidars have been shortly mentioned

as they are capable of reconstructing certain coastal regions from the air.

Lidar, as sonar, uses a TOF equation similar to (2.1), and it derives into (2.2),

d =
c∆t

2
(2.2)

where d is the distance between the target and the receiver, c is the speed of sound in air

and ∆t is the time passed between the pulse and its echo being received. Bearing is estimated

from the scanning angle.

In table 2.2 two 3D reconstruction references using Lidar are compared.
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References Class Wavelength Lidar Model Combination Accuracy

Reineman [48] ToF 905 nm Riegl LMS-Q240i Camera, GPS 8.7 cm at 120m
Cadalli [49] ToF 532 nm U.S. Navy prototype PMT + 64x64 CCD < 10 m
Pellen [50] UWTD 532 nm ND:YAG laser PMT -
Mullen [51,52] UWTD 532 nm Nd:YAG laser PMT + Microwave -

Table 2.2: Summary of Lidar 3D reconstruction solutions. Note that not all authors provide
measures of accuracy. The annotated values have been taken from their publication.
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Figure 2.3: Triangulation geometry principle for a Laser Scanning System

2.3.3 Laser Line Scanning (LLS)

For finer details in 3D reconstructions, laser and imaging devices are mostly used. However,

imaging is limited by the absorption and scattering of the water. Customers of the oil and gas

companies often do not want the risk of being 1-2 meters from an expensive underwater asset

in order to perform inspections. LLS achieves larger ranges exploiting range gated receivers

and narrow laser pulses, as a matter of example, to get rid of backscatter.

This kind of sensors tend to use Photomultiplier Tubes (PMT) as photon counters. Some

modern approaches use photodiodes or even cameras with a fine-tuned mechanical shutter.

As laser source, green lasers working at 532 nm are a common solution, as this wavelength

presents a trade-off between good price, availability and low absorption and scattering coeffi-

cients for pure seawater.

There are three main categories of LLS: Continuous Wave LLS (CW-LLS), Pulse Gated

LLS (PG-LLS) and Modulated LLS (Mod-LLS). In table 2.3 there is a summary of the different

LLS 3D reconstruction solutions.
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References Aim Type Wavelength Receiver Resolution Accuracy Precision

Moore [53] 3D CW-LLS 532 nm Linescan CCD 90 mm at 10 m - -
Moore [54] 3D CW-LLS 532 nm Linescan CCD - 2.5 mm at 2.87m 0.3 mm std
McLeod [55] 3D PG-LLS - - 1 mm - 5 mm at 8 m
Imaki [56] 3D PG-LLS 532 nm PMT - - 2 cm std at 20 m
Cochenour [57] 3D Mod-LLS 532 nm PMT - - -
Rumbaugh [58] 3D Mod-LLS 532 nm APD - 1 cm at 50 cm -
Dominicis [59] 3D Mod-LLS 405 nm PMT - 5 mm at 8.5 m -
Dalgleish [1] Img. CW-LLS 532 nm PMT 50 mm at 10 m - -
Mullen [2] Img. Mod-LLS 532 nm PMT - - 0.1 m at 3.7 m
Gordon [60] Img. PG-LLS 488-514.5 nm PMT - - -

Table 2.3: Sumary of Laser Line Scanning 3D reconstruction solutions. Note that not all
authors provide measures of resolution, accuracy or precision. The annotated values have
been taken from their publication.

2.3.3.1 Continuous Wave LLS

This subcategory uses a triangulation method to recover the unknown depth. A camera-based

triangulation device using a laser scan concept can be built using a moving laser pointer made

of a mirror galvanometer and a line-scan camera, as shown in [53,54].

The geometric relationship between the camera, the laser scanner and the illuminated

target spot is shown in figure 2.3. The depth D of a target can be calculated from (2.3).

d = l1 cos(ω) (2.3)

as

l1 =
b cos(θ)

sin(θ − ω)
(2.4)

since

sin(θ − ω) =
O

l1
, and O = b cos(θ) (2.5)

therefore

d =
b

tan(θ)− tan(ω)
(2.6)

where b is the baseline or separation between the centre of the scanning mirror and the centre

of the primary receiving lens of the camera. Here, θ and ω are the scanning and camera pixel

viewing angles, respectively.

The angles ω0 and θ0 are the offset mounting angles of the scanner and camera, and θs and

ωc are the laser beam angle known from a galvanometer or an encoder and the pixel viewing

angle (with respect to the camera housing). Thus,

θ = θ0 + θs (2.7)

ω = ω0 + ωc (2.8)



20 State of the art on underwater 3D sensing methods

Figure 2.4: Example of a returning signal from a Laser Scanning System. At higher turbidity
(gray signal) the backscatter peak is stronger and the target return is weaker. The common
volume backscatter is light that has been deflected once, whilst the multiple backscatter has
been deflected twice or more times. Reproduced from [1].

d =
s

tan(θ0 + θs)− tan(ω0 + ωc)
(2.9)

Both θ0 and ω0 have to be computed by calibration so that afterwards, the distance to the

target can be computed.

2.3.3.2 Pulse Gated LLS

This ToF sensor has a simple principle: it illuminates a narrow area with a laser light pulse

while keeping the receivers shutter closed. Then, it waits for the return of the light from the

object by estimating its distance from the sensor and then opens the shutter so that only the

light returning from the target is captured. For instance, in figure 2.4 the shutter should have

been opened from 80 to 120 ns to get rid of the unwanted backscatter.

This setup has been highly used in extended range imagery. In the early 90s the LLS

system in [60] was used in USS Dolphin research submarine and as a towed body to perform

high resolution imagery at an extended range. This prototype used Argon Ion gas laser, with

a high power budget not available for ROVs nor AUVs.

Dalgleish et al [1] compared PG-LLS with CW-LLS as imaging sensors. The experimental

results demonstrate that the PG imager improved contrast and SNR (Signal to Noise Ratio).

Their sensor becomes limited by forward backscatter at 7 attenuation lengths, whilst CW at

6.

In true ToF 3D reconstruction, McLeod et al [55] published a paper about a commercial

sensor [61] mounted on Marlin AUV. Their setup achieves a precision of 5 mm in a good
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visibility scenario, when measuring a point at 8 m. Similarly but in a longer range, Imaki [56]

et al achieve a precision of 2 cm at a range of 20 m with their own developed system.

2.3.3.3 Modulated LLS

A Modulated LLS characterizes for the use of the frequency domain instead of the spatial

or time domain to discern a change in the sent signal. In Sonar chirps (Radar as well) the

modulation and posterior de-modulation of the signal gives insight on the distance from the

sensor to the target.

As stated before, intensity modulation is the only realizable modulation in underwater

scenarios. The original and the returned signal are subtracted and the distance is obtained

by demodulation of the remainder.

The same approach can be used for extended range imaging as well, as seen in [2], where

Mullen et al have developed a Modulated LLS that uses frequency modulation and demod-

ulation in the laser source in order to identify the distance at which the target has been

illuminated. The optical modulation is used to discriminate scattered light. There, they com-

pared different frequencies and found that a higher frequency, 90 MHz reached further than

50 MHz or 10 MHz. The setup used by the authors can be seen in figure 2.5.

In [57] different modulation techniques based on ST-MP (Single Tone Modulated Pulse)

and PN-MP (Pseudorandom coded Modulated Pulse) are compared for one dimensional rang-

ing. The results show that in clear water, the PN-MP stands as an improvement over the

ST-MP due to their excellent correlation properties of pseudorandom codes.

In [58] a one axis ranging solution is proposed. Although the authors characterize the

solution as Lidar, their setup is more similar to LLS, and the measurements are not taken

from a plane. In the paper, a resolution of 1 cm from a distance of 60 cm is reported, thus
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Figure 2.6: Triangulation geometry principle for a Structured Light System

1.7% of error. This system could then be swept for a 3D reconstruction and work as a true

LLS.

In [59], a simpler approach using an amplitude modulated blue laser (405 nm) at 80 MHz

was used, called MODEM-based 3D laser scanning system. It is capable of reconstructing

objects at 8.5 meters away within a 5% accuracy. The system is similar to the ones presented

before, but in this case 3D reconstructions are presented to the reader, showing the potential

of long range underwater reconstruction using this technique.

2.3.4 Variable Wavelength Structured Light (VW-SL)

These systems consist of a camera and a colour, or white light projector. The triangulation

principle is used between these two elements and the projected object.

The projector casts a known pattern on the scene, normally a set of light planes, as shown

in figure 2.6, where both the planes and the camera ray are known. The intersection between

both is unknown and can be calculated as follows:

Mathematically, a line can be represented in parametric form as:

r(t) =















x = u−cx

fx
t

y = v−cy

fy
t

z = t

(2.10)

where (fx, fy) is the camera focal length in x and y axes, (cx, cy) is the central pixel in the

image and (u, v) is one of the detected pixels in the image. Supposing a calibrated camera

and the origin in the camera frame the light plane can be represented as in (2.11).

πn : Ax+By + Cz +D = 0 (2.11)
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To find the intersection point, (2.10) is substituted in (2.11), giving (2.12).

t =
−D

Au−cx

fx
+B

v−cy

fy
+ C

(2.12)

Different projecting patterns have been used in the literature [62]. Binary patterns are the

most used, although multilevel ones have also been proposed. The former option is simpler

in terms of processing and easier to achieve with a projector. Binary patterns use only two

states of light, usually white light, illuminating stripes in the scene. At the beginning, there

is only one division (black-to-white) in the image. In the following scans, subdivisions of the

previous areas of the scene are covered until the camera cannot differentiate the two states.

The correspondence of consecutive light planes is solved using time multiplexing. The number

of light planes achievable with this method is fixed, normally by the resolution of the projector.

On the other hand, phase shifting patterns use sinusoidal projections in the same operating

mode to cover wider values in gray scale. By unraveling the phase value, different light planes

can be obtained for just one state in the equivalent binary pattern. Phase shifting patterns

are also time multiplexing patterns.

These methods use more than one projection pattern to obtain range information. De

Bruijn sequences can achieve one-shot reconstructions by using pseudo-random sequences

formed by alphabets of symbols in a circular string. If this theory is brought to matrices

instead of vectors (e.g. strings), then those patterns are called M-arrays. These can be

constructed by folding a pseudo-random sequence [63]. Usually these patters use color to

better distinguish the symbols in the alphabet. However, not all kind of surface finishes and

colors reflect correctly the incoming color spectra back to the camera. Direct coding patterns,

either in gray levels or in color, have also been used in air. However, to the best knowledge of

the authors, there are no reports in underwater scenarios of some of the previously explained

codification strategies.

In the literature, Zhang et al project a gray scale four-step sinusoidal fringe [64]. Therefore,

it is a time multiplexing method using four different patterns. In their article, SL is compared

to SV showing better behavior in SL on textureless objects. Same reports were obtained

projecting 20 different gray coded patterns in a pool [3]. An accuracy in z direction of 2%

was achieved with this system.

Bruno et al [65] also project gray coded patterns with a final code shift of 4 pixel wide

bands. With this last shifts, better accuracy can be obtained compared to narrowing the

pattern to only one pixel wide patterns, where finding all the thin black and white lines is

more difficult. In this setup, a total of 48 patterns were used. However, this particular setup

calculates the 3D points using the positions of two cameras determined during the calibration

phase. The projector is only used to establish the correspondences and it is not involved in

the triangulation. This system would be an hybrid between SL and SV.

Another way to triangulate information using structured light is to sweep a light plane.
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Figure 2.7: A set of captured pictures captured using the projected Gray code bit planes.
Extracted from [3].
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This light plane can be swept either using the available pixels in the projector of by moving

the projector. Narasimhan and Nayar [66] sweep a light plane into a tank with dilute milk

and recover 3D information even in high turbidity scenarios. The authors show that in

high turbidity medium and with conventional floodlight, it is impossible to see anything but

backscattering. By narrowing the illuminated area to a light plane, the shapes of the objects

in the distance can be picked out and therefore triangulated.

2.3.5 Fixed Wavelength Structured Light Systems (FW-SL)

The systems presented in this section project fixed wavelength light into the environment.

This light is normally obtained from lasers.

2.3.5.1 Laser Stripe (LS)

LS systems are a subgroup of SL systems, where although the pattern is fixed to be a line

(a laser plane), the projector is swept across the field of view of the camera. Thus, for this

setting, a motorized element is needed in addition to the laser if the system holding the camera

and laser is not moving. The relative position and orientation of the laser and camera system

must be known in order to perform the triangulation process. The resolution of these systems

is usually higher than stereoscopy, but they are still limited by absorption and scattering.

The range of LS does not normally go over 3 m in clear waters, as will be seen later in the

commercial solutions.

Using an underwater stripe scanning system was initially proposed by Jaffe and Dunn

in [67] to reduce backscattering. Tetlow and Spours [68] show in their article a laser stripe

system with an automatic threshold setup for the camera, making this sensor robust to pixel

saturation if the laser reflection is too strong. To do that, they programmed a table with

the calibrated thickness of the laser stripe depending on the distance to the target. In their

results, they achieved resolutions up to five millimetres at a distance of three meters.

Kondo et al [69] tested a LS system in Tri-Dog I AUV. Apart from using it for 3D

reconstructions, they also track the image online to govern the robot to keep a safe distance

to the seabed centering the laser line in the camera image by changing the depth of the vehicle.

They report a resolution of 40 mm at three meters.

Hildebrandt et al [70] mount a laser line onto a servomotor that can be rotated 45◦ with an

accuracy of 0.15◦. The camera is a 640× 480 CMOS 200 fps with a 90◦ FOV (Field of View).

Returns 300k points in 2.4 seconds. Calibration is shown in his article with a novel calibration

rig consisting of a standard calibration pattern (checkerboard) next to a grey surface on one

side. The laser is better detected on a grey surface because on white, light is strongly reflected

and the camera capturing the scene has to compensate it opening the shutter for a shorter

period of time. The detection of the laser in the same plane of the calibration pattern is used

to calculate the position of the laser sheet projector with respect to the camera.
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In [71] a system consisting on a camera, a laser line and a LED light are mounted on

the AUV Tuna Sand to gather 3D information as well as imagery. The laser is pointed at

the upper part of the image whilst the LEDs light the lower part, so that there is enough

contrast to detect the laser line. In [72–74] a similar system called SeaXerocks 3D mapping

device is mounted on the ROV Hyper-Dolphin. With this system, the authors perform 3D

reconstructions in real intervention scenarios such as in hydrothermal sites and shipwrecks.

In [75] Tuna Sand AUV is also used with a different sensor. In this case, a laser stripe is

mounted on a rotary motor and, in a different enclosure, a camera is mounted. By keeping the

robot as static as possible, the laser is projected onto the scene whilst rotating it. The camera

then captures the line deformation. In this paper, multiple laser scans from sea experiments

at Kagoshima Bay are combined using Iterative Closest Point (ICP) algorithm. The authors

reconstruct a hydrothermal vent whose chimney is 3 meters tall at a depth of 200 meters.

In [59,76] a dual laser scanner is used to increase the field of view of the laser stripe, so that

almost 180◦ are illuminated by the laser. The system is very similar to the commercial sensor

in [77]. They approximate the detected laser lines to be Gaussian and explain an optimization

method to calibrate the camera-to-laser transformation. The authors claim that the achieved

measuring error is below 4%.

Prats et al [78–80] use a laser stripe on a underwater manipulator (which is mounted onto

the AUV Girona 500 in some experiments). They take advantage of the arm motion to sweep

the stripe. The resulting point cloud is used to autonomously grasp known objects. Although

the robot slightly changes its position when the arm moves to scan the scene, they track the

sea bottom with a template tracking algorithm to estimate the robot motion, thus correcting

small misalignments between the data and the real environment.

Different approaches to the common laser stripe scanning have been also reported. In [81]

two almost-parallel laser stripes are projected to compute the distance between these lines

captured from a camera, to know the distance to the target. These values are used as an

underwater rangefinder. However 3D reconstruction was not the aim of the paper.

In [82], Caccia mounts four laser pointers lined with a camera in a ROV. The four imaged

pointers are used to calculate the altitude and the heading of the vehicle, assuming the seabed

is flat.

