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Efficient implementation of Deep Nets for video processing to preserve marine ecosystem services

by Miguel MARTÍN ABADAL

Marine ecosystems provide multiple services to humans, including provisioning services, such as seafood
or fossil energy; regulating services, like coastal protection or water purification; cultural services, as
tourism or spiritual benefits; and supporting services, like nutrient cycling or habitat provision.

The provided services are endangered by negative impacts that marine ecosystems are suffering due
to multiple causes, some examples of which could be overfishing, habitat destruction, or plastic pollution.
Therefore, there exists an urgency to develop new protective measures. One highlighted initiative is to
develop scientifically and statistically robust monitoring methodologies and tools to control potential risks
or assess the effectiveness of protective and recovery initiatives.

Ocean research and management is facing a new era, led by the technological developments in data
collection, allowing the collection of vast amounts of data; and deep learning techniques, capable of pro-
cessing the data and reducing its processing workload while increasing the spatial and temporal scope of
conducted analysis. The marine science community is ready and willing to implement these new tools to a
wide range of proposals towards the sustainability of marine ecosystems and its services.

The objective of this thesis is to study the applicability of deep learning solutions, along with com-
puter vision, to develop new tools to preserve marine ecosystems and the offered services. Tools have
been developed for three different tasks: Posidonia oceanica monitoring, jellyfish quantification and pipeline
characterisation. In their development, diverse deep convolutional network model types and architectures
have been trained and tested with data gathered from a variety of sources and under different environmen-
tal conditions. Additionally, the developed tools have been deployed into diverse platforms and adapted
to its features and limitations.

These implementations cover a wide spectrum of scenarios where deep convolutional networks have
been applied with good results, automating the data analysis process, expanding the temporal and spa-
tial scope of the analysis or surveys, and improving the repeatability of experiments to detect evolution
trends. Thus, validating the proposed methodology to implement deep convolutional networks for video
processing to preserve marine ecosystem services.
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Efficient implementation of Deep Nets for video processing to preserve marine ecosystem services

por Miguel MARTÍN ABADAL

Los ecosistemas marinos ofrecen múltiples servicios a los seres humanos, incluyendo servicios de apro-
visionamiento como la producción de comida o energía fósil, servicios de regulación como la protección
costera o la depuración de aguas, servicios culturales como el turismo o beneficios espirituales y servicios
de apoyo como la circulación de nutrientes o la provisión de hábitat.

Estos servicios se ven amenazados por los impactos negativos que están sufriendo los ecosistemas mari-
nos debido a múltiples causas. Algunos ejemplos podrían ser la sobrepesca, la destrucción del hábitat o la
contaminación por plásticos. Por lo tanto, existe la urgencia de desarrollar nuevas medidas de protección.
Una iniciativa destacada es el desarrollo de metodologías y herramientas de monitoreo científica y estadís-
ticamente sólidas para controlar los potenciales riesgos o evaluar la efectividad de iniciativas de protección
y recuperación.

La investigación y gestión de los océanos se enfrenta a una nueva era, liderada por los avances tec-
nológicos en la obtención de datos, que permiten la recopilación de grandes cantidades de datos; y técnicas
de aprendizaje profundo, capaces de procesar los datos y reducir el tiempo de procesamiento a la vez
que aumentan el alcance espacial y temporal de los análisis realizados. La comunidad científica marina
está lista y dispuesta a implementar estas nuevas herramientas en una amplia gama de propuestas para la
sostenibilidad de los ecosistemas marinos y sus servicios.

El objetivo de esta tesis es estudiar la aplicabilidad de soluciones de aprendizaje profundo junto con
visión artificial para desarrollar nuevas herramientas con el fin de preservar los ecosistemas marinos y
los servicios ofrecidos. Se han desarrollado herramientas para tres tareas diferentes: la monitorización de
Posidonia oceanica, la cuantificación de medusas y la caracterización de sistemas de tuberías. Durante su
desarrollo, se han entrenado y probado diversos tipos de modelos y arquitecturas de redes convolucionales
profundas con datos recopilados de una variedad de fuentes y en diferentes condiciones ambientales. Adi-
cionalmente, las herramientas desarrolladas han sido desplegadas en diversas plataformas y adaptadas a
sus características y limitaciones.

Estas implementaciones cubren un amplio espectro de escenarios en los que se han aplicado redes con-
volucionales profundas con buenos resultados, automatizando el proceso de análisis de datos, ampliando
el alcance temporal y espacial de los análisis o inspecciones, y mejorando la repetibilidad de los experimen-
tos para detectar tendencias de evolución. Por lo tanto, se ha validado la metodología propuesta para la
implementación de redes convolucionales profundas para el análisis de datos en entornos marinos para la
preservación de sus ecosistemas y servicios.

xi

HTTPS://WWW.UIB.ES/
https://eps.uib.es/
https://dmi.uib.es/




UNIVERSITAT DE LES ILLES BALEARS

Resum
Escola Politècnica Superior

Departament de Matemàtiques i Informàtica

Doctor en Tecnologies de la Informació i les Comunicacions

Efficient implementation of Deep Nets for video processing to preserve marine ecosystem services

per Miguel MARTÍN ABADAL

Els ecosistemes marins ofereixen múltiples serveis als humans, incloent serveis d’aprovisionament com
la producció de menjar o energia fòssil, serveis de regulació com la protecció costanera o la depuració
d’aigües, serveis culturals com el turisme o beneficis espirituals, i serveis de suport com la circulació de
nutrients o la provisió d’hàbitat.

Aquests serveis es veuen amenaçats pels impactes negatius que estan patint els ecosistemes marins
degut a múltiples causes, alguns exemples podrien ser la sobrepesca, la destrucció de l’hàbitat o la contam-
inació per plàstics. Així doncs, hi ha la urgència de desenvolupar noves mesures de protecció. Una inicia-
tiva destacada és el desenvolupament de metodologies i eines de monitorització científica i estadísticament
sòlides per controlar els riscos potencials o avaluar l’efectivitat d’iniciatives de protecció i recuperació.

La investigació i la gestió dels oceans s’enfronta a una nova era, liderada pels avenços tecnològics en
l’obtenció de dades, permetent la recopilació de grans quantitats de dades; i tècniques d’aprenentatge pro-
fund, capaces de processar les dades i reduir el temps de processament alhora que augmenten l’abast espa-
cial i temporal dels anàlisis realitzats. La comunitat científica marina està llesta i disposada a implementar
aquestes noves eines en una àmplia gamma de propostes per a la sostenibilitat dels ecosistemes marins i
els seus serveis.

L�objectiu d�aquesta tesi és estudiar l�aplicabilitat de solucions d�aprenentatge profund juntament
amb visió artificial per desenvolupar noves eines per tal de preservar els ecosistemes marins i els serveis
oferts. S’han desenvolupat eines per a tres tasques diferents: la monitorització de Posidonia oceanica, quan-
tificació de meduses i caracterització de sistemes de canonades. Durant el desenvolupament s’han entrenat i
provat diversos tipus de models i arquitectures de xarxes convolucionals profundes amb dades recopilades
d’una varietat de fonts i en diferents condicions ambientals. Addicionalment, les eines desenvolupades han
estat desplegades en diverses plataformes i adaptades a les seves característiques i limitacions.

Aquestes implementacions cobreixen un ampli espectre d’escenaris on s’han aplicat xarxes convolu-
cionals profundes amb bons resultats, automatitzant el procés d’anàlisi de dades, ampliant l’abast temporal
i espacial de les anàlisis o inspeccions i millorant la repetibilitat dels experiments per detectar tendències
devolució. Per tant, s’ha validat la metodologia proposta per a la implementació de xarxes convolucionals
profundes per a l’anàlisi de dades en entorns marins per preservar els seus ecosistemes i serveis.
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Chapter 1

Introduction

This chapter first introduces the motivation and context behind this thesis. Next, its main objectives are
presented. Finally, it summarises the remaining document structure.

1.1 Context

1.1.1 Ecosystem services

Ecosystem services are the direct and indirect contributions of the natural environment and ecosystems
to human well-being. Understanding the interactions between ecological and social systems is a funda-
mental domain of ecology and is crucial for mapping and managing ecosystem services. This requires
an understanding of how ecosystems contribute to human welfare. However, quantifying the management
consequences on ecosystem functions and the resulting changes in the value of goods and services depends
on the complex interactions between social-ecological systems (Norgaard, 2010).

The "Millennium Ecosystem Assessment" (Hassan et al., 2005) distinguishes between four types of
ecosystem services:

• Provisioning services: These are material or energy outputs from ecosystems, including food, water,
raw materials, and other resources.

• Regulating services: These are services that ecosystems provide by acting as regulators, such as
regulating the quality of air and soil or controlling floods and diseases.

• Cultural services: These are non-material benefits obtained from being in contact with ecosystems,
including aesthetic, spiritual, and psychological benefits.

• Supporting services: Closely related to regulating services, these services allow the ecosystems to
continue providing the other services. They include nutrient cycling, primary production, soil forma-
tion, and habitat provision.

As previously mentioned, understanding ecosystem services is a complex task that requires a strong
foundation in ecology, including an understanding of the principles and interactions of organisms and the
environment Maurer, 2009. The scales at which these entities interact can vary widely, from microbes to
landscapes and from milliseconds to millions of years. Furthermore, an ecosystem can provide multiple
types of services; for example, the same forest may provide a habitat for organisms, or recreation opportu-
nities and wood for humans. There also exist complex relationships and exchanges of energy and materials
between different ecosystems (Bennett, Peterson, and Gordon, 2009).

A suggested research agenda (Kremen, 2005) for the study of ecosystem services includes the following
steps:

• Identification of Ecosystem Service Providers (ESPs): species or populations that provide specific
ecosystem services and the characterization of their functional roles and relationships.

• Determination of community structure aspects that influence how ESPs function in their natural land-
scape, such as compensatory responses that stabilize function and non-random extinction sequences
that can erode it.

• Assessment of key environmental factors that influence the provision of services.

• Measurement of the spatial and temporal scales on which ESPs and their services operate.
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Marine ecosystem services

Marine ecosystems are aquatic environments with high levels of dissolved salt, including deep-sea oceans,
estuaries, and coastal marine ecosystems, each of which has unique physical and biological characteristics.

Marine ecosystems are defined by their unique biotic and abiotic components, which support each other
for survival. Biotic factors include plants, animals, and microbes; important abiotic factors include the
amount of sunlight in the ecosystem, the amount of oxygen, salt, and nutrients dissolved in the water,
proximity to land, depth, and temperature.

Marine ecosystem services result from a wide variety of resources that marine ecosystems provide and
that are consumed, used, or enjoyed by people (Buonocore et al., 2020; Barbier, 2017; Häyhä and Franzese,
2014). Marine ecosystems provide services of all the previously mentioned types. For example, they pro-
vide energy, food, coastal protection, carbon sequestration, and recreational opportunities. Table 1.1 show-
cases a wide variety of marine ecosystem services.

Provisioning
· Seafood from plants and animals · Renewable and fossil energy

· Raw materials · Genetic material · Water

Regulating · Coastal protection · Carbon sequestration · Climate regulation
· Waste treatment · Water purification

Cultural · Entertainment · Tourism · Aesthetic · Spiritual benefits
· Habitat and species value · Cultural heritage

Supporting · Nutrient cycling · Habitat provision for plants and animals
· Gene pool protection

TABLE 1.1: Marine ecosystems services.