Yang et al mount a camera and a vertical laser stripe in a translation stage [83]. They

recover 3D data interpolating from a data table previously acquired from calibration. When-

ever a laser pixel is detected in the image, its depth value is calculated from the four closest

points in the calibration data.

In table 2.4, the different SL references are compared. For the solutions with no clear

accuracy results, the resolution has been deduced from the graphics in their respective articles.
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References Type Color / Wavelength Pattern Accuracy

Zhang [64] SL Grayscale Sinusoidal Fringe -
Tornblom [3] SL White Binary pattern 2 mm at 250 mm
Bruno [65] SL White Binary pattern 0.4 mm at 1.2 m
Narasimhan [66] SL White Light plane sweep 5 mm at 100 mm
Bodenmann [73,84] LS 532 nm Laser line 200 mm at 10 m
Yang [83] LS 532 nm Laser line -
Kondo [69] LS 532 nm Laser line -
Tetlow [68] Mot. LS 532 nm Laser line 30 mm at 3 m
Hildebrandt [70] Mot. LS 532 nm Laser line -
Prats [78] Mot. LS 532 nm Laser line -
Nakatani [75] Mot. LS 532 nm Laser line 1 cm at 2 m
Jakas [59,76] Dual LS 405 nm Laser line See [77]
Massot [22] LbSLS 532 nm 25 laser lines 3.5 mm at 70 cm

Table 2.4: Summary of Structured Light 3D reconstruction solutions. Massot method will
be presented in chapter 3. Note that not all authors provide measures of accuracy. The
annotated values have been taken from their publication.

2.3.6 Photometric stereo

In situations where light stripe scanning takes too long to be practical, photometric stereo

provides an attractive alternative. This technique for scene reconstruction requires a small

number of images captured under different lightning conditions. In figure 2.8 there is a

representation of a typical PhS setup with four lights.

3D information can be obtained by changing the location of the light source whilst keeping

the camera and the object in a fixed position. Narasimhan and Nayar present a novel method

to recover albedo, normals and depth maps from scattering media [66]. Usually, this method

requires a minimum of 5 images. In special conditions such as the ones presented in [66], four

different light conditions can be enough.

In [85], Tsiotsios et al show that three lights are enough to compute tridimensional infor-

mation. They also compensate the backscatter component by fitting a backscatter model for

each pixel.

2.3.7 Structure from Motion (SfM)

SfM consists in travelling in space taking camera shots. From these camera shots, image

features are detected and matched between consecutive frames to know the relative camera

motion, and thus its 3D trajectory.

Given m images of n fixed 3D points, we need to estimate m projection matrices Pi and

n 3D points Xj from the m · n correspondences xij .

xij = PiXj , i = 1, . . . ,m, j = 1, . . . , n (2.13)
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Figure 2.8: Photometric stereo setup: four lights are used to illuminate an underwater scene.
The same scene lid from different sources are the images used to recover three-dimensional
information. Reproduced from: http://perception.csl.illinois.edu/matrix-rank/

stereo.html

Therefore, if we scale the entire scene by some factor k and, at the same time, scale the

projection matrices by a factor of 1/k, the projection of the scene points remain the same.

Thus, only with SfM, scale is not available, although there are methods that compute the

scale from known objects or by knowing the constraints of the robot or vehicle carrying the

camera [86].

x = P X =
(

1
k

P

)

(kX) (2.14)

The one-parameter family of solutions parametrized by λ is

X(λ) = P +x + λc (2.15)

where P + is the pseudo-inverse of P (i.e. P P + = I) and c its null-vector, namely the camera

centre, defined by P c = 0.

The approach of SfM is the cheapest in terms of hardware, and the easiest to install in a

real robot. Only a still camera or a video recorder is needed, with enough storage to keep a

full dive in memory. Later, the images can be processed to obtain the required 3D models.

In the underwater medium, both feature detection and matching suffer from diffusion

(absorption and scattering), sun flickering and non uniform light, making the detection of the

same feature more difficult from different viewpoints. Depending on the distance from the



2.3. Types of sensors 29

camera to the 3D point, the absorption and scattering components vary, changing the colours

and the sharpness of that particular feature in the image.

RANdom SAmple Consensus (RANSAC) is an iterative method to discard outliers widely

used in imaging. Sedlazeck et al show in [87] a real 3D scenario reconstructed from ROV Kiel

6000 using an HD color camera. The feature detector is a corner detector based on image

gradients. RANSAC procedure is used to filter outliers after the features have been matched

Pizarro et al [88] use SeaBED AUV to perform optical surveys, equipped with a 1280 ×

1024 px CCD camera. The feature detector used is a modified Harris corner detector and its

descriptor is a generalized colour moment.

In [89] Meline et al compare Harris and SIFT features using a 1280 × 720 px camera in

shallow water. In the article, the authors reconstruct a statue bust. They conclude that SIFT

is not robust to speckle noise, contrary to Harris. Furthermore, Harris presented better inlier

count on the different scenarios.

McKinnon et al [90] use GPU SURF features and a high resolution camera 2272×1704 px

to reconstruct a piece of coral. This setup presents several challenges in terms of occlusions

of the different views. With their SfM approach, they achieve 0.3 mm accuracy at 1− 1.5 m.

Jordt-Sedlazeck and Koch develop a novel refractive structure from motion algorithm that

takes into account the refraction of glass ports in water [91]. By considering the refraction

coefficient between the air-glass-water interface they improve the results of their SfM, called

Refractive SfM.

Cocito et al [92] use images captured by divers that always contain a scaling cube to

recover scaled 3D data. The processing pipeline requires an operator to outline silhouettes

of the area of interest of the images. In the case of the application in that paper, they were

measuring bryozoan colonies volume.

In [4], the documentation of an archaeological site where experimental cleaning operations

were conducted is shown. A commercial software, Photoscan by Agisoft, was used to perform

a multi-view 3D reconstruction.

References Feature Matching method Accuracy Scale

Sedlazeck [87] Corner KTL Tracker - Medium
Pizarro [88] Harris Affine invariant region 3.6 cm RMS Large
Meline [89] Harris SIFT - Small
McKinnon [90] SURF SURF 1 mm at 1 m Small
Jordt-Sedlazeck [91] - KLT Tracker - Small
Cocito [92] Silhouettes Manually < 1 cm Small
Bruno [4] SIFT SIFT 4.5 mm Small

Table 2.5: Summary of Structure from Motion 3D reconstruction solutions. Note that not
all authors provide measures of accuracy. The annotated values have been taken from their
publication.
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Figure 2.9: 3D reconstruction using SfM. The images were recorded by divers in an archael-
ogical site. From [4].
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Figure 2.10: Triangulation geometry principle for a Stereo System

The solutions presented are summarized in table 2.5. Most of them do not have results on

resolution given that this 3D reconstruction method cannot recover the correct scale. In the

solutions where a result is given, the authors have scaled manually the resulting point cloud

to match a particular feature or human made object.

2.3.8 Stereo Vision (SV)

Stereoscopy follows the same working principle as SfM, but features are matched between left

and right frames of a stereo camera to compute 3D correspondences. From calibration, the

relative position of the left camera with respect to the right one is known and, therefore, there

is no longer a degree of freedom in the scale of the reconstruction.

By knowing the relative position of the cameras and the location of the same feature in

both images, the 3D coordinates of the feature in the world can be computed by triangulation.

The closest crossing point (if the lines do not intersect due to calibration) is considered as the

corresponding 3D point. In figure 2.10, the corresponding 3D point of the image coordinates
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x = (uL, vL) and x′ = (uR, vR) is the point p = (xW , yW , zW ), which can also be written as

x′Fx = 0 where F is the fundamental matrix [93].

Once the camera rig is calibrated (known baseline and no distortion in the images) 3D can

be obtained calculating the disparity for each pixel e.g. perform a 1D search for each pixel in

the left and right images. A block matching is normally used. The disparity is the difference

in pixels from left to right, where the same patch has been found. It gives a direct measure

of depth as

z =
f · b

d
(2.16)

where d is the disparity in pixels, f is the focal distance in pixels, b is the baseline in meters

and z is the depth or distance of the pixel perpendicularly to the image plane, in meters.

Once this 3D data has been gathered, the registration between consecutive frames can be

done using 2D or 3D features, or even 3D registration methods such as Iterative Closest Point

(ICP).

Fairly different feature descriptors and matchers have been used in the literature. SIFT

[94–99] is one of the most used. SURF [100], or even direct 3D registration with SIFT 3D [95]

or ICP [94]. For instance in [101], Servos et al perform refractive projection correction on depth

images generated from a Bumblebee2 camera (12 cm baseline). The results obtained with

this correction have better accuracy and bigger number of pixel correspondences compared to

standard methods. The registration is directly done in the generated point cloud using ICP.

There is no feature matching.

Schmidt et al [97] use commercial GoPro cameras to set a 35 mm baseline stereo rig and

perform micro bathymetry using SIFT features. They achieve an accuracy of 3 mm in their

reconstructions.

In [99], the stereo system IRIS is hung from the tip of the arm of Victor6000 ROV. Their

system uses SIFT combined with RANSAC to discard outliers. After that, a sparse bundle

adjustment is performed to correct the navigation to survey natural underwater objects.

In [102], Hogue et al combine a Bumblebee stereo and a inertial unit housed in a watertight

case, called Aquasensor. This system is used to reconstruct and register dense stereo 3D points.

The reconstruction show a lot of drift if the IMU is not used and presume erroneous camera

model to cause part of it. The system is used by the authors to perform a reconstruction of

a sunken barge.

Beall et al [100] use a wide baseline stereo rig and extract SURF features from left and

right image pairs. They track these features to recover the structure of the environment

after a SAM (Smoothing and Mapping) step. Then the 3D points are triangulated using

Delaunay triangulation and the image texture is mapped to the mesh. This setup is applied

to reconstruct coral reefs in Bahamas.

Negre et al [5,103] perform 3D reconstruction of underwater environments using a Graph

SLAM approach in a micro AUV equipped with two stereo rigs.

Nurtantio et al [96] use three cameras and extract SIFT features. The reconstruction of
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Figure 2.11: 3D reconstruction from SV using Graph SLAM. From [5].

the multi-view system is triangulated using Delaunay triangulation. However they manually

preprocess the images to select whether they are suitable for an accurate reconstruction. The

outlier removal stage is also manual.

Inglis and Roman constrain stereo correspondences using multibeam sonar [104]. From

Hercules ROV, navigation data, multibeam and stereo is preprocessed to reduce error and then

the sonar and optical data are mapped into a common coordinate system. They backproject

the range data coming from the sonar to the camera image and limit the available z range

the stereo correspondence algorithm has. To simplify this approach, they tile the sonar

backprojections into the image, and generate a tiled minimum and maximum disparity values

for an image region (e.g. a tile). The number of inliers obtained with this setup increases

significantly compared to an unconstrained system.

References Feature Matching method Baseline Resolution Scale

Kumar [94] SIFT RANSAC and ICP - - Small
Jasiobedzki [95] SIFT SIFT3D and SLAM - - Large
Nurtantio [96] SIFT SIFT - - Small
Schmidt [97] SIFT SIFT 35 mm 3 mm Small
Brandou [99] SIFT SIFT - - Medium
Beall [100] SURF SURF and SAM 60 cm - Large
Servos [101] - ICP 12 cm < 27 cm Small
Hogue [102] Corners KLT tracker 12 cm - Large
Inglis [104] SIFT SIFT 42.5 cm - Small

Table 2.6: Sumary of Stereoscopy 3D reconstruction solutions. Note that none of the authors
presented results of accuracy nor precision. Resolution has been used instead when available.

In table 2.6, the different solutions are presented and compared.
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Comercial Solutions Range (m) Depth Resolution
Field of view Motorized Method

Name Company Min Max (m) (mm)

Echoscope [105] Coda Octopus 0.5 120 250 20 50◦ × 50◦ yes TOF
INSCAN [107] Teledyne CDL 2 25 3000 5 30× 30× 360◦ yes TOF
SL1 [61] 3D at Depth 2 30 3000 4 30× 30× 360◦ yes TOF
3DLS [77] Smart Light Devices 0.3 2 4000 0.1 t.b.a. t.b.a. Triangulation
ULS-100 [109] 2g Robotics 0.1 1 350 1 50× 360◦ yes Triangulation
ULS-200 [110] 0.25 2.5 350 1 50× 360◦ yes Triangulation
ULS-500 [111] 1 10 3000 3 50× 360◦ yes Triangulation
Cerberus Savante - 10 6000 - t.b.a. t.b.a. Triangulation
SLV-50 Savante - 2.5 6000 1 60◦ no Triangulation
Lumeneye Savante - - 6500 - 65◦ no Laser only
SeaStripe [112] Tritech - - 4000 - 64◦ no Laser only

Table 2.7: Commercially available 3D reconstruction hardware.

2.4 Commercial hardware solutions

Different commercial hardware solutions exist to gather 3D data. In table 2.7 a collection of

the alternatives is shown.

Echoscope from Coda Octopus [105] commercialises a high resolution imaging sonar for

shallow water applications. Conversely, Teledyne sells Blueview, an imaging sonar that offers

less resolution, but mounted on a pan and tilt unit [106].

Teledyne sells an underwater LLS called INSCAN [107]. This system must be deployed

underwater or fixed to a structure. The device samples 1 m2 in 5 s at 5 m range.

3D at Depth sells a similar device called SL1 [61]. They have worked with Teledyne in

their designs [108]. The specifications are the same as with the previous sensor.

3DLS is a triangulation sensor formed by an underwater dual laser projector and a camera.

It is produced by Smart light devices. By default, uses a 15 W green laser.

2G Robotics has three different triangulation devices depending on the demanded range

[109–111]. They all are motorized, so they must be deployed and static during their scan.

Savante provides three different solutions. Cerberus is a triangulation sensor formed by a

laser pointer and a receiver, capable of recovering 3D information. SLV-50 is another trian-

gulation sensor formed by a laser stripe and a high sensitivity camera and finally Lumeneye

is a laser stripe that only casts laser light on the scene.

Tritech provides a simple green laser sheet called SeaStripe [112] similar to the previously

presented by Savante. The 3D reconstruction must be performed by the client camera and

software. They only provide the projecting laser. No motorization is involved.

2.5 Discussion

Roman et al [113] compared laser stripe scanning to stereoscopy and multibeam sonar in a

real underwater scenario using Hercules ROV. The stereo data showed less definition than

the sonar data, and the stereo 3D points were triangulated exclusively from SIFT descriptors,



34 State of the art on underwater 3D sensing methods

which are few compared to other sensors resolution. The comparison was made during a

survey where laser images where collected at 3 Hz at 2 − 5 cm/s at 3 m above the bottom,

whilst stereo imagery was captured on a separate survey at 0.15 Hz and at a speed of 15 cm/s

and a distance of 1.5−3 m giving a minimum overlap of 50%. Multibeam was captured during

the laser survey at 5 Hz.

As seen in these numbers, the data rate from the different sensors is not equal, and therefore

the gathered data is temporally different, giving less or more spatial density depending on

the setup. What is clear is that the authors used SIFT features in the stereo camera and

abandoned the disparity images that could have been calculated with the left-right pairs,

giving a denser point cloud compared to the (rather few) inliers achieved in the survey.

Stereoscopy is the easiest way to obtain the depth of a scene [65], followed by multibeam

and laser stripe data, which are the easier sensor types to concatenate given a dataset with

information on a set of the navigation sensors used in the ROV or AUV of the experiment.

Structure from Motion is easy to implement from a hardware point of view, as it only

needs a camera attached to an already operative robot. The processing needed afterwards is,

however, intensive. Also, if there is not a previous setup on a known target for measurement,

depth data will be obtained without scale. A scale can be obtained afterwards by fusing the

reconstruction with the navigation data or with a known target size. These approaches have

already been integrated in commercial software and are accessible to the public [86].

Then, LLS and SL overcome some of the problems of the previously commented sensors.

LLS travels further, achieving longer ranges minimizing the common volume scattering and

taking advantage of fixed wavelength light sources to minimize absorption. On the other

hand, when a precise and closer look to an object or structure is needed, LLS is not always

available as it counts time from a signal to travel and return. Often, ToF sensors have a large

minimum measuring distance. SL sensors are capable of hitting closer distances with high

resolution, no matter what the texture or colour of the scanned object.

All the benefits and limitations of the sensors and methods presented in this chapter lead

to choose the best suited sensor for each application. In the context of this thesis, three key

topics have been raised: underwater exploration, light absorption and scattering and high

resolution sensors. In this concern, we propose two solutions for underwater reconstruction

that provide better insight in either size, speed or resolution of the reconstructed targets.

• Laser-based Structured Light Systems are capable of overcoming light limitation

in the medium and provide sparse and quick three dimensional information of a small

area, targeted at autonomous manipulation. The device can be simply attached to an

underwater manipulator to provide high-framerate information, as it is just formed by

a laser projector and a camera.

• Laser Stripe (LS) excels in mapping extensive areas as it requires a simple setup. One

camera and one laser stripe mounted on a cruising AUV provide a robust and effective

reconstruction solution, with an easy integration in work-class robots. The resulting
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range measurements can be integrated to a SLAM framework to provide better mapping

accuracy and consistency.

The methodology for both of these approaches is further discussed in chapter 3. Once the

foundations of triangulation and laser detection are settled, the document presents in chapter

4 a one-shot LbSLS, together with its experimental results. A second approach to laser

structured light is delivered in chapter 5, where two SLAM solutions using LS are presented

and discussed.





Chapter 3

Pipeline for Laser-based

Structured Light Systems

In this thesis, two three dimensional reconstruction methods and sensors are presented. Even

if different, they use the same methodology and computational pipeline for a laser projector

with a known pattern and a camera. The differences between them are the projected pattern

and the decoding. This last step is only needed for one of the approaches: a multi-line laser

pattern. This chapter first presents an introduction to laser-camera geometry in 3.1, followed

by section 3.2, where the laser peak detection method is depicted. The triangulation of the

detected points is explained in section 3.3 and finally in section 3.5 a summary of the chapter

can be found.

In the following two chapters, a novel Laser based Structured Light System (LbSLS)

[23, 24, 114] is proposed (chapter 4) and two bathymetric SLAM approaches applied to laser

stripe 3D reconstruction are presented (chapter 5). They both have this pipeline in common.

3.1 Introduction

A laser-based structured light system is a sensor formed by one or more cameras and a laser

projector. The projector casts a known laser pattern whose shape, deformed by the target

area, is recovered by a camera. A relation can be established between range and resolution

depending on where the projector is located with respect to the camera (e.g. its baseline).

There is clearly a compromise between spatial resolution and range. At a larger distance

to the target surface to measure, the size of a pixel on the target increases, decreasing its

resolution.

The geometry of the system has to be designed depending on the desired range of the

device. In figure 3.1 the most important geometry variables are indicated. The geometry will

fix the maximum and minimum working distance between system and object, as described by

equations 3.1 and 3.2.

dmax =
b

tan
(

ψ + ϕ
2

)

− tan
(

θ
2

) (3.1)

37
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dmin =
b

tan
(

ψ − ϕ
2

)

+ tan
(

θ
2

) (3.2)

b

dmax
dmin

LaserCamera
ϕθ

ψ

A

B

C

Figure 3.1: Laser to camera geometry. The point B is the crossing point of the camera axis
and the laser axis. dmin and dmax distances are related to the field of view of the camera,
being dmax the maximum distance at which all the projected pattern from the laser is seen
from the camera, and dmin the minimum.

where b is the baseline, θ is the camera field of view and ϕ is the laser beam divergence. The

relative rotation between the camera and laser is ψ. In some cases, the maximum working

distance is infinite, if and only if the laser beam crosses the camera field of view only once.

These relationships also apply for laser triangulation uncertainty. The uncertainty introduced

by using a discrete laser line extraction can be calculated from the geometry in figure 3.2

using equations (3.3) to (3.6).

zmax =
b

tan
(

α− β
2

)

+ tan
(

ψ − ϕ
2

)

(3.3)

zmin =
b

tan
(

α+ β
2

)

+ tan
(

ψ + ϕ
2

)

(3.4)

∆z = zmax − zmin (3.5)

∆x = zmax tan
(

α+
β

2

)

− zmin tan
(

α−
β

2

)

(3.6)

where zmax and zmin are the the maximum and minimum possible distances from the camera

to the triangulated point. This distances vary depending on the laser tilt ψ and divergence

angle ϕ, the aperture of one camera pixel β and its angle α and the baseline. Therefore, the

assignment of a laser detection to an integer pixel position restricts the depth resolution as

shown in figure 3.3.
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Figure 3.2: A camera ray dc at an angle α from the principal axis of the camera. The
ray crosses the focal point of the camera and projects to a pixel. The pixel size in 3D
space translates to a cone with an aperture angle β. At a distance b, a laser with a beam
divergence angle ϕ is tilted at an angle ψ with respect to the vertical. The laser beam dl
crosses the camera ray dc at a point P in space. The differences in aperture angle and beam
divergence at a distance z0 causes a depth uncertainty and a position uncertainty depicted by
∆z = zmax − zmin and ∆x = xmax − xmin.
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light sensor.
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Figure 3.4: Bayer pattern on sensor. The pattern is formed by a series of passband lenses
(shown in blue, green and red) that only allow a certain light wavelength band to pass to the
sensor, depicted in gray [6].

3.2 Laser peak detection

The detection of laser light is performed by imaging sensors. These colour cameras are usually

manufactured with a Bayer filter in front of the sensor. These filter the light spectrum to

what is commonly known red, blue and green channels, or RGB. Each channel has different

spectrum response, given by the manufacturer. Commonly, the spectral response of these

channels overlap up to some point. On the other hand, a laser has a narrow wavelength light

that might fall in between these overlapping colour bands. If this is the case, we can weight

our three channel input images.

A demosaicking or debayering algorithm is applied to the captured image to reconstruct

the actual colour of the light that entered the camera lens. Most commonly, the resulting

RGB value for a pixel in the three channel image is interpolated among the nine closest pixels

in the Bayer array.

Then, given a three channel image I : IR, IG, IB, the image sensor sensitivity and the laser

wavelength, the linear function that better measures the laser wavelength can be determined.

This transformation is shown in equation (3.7).

IL = f(kR, kG, kB) = kRIR + kGIG + kBIb, ||(kR, kG, kB)|| ≤ 1 (3.7)

where kR, kG, kB have to be retrieved from the sensor sensitivity chart.

3.2.1 Light underwater

As seen in section 1.2.2, absorption and scattering play an important role in the behaviour

of light underwater. Absorption by seawater is weak in the blue colour spectra, whilst strong

in the red. It varies with temperature and salinity, as well as with algal or phytoplankton

particles. This can be modelled as an exponential loss in irradiance (E [W/m2]) as depicted

in equation (3.8), where E0 is the source irradiance, a is the absorption coefficient and z is



3.2. Laser peak detection 41

the distance from the source to the receiver.

E = E0 exp(−az) (3.8)

Scattering is the deflection of a photon by a scattering particle, considered as a sphere with

a particular geometrical size. This sphere redirects incident photons into new directions and

prevents the forward transmission of photons. The scattering coefficient b [m−1], describes a

medium containing a volume density ρS [m−3] of scattering particles with an effective cross-

section of σS [m2]. The scattering coefficient is essentially the cross-sectional area per unit

volume of medium, defined in equation (3.9).

b = ρSσS (3.9)

The angular dependence of scattering is called the volume scattering function (VSF)

p(θ) [sr−1]. This function describes the probability of a scattered photon into a unit solid

angle oriented at an angle θ relative to the original photon trajectory. This scattering function

is assumed azimuthally symmetric. The scattering coefficient (b [m−1]) is a measure of the

overall magnitude of the scattered light without regard to its angular distribution, which is

the integral of the VSF over all angles, as shown in equation (3.10).

b =
∫ 4π

0
p(Ω) dΩ = 2π

∫ π

0
p(θ) sin θ dθ (3.10)

The backscattering coefficient is defined as the total light scattered back to the hemisphere

from which light came from, shown in equation (3.11).

bb =
∫ 4π

2π
p(Ω) dΩ = 2π

∫ π

π/2
p(θ) sin θ dθ (3.11)

And the backscattering ratio is defined in (3.12).

b̃ =
bb
b

(3.12)

Normally, scattering is defined by the phase function, which is the VSF normalized to the total

scattering. It provides information about the shape of the VSF regardless of the intensity of

the scattered light, defined in equation (3.13).

∫ π

0
p̃(θ)2π sin θ dθ = 1, p̃(θ) =

p(θ)
b

(3.13)

An isotropic phase function (3.14) would scatter light equally into all possible directions:

p(θ) =
1

4π
, such that

∫ π

0
p(θ)2π sin θ dθ = 1 (3.14)

The anisotropy, g is a dimensionless measure of the amount of forward direction retained

after a single scattering effect. In ocean waters, g varies from 0.85 to 0.95. Imagine that a
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Figure 3.5: Heyney-Greenstein phase function

photon is scattered by a particle so that its trajectory is deflected by a deflection angle θ.

Then the component of the new trajectory which is aligned in the forward direction is cos(θ).

There is an average deflection angle whose value cos(θ) is defined as the anisotropy, shown in

equation (3.15).

g = 2π
∫ π

0
p(θ) cos θ sin θ dθ = 〈cos θ〉 (3.15)

Heyney-Greenstein (HG) phase function (3.16) has been widely used in oceanography as it is

an analytic formula that approximates the shape of an actual phase function. Note that it is

normalized. In figure 3.5 the phase function is plotted for different g.

PHG(θ) =
1

4π

[

1− g2

(1− 2g cos θ + g2)3/2

]

(3.16)

Its backscatter ratio can be computed from equation (3.17)

bb
b

= 2π
∫ π

π/2
PHG(θ) sin θ dθ (3.17)

= 1− 2π
∫ π/2

0
PHG(θ) sin θ dθ (3.18)

= 1−
1 + g

2g

[

1−
1− g
√

1 + g2

]

(3.19)



3.2. Laser peak detection 43

3.2.1.1 Application on laser light

Assuming that a Gaussian is a reasonable fit to the phase function (valid in the limit of many

collisions), the anisotropy can be written as equation (3.20).

g = 1−
〈
(

2 sin θ
2

)2
〉

2
≈ 1−

〈θ2
W 〉

2
(3.20)

The irradiance, E [W/m2] of a Gaussian laser beam profile is described as a function of the

radial position r [m] from the central axis of the beam, shown in (3.21).

ELU (r) = P
2
πσ2

L

exp

(

−
2r2

σ2
L

)

(3.21)

where P [W ] is the power of the laser beam, and σL [m] is the laser radius taking divergence

into account. This divergence is modelled as if the beam came from such source point at a

distance LL [m] that would have the appropriate size at the output of the system (e.g. water

window interface) as modelled in (3.22).

σ2
L = θ2

L(LL + z)2 (3.22)

where θL [rad] is the laser divergence and z is the actual working distance from the water

window interface. ELU (r) is the laser beam propagation without scattering.

Example 3.2.1. Consider a collimated laser beam delivering 1 W of power to a circular

1-mm-diameter aperture. The laser beam has a Gaussian beam profile with a 1/e2 radius of

w0 = 0.5 mm at the work point. A detector sits behind the aperture and is greater than 1 mm

in diameter.

Pcollected =
∫

S
E(S) dS = 2π

∫ a

0
E(r)r dr (3.23)

= 2π
∫ a

0
P

2r
πσ2

L

exp

(

−
2r2

σ2
L

)

dr (3.24)

=
4P
σ2
L

∫ a

0
r exp

(

−
2r2

σ2
L

)

dr (3.25)

=
4P
σ2
L

·
σ2
L

4
exp

(

−
2r2

σ2
L

)∣

∣

∣

∣

∣

r=a

r=0

(3.26)

= P

[

1− exp

(

−
2a2

σ2
L

)]

(3.27)

= 1

[

1− exp

(

−
2 · 0.52

0.52

)]

= 0.865 W (3.28)

The forward scattered beam can be approximated by an expanding Gaussian fan of light. The

effect of absorption has been neglected, and the approximation of small angle has been used.
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Figure 3.6: Color spectrum response of Sony ICX674. Every wavelength has a different gain
in the color channels RGB, red, green and blue respectively.

3.2.2 Gaussian laser detection

As seen in the previous section, a collimated laser source spreads with distance and can be

modelled using a Gaussian shape. This light can be easily detected in an image because its

wavelength is known. Therefore a reward function can be tailored to be more sensitive to the

colour spectrum of the light source. For the particular case of green laser light at 532 nm and a

Sony ICX674 sensor, the coefficients kr, kg, kb would have to be 0.08, 0.85 and 0.2 respectively,

as can be seen in figure 3.6.

Common line image detectors such as Canny do not work well for laser stripes, mainly

because they are sensible to straight edges and there are no such edges underwater, apart

from man-made objects, such as structures, hubs or cables. Therefore the laser line has to be

detected by other means, and this thesis proposes to use a sliding window integral.

Other authors [115] have proposed to use the first derivative to find the subpixel centre, but

this approach is not suitable for underwater applications. Although the laser stripe yields a

Gaussian profile, the discrete-nature of the camera sensor makes interpolation necessary and

the larger distances from the camera to the seafloor compared to air-solutions reduces the

number of pixels lit by the laser.

Given an image IL, we compute the integral over a window of length lw starting at the

row v0 until v0 + lw, which can be written as (3.29)

Gvw =
v0+lw
∑

v=v0

(

1− 2
∣

∣

∣

∣

v0 +
lw − 1

2
− v

∣

∣

∣

∣

)

· IL(u, v) (3.29)

where IL(u, v) is the value at pixel (u, v) of the reward image computed using (3.7). This

window is rolled over all available rows in the image to find the highest integrated value. If
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this value is higher than a minimum integral value threshold, the found window is a candidate

laser point and a subpixel laser detection algorithm is used for refinement.

The subpixel detector used is a Gaussian approximation (GA) [116], shown in equation

(3.30), where f(x) is the intensity value of a particular row at pixel x, usually an integer in

the range 0-255, and δ̂ is the subpixel offset with respect to the centre of the integral window

used to locate the most likely laser point.

δ̂ =
1
2

ln(f(x− 1))− ln(f(x+ 1))
ln(f(x− 1))− 2 ln(f(x)) + ln(f(x+ 1))

(3.30)

In the cases were the denominator of equation (3.30) is zero (e.g. when the pixel intensity

is the same in three pixels, or when the laser light has burnt the image at the laser point)

the Center of Mass (CoM5) detector is used [116]. Once all columns have their laser peak

candidate, the peaks are grouped in patches. A patch is formed by laser peaks that are

contiguous, defining contiguous as a maximum distance of three pixels. Then, the patches

that have less than five contiguous peaks are removed from the list, considered as spurious

and therefore outliers.

3.2.3 Application of laser detection

The application of these detection steps is shown in figure 3.7. Figure 3.7(a) shows an example

frame gathered during a real survey mission. The laser line can be seen on the bottom part

of the image. The column 100 is shown in figure 3.7(b), where the intensity profile clearly

shows a peak in the laser portion in the image. Finally, applying this procedure per column,

produces the laser line subpixel detection highlighted in figure 3.7(c), where the area around

the previous shown column 100 is overlayed with the detected peaks.

3.3 Triangulation

Once the laser peaks are known, three dimensional points can be computed from two dimen-

sional detections. To do that, the camera intrinsic and extrinsic calibration parameters are

needed, as well as the laser to camera transformation.

Let C be a camera in 3D space, oriented towards z with x pointing to its right. Using a

pinhole camera model, a point X in the space can be back-projected in the camera image,

and a point in the camera image can be projected into a line. This setup is shown in figure

3.8.