These services highly rely on the interplay between biotic and abiotic factors, depending on the physical,
chemical, and biological processes that support marine ecosystems. Ecosystem processes include biomass
production, organic matter transformation, nutrient cycling, and physical structuring (Strong et al., 2015).

During the last few decades, marine ecosystems have undergone drastic changes at different scales
due to multiple anthropogenic causes, including overfishing, eutrophication, invasive alien species, habitat
destruction, plastic pollution, and climate change (Ani and Robson, 2021; González-Ortegón and Moreno-
Andrés, 2021; Antao et al., 2020; Küpper and Kamenos, 2018). These changes affect the previously men-
tioned ecosystem processes and thus the biotic and abiotic factors and provided services, affecting human
well-being.

There is an urgent need to expand the range of protection for marine ecosystems. Some of the main
agencies in the matter, such as the European Environmental Agency (EEA, 2020) or the International Seabed
Authority (ISA, 2020), propose diverse measures for the preservation of water and marine environments:

• Progressively develop, implement, and review an adaptive, practical, and technically feasible regula-
tory framework, based on the best environmental practices, to protect marine ecosystems.

• Conduct assessments to support the implementation and development of regulatory measures.

• Ensure public access to environmental information and facilitate networking for better communica-
tion, coordination, and cooperation in terms of data reporting, management, and information sharing.

• Develop scientifically and statistically robust monitoring programs and methodologies to prevent, re-
duce, or control the potential risk of harmful activities and to assess the effectiveness of any protective
or recovery initiatives.

1.1.2 Deep learning

Machine learning is a branch of artificial intelligence and computer science that focuses on the use of data
and algorithms to imitate the way humans learn, gradually improving accuracy.

Machine learning powers many aspects of modern society, from web searches and content filtering on
social networks to recommendations on e-commerce websites. It is also increasingly present in consumer
products, such as televisions or smartphones.

Machine learning systems require the design of a feature extractor that transforms raw input data into
an internal representation or feature vector from which a neural network can detect or classify patterns.
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Deep learning is a sub-field of machine learning that differs primarily in the fact that deep-learning
systems automatically extract features to perform tasks without human intervention from labelled or unla-
belled raw data.

Deep learning and neural networks are accelerating progress in areas such as computer vision (Chai et
al., 2021), natural language processing (Otter, Medina, and Kalita, 2021), speech recognition (Nassif et al.,
2019) or robotics (Morales et al., 2021), among many others.

When it comes to machine or deep learning, there exist diverse categories of models depending on how
the learning process is performed:

• Supervised learning: For the training procedure, the input is a known training data set with its
corresponding labels. The model compares its output with the ground truth label and calculates the
difference using a predefined loss function to modify the weights of the neural network. Applications
of supervised learning include classification or regression problems.

• Unsupervised learning: The models can infer a function to describe previously unknown patterns or
hidden structures from unlabelled data, clustering it based on the discovered features. Applications
of unsupervised learning include clustering or association problems.

• Semi-supervised learning: The models combine a small amount of labelled data with a large amount
of unlabelled data, performing weak supervision during training where labelled data acts as sanity
checks. These models are able to produce better results than unsupervised learning models without
the need of spending resources on labelling the entire dataset.

• Reinforcement learning: The models use raw unlabelled data to interact with the environment
and are trained on a reward and punishment mechanism, rewarding correct moves and punishing
wrong ones. The correctness of an output depends on previous states and outputs, allowing the
determination of an ideal behaviour within a specific context to maximize the desired performance.
The main applications for reinforcement learning are within complex and variant environments, such
as self-driving cars or trading and finances.

Focusing on deep learning, there exists a variety of algorithms that are distinguished by the type of in-
put data, network structure or data processing methods. Although there is no categorical correspondence
between tasks to perform and algorithms to use, some algorithms are better suited to perform specific tasks
due to their characteristics. Some of the most common deep learning algorithms include Multilayer Per-
ceptrons, Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks,
Restricted Boltzmann Machines or Autoencoders.

This thesis will focus on the use of Convolutional Neural Networks (CNNs), which are specifically de-
signed for computer vision applications such as classifying images or identifying areas or objects of inter-
est. CNNs applications are numerous and include medical image processing, scene recognition, document
analysis, and face or emotion recognition.

CNNs consist of architectures with multiple layers of convolutions that use mask matrices to extract
key features from the input data. CNN architectures can be divided into two parts. The first one consists
of an encoder, built using multiple convolutional layers along with pooling layers to reduce the input
dimensionality. In this section of the architecture, the initial layers produce feature maps containing low-
level information such as edges, as the network deepens, it extracts higher-level concepts such as whole
objects.

The second part of the network varies depending on the application. For image classification, where no
spatial information is needed, the resulting feature maps from the encoder are mapped into a fixed-length
vector using fully connected layers, proposing a confidence percentage for each possible class.

On the other hand, for tasks that use spatial information, like the identification of areas or objects of
interest, a decoder is built using convolutional and upsampling layers. The low-resolution high-level in-
formation of the encoder is transformed into a high-resolution low-level information output. Additionally,
skip connections are added, permitting the decoder to access the low-level information from the encoder in
order to prevent information loss. Figure 1.1 showcases both CNN types of structures.

There is a wide variety of CNN architectures that can extract different types of information from an
image. Following, the most common types of deep CNN architectures, their structures, and their uses are
presented:

3



Convolution

Pooling

Upsampling

Softmax

Skip connections

Person
Tree
House

Traffic light

Fully connected

FIGURE 1.1: CNN types of structures. Top: fully connected structure. Bottom: Encoder-
Decoder structure.

Image classification CNN architecture

Image classification is the task of categorising images into one or multiple predefined classes. Image classi-
fication CNN architectures use a fully connected structure (Figure 1.1) in which spatial information is lost,
and a single label is assigned to an entire image. In these architectures, images can be processed quickly
and often achieve results that surpass human-level accuracy (He et al., 2015). They are commonly used
for simple classification tasks in medical imaging, satellite image processing, traffic control systems, and
machine vision.

Object detection CNN architectures

Object detection is the task of identifying the presence of objects in an image and indicating their class
and location with a bounding box. Object detection CNN architectures use an encoder-decoder structure
(Figure 1.1), maintaining the spatial information needed to detect diverse objects and their position.

Deep learning object detection architectures can be divided into two types, depending on whether they
use two-stage or one-stage algorithms (Lohia et al., 2021). Two-stage algorithms use a CNN network to
extract image features, then, find possible candidate regions from the feature map using a region proposal
network, and finally, perform sliding window operations on candidate regions to determine the object
class and position (Girshick, 2015; Ren et al., 2015). One-stage algorithms use a single CNN that performs
feature extraction, target classification, and position regression to directly predict the class and position
of different targets. One-stage algorithms tend to have lower accuracy than two-stage algorithms but can
process images much faster (Redmon et al., 2016; Liu et al., 2016). Object detection applications include
autonomous driving, animal detection, medical feature detection, and surveillance.

Semantic segmentation CNN architectures

Semantic segmentation is the task of assigning a label to every pixel in an image, clustering the regions
that belong to the same class. Semantic segmentation CNN architectures use an encoder-decoder structure
(Figure 1.1) since spatial information is needed.

Deep learning semantic segmentation architectures can also be divided into two groups. Those with
region-based algorithms, which use the same methodology of two-stage algorithms described in the Ob-
ject detection architectures; and those with fully convolutional algorithms, using only a CNN to perform
the segmentation task, equivalent to one-stage algorithms. Additionally, a combination of features from
object detection and semantic segmentation architectures can be used to perform what is called instance
segmentation, where every individual object in an image is detected, classified, and segmented (He et al.,
2017; Zhang et al., 2020). Some applications for semantic and instance segmentation include autonomous
driving, medical imaging, and document analysis.

Figure 1.2 illustrates the output differences when applying different CNNs architecture types to the
same image.
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FIGURE 1.2: Output obtained when applying image classification (a), object detection (b),
semantic segmentation (c) and instance segmentation (d) over the same image.

1.1.3 Deep learning implementation in marine ecosystems

As previously stated, marine ecosystems are diverse and provide multiple resources to the human popula-
tion. However, anthropogenic factors are negatively impacting these ecosystems, endangering their balance
and the services they provide. The scientific community aims to develop new techniques and mechanisms
to provide reliable, up-to-date information on the state of marine ecosystems so that management decisions
are well-informed.

In recent decades, technological developments in observation and data collection methods have been
able to provide lots of information to ecologists. These developments include advances in visual cameras,
echosounders, hydrophones, and environmental sensors such as temperature, current or salinity sensors.
Concurrently, developments have taken place in the fields of data collection platforms, like underwater
stationary observatories, floating buoys or marine vehicles such as Remotely Operated Vehicles (ROV),
Autonomous Surface Vehicles (ASV) or Autonomous Underwater Vehicles (AUV). Figure 1.3 showcases
different underwater data collection modalities.

ASV Remote
buoy

FIGURE 1.3: Examples of underwater data collection modalities.

The combination of these two factors has resulted in exponential growth of gathered information in
both temporal and spatial terms, allowing researchers to better study underwater ecosystems and their
biotic and abiotic factors (Bacheler et al., 2017). However, the curation and analysis of such vast amounts
of data present some drawbacks if manual processing is needed, becoming a tedious and time-consuming
task. The implementation of deep learning techniques allows to automate the data processing and reduce
the time it takes, enabling the study of long temporal series or large areas and offering extra information to
biologists.

Nonetheless, the application of deep learning implementations in marine ecosystems presents diverse
challenges. Marine ecosystems are one of the less known ecosystems due to being hard to reach and operate
on (Borja, 2014; St. John et al., 2016). Reasons for this include: insufficient oxygen, making it hard to perform
manual labour as all procedures must be conducted by divers; high depth-increasing pressure, enforcing
that all used data-gathering devices, exploration systems or any other equipment, must be able to function
under these conditions; light transmission artefacts related to aquatic mediums that affect the quality of
visual data such as light absorption, scattering or flickering; and the uncontrollable and rapid-changing
nature of its environment, like variations in water turbidity or currents.
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Therefore, despite the previously mentioned advances in data collection methods and platforms, the
amount of data available from marine environments is much lower than others. There exist fewer public
datasets, meaning that, in most cases, new datasets need to be generated, along with their ground truths.
This implies that the size of datasets used to train and test the deep learning networks is usually relatively
small, which is a factor to take into account when selecting a network architecture and designing its train-
ing.

An important aspect of any implementation is the ability to be executed in real-time, enabling the use
of the generated information as input for other systems to make decisions on data collection processes,
perform path replanning for exploration tasks, or take immediate action for protection tasks.

Additionally, as communication methods like cable or WiFi are typically unavailable in underwater
scenarios, implementations benefit from being deployable and executable directly from the data collection
platform without the need for information exchange. Implementations should be efficient and have low
computational costs, considering the limited computational power and battery life of these platforms due
to the constraints of working in underwater environments.

Monitoring biodiversity

Being able to process large temporal and spatial data is crucial for marine biodiversity monitoring. It allows
to better study animal behaviour and early detect growing or declining trends in their numbers, as well as
in algae coverage areas or any other important information that can be extracted through CNNs.