The intrinsic matrix K is parametrized by Hartley and Zisserman [93] as shown in (3.31),

and the extrinsic (R|t) as a 3 × 4 transformation matrix comprising a rotation and a trans-
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(a) Example laser line image captured at 1392 × 1040 px

resolution.
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Figure 3.7: Laser peak detection.
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Figure 3.8: Laser-Camera geometry. A point X in space can be computed by projecting a
line from the camera at the point where it intersects the laser plane πL.
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Figure 3.9: Example of how distortion parameters affect the image. On the top, the radial
distortion parameter k1 distorts a circle and a grid, and on the bottom a tangential distortion
parameter p1.

lation.

K =









fx 0 cx

0 fy cy

0 0 1









(3.31)

Thus, a point x = (x, y, z)⊺ can be related to its 2-dimensional image projection p = (u, v)

with equation (3.32) when the camera lens produces no distortion at all.
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(3.32)

Real lenses usually have some distortion, as depicted in figure 3.9, mostly radial and slight

tangential distortion. Take the position of a point xd relative to geometric image centre

defined by c = (cx, cy). Given the pinhole camera model, assume that c is undistorted in the

resulting image, but not xd. If the position of xd is only distorted radially along direction −→cxd,

the distortion is said to be radial. Alternatively, if xd is also displaced tangentially relative

to the circle of radius r = d2(c,xd), the distortion is said to be tangential. So, the above
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model is extended with equations (3.34) to (3.37), where xd = (xd, yd, zd) is the distorted

point expressed in the camera coordinate system.
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x
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1















(3.33)

x′ = xd/zd (3.34)

y′ = yd/zd (3.35)

x′′ = x′ 1 + k1r
2 + k2r

4 + k3r
6

1 + k3r2 + k4r4 + k5r6
+ 2p1x

′y′ + p2(r2 + 2x′2) (3.36)

y′′ = y′ 1 + k1r
2 + k2r

4 + k3r
6

1 + k3r2 + k4r4 + k5r6
+ p1(r2 + 2y′2) + p2x

′y′ (3.37)

where r2 = x′2 + y′2. The ki coefficients account for radial distortion and pj for tangential

distortion. These coefficients along with the intrinsic ones, have to be obtained through

camera calibration. Finally, using (3.38) the undistorted pixel coordinates can be obtained.
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(3.38)

In a projective pinhole camera, all the rays of light impinging on it, pass through the focal

point. Hence, all the points laying on the same ray of light cast on the same point on the

image plane. The direction of these rays is important, the distance to the point that generates

them is irrelevant in the image formation. In this sense, one can think that a point on the

image plane corresponds to a line in 3-space, which contains both the focal point and the

image point. In projective geometry, all the points contained in the same line are equivalent.

We can write the line equation in parametric form with (3.39).

r(t) =















x = u−cx

fx
t

y = v−cy

fy
t

z = t

(3.39)

Finally, the laser line is described as a plane πL in space with known coefficients whose

equation can be written as (3.40)

πL : Ax+By + Cz +D = 0 (3.40)

The intersection between the laser plane and the line originated from the camera, that
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passed through the detected laser point at (u, v) is the triangulated point x in space, computed

by equation (3.41).

x = r(t) ∩ πL =















x = u−cx

fx
t

y = v−cy

fy
t

z = t

, with t = −
D

Au−cx

fx
+B

v−cy

fy
+ C

(3.41)

Therefore a point cloud can be defined as (3.42)

P C
i = (x1, . . . ,xm) (3.42)

where m is the number of points in the i-th frame.

3.3.1 Dead reckoning reconstruction

In navigation, Dead Reckoning (DR) is the process of estimating one’s current position by

using a previous known position and advancing that position based on known or estimated

speeds. For AUVs, DR is usually obtained using sensors such as Global Positioning System

(GPS), Inertial Magnetic Unit (IMU), Doppler Velocity Log (DVL), depth sensors and in some

cases Long Base Line (LBL) or Short Base Line (SBL) position updates. The estimation is

never completely correct, and prone to drift over time. If the system is mounted on a moving

platform that gathered N measurements with known position and orientation, its point clouds

can be concatenated to form a large set, formulated as (3.43)

P W
DR =

N
⋃

i=1

(

P C
i ⊕ TR

C ⊕ TRi
W
)

, (3.43)

where P C
i is the point set of the i-th frame, TR

C is the transformation from the camera

coordinate system to the vehicle coordinate system, TRi
W is the DR position of the vehicle

at the time of the i-th frame with respect to the word, and ⊕ is the composition operator.

3.4 Laser Plane Calibration

A large number of computer vision algorithms involve the computation of parameters in the

presence of noise or in noisy measurements. These parameters can be part of an equation

or the components of a matrix. For example, the intrinsics of a pinhole camera model,

the computation of stereo correspondences, homographies and geometric calibrations. In

essence, all of the above problems can be defined as the search for an optimal solution to an

overdetermined system of linear equations, which can be formalised in equation (3.44), where

x are the parameters to minimize and A the linear set of equation that relates them. There
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is always an avoided trivial solution, when x = 0.

A · x = 0 (3.44)

A camera-laser pair needs to be calibrated to determine the spatial relationship between

the laser plane with reference to the camera coordinate system. The plane parameters to

compute can either be {A,B,C,D} from equation (3.40), or their dual representation πL :

(c, ~n) where the plane is defined by a crossing point c and its normal vector ~n. Given a set

of detected laser points pi, whose centroid is c, a plane can be fitted to the points by solving

(3.45).

min
c,||~n||=1

n
∑

i=1

((pi − c)⊺~n)2 (3.45)

Introducing the 3×n matrix A = [p1−c,p2−c, . . . ,pn−c], the problem can be formulated

as shown in equation (3.46), which is the expression of a parameter estimation problem, that

can be solved by computing the vector ~n that minimises some cost function of the matrix

equation A · x = 0.

min
||~n||=1

||A⊺~n||2 −→ A · x = 0 (3.46)

Using the singular value decomposition A = USV ⊺ the plane normal ~n can be found as the

third column of U , equivalently, ~n = U(:, 3). It follows from the orthogonality of U that the

plane is spanned by its two first columns.

In this thesis we present two methods for laser plane calibration. The first method uses

a chessboard pattern as a known surface where the laser line is projected, and the second

method uses a second camera and stereoscopy to compute the 3D laser points and the laser

plane.

3.4.1 Calibration with chessboard pattern

The setup for this calibration method requires to place the camera-laser pair at different

distances to a calibration plane. The calibration plane πC can be generated using a common

chessboard pattern commonly used for camera calibration. Then the laser points can be

triangulated in 3-space by intersection with the calibration plane. The described setup can

be seen in figure 3.10.

The calibration data is generated by changing the distance between the sensor and the

plane for m camera positions T = {t1, t2, . . . , tm|ti = [xi, yi, zi, φi, θi, ψi]}. Next, for each

calibration plane πpi, a set of 3D plane points P = {p1,p2, . . . ,pm|pi = [px, py, pz]} gathered

belongs to the unknown laser plane. Finally, the same equations (3.45) and (3.46) are used

to obtain the laser plane equation.

Spurious measurements and outliers can appear during calibration and we have to be able
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Figure 3.10: Laser calibration with checkerboard.

to either remove them or fit a model without accounting for them. To deal with outliers

a Random Sample Consensus (RANSAC) iterative method has been implemented to refine

the result. RANSAC is a learning algorithm technique that estimates a model parameters

by random sampling the observed data. A random sample of points is used with (3.46)

and the obtained parameters are validated against the whole dataset. The validation is the

computation of L2 point-plane distance error. Depending on a minimum error threshold,

every point can be considered as an inlier, if its error is less than the threshold, or as an

outlier. The algorithm is iterated over random samples of data until one of these criteria

are met: (1) a maximum number of iterations has been reached, (2) a maximum number of

inliers has been reached, and (3) the error has fallen below a predefined threshold, set at the

beginning of the algorithm. In any of these cases, the model with the least error is chosen.

Finally, the complete method to calibrate the laser using a calibration plane involves the

following steps:

1. Calibrate the camera using Zhang’s method [93].

2. Prepare a planar surface with a known marker or chessboard. The surface must be wide

enough to accommodate the projected laser line.

3. Place the structured light system with the camera pointing to the calibration pattern

and the laser line projected next to it.

4. Use the algorithm 3.1 to obtain the laser calibration.
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Algorithm 3.1: Offline Laser to camera calibration algorithm.
Data: N frames with laser line and calibration pattern

Result: Laser plane position πL with respect to the camera

1 P = ∅ ⊲ To store 3D points

2 for each frame i = 1, . . . , N do

3 Detect the calibration plane → πC

4 Detect the laser points Pi and triangulate them to form lines

5 Intersect each line with the plane πC and append the 3D points into P

6 end

7 RANSAC: Form M subsets of k points from P

8 for each subset j = 1, . . . ,M do

9 Compute the centroid of pj −→ cj

10 Subtract the centroid cj to all points P

11 Use SVD to find the plane normal ~nj
12 Define πj,L : (~nj , cj)

13 Compute the distance sum dj of all points P to the plane πj,L
14 end

15 Return the plane that fits most points (e.g. minimizes the distance dj)

This calibration method has been applied to the structured light system mounted on

Turbot AUV, a SparusII model owned by the University of the Balearic Islands (UIB). The

AUV mounts a left-right stereo rig with a baseline of 14.5 cm at its nose and a laser line at

22 cm from the cameras, centred, and tilted 10◦ degrees forward with respect to the vertical.

The geometry has been targeted at low-altitude mapping ranging between 1 to 3 meters. The

AUV is shown in figure 3.11 showing the configuration described.

The gathered point cloud together with the resulting laser plane can be seen in figure

3.12(a), and the final plane estimation error histogram is depicted in figure 3.12(b) with a

mean of 0.6 mm and a standard deviation of 0.65 mm.

This method does not require to place the camera-laser system in a water tank. If the

camera is calibrated both in air and in water, the relative position of the laser plane with

respect to the camera will remain constant as long as the laser pointer is assumed to be

perpendicular to its window housing. A solution to calibrate a system with this kind of

method is to hang the vehicle with the system mounted on a crane and use the floor as a

calibrated plane. If this kind of calibration is not feasible due to size or complexity, the

following insitu calibration method can overcome these drawbacks.

3.4.2 Insitu calibration

This calibration method consists of a moving platform with a stereo camera and a laser

structured light system, positioned either in fore-aft or left-right arrangement. The technique
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Figure 3.11: Bottom view of Turbot AUV showing (front to back) a stereo rig, two LED lights
and a laser (white housing) located at its nose. At the centre of the craft there is a vertical
thruster and at the rear, two surge thrusters and a DVL can be spotted.
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(b) Error histogram plot.

Figure 3.12: Calibration using a chessboard pattern for the platform Turbot AUV performed
in the University of the Balearic Islands (UIB).
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uses epipolar geometry of the stereo pair to match the detected laser line and generate a

set of 3D points to determine the laser plane. The setup is similar to the one presented

by Inglis and Roman [117], where the authors present a left-right stereo rig and a laser line

insitu calibration. In their setup, the laser line is parallel to the baseline. This requires a

non-flat seafloor terrain to find stereo-laser correspondences for their calibration setup, as

well as feature descriptors to remove outliers. In the method presented in this document,

the performance of the calibration method is not sensitive to the structure of the seafloor

environment and feature descriptors are not required. It follows the work of Leat et al [19],

extended to compute the position of a camera system with respect to the laser plane.

The method main steps are: (1) collect stereo calibration images, (2) collect laser cali-

bration images and (3) compute the laser plane coefficients. Supposing an already calibrated

stereo camera, the gathering of laser calibration images can be performed at the dive phase

of a survey. Commonly, non-hover-capable AUVs have to dive in a circular motion whilst

increasing their depth, resulting in a helix-like path. During this phase the stereo structured

light system can collect a set of images at a decreasing altitude rate, sensing 3D laser points

throughout the field of view of the camera. This step is shown in figure 3.13.

Using the method presented in section 3.2, the peaks are detected in both cameras. The

distance between two laser peaks on an epipolar line is used to compute the distance to the

seabed from the cameras. If the stereo rig is aligned fore-aft, the epipolar lines are vertical in

the images, and if the stereo rig is aligned left-right, the epipolar lines are horizontal. There-

fore, the laser should not be placed completely horizontal in a left-right setup nor completely

vertical in a fore-aft configuration. In the particular case of a fore-aft setup, the coordinates

of the points of interest can be computed using (3.47),

pi =
(

ui1 − cx
f

,
vi1 − cy

f
, 1
)

·
f · b

vi2 − vi1
(3.47)

where f is the focal length; (cx, cy) are the coordinates of the centre of the image; b is the

baseline, the distance between the cameras in meters; (uij , vij) are the pixel i coordinates of

the camera j. Once the set of 3D points P = {p1,p2, . . . ,pm = [x, y, z]} have been computed
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for the length of the helix path, the algorithm 3.2 can be used to calibrate the laser plane.

Algorithm 3.2: Insitu Laser to camera calibration algorithm.
Data: N frames with laser line and known AUV pose

Result: Laser plane position πL with respect to the camera

1 P = ∅ ⊲ To store 3D points

2 for each frame i = 1, . . . , N do

3 Detect the laser points on the left frame and triangulate them to form lines

4 Detect the laser points on the right frame and triangulate them to form lines

5 Find the crossing points and append them into P

6 end

7 RANSAC: Form M subsets of k points from P

8 for each subset j = 1, . . . ,M do

9 Compute the centroid of pj −→ cj

10 Subtract the centroid cj to all points P

11 Use SVD to find the plane normal ~nj
12 Define πj,L : (~nj , cj)

13 Compute the distance sum dj of all points P to the plane πj,L
14 end

15 Return the plane that fits most points (e.g. minimizes the distance dj)

To validate the SVD plane solution, a error histogram is computed in figure 3.14 with a

mean of 11.6 mm and a standard deviation of 10 mm. The error is defined as the L2 distance

of a point p to its projection in the computed laser plane.

3.5 Summary

In this chapter, a complete processing pipeline has been presented to reconstruct the environ-

ment using a laser line projector and a camera rig, e.g. a laser-based structured light sensor.

The proposed Gaussian peak detection with sub-pixel accuracy is backed up with the laser

light modelling, where we have seen that a laser beam can be considered Gaussian subject to

scattering and absorption.

Two calibration routines have been proposed, the first method based on calibration plane

is based on a state of the art calibration for laser lines [70]. The second insitu method is

based on stereoscopy. Both methods are capable of obtaining a correct laser calibration, the

decision of choosing one or the other will depend more on the logistics or on the difficulty and

the repeatability.

Despite the good results of the first method for the Turbot AUV structured light sensor,

the reader has to note two important facts. First of all, the calibration points were gathered

at a closer distance (≈ 0.5 m) than the points in AE2000f, which have a centroid at 10 m in
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Figure 3.13: Insitu stereo-laser calibration.
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Figure 3.14: In situ laser line calibration error histogram with µ = 0.0116m and σ = 0.01m

Z direction. Secondly, the insitu calibration can be established as a routine prior to any dive,

whereas the first method relies on a calibration performed in a controlled environment and

assuming that the laser position or the deformation of its lens has not been altered from the

day the calibration was performed to the actual mission day. Therefore, the in situ calibration

method will account for any small movement of the laser line and for the deformation of its

housing at depth. Moreover, the work of [19] has been extended to accommodate for different

camera setups and compute the required camera positions and laser plane.

In the following chapter, a one-shot structured laser triangulation sensor is presented,

using this same pipeline to reconstruct small objects or areas.





Chapter 4

One-shot reconstruction

In this chapter, a novel one-shot structured light sensor consisting of a camera and a laser

projector is presented. The proposed projector casts a 25 parallel line pattern, obtained using

a Diffractive Optical Element (DOE) after the laser collimator. The chapter is structured as

follows: in section 4.1 the concept of one-shot is explained. In section 4.2 the methodology of

this sensing device is shown. Section 4.4 shows three-dimensional reconstruction result, and

finally in section 4.5 a discussion is presented.