A great variety of CNN object detection architectures have been applied to count, measure or log the
presence of multiple marine species such as fish and corals on underwater imagery (Li et al., 2015; Villon
et al., 2016; Li and Du, 2022; Coro and Bjerregaard Walsh, 2021), whale echolocation clicks on spectrograms
(Bermant et al., 2019); or plankton (Dai et al., 2016; Py, Hong, and Zhongzhi, 2016; Li et al., 2021) and algae
(Park et al., 2022) on microscopic imagery, among others.

Semantic segmentation architectures are mainly used for extracting information of biodiversity from the
benthic zone. In (Alonso et al., 2019) Alonso et al. make use of a semantic architecture along with sparsely
labelled data to perform coral segmentation. Mohamed et al. in (Mohamed, Nadaoka, and Nakamura,
2022) use underwater imagery from a towed camera for automated segmentation of benthic habitats using
unsupervised algorithms. Other works make use of CNNs to perform a patch-based classification of images
containing seagrass meadows and generate a semantic segmentation after merging all patches (Gonzalez-
Cid et al., 2017; Burguera, 2020). Finally, some applications make use of satellite imagery, for example, in
(Gao et al., 2022), Gao et al. use a modified U-Net architecture to segment floating green algae from optical
and SAR images.

Exploration and inspection

The development of ROVs and AUVs into the marine ecosystem has allowed access to deeper ocean re-
gions, to examine larger areas and to operate on more complex underwater scenarios than what was pos-
sible with scuba divers. This, along with the usage of CNN to process the obtained information, offers a
wide variety of possible implementations for exploration and inspection tasks.

Sonar imagery is widely used when performing exploration tasks, as it can quickly cover large areas
while providing good enough resolution. Object detection architectures can be used to detect rather large
objects like human bodies (Nguyen, Lee, and Lee, 2020) or warfare mines (Denos et al., 2017), or applied to
fields such as archaeology, helping to identify shipwrecks of archaeological sites of interest (Nayak et al.,
2021; Character et al., 2021). Semantic segmentation architectures can also be applied to sonar imagery,
performing seafloor habitat mapping of a surveyed area and distinguishing the seafloor substratum (Bur-
guera and Bonin-Font, 2020), or to discover new resource areas in deep-sea mineral exploration (Juliani and
Juliani, 2021).

For inspection and manipulation tasks, the primary sensing modalities used are vision and laser, which
can provide detailed information at short ranges. CNNs can also be applied to the information provided by
these sensing modalities to perform underwater inspection and manipulation tasks in different scenarios
like offshore oil and gas pipeline networks (Bharti, Lane, and Wang, 2020), metallic surfaces (Chen and
Jahanshahi, 2018), or submarine communications cables (Thum et al., 2020).

Environment protection and surveillance

Satellite imagery, along with CNNs, can offer solutions for surveillance purposes such as boat detection to
control illegal fishing, ballast water discharge, or anchoring (Kartal and Duman, 2019; Tang et al., 2020).
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Segmentation networks can also be applied to satellite images to identify and segment oil spills (Huang
et al., 2022; Yang, Singha, and Mayerle, 2022). In underwater imagery, object detection architectures can
be used for ghost fishing gear recognition (Politikos et al., 2021) or underwater gas pipeline leak detection
(Ahmad et al., 2022).

Additional information on the state of the art of the specific applications later presented in this docu-
ment can be found in the publications included in their corresponding chapter.

1.2 Objectives

The main objective of this thesis is to develop deep learning-based tools using CNNs for image and video
processing and efficiently implement them in real-world scenarios for the preservation of marine ecosystem
services. It aims at improving current methods of gathering information by allowing the processing of
data for longer periods of time, easing manual labour through the introduction of automatic systems, and
increasing the accuracy of detection, annotation, and measuring tasks.

Specifically, this thesis aims to develop and implement tools for three tasks, listed below along with a
description of the applications of the tool and specific objectives for each task.

1. Posidonia oceanica monitoring

Posidonia oceanica is an endemic plant of the Mediterranean sea that plays an important role in the marine
and coastal ecosystems (Diaz-Almela and Duarte, 2008). Recent studies have shown a declining trend in its
meadows extension (Marba and Duarte, 2010; Telesca et al., 2015). An important part of Posidonia oceanica
control and recovery comes through monitoring and mapping its meadows, allowing for the early detection
of decline trends or assessment of the effectiveness of recovery measures. The specific objectives for this
application are:

– Develop a tool able to automatically perform high-precision semantic segmentation of Posidonia ocean-
ica meadows and their habitat in sea-floor images, to generate maps and monitor their status.

– Online implementation into Robot Operating System (ROS) middleware (Quigley et al., 2009) to be
deployed on AUVs or ASVs to serve as an input to a decision-time adaptive replanning algorithm to
dynamically adapt the vehicle exploration path.

2. Pipeline Characterisation

There is an increasing need in performing underwater tasks like inspection and intervention on offshore
oil and gas rigs or underwater pipeline networks (Yu et al., 2017; Jacobi and Karimanzira, 2013). This has
motivated the development of AUVs equipped with sensors and manipulators, allowing to reach deeper
and more complex underwater scenarios while reducing the associated risks of such tasks (Ridao et al.,
2015; Heshmati-Alamdari et al., 2018). The specific objectives for this application are:

– Design a system able to automatically identify and gather information from valves, pipes, and struc-
tural elements on underwater pipeline networks and position them in a 3D space.

– Online implementation into ROS middleware to be deployed on AUVs or ASVs providing real-time
information for inspection and manipulation tasks.

3. Jellyfish detection and quantification

Jellyfish have been recognised as an important part of marine ecosystems, providing multiple benefits to
them (Hays, Doyle, and Houghton, 2018; Lamb et al., 2019). Recently, an increase in their numbers has been
linked to global change and anthropomorphic causes (Richardson et al., 2009; Brotz et al., 2012), impacting
human well-being (Lee et al., 2006; Purcell, Baxter, and Fuentes, 2013; Fenner, Lippmann, and Gershwin,
2010). Jellyfish monitoring efforts are often limited in terms of spatial and temporal coverage, resulting in
uncertainty over the species population growth (Pitt et al., 2018). The specific objectives for this application
are:

– Develop a tool capable of automatically detecting different species of jellyfish and quantifying their
presence over long periods of time.
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– Implement the system online to deploy it into a network of buoys to generate real-time logs of jellyfish
presence in a studied area.

Another goal of this thesis is to design, test, and validate a methodology for the development and
efficient implementation of the previously mentioned tools. The proposed methodology is as follows:

1. Communicate with marine biologists and experts to better understand the problem and discuss pos-
sible solutions.

2. Study solutions from a technical viewpoint, accounting for the type of CNN, execution time, accuracy
constraints, deployment platforms, etc.

3. Design efficient data collection experiments, marine environments are hard to reach and images can
be affected by light transmission artefacts or environmental factors.

4. Collect rich and diverse data to train and test the CNNs on a wide variety of scenarios and environ-
mental conditions.

5. Train and test the selected CNN, fine-tuning its hyperparameters taking into account the study stated
in step 2.

6. Develop any post-processing code or algorithms needed to process the network output into useful
information.

7. Efficiently implement the developed tool into deploying platforms, taking into account important
factors such as computational power, heat dissipation, storage space, and communication networks.

8. Perform tests in real-world scenarios to ensure the tool’s applicability and functionality.

9. Provide the necessary software and training to marine biologists and experts so that they can under-
stand and use the developed tools.

1.3 Document Overview

The remainder of this dissertation is organised as follows:
Chapter 2 presents, through the journal article "Deep Semantic Segmentation in an AUV for Online Posi-

donia oceanica Meadows Identification" and conference article "A deep learning solution for Posidonia oceanica
seafloor habitat multiclass recognition", the work carried out on Posidonia oceanica monitoring, showcasing a
deep learning based approach to automatically perform a high-precision semantic segmentation of Posido-
nia oceanica meadows and their habitat.

Chapter 3 covers, through the journal articles "Underwater Pipe and Valve 3D Recognition Using Deep
Learning Segmentation" and "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwater
Intervention Tasks", the work carried out on pipe and valve recognition and characterisation, detailing a
system based on deep learning that automatically identifies and gathers 3D information from underwater
pipeline networks for inspection and manipulation tasks.

Chapter 4 presents, though the journal article "Jellytoring: Real-Time Jellyfish Monitoring Based on Deep
Learning Object Detection", the work carried out on jellyfish detection and quantification, showcasing a
deep learning tool to automatically log the presence of different species of jellyfish over a video feed.

Chapter 5 highlights the main contributions and discusses the relevance of the research. Finally, pro-
poses diverse possible future lines of research.
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Chapter 2

Posidonia oceanica monitoring

This chapter presents the work carried out on Posidonia oceanica monitoring.
Posidonia oceanica is an endemic plant of the Mediterranean sea which offers multiple benefits to the ma-

rine and coastal ecosystems (Diaz-Almela and Duarte, 2008). Recent studies evidence a significant decline
of its meadows on a global scale (Marba and Duarte, 2010; Telesca et al., 2015). An important part of Posido-
nia oceanica control and recovery comes through monitoring and mapping of its meadows and the seafloor
habitat where it develops, allowing for early detection of decline trends or assessment of the effectiveness
of recovery measures. Currently, these monitoring tasks are mostly carried out by divers (Pizarro et al.,
2017), making them slow and costly (Caughlan, 2001; Del Vecchio et al., 2018).

The objective of this work is to automatically perform a high-precision semantic segmentation of Posi-
donia oceanica meadows and their habitat in sea-floor images using deep learning techniques.

The first step was to collect the data to train and test the deep learning architecture. To do so, sev-
eral hundred images of the seafloor containing Posidonia oceanica meadows under different conditions and
sediments were collected using an AUV equipped with cameras. Next, a CNN semantic segmentation
architecture was implemented and trained several times to obtain the best performing hyperparameters,
distinguishing between Posidonia oceanica and background. Later, the selected CNN architecture was mod-
ified to perform multi-class segmentation, allowing the differentiation of other seafloor substrates such as
sand, rocks, Posidonia oceanica matte or dead shoots.

The work carried out in this thesis regarding Posidonia oceanica habitat recognition is described in detail
in two publications. The first one is a journal article explaining the data collection and dataset generation,
the semantic segmentation network selection, hyperparameter tuning, validation, and online implementa-
tion. The second one is a conference article that presents the multi-class segmentation and validation.

Title: Deep Semantic Segmentation in an AUV for Online Posidonia oceanica Meadows Identification
Authors: M. Martin-Abadal, E. Guerrero-Font, F. Bonin-Font and Y. Gonzalez-Cid
Journal: IEEE Access
Published: 11 October 2018
Quality index: JCR2018 Computer science, information systems, IF 4.098, Q1 (23/155)

Title: A deep learning solution for Posidonia oceanica seafloor habitat multiclass recognition
Authors: M. Martin-Abadal, I. Riutort-Ozcariz, G. Oliver-Codina and Y. Gonzalez-Cid
Congress: IEEE Oceans
Date: 17-20 June 2019
Quality index: GGS Conference rating - B
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A B S T R A C T

Recent studies have shown evidence of a significant decline of the Posidonia oceanica meadows on
a global scale. The monitoring and mapping of these meadows are fundamental tools for measuring
their status. We present an approach based on a deep neural network to automatically perform a high-
precision semantic segmentation of the Posidonia oceanica meadows in sea-floor images, o�ering
several improvements over the state-of-the-art techniques. Our network demonstrates outstanding
performance over diverse test sets, reaching a precision of 96.57% and an accuracy of 96.81%,
surpassing the reliability of labeling the images manually. Moreover, the network is implemented
in an autonomous underwater vehicle, performing an online Posidonia oceanica segmentation, which
will be used to generate real-time semantic coverage maps.