4.1 Introduction

One-shot reconstruction enables sensing the three dimensional shape of the seafloor in one

camera shot. Challenging tasks such as real-time manipulation or landing can be performed

autonomously with the aid of a real-time three dimensional point cloud. The proposed sensor

is formed by a camera and a 532 nm green laser. In front of the laser source, a DOE shapes

the beam to a set of 25 parallel lines. These lines are projected on the underwater scene and

recovered by the camera, where their projections are detected in the image, its peaks extracted

and matched to their corresponding source laser plane. In figure 4.1 the captured pattern is

shown. Using the same principle explained in the previous chapter, a three dimensional cloud

is computed from 2D point to plane associations.

4.2 Methodology

The process to obtain 3D information from a frame is split in four steps: acquisition, segmen-

tation, decoding and triangulation.

4.2.1 Acquisition

The acquisition is a process where a camera grabs or acquires a still frame of its field of

view. In the context of laser-based structured light, a laser pattern, e.g. a laser line or any

other shape obtainable using a DOE, is projected into the seafloor and the deformed pattern

recovered in the image. The DOE diffractive behaviour weakens the light power in a very

characteristic way. The central part of the DOE is brighter than the rest, due to the inherent

59
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Figure 4.1: 25 parallel line laser pattern projected on an underwater cement wall.

original laser beam shape. To correctly detect the Gaussian shape of the lines, the exposure

of the camera is configured to just saturate the pixels of central laser dot.

The DOE units are commonly available for red lasers at a different wavelength of 635 nm.

A change in wavelength changes the refractive index, changing not only the field of view of the

pattern, but also causes ghosting (e.g. the pattern is repeated in a grid-like shape reducing

overall contrast. In figure 4.2 a central-dot row and a common row are shown with their

intensity values.

4.2.2 Segmentation

To ease the detection, the background illumination is removed by subtracting the red channel

to the green. Then each row is convolved with a median filter, and the result is removed from

the original signal. Therefore, the median filter is used as a low pass filter to normalize the

intensity in the image, without altering the laser lines. Next, a binary image is computed by

simple thresholding of the previous result, and the line centres are found for each row of the

image. These steps are shown in figure 4.3.

For each centre, the neighbouring values at the original image are checked, and the peaks

are found using the peak detection explained in the previous chapter.

4.2.3 Decoding using Maximum Spanning Tree

The pattern used in this structured light system poses a challenge to determine which detected

laser points in the image belong to which laser plane of the DOE pattern. To solve this
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(b) Other rows.

Figure 4.2: Intensity values of the rows in the image. Note the saturated value at the central
dot.

decoding problem, a relationship between pixels and planes has been proposed. In [118], the

authors solve a similar problem where an RGB projector casts parallel lines on a scene using

Maximum Spanning Trees (MST). The methodology from the authors has been used in the

novel field of laser projection to decode laser planes.

This method is based on the epipolar constraint: given a set laser planes numbered

π1, π2, . . . , πn that project into l1, l2, . . . , lm laser stripes, if a perpendicular line crossing the

stripes is drawn, the crossing points will belong to monolithically increasing indexes of stripes,

as long as there are no floating objects between the camera and the background. This suppo-

sition is true for underwater environments where the seafloor can be considered smooth and

the presence of small objects casting a shadow or partially blocking the view of one of the

stripes. These situations are depicted in figure 4.4.
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Figure 4.3: Segmentation steps to obtain a clean thresholded image.

1 2 3

Figure 4.4: Three different situations for decoding: (1) presents a smooth seafloor and all
laser lines are seen by the camera; (2) presents a rock blocking the view of one of the stripes;
and (3) shows an unlikely situation where the stripe indexing is no longer increasing. The
centre plane will be seen by the camera as the last stripe.

Let 25 parallel lines be defined as 25 groups of indexes or labels k = {1, 2, . . . , 25}. Let

Pl = {p1,p2, . . . ,pm} a group of pixels who share at least one corner. We define pa a

neighbour pixel of pb if there exists one or more rows of pa shared with pb without any other

detected laser peak between them. The Pl groups of pixels can then be drawn as nodes in a

directed graph G, whose edge weight equals the number of common rows. This directed graph

is the input of a MST algorithm. The resulting simplified directed graph is then indexed as

follows: the node that does not have any parent is indexed as index 1. Then, the graph is

traversed and its indexing increased when an edge is followed from parents to children. This

yields an index for every connected vertex. An example of this approach can be seen in figure

4.5. In our application, the pattern has a central dot which belongs to the central line (e.g.

index 13). The node belonging to that dot is labelled as k = 13 and the indexing occurs

traversing the graph forwards and backwards.

4.2.4 Triangulation

With the labelling and calibration, each 3D point p(t) can be computed by triangulating its

corresponding laser plane πn to the line formed by joining the segmented pixel to the camera

focal point, which depends on the scale factor t.
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Figure 4.5: Maximum Spanning Tree decoding example.
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πn : Ax+By + Cz +D = 0 (4.1)

p(t) =

(

u− cx
fx

t,
v − cy
fy

t, t

)

(4.2)

t =
−D

Au−cx

fx
+B

v−cy

fy
+ C

(4.3)

where (fx, fy) is the camera focal length in x and y axes. (cx, cy) is the central pixel in the

image. (u, v) is the detected laser peak pixel in the image. Replacing 4.3 in 4.2, the 3D

coordinates of the point are obtained.

4.2.5 Geometric calibration

Plane fitting calibration is performed by registering all 3D line points and matching them to

their corresponding laser planes. In order to do that, a set of images at different depths are

captured, projecting the laser on a flat surface with a calibration pattern on it. Then the laser

is detected in the images and ray traced to the corresponding calibration plane. This step is

done in every captured frame. After each line has been detected in all images, every line point

belonging to the same laser plane is used to fit a 3D plane using a least square approach. The

coefficients of those planes are then saved for a posterior triangulation.

Essentially, the calibration of this sensor does not differ much from the previously explained

calibration for one laser stripe. For a 25 parallel lines pattern, there are 25 different laser planes

to fit. Using the first method, the laser pattern has to be projected into a calibrated plane and

the two dimensional projections detected. Using the MST decoding, the points are labelled

according to their belonging line. All points are grouped using the line index, triangulated in

3D using the calibrated plane and then a plane equation is fit for each of them.

4.3 Experimental setup

A prototype of this LbSLS has been built using a colour camera and a laser pointer with a

fitted DOE. The camera is a Manta G-283C from Allied Vision Technologies with a 12 mm

optics, a CCD sensor of 1936× 1458 pixels running at 20 fps. The laser is a 5 mW ZM-18B

green laser from Z-Laser. The projected pattern is formed by 25 parallel lines, inscribed in a

perfect square with a field of view of 21◦ in air, 17◦ in water. The pattern also has a brighter

dot in the centre of the square, due to the direct transmission of the original laser beam

through the DOE. These two components have been placed with an approximate baseline of

20 cm, tilting the laser 10◦ towards the camera.

In figure 4.6(a) the proposed system is shown unassembled, and in figure 4.6(b), it is

shown assembled in a pool on a Cartesian robot to perform the experiments. These two
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(a) Camera (black) and
laser (white) housed.

(b) Cartesian plotter and
pool.

Figure 4.6: Experimental setup held at Ocean Systems Laboratory - Heriot Watt University
(Scotland, UK).

housings were designed to be mounted on an Autonomous Underwater Vehicle (AUV) for

future development.

4.4 Results

Three experimental setups are described below to validate the system. First, an object recon-

struction test to validate the ability of the LbSLS to pick 3D objects and their shape. Then,

a study on the behaviour of the sensor under different turbidity scenarios is shown. Lastly, a

comparison of LbSLS with a stereo rig is proposed during a lawnmower pattern survey.

4.4.1 Object Reconstruction

The calibration of the system has been made with eight different frames, taken from different

view angles and distances to the checkerboard plane. The output of the calibration has

confirmed the angle between laser light planes to be 0.6875◦ ≈ 17◦/25.

Two reconstruction experiments have been carried out. In the first one, a 16 cm diam-

eter textureless plastic pipe, Fig. 4.7(a), and in the second, a 15 cm plastic weight plate,

Fig. 4.16(a).

In both experiments, the correspondence output from the decoding stage can be seen,

correspondingly, in Fig. 4.7(b) and 4.16(b), where each line has been drawn in a different

colour. In the rows near the area where the central beam hits the target can be seen that

the scattering and the light reflectance produces small inconsistencies in the correspondence

solving.

Both reconstructions closely reproduce the original geometry. From the point cloud, the

pipe roughly measures 13 cm width within the visible silhouette and the plate measures 14 cm

in diameter.
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(a) Input frame. (b) Laser plane correspondeces.

(c) Front view. (d) Lateral view.

Figure 4.7: 3D reconstruction of a pipe.

4.4.2 Turbidity

A second experimental setup is used to study how turbidity affects the LbSLS. The system

has been deployed in a 125 l, 1.2 × 0.35 × 0.35 m water tank and the same scene has been

reconstructed in nine different turbidity conditions. In figure 4.8 the setup is depicted. The

scene consists of a textureless white bottle at the back placed approximately at 0.7 m from

the camera, some stacked tiles and a brown jar on top, approximately at 0, 5 m from the

camera.

A conventional camera or stereo system may find enough features in the tiles or the jar

to perform any kind of feature matching, but not on a textureless object such as the bottle.

Furthermore, with the addition of turbidity, the number of detectable features decreases

making even more difficult to extract keypoints.

The camera and the laser have been fixed together at an angle so that the projecting

pattern can be seen by the camera from 0.5 m to 1 m due to the water tank dimensions.

Once fixed and deployed, a calibration has been performed.



4.4. Results 67

OC

OL

Figure 4.8: Experimental setup. The camera and the laser are deployed in a water tank,
pointing to a jar and a bottle. OC is the coordinate origin of the camera, and OL is the origin
of the laser. The transform between these two coordinates frames needs to be calibrated to
obtain a valid 3D reconstruction.

Table 4.1: Number of 3D points detected by the system at different turbidity levels.

Experiment Turbidity (ml) Turbidity (%) 3D points

1 0 0 13,202
2 5 1/250 12,661
3 10 1/125 13,516
4 15 3/250 13,315
5 20 2/125 13,062
6 25 1/50 13,013
7 30 3/125 9,882
8 35 7/250 5,600
9 45 9/250 77

Turbidity has been obtained by pouring small quantities of whole milk into the water tank

and then the mix has been stirred. Nine different milk volumes, starting from 5 ml up to

45 ml in steps of 5 ml have been measured.

Using the setup depicted in figure 4.8, and nine different turbidity levels, the number of

3D points reported by the system are shown in table 4.1. The number of points do not change

until a high turbidity value is reached. Then the number of detected points falls until there

is almost no detection at all. That is happening because the sensor is not able to discern the

laser from the background, due to the scattered light.

In figure 4.9 experiments 1, 4, 7 and 9 are shown together with the detected points and

the triangulated 3D points.

The recovered 3D shape is not affected by turbidity. The geometry of the scene is clear

and the laser line segments remain the same throughout low to medium turbidity experiments.

Although some points are missing, most of them are missed due to a very steep angle between

the scene surface and the projection, causing the line segments to be very thin when projected

in the camera image. Besides, the surfaces whose orientation is similar to the heading of the

camera do not get affected by pollution until the image loses contrast. As expected, the jar

and the bottle have poor contrast and lose colour in the presence of scattering.
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Figure 4.9: Laser images, detections and 3D points for different milk concentrations. The 3D
point cloud has been rotated and it is presented in a isometric view, similar to the one in
figure 4.8. For better quality, please refer to the digital version.

4.4.3 Survey

Finally, the LbSLS is compared to an underwater stereo camera for a small area survey

reconstruction. The sensors were mounted, one at a time, on a Cartesian robot and performed

a 3 by 2 m lawn-moving survey while recording the imagery. In the case of the LbSLS, the

sensor was mounted at 0.7 m of the pool bottom and the spacing between lines was 0.2 m.

For the stereo camera, the spacing was 0.5 m and was mounted at 1.3 m.

The pool is 4 meters long by 3 meters wide and 2 meters deep, and the Cartesian robot

is mounted around the framing of it. It is able to carry an object on its mounting bracket

and translate it in space without changing its orientation. This robot also is able to provide

a feedback position of the carried element in real time, treated as ground truth.

The stereo camera is an off-the-shelf FireWire stereo camera Bumblebee2 from Point Grey

Research. This stereo rig includes two 1024 × 768 px CCD color cameras. The stereo rig is

mounted in a bespoke underwater housing with a flat optical port. Its focal length is 3.8 mm.

At every frame, 3D points are computed using pixel disparities and colour. For consecutive

frames, the 3D points have been filtered using a voxel grid filter, and finally concatenated

using the pose of the Cartesian robot. If there is not enough texture in the images, the

disparity image will show a blank area, where a stereo correspondence was missed. Thus, the

generated point cloud will also miss some points.

The LbSLS was attached using a pan and tilt unit to the robot. The pan and tilt unit

helped to perform a better calibration of the system beforehand and finally the camera was set
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(a) Pool at Heriot Watt University with the carte-
sian robot on top.

(b) Objects used to verify the 3D reconstruction
accuracy.

(c) Image frame from the laser dataset. (d) Left image frame from the stereo dataset.

Figure 4.10: Experimental setup. The objects shown were deployed in the pool and the sensors
shown were moved in a lanw-moving pattern survey with a cartesian robot.

perpendicular to the floor prior to perform the survey. However, this unit has a considerable

weight that increased the inertia of the robot and slightly overshot the robot’s position.

Whereas the stereo camera was simply attached using a lightweight pole.

Four different objects were deployed in the pool to test the 3D reconstruction, as explained

in section 4.4.4.

The pool, the cartesian robot, and the objects can be seen in figures 4.10(a) and 4.10(b).

In figures 4.10(c) and 4.10(d) one frame from each dataset are shown.

The resulting three-dimensional reconstructions can be seen in figures 4.11(a) and 4.11(b).

Note that for structured light the pool lights had to be dimmed to sense the laser, thus no

RGB data has been captured. Depth is represented in a colour scale, being blue closer and

red farther from the camera.
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(a) Stereo reconstruction. 685872 points.

(b) Structured light reconstruction. Blue is closer and red is farther from the camera.
370261 points.

Figure 4.11: Sensor 3D reconstructions, available at http://srv.uib.es/pointclouds
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Table 4.2: Object measurements for the different sensors. GT means Ground Truth, mea-
surements of the object using a ruler or a caliper.

Object GT (m) Laser (m) Stereo (m)

Square pipe (L×H ×W ) 1× 0.2× 0.2 1.038× 0.2102× 0.2396 1.034× 0.1967× 0.2113
Round pipe (Dext × L) �0.16× 0.75 �0.16× 0.8390 �0.1651× 0.7542
Wheel (Dext ×Dint ×H) �0.20×�0.03× 0.04 �0.1886×�0.045× 0.0511 �0.1973×�0.024× 0.0630
Pyramid (L×H) 0.51× 0.207 0.5020× 0.2064 0.517× 0.2186

4.4.4 Object dimensions and accuracy

In the pool, four objects with known dimensions were dropped to check the accuracy of both

systems. These objects were a 1 m long 0.2 × 0.2 m square pipe, a �0.16 by 0.75 m round

pipe, a �0.2 by 0.04 m lifting wheel with a �0.03 m central hole in it, and a 0.207 m tall

triangular pyramid with an isosceles basis, whose side length is 0.51 m. In figure 4.12, a colour

mosaic of the pool floor can be seen, with the objects placed in their reconstructed positions.

In table 4.2 the true measurements from these objects and the measurements extracted from

both pointclouds are shown.

The obtained measurements from the point cloud have been manually measured using Cloud-

Compare software [119].

4.4.5 Stereoscopy Evaluation

Finally, the two point clouds have been registered using ICP and then gridded to 7 mm

resolution to compare the distance from one point cloud to the other. As the stereo point

cloud has a higher number of points, it has been taken as the reference model, and the laser

point cloud as the test model. Therefore, the distances were computed from the points in the

laser dataset to the closest point in the stereo.