1. Introduction
Posidonia oceanica (P.o.) is an endemic seagrass species

of the Mediterranean waters that forms dense and extensive
meadows, o�ering many benefits to the marine and coastal
ecosystems [7]. Recent studies have shown evidence of a
decline at alarming rates of P.o. meadows on a global scale
[16, 32]. For these reasons, the European Commission direc-
tive 92/43/CEE identifies P.o. as a priority natural habitat.

A very important part of P.o. control and recovery comes
through monitoring and mapping of its meadows. These
are fundamental tools for measuring their status, helping to
detect decline trends early on, or address the e�ectiveness of
any protective or recovery initiative.

Nowadays, monitoring tasks are mainly carried out by
divers, who measure manually meadows descriptors such as
extension, shoot density or lower limit depth [25]. Never-
theless, these processes tend to be slow, imprecise and very
resource-consuming.

Other approaches to monitor P.o. include the use of:
multi-spectral satellite imagery [26], acoustic bathymetry
[19] or Autonomous Underwater Vehicles (AUV) equipped
with di�erent sensors, to extract information of P.o. mead-
ows [23, 33]. However, these techniques su�er from lack of
e�ectiveness in deep areas, in segregating P.o. from other
algae types or are not able to perform a fully autonomous
detection.

Recently, Burguera et al. [3] have achieved a fully au-
tonomous detection by means of combining traditional im-
age descriptors alongside Machine Learning (ML) using
Support Vector Machines (SVM). Also, Gonzalez et al.
[11] have explored the idea of using Convolutional Neural
Networks (CNN) for P.o. detection with considerable suc-
cess rates. An inconvenience of these approaches is that
the classification is not made over the image as a whole,
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miguel.martin@uib.es (M. Martin-Abadal); Eric Guerrero-Font

(M. Martin-Abadal)

instead, the image is sub-divided into patches, which are
later classified as P.o. or background. This approach may
lead to information loss, as the classification of a patch is
imposed to all its pixels.

The innovations that this work represents with respect to
recent techniques in automatically identifying P.o. are: 1) the
usage of a more complex deep neural network architecture
that, alongside with 2) a classification by means of semantic
segmentation, allows a 3) full-image pixel wise segmen-
tation instead of a patch-based one, with no information
loss or post processing needed. Finally, as a result of the
aforementioned features, 4) a better accuracy is achieved in
the classification task.

Our goal is to automatically perform a high-precision
P.o. meadow segmentation in sea-floor images gathered by
a bottom-looking camera mounted on an AUV, to assess its
state and evolution over time. Also, we aim to execute the
neural network on an AUV, passing the segmented images to
an algorithm to generate real-time semantic coverage maps
of P.o. areas. These maps can be used in a dynamic path
planning context to adapt the vehicle trajectory, in order
to optimize the mission, in terms of duration, quality and
quantity of the gathered data.

This document is structured as follows. Section 2 ex-
poses the deep network architecture used and its characteris-
tics. Following, Section 3 describes the di�erent study cases,
containing the data acquisition, processing, model tuning
and validation process. Classification results are presented
in Section 4. Finally, Section 5 explains the network imple-
mentation in the AUV.

2. Deep Learning Approach
In the last few years, the new deep learning approaches

have o�ered major improvements in accuracy in many com-
puter vision tasks [27]. Causes of this are: the existence of
more data, increased computation power and the develop-
ment in the network architectures, making deep learning [12]
one of the leading approaches in the field of computer vision.
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Figure 1: Neural network architecture. Encoder: convolutional (blue), pooling (red) and dropout (black) layers. Decoder: skip
(purple), transposed convolutional (green) and softmax (orange) layers. The numbers under and above the layers indicate the
number of feature maps and its size, respectively.

In this work we use a semantic segmentation algorithm,
based on a deep neural network, in order to achieve a seg-
mentation of the P.o. meadows. The following subsections
explain the network architecture and the training details.

2.1. Network Architecture
The architecture can be divided into two main blocks, the

encoder and the decoder.

2.1.1. Encoder

The encoder purpose is to extract features and spatial
information from the original images. For this task, we
make use of the VGG16 architecture [28], taking out the
last classification layer. This architecture uses a series of
convolutional layers to extract the features, along with max
pool layers to reduce the feature maps dimension. Addi-
tionally, the last two fully connected layers of the VGG16
architecture are converted into convolutional layers, in order
to preserve the spatial information and obtain a first low
resolution segmentation.

2.1.2. Decoder

For the decoder, we use the FCN8 architecture [15].
The decoder takes the output from the last convolutional
layer of the encoder and up-samples it using transposed
convolutional layers [8]. Also, skip layers are utilized to
combine low level features from the encoder with the higher
coarse information of the transposed convolutional layers.
Finally, a softmax layer is applied to obtain the prediction
probability for our two classes, background and P.o. The
network architecture is shown in Figure 1.

This architecture, henceforth referred as VGG16-FCN8,
has already presented great results in other segmentation
tasks, like class segmentation of the PASCAL VOC 2011-2
dataset in [15], or road segmentation for autonomous drive
in [31].

2.2. Training Details
The VGG16-FCN8 architecture can be trained on a

single forward-backward pass. The training of the encoder
is performed by readjusting the kernel values in the convo-
lutional layer filters. The decoder is trained by means of the
transposed convolutional and skip layer filters.

In order to train the network we need a set of images
containing P.o., and the corresponding label map of each
image, where P.o. and background areas are marked in
di�erent color codes, acting as ground truth.

We use a cross-entropy loss function to train the network
[4], which loss increases as the predicted probability di-
verges from the actual label, along with the Adam optimizer
[14]. Also, dropout layers with a 0.5 probability are applied
to both fully connected layers of the encoder, to prevent
overfitting [29].

The encoder is initialized using pretrained VGG weights
on ImageNet [6]. For the decoder, the transposed convolu-
tion layers are initialized to perform bilinear upsampling.
For the skip connections we apply a truncated Gaussian
initialization with low standard deviation. These configura-
tion parameters and initialization methods have already been
tested, presenting great results in [31].

3. Experimental Framework
This section exposes the whole experimental framework.

First, it explains the acquisition and labelling of the images
conforming the di�erent datasets, along with its organization
and usage. Next, the di�erent study cases and hyperparam-
eters used are presented. Finally, it describes the validation
and evaluation details.

3.1. Datasets
3.1.1. Acquisition

The images are extracted from several video sequences
obtained using three di�erent cameras mounted alternately
on an AUV: a GoPro, a stereo pair composed by two Manta

Martin-Abadal et al. Page 2 of 12

12



Deep Semantic Segmentation in an AUV for Online Posidonia oceanica Meadows identification

(a) (b)

(c) (d)

Figure 2: Images from different missions showcasing different
P.o. and water conditions.

G283 cameras perfectly synchronised and a Bumblebee2
rewire stereo rig, always facing downwards and with the
lens axis perpendicular to the vehicle horizontal axis. The
original image resolution is normalized and decimated to
480 ù 360pixels for the tests presented in this work. This
reduction of the image size accelerates the segmentation
process considerably, permitting its execution online. The
AUV specifications and the online implementation are fur-
ther developed in Section 5.

Several missions were conducted on P.o. colonized
coastal areas of the west and north-west of Mallorca. The
objective was to obtain datasets under di�erent P.o. condi-
tions such as meadow density, coloration (it changes with
the season and its life cycle) and health state; or water
illumination, depth and turbidity, in order to build varied
datasets to train and test the neural network. In all missions,
the robot was programmed to move at a constant navigation
altitude.

Figure 2 shows sample images from di�erent missions
showcasing di�erent P.o. and water conditions.

3.1.2. Labeling

Label maps are built, manually, from the images gath-
ered by the AUV. These label maps act as ground truth, in
which the areas where P.o. is present are marked in white and
the background areas in black. Figure 3 shows an original
image along with its ground truth label map. It should be
noticed that the boundary of the P.o. meadows is not well
defined, making it hard to exactly determine the boundaries
between the background and P.o. classes.

3.1.3. Dataset Managing

We dispose of six datasets, each one built with images
extracted from video sequences recorded during di�erent
immersions, selecting su�cient images that are representa-
tive of all the aforementioned hardware and environmental
conditions. We gathered one dataset from the Palma Bay,
containing 164 images; another from Cala Blava, with 30

(a) (b)

Figure 3: (a) Original image. (b) Corresponding manually
generated ground truth label map, P.o. is marked in white and
background in black.

Table 1

Dataset managing.
Dataset Location Camera N img. Set

1 Palma Bay Manta G238 164 mix

2 Cala Blava Manta G238 30 mix

3 Valldemossa GoPro 157 mix

4 Valldemossa Manta G238 68 mix

5 Valldemossa Manta G238 41 mix

6 Valldemossa BumbleBee2 23 extra

images; and four more from the Valldemossa port, of 157,
68, 41 and 23 images, respectively.

From all these datasets, two main sets of images are
generated, the mix set, including 460 and the extra set with
23 images. Table 1 indicates the location, camera used,
number of images and the corresponding set of each dataset.

The mix set (460 images) is used to train and test the net-
work, o�ering a wide range of diverse and di�erent textures
containing P.o. and thus, assuring robustness in the training
and model selection process and also in later classification
stages

The extra set (23 images) was grabbed with a camera
di�erent from the others used to grab the videos that form
the mix set, it can be used as an additional test set, allowing
us to detect over tting during the training and to assess how
well the trained network generalizes on images acquired
with a di�erent camera and distinct unseen environmental
conditions.

3.2. Study Cases
When training a neural network, there are parameters

which can be tuned, changing some of the features of the
network or the training process itself. These are the so
called hyperparameters. In order to find the values of these
hyperparameters that o�er the best performance, we train the
network with di�erent values and combinations, which are
shown in Table 2.

First, we train our network with and without implement-
ing data augmentation. Data augmentation is a technique
used to reduce overfitting. It consists of applying contrast
and brightness changes to the training images. Therefore,
the network trains over more diverse data, being able to
perform better on unseen conditions. On the other hand, data
augmentation may cause some accuracy loss on training-like
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Figure 4: Experiment "K" validation process. For each one of the eight study cases, the network is trained five times using the
k-fold cross-validation method, outputting five models. These models are run and evaluated over the mix and extra test sets.
Finally, the ROC curve and AUC value are calculated from the five models mean performance.

Table 2

Study Cases.
Case Data aug. Learning rate Iterations

1

0
1e-05 8k

2 16k
3 5e-04 8k
4 16k
5

1
1e-05 8k

6 16k
7 5e-04 8k
8 16k

images, due to the fact that the network losses specificity
during the training process [30].

After, we set up two di�erent learning rates. The learning
rate value a�ects the size of the steps the network takes when
searching for an optimal solution. Higher learning rates are
able to converge quickly, but may overshoot the optimal
point. In opposition, lower learning rates converge slowly,
and may not be able to get to the optimal point [2].

Finally, we stipulate two di�erent values for the number
of iterations. This parameter sets the number of times the
network backpropagates and trains. A higher number of
iterations may get a better result over the training data, but
also can overfit it, while fewer iterations may not be enough
to reach the optimal point [2].

3.3. Validation
3.3.1. Validation Process

We conduct eight di�erent experiments, each one assess-
ing the performance of a study case.