In figure 4.13 the distance for each laser point to the closest stereo point is shown. In

figures 4.14(a) to 4.14(d) close-up views of the objects can be seen. Note that if there are no

stereo points in one area but laser, the error for the laser points will grow even if the points

are correctly located. Otherwise, if there are stereo points but no laser points, there is no

error. Note this behaviour in figure 4.14(a).

In figure 4.15 the frequency plot of the distance error is shown. A Gaussian distribution

has been fitted with a mean of 3.5 mm, and a standard deviation of 1.2 mm. The long right

side tail has been split at 0.01 m in figure 4.15(b). The number of bins is the same as in figure

4.15(a), but the vertical scale has been resized to better show the distance distribution.

4.5 Discussion

This system has proved to be capable of performing a one-shot reconstruction. The output

3D data can be used to find objects or to match them to a known object database. The
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Figure 4.12: Pool mosaic built from a subset of 40 images (left camera of stereo dataset).
From [7].
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Figure 4.13: Distance from laser point cloud to stereo point cloud. Measurements in meters.
Deep blue is almost zero error whilst green to red colour transition means higher error.
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(a) Square pipe (b) Round pipe

(c) Wheel (d) Pyramid

Figure 4.14: Object distance close-ups. Deep blue is almost zero error whilst green to red
colour transition means higher error.
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(a) Distance error containing all the laser points.
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(b) Distance error less (left) or greater (right) than 0.01 m.

Figure 4.15: Distance error frequency plots.

correct detection of the laser depends on the contrast between the lines and the background.

Low ambient light scenarios have proven best at obtaining one-shot reconstructions. The

major drawback has been the low laser intensity. Fainted laser lines pose challenges for the

segmentation to discern laser lines from background. Even so, the system is designed to

operate at depth where no ambient light is present and artificial light can be controlled or

dimmed. Therefore, there is a relationship between successful scans, laser light power (signal)

and ambient light (noise). Treated as a standard signal processing framework, the signal to

noise ratio has to be such that it permits correct scans. The brightness of the laser has to be

clear and sharp when compared to the background light / scene. In the datasets presented in

this PhD, a 20% intensity increase between laser lines and background have been successful.

The results at comparing the two point clouds are promising for the LbSLS. Notice how

in table 4.2 the z dimension accuracy is better for the LbSLS than for the stereo. However,

in the other two dimensions this relationship is not so clear. This may have been caused due

to the weight of the pan and tilt unit that carried the sensor. Its heavy weight increased

the inertia of the system, overshot it, and caused an offset from the sensor position to the

Cartesian robot. This can be noted in the square pipe (figure 4.14(a)) when we compare the

forward movement reconstruction to the backward movement. The four sensor transects can

be paired 2 by 2, as there are 2 made in forward movement and 2 in backward. This happens

throughout the course of the robot in the pool.

Regarding the comparison of the two point clouds, the distance error mean is a 0.51% of

the range, and although there are points with a large error > 1 cm, their contribution is a

1.8% (6750 over 370261 points).

With these results, we can conclude that LbSLS and stereo systems can be used for 3D

reconstruction taking into account several particularities. With a stereo camera one can
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(a) Input frame. (b) Laser plane correspondeces.

(c) Front view. (d) Lateral view.

Figure 4.16: 3D reconstruction of a 1 kg plate.

get a good general overview of the underwater scenario, missing small details and accurate

distances, whilst with LbSLS one can get sharper and clearer details, at the cost of losing

colour information.

Note the top of the square pipe in the stereo dataset. There are no points due to a lack

of texture. The pipe is plain white and the stereo block matching algorithm is unable to find

any correspondence between left and right frames.

As a result, for long, high altitude surveys where there is enough texture and visibility,

stereo data proves enough to recover the overall shape of the underwater environment. But

prior to a manipulation where precise measurements and distances are desired, a sparse LbSLS

with a limited field of view can provide the information required.

In the next chapter, a high altitude laser mapping system is presented and two bathymetric

SLAM solutions applied to achieve self-consistent seafloor maps.



Chapter 5

Bathymetric SLAM

In this chapter, two Terrain Based Navigation solutions for underwater vehicles using a laser

stripe in unconfined environments are presented and compared. First we propose a submap

graph SLAM method that uses an ICP registration to improve the consistency of the bathy-

metric maps in section 5.2, and in section 5.2 a grid-based bathymetric SLAM is proposed to

correct the final navigation estimate independently of submaps. In section 5.4 the results of

both approaches are compared. Both methods achieve self-consistent maps and are capable

of reconstruction featureless terrains.

5.1 Introduction

Bathymetric maps represent the height of the earth’s surface underwater within a given geo-

graphical region. These kind of models can be generated by several methods, depending on

the resolution and coverage desired. To provide bathymetric maps there are two options to

mount a sensor, either shipborne multibeam or a sensor mounted on Unmanned Underwater

Vehicles (UUVs). Ships are restricted to operating at the ocean’s surface and so provided

maps resolution decrease as seabed depth increases. Wave induced motion is also an issue

for these systems as small misalignments in attitude turn into significantly large errors in the

northing/easting coordinate of the observation.

Bathymetric maps are traditionally built using a gridded or point cloud model of the

seafloor with a deterministic model of the vehicle or vessel pose estimate. In this case it is

sufficient to generate the map by estimating the depth at any given location with the mean

of the depth measurements observed there. However, assuming a deterministic navigation

solution introduces misalignment and inconsistencies in the map if the navigation is subject

to errors such as drift or biases. As will be shown in this work, such map building exercises

require an accurate, reliable source of localisation in order to guarantee the consistency of

the map. In the absence of such information, the only statistically consistent course of action

is to maintain an estimate of the correlation between the imperfect estimates of the vehicle

position and the map.

SLAM allows misalignments such as the above mentioned to be resolved by correcting

the navigation solution from which the map was generated from, and can be classified as

77
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either feature-based or featureless in its approach. Using laser bathymetry, this thesis has

approached featureless bathymetric SLAM. The unstructured nature of the majority of the

seafloor suggests that such an approach may be more appropriate for mapping. Navigation

in unconfined environments (beyond the coverage of acoustic transponder networks) remains

one of the milestone problems yet to be solved. Terrain based navigation [120], with so many

implementations already reported in the literature has not found its path towards routinary

application. Many SLAM implementations have been recently reported in the literature using

bathymetries, Roman [121] proposed a submap representation of the SONAR measurements

and treated them as delayed updates in a EKF filter, and Palomer [122] further extended

it to 3D sonar. Barkby [8] explored a gridded map representation and applied it to a Rao-

Backwellized Particle Filter to find the best consistent map, and Vallicrosa [123] extended it

using Hilbert Maps applied to a 2D occupancy grid.

5.2 Submap Bathymetric SLAM

In this section, groups of laser lines are represented as submaps using the vehicle navigation.

Then, these local maps are used in a submap SLAM framework based on [121] and a g2o

submap pose representation [124] to handle the global map optimization.

5.2.1 Graph representation

A pose-based graph SLAM is a graphical representation of the SLAM optimization problem

where poses are represented as nodes and relative transformations as edges in a graph. Let

x = (x1, . . . ,xT )⊤ be a vector of parameters, where xi describes the pose of node i. Let

zij and Ωij be the mean and the information matrix of a measurement between the node i

and the node j. This measurement is a transformation that makes the observations obtained

from i maximally overlap with the ones acquired from j. Let ẑij(xi,xj) be the measurement

between nodes i and j, which usually is the relative transformation between these two. The

log-likelihood lij of a measurement zij is

lij ∝ e⊤
ijΩijeij (5.1)

where the error function that computes the difference between the expected and the real

observation is expressed in (5.2).

eij = eij(xi, xj , zij) = zij − (⊖xj ⊕ xi) (5.2)

The information matrix can be computed as the inverse of the covariance matrix

Ωij = P −1
ij . (5.3)
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For simplicity, the indices of the measurements have been encoded in the indices of the

error function. The equation to minimize is the negative log-likelihood lij to achieve the goal

of a maximum likelihood approach.

x∗ = arg min
x

∑

(i,j)∈C

e⊤
ijΩijeij (5.4)

This minimisation problem is solved using g2o general framework for graph optimiza-

tion [124]. Essentially, is is using a LevenbergâĂŞMarquardt algorithm with a damping factor

to Gauss-Newton non-linear optimization to control the convergence of the non-linear system.

To utilize g2o one simply has to define the error function and a procedure for applying a per-

turbation to the current solution. The minimization will find the arguments x that optimize

the navigation given the input measurements.

5.2.2 Navigation

Underwater vehicles use a suite of sensors to obtain a dead-reckoning navigation solution.

Most commonly, Doppler Velocity Log (DVL), Inertial Magnetic Units (IMU) and depth

sensors are used. Acoustic positioning is also commonly used although its frequency and

accuracy is still not comparable to ground-based solutions such as GPS. Therefore, sensor

filtering and fusion such as Extended Kalman Filters must be used to obtain a better position

estimate. In this work, we use a generic EKF implementation [125] with a 15-dimensional state

vector formed by position, orientation, linear and angular speeds and linear acceleration, as

shown in (5.5). Afterwards, EKF states have been back-propagated using a Extended Kalman

Smoother (EKS) [126].

xi =
(

x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, ϕ̇, ψ̇, ẍ, ÿ, z̈
)

⊺

(5.5)

The bathymetric submaps are created as the navigation progresses. Each submap contains

a set of 3D points defined with respect to a local origin located at the central vehicle pose of

the submap. This origin is calculated at every submap closure, when the submap is stored in

a database for future registrations. The submap pose is encoded in a position and orientation

with respect to the world origin, depicted by (5.6).

xsk
= (x, y, z, φ, θ, ψ)⊺ (5.6)

5.2.3 Submap generation

As explained in section 3.2, a laser stripe together with an imaging sensor can be used to

triangulate two-dimensional points, detected in an image, to the three-dimensional world.

This triangulation can be seen in figure 5.1.

Since laser stripe triangulation can only produce 2D reconstructions that lie on the laser plane
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Laser plane: πl
Robot pose: xi

Image plane

World origin

xc

yc

zc

xw

yw

zw

mi(xi, yi, zi)

r(t)

(u, v)

Figure 5.1: A laser plane πl is projected into the seafloor and the plane-seafloor intersection
is detected by a camera at pixel (u, v). For any laser point, the line that joins the 2D point
with the camera focal point will intersect the laser plane πl at mi.

πl, it is necessary to compound them with an estimate of the vehicle trajectory [127] to build

a three dimensional surface patch. It is straightforward to compound the laser points with the

trajectory: let mi = N (m̂i,Pmi
) be one of the laser measurements already expressed in 3D

coordinates (e.g. after triangulation), and xi = N (x̂i,Pxi
) be the robot position at the time

the image was acquired. Then the position and the uncertainty of one point pi = N (p̂i,Ppi
)

of the surface patch can be computed as:

p̂i = x̂i ⊕ m̂i (5.7)

Ppi
= J1⊕Pxi

J⊤
1⊕ + J2⊕Pmi

J⊤
2⊕ (5.8)

where J⊕ = [J1⊕,J2⊕] are the left and right halves (6 × 6) of the compounding Jacobian

(6× 12) [128].

5.2.3.1 Submap definition

A submap is defined as a set of 3D points belonging to different laser triangulations. Let

pj = (pj1, . . . , p
j
i , . . . , p

j
N ) be the 3D points of the j-th pose expressed in a common frame, we

define a submap or patch of size M as (5.9).

Pk = pj ∪ · · · ∪ pj+M (5.9)
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Pa−1

Pa

Pa+1

Pb

Pb+1

Pb+2

Transect B

Transect A

Figure 5.2: An underwater vehicle scans the seafloor using a laser stripe. The triangulated
laser lines are grouped in patches depending on navigation uncertainty and patch size. Each
submap is stored with known transformations for posterior optimization.

The creation over time of these submap generates discrete pointclouds that are represented as

a whole rigid object, as seen in figure 5.2. The main assumption of this algorithm is that the

accuracy of Dead Reckoning (DR) in a small map portion or patch is enough to represent the

true world, locally. Without external ground referenced position measurements, the DR error

would grow unbounded and the complete map would appear distorted. It is worth mentioning

that this suggests that there may be an optimal submap size at which to break a terrain map

and begin another. The selection of this break point has to take into account the following:

(1) the patch will be considered rigid, therefore it has to be small enough so that the error

committed by compounding DR navigation is negligible, and (2) the patch has to be large

enough to contain enough three dimensional information to be unambiguously registered to

another patch.

Thus we define two splitting conditions: (1) when the localization uncertainty of the last

added line is bigger than a threshold and (2) when the patch is considered too big. Once the

patch is closed, all the pi points are referenced to a new coordinate frame coincident with the

vehicle pose in the middle of the patch sequence to produce a more convenient uncertainty

distribution among the points that form the patch [121].

One characteristic of laser line bathymetry compounded with a movement is that depend-

ing on the forward motion (along track) the point density changes drastically. Therefore it is

desirable to obtain a stable point density at every dataset. However, this is not practical for

two reasons: (1) the scale may not be meaningful or (2) the time needed to slowly advance

may not be suitable. Therefore it is usual to have a high resolution across track and a low

resolution along track. This behaviour can be seen in figures 5.3(a) and 5.3(c), where the

laser lines can be clearly distinguished from the pointcloud. There, the along track resolution

is 3 cm whereas the across track is 1 mm.
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(a) Isometric view before random sampling.
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(b) Isometric view after random sampling.
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(c) Top view before random sampling.
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(d) Top view after random sampling.

Figure 5.3: Example of random sampling over a patch for a transect in Valldemossa using
Turbot AUV. The number of points is reduced from 80k to 5k without losing the overall
seafloor shape. The sampling also helps ICP registration not to fall on local minima.
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When it comes to point cloud registration, most metrics compute the point-to-point dis-

tance or point-to-plane distance. If the point density is not homogeneous, most algorithms

will fall into local minima. To overcome this issue, each patch point cloud is triangulated

using a Greedy Stepwise triangulation algorithm [129] in two dimensional space (e.g. x-y),

and it is randomly sampled up to a fixed point density of 3000 points per square meter. This

density is roughly a point at every 20 mm to represent high frequency surface roughness,

when compared to large scale underwater features.

Each random sample is converted to three dimensional space, and its z coordinate is

interpolated using the tree points that form the two dimensional triangle. This transformation

from real 3D data to interpolated virtual points subsamples the 3D point structure enhancing

the along track bathymetry shape. An example of this random downsampling can be seen in

figures 5.3(b) and 5.3(d), where the across-track line shape is lost to favour a better point-to-

point metric.

After a submap is closed, loop closure candidates are proposed. These possible relative

pose links are found by looking in the 2D x-y plane for the patches that fall within a distance

threshold. To set this threshold, navigation uncertainty is used. Then these point cloud

candidates pass first an overlap test, where a k-Nearest Neighbour (kNN) finds the closest

point of the newly closed point on every candidate cloud. Using k = 1 and computing the

euclidean distance between point matches, an overlap metric is obtained. The clouds with

higher overlap are more likely to be registered that the ones with few overlapping points.

5.2.3.2 Registration

Given two point clouds Pa = (pa1, · · · ,p
a
N ) and Pb = (pb1, · · · ,p

b
M ) with known poses with

respect to a common origin, a transformation that registers these clouds is such that minimizes

the point-to-point distance from corresponding point pairs, namely Loop Closure (LC).

∆LC
ij ← arg min

T

∑

i

(pbi − T ∗pai ) (5.10)

In this approach, Generalized Iterative Closest Point (GICP) [130] is used to minimize this

transformation. The algorithm modifies the standard ICP solution with a probabilistic ap-

proach using point-to-plane association as well as point-to-point, taking advantage of surface

normals. This algorithm needs an initial transformation estimate, which is obtained from the

known navigation using the tail-to-tail transformation between both position estimations.

T̂ = ⊖xa ⊕ xb (5.11)
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Figure 5.4: Example graph representation of 5 submaps. The first submap closes a loop with
submaps 4 and 5.

5.2.4 Submap Graph SLAM

In this SLAM implementation, every node corresponds to a submap pose xsk
= (x, y, z, φ, θ, ψ)⊺

chosen as a local reference frame for the patch. An edge constraint may represent either an

odometry displacement or a registration result from the ICP registration. In the case of an

odometry displacement ∆ij = ⊖xj ⊕ xi, the edge information is zij = ∆ij with its informa-

tion matrix being the inverse of the odometry uncertainty. When the edge corresponds to a

loop closure registration, zij and Pij correspond to ∆LC
ij and the inverse of the uncertainty

obtained as an output of the registration algorithm. Every time a new registration edge is

added to the graph, it is optimized in order to get a more accurate initial guess for the upcom-

ing registrations. Once the last optimization is performed, the graph is updated with the new

positions and the bathymetric map can be extracted using tail-to-tail operations and point

cloud composition.

Figure 5.4 shows an example graph consisting of five submaps and two loop closures. In

this example, graph optimization would have been triggered twice, once after the registration

of node x1 to x4 and a second one after the registration of node x1 to x5.

5.3 Bathymetric Particle Filter SLAM using Grid Maps

In the previous section we proposed a submap graph SLAM reconstruction solution where

the submap sections are registered to improve the global map consistence. However, the

submaps themselves are not corrected and their inconsistencies will persist in the final map

even if corrected. Even more, large amounts of three-dimensional data are difficult to handle

and the presented method does not propose any memory handling. In this section a particle

filter SLAM approach is proposed for laser-based bathymetric mapping. This approach will

overcome the submap SLAM limitations previously mentioned. The work is based on [8],
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where the authors present BPSLAM, an algorithm targeted at acoustic bathymetric mapping.

In our application, the sensing device is different from the used in the paper and we introduced

three changes: (1) the observation model for the laser points is treated as Gaussian and (2)

the particle movement accounts not only for x and y but also for the heading, and (3) the

map representation has been altered from a grid map to a self-balancing binary search tree

grid map to be more memory-efficient.

5.3.1 Particle Filter

A Particle Filter (PF) is a non-parametric implementation of the Bayes filter that can be used

to approximate the probability distribution of a non-observable state. In robotics, a state xt
at time t is usually defined as the robot position in 2D or 3D space. The state xt depends on

the previous state xt−1 according to the probabilistic law p(xt|ut, xt−1), where ut is the control

asserted in the time interval (t − 1, t]. As the state is non-observable, the measurements zt
and their projections in the true state are used instead. The probability p(zt, xt) is referred as

the measurement model, whereas p(xt|ut, xt−1) is the motion model. Using Bayes filters [131],

the posterior probability can be expressed as a recursion of the previous probabilities under

the initial condition p(x0|z0, u0) = p(x0). This relation is expressed in equation (5.12).

p(xt|zt, ut) = K · p(zt|xt)
∫

p(xt|ut, xt−1) p(xt−1|zt−1, ut−1) dxt−1 (5.12)

Closed form solutions to calculate (5.12) are only known for specialized cases. If p(x0) is

Gaussian and p(xt|ut, xt−1) and p(zt|xt) are linear with added Gaussian noise (5.12) is equiv-

alent to the Kalman filter. If the linearisation is obtained via a first order Taylor polynomial,

the result is equivalent to an EKF.

Particle filters address the solution by using a set of hypotheses, conversely particles. A

particle is a sample state drawn from a probability distribution that does not necessarily have

to be Gaussian. All localisation particle filters share these same steps:

• Initialization: samples the M particles using p(x0).

• Propagation: uses a motion model described by p(xt|ut, xt−1) to move the particles

from their previous position to the current position with an added noise.

• Weight: uses a metric to evaluate the particles according to how well they match a

measurement, a map, a position or any observable property, e.g. the likelihood for a

particle to represent the true state.

• Resampling: removes low weight particles (e.g. unlikely representations) and replaces

them with copies of the highest weighted particles.

Variations of this steps are available in the literature [132] [133]. One key aspect of PF

is how to deal with particle depletion. Depletion happens when the set of particles is too
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scattered, its weights are low and a resampling stage would remove too many particles from

the set. Importance resampling is a method to overcome particle depletion. The method

defines an effective particle number Neff as a measure for degeneration. When this number

is larger than half of the particle population, resampling is performed. The metric is defined

by equation (5.13)

Neff =
1

∑M
i=0[w(i)]2

, (5.13)

where w(i) is the i-th particle weight.

In a state space formed by all possible positions and maps, sampling is not efficient nor

tractable. Rao-Backwellized Particle Filters (RBPF) perform a marginalisation of the prob-

ability distribution of the state space by sampling over the position, handling each particle a

different map. However, handling a large number of maps is not feasible in terms of memory.

Distributed Particle Mapping (DPM) enables to maintain a large number of maps efficiently

by introducing particle ancestry. Each resampled particle keeps track of the changes per-

formed in the map when compared to its parent, instead of holding an entire copy of the

map.

5.3.2 Rao-Backwellized Particle Filter

Rao-Backwellized particle filters provide a framework for conducting particle-based SLAM,

where each particle creates its own map. The algorithm that implements a RBPF is shown

in Algorithm 5.1, extracted from [8].

Algorithm 5.1: RBPF SLAM Framework [8]
Data: N particles with poses sampled from some initial distribution and a map with

prior information that may exist about the world.
Result: The best surviving particle and corresponding map.

1 while not at the end of mission do
2 Read current observation
3 for i= 1 to N do
4 Propagate each particle pose to the time of the new observation by sampling

from the vehicle motion model.
5 Weight each particle based on how well the new observation agrees with its

map.

6 Resample the N particles from the current set with replacement. Perform this
based on the particle weights so that particles with low weights are likely to be
discarded while particles with high weights are likely to be duplicated.

7 Update the N maps of the new particle set with the new observation.

Although this would be a straightforward implementation, the pipeline would require

entire maps to be copied over every time a particle is resampled, which is non-efficient in
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terms of memory, and time-consuming. DPM addresses this issue by sharing a map among

all particles, using labels to track which map sections belong and lineage to which particle.

5.3.2.1 Vehicle motion model and propagation

The vehicle motion model is split in two parts. An Extended Kalman Filter (EKF) (same as

in section 5.2) shared by all the particles tracks the vehicle position, but only direct sensor

observations such as depth, speed and orientations are used. The reason behind is that most

alignment errors occur due to wrong vehicle position or heading. Therefore, each particle pidt
holds an estimation of xpf

t = (xt, yt, ψt), and an identifier. The rest of the state variables are

obtained from an EKF shared by all the particles. Its state vector is described by equation

(5.14).

xekf
t =

[

zt, φt, θt, ẋt, ẏt, żt, φ̇t, θ̇t, ψ̇t, ẍt, ÿt, z̈t
]

(5.14)

where zt is the vehicle depth, φt, θt, ψt are roll, pitch and yaw angles respectively. The whole

state is therefore a joint set of the PF and EKF states, defined by (5.15).

xt = (xpf
t ,xekf

t ) (5.15)

A particle set St is defined as (5.16)

St =















x1t · · · xNt

y1t · · · yNt

ψ1t · · · ψNt

id1 · · · idN















, (5.16)

where idk is a particle identifier that will be used to build an ancestry tree for mapping. These

particles are propagated using

xit+1
= xit +N (µẋ, σ2

ẋ) ·∆t (5.17)

yit+1
= yit +N (µẏ, σ2

ẏ) ·∆t (5.18)

ψit+1
= ψit +N (µψ̇, σ

2
ψ̇

) ·∆t (5.19)

The filter has to be initialized to a known position and from there the particles are propa-

gated and their observations used for resampling, which will be explained after the grid map

representation.

5.3.3 Grid Map Representation

Several map representations exists that can represent the three-dimensional structure of the

seafloor. The approach used in the previous section was to store the map as a cloud of
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Figure 5.5: Map structure and memory storage. The four-indexed map allows to store just
a copy of the complete map and allows a fast access and retrieval of the underlying depth
observation. The map is first indexed by particle id, then by discrete x and y positions, and
the deepest layer holds all the depth measurements available to that grid cell and particle.

3D points. Alternatively, grid-based map representations offer faster map access at the cost

of losing resolution through discretization. The requirements for an underwater map can be

simplified if the mapping is constrained to an elevation map, or a 2.5D map. That is, a 2D map

in which each cell contains an estimate of the seafloor depth position and uncertainty. The vast

majority of the seafloor can be considered 2.5D, except for subterranean cave systems, which

are not in the scope of this SLAM solution. To store these maps in memory, a binary search

tree has been proposed. Even with this new implementation, the memory requirements of the

map scales quadratically with resolution, but the memory does not need to be preallocated

to a known survey size.

At every grid cell, the depth measurement is stored as an array of observations, together with

the cell mean and standard deviation that will be used to compute the resampling weight. A

grid cell can be defined using (5.20)

Gk
xy = (z1, z2, . . . , zn) ∼ N (µz, σz), (5.20)

where k is the k-th particle, zi are the measurements, and (µz, σz) their Gaussian model.

When a particle (representing a candidate robot path) senses the seafloor using a laser stripe,

each 3D point is ray-traced to the corresponding grid of the map and stored in the grid cell’s

vector. This grid map representation is described in figure 5.5, where the four-indexed map

structure is shown with an example of three particles and some measurements.
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5.3.3.1 Grid map observations

At every camera frame, the triangulated laser points are projected to the grid map represen-

tation using the geometry of figure 5.6, where a grid cell (Ex, Ey, Ez) is observed from the

camera at the range r and angle α. The corresponding uncertainty of the laser triangulation

measurement can be computed as a function of range and angle as shown in (5.21)

σL = f(r, α) = k0 + k1 · r, (5.21)

where the values k0, k1 have to be properly tuned to match the camera reprojection error and

the depth uncertainty of the triangulation system when its geometry is taken into account,

as explained in 3.1. The uncertainly is approximated by a line with slope k1, crossing at the

origin at k0.

In such cases where two or more measurements from the same laser triangulation frame

fall in the same grid cell, the observation mean and standard deviation is computed as the

mixture of Gaussian distributions.

5.3.4 Particle Resampling and Lineage

Each particle maintains and builds its estimates of the seabed, observed as an altitude mea-

surement that, with the added navigation depth, results into the seafloor depth. Prior to add
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the observations to the map, the particles are weighted based on how well their new seafloor

measurement matches with previously stored estimates.

Using the geometry described in Figure 5.6, the laser points can be projected to the

grid map and evaluated using (5.22) [134], as both the measurement and the estimation are

assumed to be Gaussian.

weight = P [(ẑ − zobs) = 0] =
e

− 1

2

µ̂est−µobs

σ̂2
est

+σ2
obs

√

2π(σ̂2
est + σ2

obs)
(5.22)

In a standard PF, when a particle is resampled it is normally duplicated one or more times.

Instead of duplicating maps, DPM deals with this issue by creating new particles and relates

them with ancestry or lineage links.

For example, a particle p of high weight survives to the resampling step. Therefore, it will

be duplicated in the next iteration. The new particles resampled from p will have p as parent.

The childs of p will build new map portions each. If a particle is resampled just once, the new

copy is merged to its ancestor (e.g. its maps are joined).

If a set of brothers are resampled and all but one removed from the filter, the particle is

fused to its parent. This can be also expressed as lone-child parents and their child are fused to

lower the complexity of the ancestry tree. An example of this PF with grid maps can be seen

in figure 5.7. Each particle maintains a map section generated using the observations received

between two resampling event. A resampling event is triggered when a particle map estimate

overlaps with itself (including ancestors) and each particle is weighted by the likelihood that

it contains the true state, based on the new observation.

Every particle observation covers an entire laser swath, and each will have a different overlap

with the rest of the map. A rule, already proposed in [8], that the resampled particles should

have an overlap larger than a threshold γ is used. This limits the number of particles included

in the resampling phase. If this threshold γ = 100%, it would mean that a particle is resampled

only if its entire swath overlaps with the already explored terrain. The particles that either

do not overlap or that do not overlap enough, are considered as good as any other particle

and therefore not resampled.

As discussed in [135], the resolution of the bathymetric maps is limited as the observation

uncertainty can span more than just one grid. Data association techniques have not been

applied and therefore the probability is constrained within grid cells. To check that this

assumption is valid, a 95% confidence interval of the observation error can be used to size the

minimum resolution of the grid.

5.3.5 Map and Trajectory Estimation

At the end of the trajectory, the particle with the lowest weight is queried and its map portion

and its parents transform into 3D space using Algorithm 5.2. Each resulting 3D point contains
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a registration error in case the grid cell that it represents has been observed more than once.

The error is computed as the Consistency Based Error Evaluation (CBEE) [121], which will

be explained in the following section with the experimental results.

Algorithm 5.2: Final map retrieval
Data: id∗ best particle id, an ancestors vector v and a map m(id, x, y,z).
Result: The map corresponding to the particle with the best consistency.

1 Extract the list of parent particles from v → idparents
2 Create an empty grid map to hold the result
3 for id in idparents do
4 for x in m[id] do
5 for id in m[id][x] do
6 Transform the grid cell to a 3D space
7 Retrieve all the measurements and compute the mean → µz
8 Set µz as the depth value and the maximum error as the registration error

for that given cell

5.4 Experiments and results

In this section we compare and evaluate the results of the methods presented in sections 5.2

and 5.3 using two datasets gathered with different platforms.
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Figure 5.8: Cloud consistency error example. The colored points represent 3D points and the
vertical divisions represent bins. Within each bin, a point is chosen at random from each map.
The lines indicate the closest pairs of all points from the other maps. The bold blue lines
indicate the maximum misregistration error within each bin. Note that when determining
the closest points allowing the search to also consider points outside of the immediate bin
will avoid bin size related artifacts. For example, the magenta line indicates how a nearest
green-to-blue point pair would incorrectly be used if searching was only allowed inside a given
bin. Finally, note that the right most bin with pairings does not show any Map 3 (green)
pairings. This is because there are no Map 3 points in both surrounding bins.

To measure the performance of these methods two metrics are used: consistency and

overlap. Consistency measures the agreement of the map with itself, whilst overlap measures

the amount of spatial coincidence. If a map is consistent and has a high overlap (> 60%)

it would indicate a successful SLAM performance. If the overlap is low there could be two

causes: (1) the real navigation path did not overlap and therefore the measure is right, or (2)

the real navigation path did really overlap but the navigational errors have caused the path

to diverge. In this case, the reconstructed terrain cannot be considered consistent.

5.4.1 Consistency assessment

One of the main concerns in unstructured environmental mapping is the lack of ground truth

to validate the algorithm results. Therefore, the only option is to evaluate how does the map

agree within itself. Roman and Singh [121] proposed a Consistency Based Error Evaluation

(CBEE) that computes an error estimation based on the apparent thickness of the final map

cloud. Ideally, the composite cloud would describe a one-point-thickness map layer with exact

map registrations. However, when these transformations are not perfect, misalignments are

introduced and the map will have a “thickness” whose average offset is the registration error.

An example of this metric is shown in figure 5.8.
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Figure 5.9: Turbot AUV diving in Port de Valldemossa. The shallow water area had to be
recorded at night for the correct performance of the laser detection.

5.4.2 Laser stripe overlap

Both SLAM algorithms presented need laser lines to overlap in order to find bathymetric

consistencies and correct the overall map and trajectory. The overlap that the current laser

stripe presents to the known map is also a metric that tells how much information is obtainable

from the ongoing transect given the settings used in the SLAM algorithm. For example, if the

minimum overlap to correct a certain map is set at 60% and the overall laser stripe overlap is

less than 40%, the resulting map will most likely not incorporate bathymetric knowledge due

to lacking overlapping terrain. On the other hand, if the overall overlap is 80% the SLAM

should have improved the map as the explored terrain has enough overlap to align and register

bathymetric features.

5.4.3 Platforms

Two different AUVs have been used in this thesis to generate bathymetric maps of the seafloor:

Turbot and AE2000f, which will be presented below.

5.4.3.1 Turbot AUV

Turbot is a Sparus II AUV, developed by Universitat de Girona, Spain. It is a 200-meter-

rated, torpedo-shaped AUV with two propellers for surge and one for heave. A Teledyne

Explorer DVL, an Analog Devices Adis IMU, a pressure sensor and a U-Blox GPS are its

navigation sensors. Turbot is 1.6m long and weights ∼ 50 kg The robot shown in figure 5.9,

runs Ubuntu Linux with ROS middleware.