For each experiment, the network is trained using the
corresponding study case hyperparameters. To do so, we
make use of the k-fold cross validation method [10]. It
consists of splitting our mix set into five equally sized subsets
and train the network five times, each one using a di�erent
subset as test data and the remaining four subsets as train
data. This method reduces the variability of the results, as
these are less dependent on the selected test and training
data, obtaining a more accurate performance estimation.

From the network training, five models are generated,
Mi

K , where K=1. . . 8 represents the experiment number and
i=1. . . 5 the model index. We run the five output models with
their corresponding test subset and also the whole extra set,
obtaining the P.o. predictions, P i

K , of all the models on both
sets. From these predictions, each model is evaluated in order
to assess its segmentation performance, Ri

K . The details
of this process and the evaluation metrics are explained in
Subsection 3.3.2. Finally, the segmentation performance,
RK , of each experiment is computed as the mean of its five
models performance, Ri

K .
From the obtained results, we generate a Receiver Oper-

ating Characteristic (ROC) curve [21]. ROC curves repre-
sent the recall against fall-out values (see equations 3 and
4) of a binary classifier at various threshold settings over
the probabilistic output. We also analyse the Area Under the
Curve (AUC) of the ROC curve, which gives a quantitative
measure of the classifier performance. This value ranges
from 0.5 to 1.0, and grows as the ROC curve is shaped to
the left (low fall-out) top (high recall) corner [13].

The workflow of the validation process of the experi-
ments is shown in Figure 4.

3.3.2. Model Evaluation Details

In order to evaluate the performance of a model, we
convert the probabilistic output of the softmax layer, into
a binary classification image (Figure 5). The output of the
model is binarized at nine equally distributed threshold
values, j=1. . . 9.

The binarized outputs of the model are compared with
the corresponding ground truth label maps. For this task, we
propose a simple pixel wise comparison, analysing for each
pixel if the model classification output is equal or di�erent
to its corresponding ground truth label.

From this comparison, a confusion matrix is generated,
indicating the number of pixel correctly identified as P.o.,
True Positives (TP), and as background, True Negatives
(TN); and the number of pixels wrongly identified as P.o.,
False Positives (FP), and as background, False Negatives
(FN).
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(a) (b)

Figure 5: (a) Probabilistic output and (b) its corresponding
binarized image.
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Figure 6: Model "i" of experiment "K" evaluation process.
For each model, the output prediction is binarized at j=1. . . 9

threshold values. From every binarization "j", a confusion
matrix is constructed and the accuracy, precision, recall and
fall-out values are calculated.

The TP, TN, FP and FN values are used to calculate the
accuracy, precision, recall and fall-out of the model, defined
as:

Accuracy = TP + TN
TP + FP + TN + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

Fall-out = FP
FP + TN

(4)

Accuracy is defined as the percentage of correct pixel
classifications over all classes. Precision represents the per-
centage of TP classifications with respect to all the pixels
classified as positives. Recall refers to the percentage of TP
classifications with respect to all the truly positive pixels.
Fall-out denotes the percentage of FP classifications with
respect to all the truly negative pixels.

The process followed in order to determine the segmen-
tation performance of a model is represented in Figure 6.

4. Classification Results
This section shows the results obtained for each ex-

periment in both test sets (mix and extra), along with the
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Figure 7: Results obtained from evaluating the test images
of the mix set. (a) ROC curves along with their AUC values,
the optimal binarization threshold for each curve is marked
with an "X". (b) Precision and accuracy values at the optimal
binarization thresholds.

hyperparameter selection process to build our final model.
Finally, we perform a comparison of the selected model with
other classification methods and analyse where and why the
classification errors occur.

The notation used to name each experiment makes use of
three numbers. The fist one refers to the data augmentation,
0 if it is not applied, and 1 if it is. The second one indicates
the learning rate value, 1 if it is 1e-05, and 5 if it is 5e-04. The
third one expresses the number of iterations, 8 for 8000 and
16 for 16000. For instance, the "0_1_8" experiment refers to
the experiment in which data augmentation is not applied,
the learning rate is 1e-05 and the network is trained for 8000
iterations.

4.1. Experiments Performance
4.1.1. mix set results

First we analyse the results obtained over the test images
of the mix set. Figure 7(a) represents the ROC curve along
with the corresponding AUC value of each experiment, and
7(b) shows the precision and accuracy obtained for each

Martin-Abadal et al. Page 5 of 12

15



Deep Semantic Segmentation in an AUV for Online Posidonia oceanica Meadows identification

Figure 8: Visualization of the results obtained for images from
the mix set. The results of the segmentation are superimposed,
in green, to the original images.

experiment at its optimal binarization threshold, selected as
the one with the best (higher) trade-o� between recall and
fall-out, calculated as:

T rade-off = Recall + (1 * Fall-out)
2 (5)

All ROC curves have an AUC over 95%, reaching a
maximum of 98.7% for the 1_1_16 experiment. Following
the criteria established in [20], these AUC values represent
excellent classifiers.

The results show that the precision and accuracy val-
ues at optimal thresholds are greater than 90% for all the
experiments. For the precision, the highest point is 96.5%,
achieved in experiment 1_1_16, while the lowest one is
91.0%, obtained in experiment 0_5_8. For the accuracy, the
highest point is 97.5%, achieved in experiment 1_1_8, while
the lowest one is 92.2%, obtained in experiment 1_5_16.

Experiments with the higher learning rate present slightly
worse precision, accuracy and AUC values than the ex-
periments with the lower one. On the contrary, neither
the number of iterations nor the application or not of data
augmentation have a significant impact on the performance.

Qualitative results of the segmentation over the mix set
are shown in Figure 8.

4.1.2. extra set results

While the results over the test data of the mix set are
promising, as mentioned in Subsection 3.1.3, the test images
are from the same immersions as the images used for the
training and thus, the environmental conditions are similar.
In order to assess the performance of the classifiers on
unseen conditions, we analyse the results over the extra set,
which are shown in Figure 9.

The AUC values are significantly lower for the exper-
iments with the higher learning rate, around 92%, inde-
pendently of the data augmentation state or the number of
iterations. Otherwise, the experiments with the lower learn-
ing rate are able to maintain similar results as the previous
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Figure 9: Results obtained from evaluating the test images of
the extra set. (a) ROC curves along with their AUC values,
the optimal binarization threshold for each curve is marked
with an "X". (b) Precision and accuracy values at the optimal
binarization thresholds.

test, reaching values around 97.7% when performing 16000
iterations and 97.0% when 8000. This means that these
experiments do not overfit the training data, generalizing
their training well enough to still perform a good classifi-
cation even on images obtained with a di�erent camera and
environmental conditions that have not been trained on.

This can also be noticed by looking at the precision
and accuracy values, calculated at the optimal binarization
threshold for each experiment. The experiments with the
higher learning rate achieve values around 85% for both
metrics. For the experiments with the lower learning rate,
the precision and accuracy values are around 96% and 95%,
respectively. Again, the experiments performed with 16000
iterations have a slightly higher precision and accuracy
values, while the e�ect of applying data augmentation or not
is negligible.

Qualitative results of the segmentation over the extra set
are shown in Figure 10.
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Figure 10: Visualization of the results obtained for images
from the extra set. The results of the segmentation are
superimposed, in green, to the original images.

4.2. Hyperparameter and Model Selection
4.2.1. Hyperparameters selection

As a result of evaluating all experiments on both test
sets, we can select the hyperparameters that show better
performance.

Firstly, we select a learning rate of 1e-05. The results
obtained on both mix and extra tests clearly show that the
experiments with the lower learning rate obtain better AUC,
precision and accuracy values.

Secondly, we decide to train with 16000 iterations. In the
mix results we can observe that, among the lower learning
rate experiments, those with a larger number of iterations
have a slightly better performance.

Finally, we opt to apply data augmentation in order to
generalize the training to future immersions with new unseen
environmental conditions. The results show that applying it
does not incur in a worse classification over the test data.

4.2.2. Model selection

We make an in-depth study of the performance vari-
ability for the aforementioned selected hyperparameters by
re-conducting ten times the validation process exposed in
Subsection 3.3, obtaining a total of fifty output models. After
evaluating all models, we carry out an statistical analysis,
computing the mean and standard deviation (std) of the
precision and accuracy over both test sets altogether.

For the precision, the mean is 96.95% with a std of
0.97%. For the accuracy, the mean is 96.08% with a std of
0.49%. Such low std’s indicate that all fifty models show a
very similar performance around the mean, meaning that our
network architecture and validation process are robust.

Afterwards, the model with best performance is selected
from the previous fifty. This final model has a precision of
96.57% and an accuracy of 96.81%. This is the selected
model to perform the online segmentation in the AUV.

Figure 11: Images from the croatia test set.

4.3. Comaprison
In this section we present a comparison of the VGG16-

FCN8 architecture with the classification methods men-
tioned in Section I, the Burguera et al. method [3] (hence-
forth ML-SVM) and the Gonzalez-Cid et al. method [11]
(henceforth CNN), as well as to other state-of-the-art seman-
tic segmentation architectures such as the U-Net [24] and the
SegNet [1]. The performance comparison is conducted using
the evaluation metrics de ned in Section III-C.2, which are
obtained from the classification of the images pertaining to
three test sets.

The first test set is the already known extra set, which
contains images with new and unseen water and P.o. condi-
tions for the classifiers.

The second test set (henceforth, croatian set) was pro-
vided by the “Laboratory for Underwater Systems and Tech-
nologies” research group, at the University of Zagreb. It con-
sists of 23 images extracted from video sequences recorded
using a lightweight AUV by Ocenascan-MST and a Lumen-
era Le165 camera during di�erent immersions in the Pelje-
sac peninsula, Croatia. Figure 11 shows images from this test
set.

Finally, the third test set (henceforth, islands set) was
provided by the “Ecología Interdisciplinaria” research group,
at the University of the Balearic Islands. It consists of 27
images extracted from video sequences recorded by scuba-
divers using a GoPro camera during di�erent immersions
in the Mediterranean islands of Ibiza, Formentera and
Menorca. Figure 12 shows images from this test set.

The croatian and islands test sets represent a challenge
for the classifiers, as they were taken in new locations,
following di�erent recording procedures and using di�erent
cameras, thus, the images of these new test sets contain
distinct water and P.o. conditions. Besides, the images were
taken at a di�erent distance to the P.o. meadows and with
a di�erent angle respect the sea-floor, facts that also may
condition the classifiers performance.

These three sets allow us to further test the robustness
of the classifiers and check their capability to be used in
external applications.
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Figure 12: Images from the islands test set.

Table 3

Classification performance comparison over the extra test set.
Method Acc. Prec. Recall Fall-Out
ML-SVM 89.1% 87.1% 94.9% 18.0%

CNN 62.2% 81.0% 31.9% 7.5%

U-Net 93.1% 93.9% 92.1% 6.0%

SegNet 90.0% 90.4% 91.5% 9.7%

VGG16-FCN8 96.1% 97.2% 95.0% 2.8%

Table 4

Classification performance comparison over the croatian test
set.

Method Acc. Prec. Recall Fall-Out
ML-SVM 66.9% 75.0% 37.9% 10.0%

CNN 62.0% 79.7% 32.1% 8.2%

U-Net 82.3% 83.2% 81.0% 16.4%

SegNet 83.2% 73.5% 82.7% 16.3%

VGG16-FCN8 94.0% 93.7% 94.4% 6.4%

For the ML-SVM method, we use the model trained
over color images downsampled to 160x120 pixels and
using 32x24 pixels patches, which was one of the parameter
combinations that showed best results.

For the CNN method, we select the model trained using
a learning rate of 1e-03 for 10 epochs with a batch size of
100.

Finally, for all semantic segmentation methods (VGG16-
FCN8, U-Net and SegNet) we train them using the selected
hyperparameters in Section IV-B.1 and the data from the mix
set.

Tables 3, 4 and 5 show the results of the evaluation
metrics of all compared classification methods over the
extra, croatian and islands test sets, respectively.

We can notice that the CNN method is the worst one
in all test sets, mainly due to the patch-wise classification.
The ML-SVM method seems to have been designed to be
conservative when classifying the P.o. As a result, when it
classifies a pixel as P.o., it is highly likely it is P.o., but the
Recall and Fall-Out values denote that several pixels that
truly are P.o. will be classified as background.

Table 5

Classification performance comparison over the islands test set.
Method Acc. Prec. Recall Fall-Out
ML-SVM 65.7% 88.6% 59.5% 19.0%

CNN 67.6% 65.7% 73.9% 38.6%

U-Net 81.2% 81.2% 81.0% 18.7%

SegNet 70.3% 70.4% 69.8% 29.3%

VGG16-FCN8 87.6% 86.4% 89.2% 14.0%

Consequently, it can be noticed that the ML-SVM method
has a slightly better Precision than the VGG16-FCN8 when
classifying the croatian and islands test sets, but the Recall
and Fall-Out values are significantly worse. On the contrary,
VGG16-FCN8 presents good values in the four metrics,
which implies that it is a better classifier for both P.o. and
background pixels.

On the other hand, considering the three semantic seg-
mentation classifiers, the U-Net and SegNet methods have a
similar performance when classifying extra and croatian test
sets, while U-Net shows better results when classifying the
island test set. VGG16-FCN8 presents the best results of the
three, suggesting again being the best semantic segmentation
classifier.

To sum up, after comparing 5 di�erent classifiers over
3 di�erent sets of P.o. underwater images, the classifier
that presents better results in terms of the four evaluation
metrics: Precision, Accuracy, Recall and Fall-Out, is the one
presented in this paper VGG16-FCN8, indicating that it is
the most robust and the best option for P.o. classification in
underwater images.

4.4. Error Analysis
To train and evaluate the VGG16-FCN8 network we

have made use of labelled images, manually generating the
ground truths. This is a tedious task, subject to errors. Being
aware that the evaluation of the results of the VGG16-FCN8
method could depend on the small errors present in the
ground truth images, this section aims to analyse where and
why the classification errors occur.

In order to do carry out this analysis we evaluate the
mix set test images with the selected nal model from Section
4.2.2. The error analysis is conducted from the binarization
of the probabilistic output at the optimal threshold.

Firstly, we perform a comparison between the binarized
output and the corresponding ground truth images. The areas
where these two images do not match are the FP and FN
classifications. Figure 13 shows a superposition of an origi-
nal image with the aforementioned comparison, marking the
FN in blue and the FP classifications in green.

The majority of the errors are located on the boundaries
of the P.o. meadows. As stated in Subsection 3.1.2, the
boundary of the P.o. meadows is not well defined and hard
to determine exactly, even during the manually ground truth
generation process.

In order to determine if these FN and FP are really
classification errors or a ground truth labeling issue, we
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Figure 13: Superposition of an original test image with the
computed error, generated by comparing the network output
with the image ground truth label map. FN are marked as blue
and FP as green.

(a) (b)

Figure 14: (a) Mean of the manually marked label map and. (b)
Area of uncertainty of the hand labeled ground truth, obtained
as the area where not all ground truths match.

decide to calculate the area of uncertainty of the hand labeled
ground truth and see if the errors are included in it.

To do so, we ask ten people to generate the label maps
of the testing images (without including the one who has
generated the ground truth used to assess the network clas-
sification). Then, we compute the mean grey level for each
pixel of these label maps. The areas where not all ground
truth match, are marked as areas of uncertainty.

Figure 14(a) shows the computed mean label map, and
14(b) shows the obtained area of uncertainty for the original
image shown in Figure 13 .

For this image, a 94.6% of the misclassified pixels fall
into the area of uncertainty of the hand labeled ground truth.
From this, we can infer that most of the network errors do not
come from misclassified pixels, but from the ground truth
labeling process.

Finally, we also calculate the area of uncertainty of
the neural network output as the di�erence in classification
between using 1% and 99% threshold values. This means
that the uncertainty area is conformed by the pixels that
the network is not entirely sure if they belong to the P.o. or
background class.

(a) (b)

Figure 15: (a) Probabilistic output of the network. (b) Area of
uncertainty of the neural network, obtained as the classification
difference when using a very high and a very low threshold.

Figure 15(a) shows the probabilistic output of the net
when evaluating the case study image, and 15(b) shows its
corresponding area of uncertainty of the neural network.

For this image, the area of uncertainty presented by the
network represents an 18.9% of the whole image, while the
one from the hand labeled ground truth is bigger, repre-
senting a 28.5%. As can be seen, both areas of uncertainty
present a very similar shape, located on the boundaries of
the P.o. meadows.

These factors, along with the fact that most FN and FP
are included in the uncertainty area, means that the network
output is more reliable than the manually generated ground
truth label map.

5. AUV Implementation
The objective of this section is to describe the implemen-

tation of the semantic segmentation network in the AUV and
its online execution, using it to generate real-time semantic
coverage maps of P.o. meadows. This is carried out by
surveying the area of interest with an AUV and recording
images and their geolocalization, then, these images are
processed and segmented online and passed to the coverage
map generation algorithm.

In this section we present an overview of the used AUV
characteristics and navigation, and the implementation of
the neural network in the AUV used to perform online
segmentation during the robot operation.

5.1. Turbot AUV
The Turbot AUV (Figure 16), property of the University

of the Balearic Islands, is a SPARUS II model unit [5]. It
is equipped with three motors which grant it three degrees
of mobility (surge, heave and yaw). Also, it has a navigation
payload, composed by: 1) a DVL (Doppler Velocity Log)
to get linear and angular speeds and altitude, 2) a pressure
sensor to get high frequency depth measurements, 3) an IMU
(Inertial Measurement Unit) to measure accelerations and
angular speeds, 4) a Compass for heading, 5) a GPS to be
geo-referenced during surface navigation, and 6) an USBL
(Ultra Short Baseline) acoustic link used for localization and
data exchange between the robot and a remote station.

Furthermore, a stereo pair of Point Grey CM3-U3-31S4
cameras facing downwards provides the robot with images
of 2048 ù 1536pixels resolution. These images are mainly
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Figure 16: Turbot AUV: SPARUS II.

used for three purposes: a) getting visual odometry (altitude
and linear and angular speeds), b) performing online P.o.
segmentation, and c) mapping the surveyed area.

The robot has two computers. One is dedicated to cap-
turing and processing the navigation sensor data and run-
ning the main robot architecture, which is developed under
the ROS middleware [22]. The second computer is where
the image grabbing and online segmentation processes are
executed, its speci cations are: Intel i7 processor working at
2.5 GHz, 4 cores, 8GB of RAM and Ubuntu 16.04 O.S.

To perform a survey mission the vehicle must have a
good estimation of its localization -Where am I?-, a well
defined mission -Where should I go?-, and a proper path
planning approach -How do I get there?-.

The localization of the vehicle is obtained through the
fusion of multiple state estimations produced by the DVL,
IMU, Compass, GPS, USBL, visual odometry and a navi-
gation filter [9]. The survey mission is defined with a series
of waypoints programmed to cover all the desired region,
and with a given altitude, usualy ranging between 2 and 4m,
conditioned by the water turbidity, lighting conditions and
the vehicle cruise speed. Finally, for the sake of simplicity,
the strategy used by the AUV to get to the planned waypoints
is a Line Of Sight (LOS) method applied to control the hor-
izontal position using two lateral thrusters, and an altitude
control using the vertical motor located at its gravity center.

5.2. Online Image Segmentation
5.2.1. Implementation

To perform the online segmentation we implement a
pipeline based on ROS. It loads a frozen inference graph of
a trained model and executes two threads; one for the image
gathering and another for the image segmentation.

The image gathering thread codifies every input image
to RGB and then rectifies and decimates them to 480 ù
360pixels. The image segmentation thread receives the im-
ages and feeds them into the frozen inference graph, which
generates the online P.o. segmentation.

5.2.2. Experiments

The experiments were conducted on the north coast of
Mallorca, in shallow waters of 6m depth. The AUV operated
at a velocity v = 0.4m_s and a navigation altitude a = 2.5m.

In order to perform the segmentation of the images, it
was used the frozen inference graph of the model that has
shown the best performance (selected in Subsection 4.2).
The obtained segmentation framerate was 0.42 FPS.

An illustrative video showing the online segmentation
can be seen on the SRV group web page [18]. The video
shows, at the left of the screen, the video sequence captured
from the camera, and at the right, the results of the segmen-
tation superimposed in green to the original frames.

5.2.3. Validation

The performance is analysed in terms of the obtained
framerate of the output segmentation stream. The only re-
quirement is that, in order to avoid gaps in the generation of
semantic coverage maps, the successive segmented images
need to overlap.

This overlap depends on the camera displacement be-
tween two consecutive keyframes (dKF ) and on the height
of the image footprint (hFP ). Then, the overlap can be
expressed as:

overlap = (hFP * dKF ) � h*1FP (6)

dKF = v � framerate*1 (7)

hFP = (a � himage) � f*1 (8)

Where v denotes the AUV velocity, a the navigation
altitude, himage the image height pixels and f the focal
length.

Using the aforementioned vehicle speed and navigation
altitude, along with an image height resolution of himage =
360pixels, a focal length of f = 623.3p, and the obtained
segmentation framerate. The resulting overlap is 34.0%.
Thus, the framerate is high enough to get images overlap.

6. Conclusion
This section enumerates the main conclusions of this

work. We have used a semantic segmentation deep network
architecture to automatically perform P.o. classification on
underwater images. The obtained results showed (1) very
high levels of accuracy for diverse hyperparameter configu-
rations, the highest one was achieved when data augmenta-
tion was applied and the network was trained with a learning
rate of 1e-05 for 16000 iterations. Also, the low std of the
evaluation metrics indicates that (2) our architecture and
evaluation process are robust.

The error analysis showed that most misclassified pixels
fall into the uncertainty area of the manually generated
ground truth label maps. This is due to the ground truth
issues caused by the fuzzy boundaries of P.o., inferring that
the classification performance might be even better than the
one shown on the results of the validation process.
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This, along with the fact that the uncertainty area of the
network is smaller than the one from the hand labeled ground
truth, means that (3) the reliability of the network was higher
that the manually labeling process.

Finally (4), we have implemented the segmentation pro-
cess running online in an AUV operating in real environ-
ments. From the validation we obtained that the framerate
of the segmented images was high enough to get images
overlap, permitting an adequate semantic mapping of PO
meadows.

Further developments will focus on lightening the online
segmentation computational load while maintaining high
accuracy levels. The aim is to provide more computational
power to forthcoming autonomous exploration techniques
like online mission replanning. Also, we will consider a
multi-class classification, di�erentiating between diverse al-
gae types and backgrounds such as rocks or sand.