During this PhD programme, the robot has been equipped with two Allied Vision Technol-

ogy G-283c cameras and a 1W 445nm laser stripe for seafloor reconstruction and inspection.

To improve navigation accuracy, an Evologics 18/34 USBL and its corresponding modem have
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Figure 5.10: USBL architecture in Turbot AUV, presented in [9]. A fixed coordinate frame
map references two children odom coordinate frames to correct for drift. This drift is calcu-
lated from a received USBL at time t1 but measured at time t0. The odometric displacement
between t0 and t1 is used to update the corrected position x′(t1) by changing the transforma-
tion from map to odom(t1), leaving the rest unchanged.

been integrated into the vehicle navigation, the modem has been attached to Turbot and the

USBL has been deployed from the shore or from a vessel depending on the experimental setup.

In regards to software, a newly developed EKF navigation architecture has been embedded

in the main CPU to integrate USBL correction in real time. This EKF treats every USBL

message as a delayed position update. The odometric displacement between the USBL mea-

surement time and the current time is compounded to the USBL position measurement and

handled to the EKF as an update at the current time. This method is shown in figure 5.10.

5.4.3.2 AE2000f AUV

AE2000f is a 2000m depth rated flight-style AUV instrumented with a high-altitude (8m

range) 3D imaging system and a water-column pH and temperature sensor. AE2000f operates

at approximately 2 kn at an altitude of 8m, allowing it to visually map the seafloor at a rate

of up to ∼ 40, 000 m2/h at ∼ 8mm pixel resolution. AE2000f is 3m long and weighs 370 kg

in air.

The vehicle is equipped with a iXblue PHINS AHRS and DVL, a depth sensor, a GPS

and SeaXerocks3 as high-altitude 3D imaging system. SeaXerocks3 consists of three cameras

(two Xviii colour cameras for stereo mapping and a monochome Lumenera LM165), a 532nm

laser stripe and four LED strobe lights.



5.4. Experiments and results 95

Figure 5.11: AE2000f AUV being deployed in Hydrate Ridge in front of R/V Falkor.

5.4.4 Valldemossa dataset

This dataset, named Valldemossa, was recorded by Turbot AUV. The vehicle dove in the

waters of Port de Valldemossa, a shallow (< 5 m) rocky area next to a pebble beach. The

area is partially covered in Posidonia oceanica, an endemic seagrass that forms meadows.

The robot was programmed to perform a 25 × 10m survey at 0.2m/s and at an altitude of

1.5m in a lawn-mower pattern with an ending diagonal transect. The cameras were shooting

960 × 720 px frames at 10Hz, and at the survey altitude the laser swath was about 2.5m

wide. Along track, the resolution was 1 cm and 2mm accross track (e.g. one pixel footprint).

In total, 12158 images were recorded in approximately 25 minutes.

The three-dimensional reconstructions of the survey are shown in figures 5.12(a) for dead reck-

oning and in figure 5.12(c) for an USBL-aided EKS navigation. Then the proposed SLAM

reconstructions are shown in figure 5.12(e) for Submap SLAM and in figure 5.12(g) for BP-

SLAM. The figures 5.12(b), 5.12(d), 5.12(f), 5.12(h) shown the CBEE of the respective nav-

igations. Histograms for the CBEE are also available in figures 5.13(a) to 5.13(c), and the

final AUV trajectory is depicted in figure 5.14.

5.4.4.1 Submap SLAM

For this dataset, the patches were build for a minimum of 80 camera frames and a maximum

of 3m of travelled distance. These patches were then downsampled to a maximum of 5k points

and their normals estimated with a radius of 15 cm. The final grid resolution for CBEE has

been 5 cm.

Two patches are considered loop closure candidates if they overlap more than 40% in their

X-Y projection (kNN of 15 cm) and if they are more that five patches apart. This five-patch

measure has been selected to avoid finding loop closures at the turns, when the vehicle is

rolling and pitching due to its shape and dynamics. In figure 5.15 the submaps for this

dataset are shown.
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(a) Dead Reckoning Depth.
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(b) Dead Reckoning CBEE.
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(c) USBL aided EKF Depth.
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(d) USBL aided EKF CBEE.
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(e) Submap Depth.
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(f) Submap CBEE.
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(g) BPSLAM Depth with 100 particles.
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(h) BPSLAM CBEE with 100 particles.

Figure 5.12: Valldemossa dataset results.
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(d) BPSLAM CBEE histogram with 100 particles.

Figure 5.13: CBEE Error histogram comparison for Valldemossa dataset.
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Figure 5.14: Valldemossa dataset AUV navigation path for the different solutions: USBL,
BPSLAM and Submap SLAM with the graph LC edges in black. The dead reckoning solution
has been omitted.

Figure 5.15: Valldemossa dataset Submap SLAM patches in random colours.
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Table 5.1: Valldemossa dataset CBEE comparison between the different bathymetric solutions
for an expected overlap of 60% when planning the mission.

Navigation Overlap
CBEE

µ (m) σ (m)

Dead Reckoning 19.1% 0.0957 0.0926
USBL 72.4% 0.1707 0.1436
Submap SLAM 68.7% 0.1758 0.1280
BPSLAM 10 particles 72.2% 0.1361 0.1366
BPSLAM 25 particles 73.9% 0.1348 0.1391
BPSLAM 50 particles 74.5% 0.1344 0.1404
BPSLAM 100 particles 74.6% 0.1335 0.1404

5.4.4.2 Bathymetric Particle SLAM

The vehicle propagation noise has been chosen as 0.05m/s and 5 · 10−3rad/s for linear and

angular speeds, which correspond as well to the EKF propagation noise. The minimum

resample overlap has been fixed to 60% and the grid resolution to 5 cm.

Different number of particles have been tested for the dataset, and its results are reported in

table 5.1 for 10, 25, 50 and 100 particles.

5.4.5 FK180731 dataset

The second dataset was recorded by AE2000f in Hydrate Ridge at 100 km offshore of Oregon

during FK180731 Adaptive Robotics cruise on board Falkor R/V [136]. The mission is a

350 × 150m lawnmower pattern surveyed at 1m/s and at 8m of altitude. At the mission

altitude, the laser swath spanned across 9.8m with an along track resolution of 60mm and

7.6mm across track. The LM165 records monochrome images at a frame rate of 15Hz and a

resolution 1280×1024 px. In total, 297000 images were recorded during more than five hours.

The bathymetries of the surveyed area are shown in figures 5.16(a) for the dead reckoning

solution, in figure 5.16(c) for the Submap SLAM and in 5.16(e) for BPSLAM. The CBEE

overlaying the bathymetry is shown in figures 5.16(b), 5.16(d) and 5.16(f) respectively. His-

tograms for the CBEE are also available in figures 5.17(a) to 5.17(b), and the final AUV

trajectory is retrieved in figure 5.18.

In the survey, one man-made structure was spotted, corresponding to an ODP 892 cruise

in the same area. In that cruise the seafloor was drilled for gas prospection. In figures 5.19(a)

and 5.19(b) a zoom-in of the structure and its capture in the AUV camera are shown.

5.4.5.1 Submap SLAM

For this dataset, the patches were built for a minimum of 600 camera frames and a maximum

of 30m of travelled distance. These patches were then downsampled to a maximum of 75k
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(a) Dead Reckoning Depth.
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(b) Dead Reckoning CBEE.
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(c) Submap SLAM Depth.
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(d) Submap SLAM CBEE.
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(e) BPSLAM Depth.
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(f) BPSLAM CBEE.

Figure 5.16: FK180731 dataset results.
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(b) Submap SLAM.
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Figure 5.17: CBEE Error histogram comparison for FK180731 dataset.
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Figure 5.18: FK180731 dataset AUV navigation path for the different solutions: DR, BP-
SLAM and Submap SLAM with the graph LC edges in black.
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(a) Zoomed in region. (b) Image of the structure.

Figure 5.19: FK180731 found drill structure in the bathymetric map and in the surveyed
images.

points and their normals estimated with a radius of 40 cm. The final grid resolution for CBEE

has been 20 cm to require less memory. In order to be comparable to BPSLAM, the resolution

of this dataset had to be reduced to the same resolution achievable by the particles.

As before, two patches are considered LC candidates if they overlap more than 40% in their

X-Y projection (kNN of 40 cm) and if they are more that five patches apart. In figure 5.20

the submaps for the dataset are shown.

5.4.5.2 Bathymetric Particle SLAM

The vehicle propagation noise has been chosed as 0.05m/s and 5 · 10−3rad/s for linear and

angular speeds. The minimum resample overlap has been fixed to 60% and the grid resolution

to 20 cm.

Different number of particles have been tested for the dataset, and its results are reported in

table 5.2 for 10, 25 and 50 particles. Given the size of this dataset, a BPSLAM solution with

100 particles could not be performed due to memory restrictions.

5.4.6 Map improvement

The Dead Reckoning navigation solution has produced the maps with the largest errors in

Valldemossa, and it does not correctly reproduce the surveyed area nor the path followed by

the vehicle. One of the reasons of this behaviour is given by the low navigation altitude and

the rocky bottom mixed with seagrass. This environment proved to be very challenging for

the Turbot’s DVL. In the next scenario (e.g. USBL-aided navigation), the drifting error was

bounded by using a USBL as external positioning device. However, when the USBL-aided
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Figure 5.20: FK180731 dataset Submap SLAM patches in random colours.

Table 5.2: FK180731 dataset CBEE comparison between the different bathymetric solutions
for a planned overlap of 37.2%.

Navigation Overlap
CBEE

µ (m) σ (m)

Dead Reckoning 44.8% 0.2029 0.4137
Submap SLAM 45.2% 0.1861 0.3420
BPSLAM 10 particles 44.8% 0.2295 0.3891
BPSLAM 25 particles 46.3% 0.2275 0.3833
BPSLAM 50 particles 46.7% 0.2206 0.3826
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CBEE value is compared to DR value, it may look as if DR outperformed all other solutions.

However, this is not the case, as DR has failed to follow the mission path and the number

of overlapping points is low, almost non-existent. This lowers the overall error as there is

nothing to compare to, whereas the USBL solution brings the track lines together increasing

the overlap. This highlights the ability of the USBL of bounding the navigational drift.

The following figures show a clear improvement by using BPSLAM. The CBEE is not only

lower, but also the bathymetry has less artefacts, although this approach still retains some

error. On the other hand, the submapping solution does not improve over the USBL. There

are two sources of error for this particular approach: the misregistration within the submaps

is not corrected, as they are fixed, and the graph optimization ‘pulls’ submaps closer to reduce

the error in the loop closing edges, but at the same time increases the error of the adjacent

submaps, which finally translates into a larger CBEE.

In [121], a similar Submap SLAM solution was aimed for multibeam sonar. The main

differences between a multibeam sonar and a laser stripe are range, resolution and number

of beams (e.g. number of pixels of a laser stripe). As a matter of example, a multibeam

sonar would return 128 beams acros a 120◦ beam width, (at 20m altitude: 70m footprint,

0.54 m across track and 0.25m along track resolution), whereas Turbot Laser triangulation

is returning 960 3D points across 87◦.

On Falkor dataset, the submapping navigation produced the best results and BPSLAM

failed behind DR. The size of the dataset together with the low number of particles proved

to be a limiting factor for the performance of the filter. Furthermore, BPSLAM only corrects

the navigation in x, y, ψ, whereas submap SLAM performs a complete transformation. If we

look closely at the navigation, the larger misregistration errors occur at the diagonal and

perpendicular crossing, where the vehicle is travelling to its starting position and the altitude

is 15 m, the double of the survey altitude. At that distance, the z errors are also magnified.

With regards to the adjacency error caused by submapping, it can be seen that in FK180731

it does not happen as the seafloor is flatter and small translations do not occur to increase

the error when shifting submaps for a better overlapping area.

To sum up, both submapping and BPSLAM have shown better self-consistent maps than

plain navigation-only solutions. In comparison, although submapping corrects the overall

error, it does not take into account the small misalignments or navigational errors within the

patch, whereas BPSLAM corrects the overall navigation (northings, eastings and heading)

and the reconstruction.





Chapter 6

Conclusions

This chapter concludes the thesis by presenting a summary of completed work in Section 6.1.

The main contributions are reviewed under Section 6.2 and compelling areas for future work

are outlined in Section 6.3.

6.1 Summary

This thesis has addressed the topic of underwater three-dimensional reconstruction using laser

light. Laser light presents several benefits over classic imaging and floodlight solutions whilst

at the same time, enables terrain measurements in poor visibility or featureless environments.

We have focused in two approaches, one-shot reconstruction for close range measurements

and laser bathymetry for longer distances.

In Chapter 2, we have reviewed and set the background on the available literature for the

different imaging techniques and sensors used in underwater reconstruction. We summarized

the most important aspects, their benefits and drawbacks.

In Chapter 3, we have provided the reader a preliminary background and a methodology to

map laser image pixels to three-dimensional space, and proposed two calibration methods for

a laser plane, which is easily extendable to other complex laser shapes.

In Chapter 4, we presented a novel one-shot laser-based structured light sensor, its implemen-

tation and evaluation in underwater conditions, turbidity and compared agains stereoscopy.

The results prove the methodology presented in chapter 3 and showcase the usefulness of such

device in murky waters or in dynamic environments.

In Chapters 5 we adapted two state of the art frameworks from multibeam sonar to the novel

domain of laser bathymetry, and we validated them using two different datasets. These demon-

strate how navigation and mapping corrections can be achieved when only sparse bathymetry

overlap is available. Finally, these methods have been tested and validated in two real envi-

ronments, with two different types of AUV.

107



108 Conclusions

6.2 Contributions

This dissertation has advanced the current state-of-the-art for underwater laser-based struc-

tured light sensors, providing one-shot and multishot solutions. We can break down this

general contribution into the following items:

Complete review: A literature review of the most important contributions to the

state of the art on imaging based underwater reconstruction and its sensors during the

last fifteen years.

In situ calibration algorithm: We have improved an on-site laser-to-camera cal-

ibration method already available [137]. In detail, our contribution focuses on using

stereoscopy to our calibration pipeline.

One-shot reconstruction: A one shot laser pattern reconstruction pipeline in under-

water environments with a proposed calibration method has been studied and validated

over different visibility scenarios and compared to a standard stereo rig. The experi-

ments performed have shown that it is capable of performing a sparse reconstruction in

featureless and murky environments.

Bathymetric laser SLAM We have proposed a submap graph-SLAM solution and

proved its effectiveness with a quantitative evaluation over two datasets, and we have

studied as well a multishot laser registration using a known Bathymetric SLAM frame-

work. It is worth mentioning that this framework was originally described for sonar-

based bathymetry, but in this thesis it has been demonstrated its potential application

with laser data. The experiments show an improvement on the overall reconstructed

map.

6.3 Future work

The topic of the thesis has opened new research areas to further explore. In order of impor-

tance, the following tasks are planned to be carried out

• Develop a Bathymetric SLAM based on quadtree representation using Gaussian Pro-

cesses to correct non-overlapping navigation whilst efficiently handling memory. With

this type of approach the map corrections would not depend on the amount of overlap

between transects. Available recorded data could be post-processed to obtain better

quality seafloor maps.

• To progress in a hybrid mapping solution using laser bathymetry and visual features.

This future work could enable to close loops using both shape and colour. Areas of the

ocean have different colours / bacterial mats or different substrates that would not be

clear in their shape, but easy to pick up using colour information.
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• For the one-shot laser, overcome the laser correspondence limitations by increasing the

number of cameras (e.g. stereo and laser). A second camera would overcome simple

occlusion scenarios and would be beneficial to correctly label laser lines.

• Extend our laser pipeline solution to support different types of laser patterns and wave-

lengths, as well as aid the correspondence of points to the pattern to autocalibrate the

multiline laser projector. Extending the work of this PhD for autocalibration would be

a natural path to follow as work has been presented for a single line (descending helix).
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