The code containing the network architecture and its
training process, along with the used datasets and the codes
to perform the images preprocess, output validation and
error analysis, are available on a GitHub repository [17].
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A B S T R A C T

Recent studies have shown evidence of a significant decline of the Posidonia oceanica meadows on a
global scale. The monitoring and mapping of these meadows and its marine habitat are fundamental
tools for measuring its status and growth opportunities. The presence of hard substrates benefits P.
oceanica survival and development rates. We present an approach based on a deep neural network
to automatically perform a high-precision semantic segmentation of P. oceanica meadows and its
seafloor habitat in sea-floor images, o�ering several improvements over the state of the art techniques.
The presented network is able to accurately distinguish the most relevant classes: P. oceanica
meadows, and rocky and sandy areas.

1. Introduction
Posidonia oceanica is an endemic plant of the Mediter-

ranean sea, declared World Heritage by UNESCO in recog-
nition to its multiple benefits to the marine and coastal
ecosystems [5]. In the last decades its meadows have been
degrading quickly [11][19] due to ambient conditions like
global warming, or the human activity like boat anchoring
[9][13]. For this reasons, the European Commission’s direc-
tive 92/43/CEE defines the P. oceanica as a priority natural
habitat.

A very important part of P. oceanica control and recov-
ery comes through monitoring and mapping of its meadows.
These are fundamental tools for measuring its status, helping
to detect decline trends early on or address the e�ectiveness
of any protective or recovery initiative. Furthermore, it is
important to study the seafloor habitat where this plant
develops, as it will provide information about its expansion
opportunities and survival rate . It has been proved that due
to its root system adhesive properties, the P. oceanica prefers
hard substrates like rocky ones over the sandy ones [8][1].

Currently, these monitoring tasks are mostly carried out
by divers, measuring in a manual manner meadow param-
eters such as lower limit depth, shoot density or extension
[16]. However, the collection of these data is slow and
costly [3][4]. Diverse studies have tackled the automation of
this process, Recently [2] has achieved a fully autonomous
detection by means of combining traditional image descrip-
tors alongside Machine Learning (ML) with Support Vector
Machines (SVM). Also, in [7] the idea of using Convolu-
tional Neural Networks (CNN) for P. oceanica detection was
explored with considerable success rates. Finally, in [12] a
pixel-wise semantic segmentation of P. oceanica is carried
out using deep learning techniques.

Nevertheless, these approaches present a variety of in-
conveniences. In [2] and [7] the classification is not made
over the image as a whole, instead, the image is sub-divided

<Corresponding author
miguel.martin@uib.es (M. Martin-Abadal)

into patches, which are later classified as P. oceanica or
background, leading to information loss on the meadow
boundaries. Moreover, in all of the previously mentioned
approaches only the P. oceanica class was classified, without
taking into account the rest of the surrounded seafloor habitat
elements.

This paper presents an approach based on a deep se-
mantic neural network to automatically perform a multiclass
high-precision pixel-wise classification of sea-floor images.
We established di�erent sets of classes to train and test the
network, comparing the results between them and identify-
ing the ones that were more useful to define the P. oceanica
meadows and its seafloor habitat.

The remainder of this paper is structured as follows.
Section 2 presents the deep neural network architecture and
its characteristics. Section 3 describes the adopted method-
ology and materials used in this work. The experimental
results and discussions are presented in Section 4. Finally,
Section 5 exposes the main conclusions and outlines possible
future lines of work.

2. Deep Learning approach
In this work we use a semantic segmentation algorithm,

based on a deep neural network, in order to achieve the
classification of P. oceanica and its seafloor habitat.

The architecture of the network, shown in Figure 1,
can be divided into two main blocks, the encoder and the
decoder. The encoder purpose is to extract features and
spatial information from the original images. For this task,
we make use of the VGG16 CNN architecture [17], based on
convolutional and pooling layers.

For the decoder, we use the FCN8 architecture [10]. The
decoder takes the output from the last convolutional layer
of the encoder and up-samples it using skip and transposed
convolutional layers [6]. Finally, a softmax activation layer
generates a gray scale confidence map for each class. These

Martin-Abadal et al. Page 1 of 7
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Figure 1: Neural network architecture. Encoder: convolutional (blue), pooling (red) and dropout (black) layers. Decoder: score
(purple), transposed convolutional (green) and softmax (orange) layers. The numbers under and above the layers indicate the
number of feature maps and its size, respectively.

maps are later converted into the final prediction by assign-
ing to each pixel of the original image the class with highest
confidence level.

The training process makes use of images containing
P. oceanica and its seafloor habitat, along with their cor-
responding label maps, where each class is marked in a
di�erent colour, acting as ground truth.

For the network hyperparameters, we used a learning rate
of 1e-05 and perform 16000 iterations. We also applied data
augmentation. This architecture and training hyperparame-
ters have already presented great results in other segmen-
tation tasks, like class segmentation of the PASCAL VOC
2011-2 dataset in [10], road segmentation for autonomous
drive in [18], or P. oceanica meadow segmentation in [12].

3. Methodology
This section explains the acquisition method and la-

belling process of the training and testing data. Next, the
di�erent sets of studied classes are presented. Finally, it
describes the evaluation process and metrics.

3.1. Data
The required images to train and test the neural network

were extracted from several underwater videos. These videos
were recorded by a bottom looking camera mounted on
an Autonomous Underwater Vehichle (AUV). The videos
correspond to six immersions conducted on di�erent coastal
areas of Majorca island. The objective was to build a robust
dataset of images gathered under di�erent conditions such
as P. oceanica meadow density, coloration and health state;
or water illumination, depth and turbidity.

Using this method we obtained 302 images, an 80% (242
images) were used for the network training, and a 20% (60
images) to test the obtained model. From each image we
generated one label map for each studied class, acting as
ground truth. The areas where the corresponding class was
present were marked in white, and the rest in black. From
these label maps (one for each studied class that is present)

(a)

(b)

(c)

Figure 2: (a) Original image. (b) Class BW ground truth label
maps. (c) Merged final RGB label map. For this set of classes:
P. oceanica is marked in green, rock in red, sand in yellow, and
background in black.

we built a merged final label map for each original image,
marking the areas were each of the studied classes were
present with a di�erent colour. Figure 2 shows an original
image along with its ground truth label maps in black and
white and the merged final label map.

3.2. Class sets definition
The seafloor habitat in which P. oceanica develops are

mainly sandy and rocky seafloors. In order to best describe
this particular seafloor habitat we decided to distinguish

Martin-Abadal et al. Page 2 of 7

24



A deep learning solution for Posidonia oceanica seafloor habitat multiclass recognition

Table 1

Class sets and corresponding colour code.

Po-a Po-d Rock Sand Matte Back
Set 1
Set 2
Set 3

between six classes, used to define the areas where di�erent
elements were present. These classes were:

• Alive P. oceanica (Po-a): healthy, grown P. oceanica
areas.

• Dead P. oceanica (Po-d): areas with congregated
dead shoots of P. oceanica .

• Rock (Rock): rocky areas.

• Sand (Sand): sandy areas.

• P. oceanica dead matte (Matte): areas where the P.
oceanica has died and only its dead matte is left.

• Background (Back): areas containing elements dif-
ferent from the specified above or unrecognisable
areas.

Since some of these classes look alike and present simi-
lar features, we decided to group some of them and establish
three di�erent sets of classes. On the first set (Set 1), we
just contemplated four classes: Po (containing both Po-a
and Po-d), Sand, Rock and Back. In this set we did not
distinguished neither between alive and dead P. oceanica
nor the areas where dead matte was present (class Matte),
which were classified either as Rock or Sand. The second
set (Set 2) had the same Rock, Sad and Back classes, but we
distinguished between alive and dead P. oceanica, obtaining
the Po-a and Po-d classes, respectively. Finally, the third set
(Set 3) contained the Set 2 classes and also contemplated the
P. oceanica dead matte class (Matte). The set classes along
with the colour code used to generate the ground truth label
maps for each set is represented in Table 1.

3.3. Evaluation
As stated in section 2, the output of the network is a grey

scale map of each studied class indicating the probability of
the pixel to correspond to that class. Later these predictions
are merged into a final prediction, which classifies each pixel
of the original image into one of the selected classes. The
conducted evaluation can be splitted into two steps, the first
one take into account the first predictions, and the second
one the merged final prediction.

The first step focuses in the comparison between the raw
grey scale maps outputted by the network for each class
and their corresponding BW ground truth label maps. We
generated a Receiver Operating Characteristic (ROC) curve
[15] for each class. The ROC curve represents the recall
against fall-out values of a binary classifier when performing
a gray level threshold sweep over the probabilistic output.

NETWORK PREDICTION

GROUND TRUTH

MERGED

ROC
AUC

CONF. MATRIX
ACCURACY
PRECISION

RECALL
F1 SCORE

MERGED

Figure 3: Evaluation workflow.

Finally, we calculated the Area Under the Curve (AUC)
of the ROC curve. This metric gives information on how
well the network was able to identify each class separately,
without interfering and overlapping one with each other.

The second evaluation step is targeted on the comparison
between the merged final predictions of the network and the
merged final RGB ground truth. We compared these two
label maps pixel-wise and generated a multiclass confusion
matrix, indicating for each class: the number of pixel cor-
rectly identified belonging to that class, the True Positives
(TP) and not belonging to it, the True Negatives (TN); and
the number of pixels wrongly identified belonging to that
class, the False Positives (FP), and not belonging to it, the
False Negatives (FN).

Finally, the TP, TN, FP and FN values are used to
calculate the accuracy, precision, recall and F1 score for
each class. Indicating how well each class was classified
after merging the gray scale results and assigning the higher
confidence one class to each pixel. Figure 3 represent the
evaluation workflow.

4. Experimental results and discussion
This section presents and discusses the results of the

neural network classification evaluation when trained and
tested using each one of the three sets of classes established
in Subsection 3.2.
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Table 2

Set 1 confusion matrix.
Predicted

Po Rock Sand Back

R
ea

l

Po 94.0 3.8 1.6 0.6
Rock 1.2 97.4 1.3 0.1
Sand 0.4 3.4 95.7 0.6
Back 54.4 28.1 1.2 16.3

Table 3

Set 1 results.
Area Acc. Prec. Rec. F1 AUC

Po 50,1 95,4 93,6 97,4 95,5 96,6
Rock 38,4 93,8 90,3 94,0 92,1 98,6
Sand 5,5 98,4 79,3 95,7 86,7 99,6
Back 6,0 94,7 77,7 16,3 27,0 84,4

For each set, we present two tables. The first one show-
cases the obtained multiclass confusion matrix. The sec-
ond table presents the AUC value obtained for each class
evaluated individually (first evaluation step), along with the
Accuracy, Precision, Recall and F1 score for each class
obtained from the merged final label map evaluation (sec-
ond evaluation step). Furthermore, in order to give some
prospective of the importance of each class, we added a
column in the second table indicating the percentage of area
present in the ground truth corresponding to each class.

4.1. Set 1 results
Tables 2 and 3 present the results obtained from training

and testing the network using the Set 1 classes.
From the multiclass confusion matrix in Table 2, it can

be seen that the Po, Rock and Sand classes are identified
very accurately. On the other hand the Back class is mostly
missclassified as Po and Rock. This results can also be seen
looking at the results in Table 3, where the Po, Rock and
Sand classes achieve relatively high F1 scores, while the
Back class only reaches a 27%.

Also, it can be seen in Table 3 that the AUC values are
high for all classes, reaching numbers around 98% for the Po,
Rock and Sand classes, and a value of 84.4% for the Back
class. Following the criteria established in [14], these AUC
values represent excellent and good classifiers, respectively.
That indicates that the network is able to identify each class
when evaluated independently, but as the predictions are
merged into the final prediction, the Back class is mostly
overlapped by the others, due to its lower confidence levels.
The network is not able to classify the Back class with high
confidence levels due to the fact of being so diverse, as it
contains all the elements that could not be classified into
the other classes, making harder for the network to extract
generalised features.

Figure 4 shows a qualitative comparison between the
semantic network prediction and the ground truth label maps
of two test images when the network was trained and tested
using the Set 1 classes.

Figure 4: Set 1 prediction examples. First row: Raw input
image. Second row: ground truth image. Third row: semantic
segmentation output superimposed to the original images.

Table 4

Set 2 confusion matrix.
Predicted

Po-a Po-d Rock Sand Back

R
ea

l

Po-a 98.5 0.0 1.2 0.3 0.0
Po-d 39.6 19.1 19.8 21.6 0.0
Rock 3.8 0.0 96.1 0.1 0.0
Sand 3.1 5.1 9.9 81.9 0.1
Back 29.4 0.0 62.6 0.4 7.7

Table 5

Set 2 results.
Area Acc. Prec. Rec. F1 AUC

Po-a 49,7 95,7 93,3 98,5 95,8 98,8
Po-d 0,4 99,4 19,9 19,1 19,5 86,1
Rock 38,4 93,5 88,1 96,1 91,9 96,8
Sand 5,5 98,7 93,9 81,9 87,5 98,8
Back 6,0 94,4 94,9 7,7 14,3 84,0

4.2. Set 2 results
Tables 4 and 5 present the results obtained from training

and testing the network using the Set 2 classes.
From the confusion matrix it can be seen that the Po-

a, Rock and Sand classes were classified very accurately,
while the Back class is, again, mostly missclassified as Po-
a and Rock. The new added class in Set 2, the Po-d (areas
with congregations of dead P. oceanica shoots), showed poor
results, as it was only classified correctly in 34.9% of the
cases and was missclassified as the Po-a class 17.2% of the
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Figure 5: Set 2 prediction examples. First row: Raw input
image. Second row: ground truth image. Third row: semantic
segmentation output superimposed to the original images.

times , due to the high similarity with this class, and 38.2%
of the times as the Sand class, due to the fact that the dead
shoots of P. oceanica are mostly found lying over sandy
areas. This can also be appreciated by looking at the F1
scores on Table 5, where the values of the Po-a, Rock and
Sand classes are very high, while the ones presented by the
Po-d and Back are 19.1% and 7.7%, respectively.

On Table 5 it can also be seen that the percentage of area
corresponding to the Po-d class is only 0.4%, meaning that
the network almost did not have information corresponding
to this class to train on. On the other hand, the percentage of
area corresponding to the visually similar Po-a class is much
higher, a 49.7%, allowing the network to extensively train on
this class and to identify it easily, adding to the reasons why
the Po-d is largely missclassified as Po-a. Finally, the ob-
tained AUC values were high for all classes when evaluated
individually. The Po-a, Rock and Sand classes fall into the
excellent rating and the Po-d and Back into the good one.

Figure 5 shows a qualitative comparison between the
semantic network prediction and the ground truth label maps
of two test images when the network was trained and tested
using the Set 2 classes.

4.3. Set 3 results
Tables 6 and 7 present the results obtained from training

and testing the network using the Set 3 classes.
The results obtained for the Po-a, Po-d, Rock, Sand, and

Back classes are similar to those obtained for Set 1 and 2.
The Po-a, Rock and Sand classes obtained high classification

Table 6

Set 3 confusion matrix.
Predicted

Po-a Po-d Rock Sand Matte Back

R
ea

l

Po-a 95.8 0.0 2.5 1.5 0.0 0.2
Po-d 17.2 34.9 9.1 38.2 0.0 0.6
Rock 2.0 0.0 92.7 4.3 0.0 1.0
Sand 0.8 5.5 1.1 92.2 0.4 0.1
Matte 6.8 33.3 0.0 54.2 5.7 0.0
Back 23.5 0.0 52.6 2.0 0.0 21.9

Table 7

Set 3 results.
Area Acc. Prec. Rec. F1 AUC

Po-a 49.7 95.6 95.3 95.8 95.5 98.6
Po-d 0.4 99.2 19.6 34.9 25.1 97.2
Rock 38.3 92.7 88.7 92.7 90.7 97.7
Sand 4.8 96.6 59.4 92.2 72.3 98.9
Matte 0.7 99.3 70.1 5,7 10.6 97.4
Back 6.0 94.8 73.0 21.9 33.8 88.2

results, with F1 score values of 95.5%, 92.7% and 72.3%,
respectively. In this case, the Sand class performance was
lower than the previous sets since the number of missclas-
sified areas of other classes into the Sand class was higher.
The Po-d and Back classes only were correctly identified in
a 34.9% and 21.9% of the cases, respectively. Additionally,
all those classes presented excellent results when evaluated
individually, presenting AUC values around 97.5%.

Finally, the new added class in Set 3, the Matte (P.
oceanica dead matte areas), was only correctly classified
5.7%. It was mostly missclassified as Po-d and Sand. The
reasons for that include the fact that, as occurred for the Po-
d class, only a 0.7% of the total area corresponded to the
Matte class, making hard for the network to train on it. Also,
it is worth mentioning that, during the manual ground truth
labelling process, it is sometimes hard to distinguish clearly
the Matte class, as it is usually partially covered by dead
shoots of P. oceanica or sand. This issue also contributed in
the poor performance over the Matte class. Nonetheless, an
AUC value of 88.2% was achieved for the Matte class when
evaluated individually, meaning that the network is able to
identify it, but with low confidence percentages.

Figure 6 shows a qualitative comparison between the
semantic network prediction and the ground truth label maps
of two test images when the network was trained and tested
using the Set 3 classes.

5. Conclusions and future work
This paper presented the usage of a semantic segmen-

tation deep neural neural network architecture to perform
a classification of P. oceanica meadows and its marine
seafloor habitat. The main advantage of the system presented
versus the current state of the art techniques are that: it is
able to perform a pixel-wise segmentation, not losing any
information, without needing any post-processing; and the
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Figure 6: Set 3 prediction examples. First row: Raw input
image. Second row: ground truth image. Third row: semantic
segmentation output superimposed to the original images.

fact that it is able to distinguish between several classes at
the same time.

The neural network evaluation over three di�erent sets
of classes showed very high performance metrics for the Po-
a, Rock and Sand classes, which are three most area-wise
dominant classes, being as well the most important for the re-
search objective. On Sets 2 and 3, the PO-d and Matte classes
were introduced, trying to define better the seafloor habitat
and P. oceanica status, obtaining more detailed information.
Nonetheless, the results showed poor classification perfor-
mance for those classes in the final predictions, although it
was able to identify them when evaluated separately, before
being overlapped by higher confidence classes afterwards.

The poor performance obtained over these classes can be
mainly attributed to two factors. The first one is the fact that
these classes represent a small percentage of area of the P.
oceanica seafloor habitat with respect to other classes like
the Po-a or Rock, making it hard for the network to learn
its features and consequently, being able to classify them
correctly. The network always tends to classify these small
represented classes into one of the more abundant ones. The
second fact that a�ected the performance of these classes is
the high similarity between some of them, making it hard
to be distinguished even during the manual ground truth
labelling process. For example, there are areas where it is
hard to determine if the P. oceanica present is alive (Po-a
class) or it is a voluminous congregation of dead shoots (Po-
d class). Also, it is hard to establish a strict classification
when some of the classes are overlapped, such as dead shoots

of P. oceanica laid over a rock or sand; or sand being on top
of a P. oceanica dead matte.

Further developments will focus on the acquisition of
new data containing seafloor habitat elements of the less rep-
resented classes (Po-d and Matte) in order to train over more
data and learn its features better. Also, new hyperparameter
setting of the network training could be tested.

As of the work presented in this paper, the final merged
prediction for all classes is generated by selecting the class
with higher confidence for each pixel. Seeing the perfor-
mance drop that the network had when classifying lower
area-wise represented classes between the individual eval-
uation versus the merged one. Some rules could be applied
to that final merged prediction generation process. The goal
would be to favour the appearance of these inferior repre-
sented classes even when the confidence level was lower.

Finally, in order to help distinguish between visually
similar classes live Po-a from Po-d, we will work in the intro-
duction of 3D information data into the training process, as
it is available since the images were acquired using a stereo
camera. This will help the network to extract features based
on the 3D information, being able to better di�erentiate
classes like healthy voluminous P. oceanica meadows (Po-
a) from congregations of dead shoots lying on the seafloor
(Po-d).
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Chapter 3

Pipeline characterisation

This chapter presents the work carried out on underwater pipe and valve recognition and characterisation.
Over the last few decades, underwater intervention has experienced an uprise due to the increasing

need to perform inspection and intervention tasks on industrial infrastructures, such as offshore oil and
gas rigs or underwater pipeline networks (Yu et al., 2017; Jacobi and Karimanzira, 2013).

Recently, the usage of Autonomous Underwater Vehicles and manipulators has eased the workload
and risks of such interventions, automating these tasks by gathering information from their surroundings,
interpreting it and making decisions based on it (Ridao et al., 2015; Heshmati-Alamdari et al., 2018).

The objective of this work is to design an automated system that can identify and gather information
on valves, pipes, and structural elements of underwater pipeline networks. Later, the different elements
should be positioned in a 3D space to provide information during manipulation tasks and build information
maps to accurately depict the layout of a pipeline network.

The first step was to collect point cloud data to train and test a 3D deep learning segmentation archi-
tecture. Several hundred point clouds, containing different layouts of underwater pipes and valves, were
generated using stereoscopic vision from a pair of cameras mounted on diverse marine vehicles. Following,
two deep learning architectures were implemented and tested to find the best performing hyperparameters
for pipe and valve segmentation. Finally, algorithms were developed to extract manipulation information
from the detected instances, such as pipe vectors, gripping points, the position of structural elements like el-
bows or connections, and valve type and orientation. Additionally, if point clouds are spatially referenced,
an information map of an inspected area can be created.

All work is described in detail in two published journal papers. The first one details the data gathering
process and the network selection, training, and evaluation, as well as hyperparameter study in terms of
segmentation performance and computational time. The second article presents an upgrade of the used
segmentation network and introduces new training and testing data. Additionally, the information ex-
traction and unification algorithms are described and validated. Finally, the article describes the online
implementation and execution of the network and algorithms on an AUV, providing real-time information
for inspection and manipulation tasks.
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A B S T R A C T

During the past few decades, the need to intervene in underwater scenarios has grown due to the
increasing necessity to perform tasks like underwater infrastructure inspection and maintenance or
archaeology and geology exploration. In the last few years, the usage of Autonomous Underwater
Vehicles (AUVs) has eased the workload and risks of such interventions. To automate these tasks, the
AUVs have to gather the information of their surroundings, interpret it and make decisions based on it.
The two main perception modalities used at close range are laser and video. In this paper, we propose
the usage of a deep neural network to recognise pipes and valves in multiple underwater scenarios,
using 3D RGB point cloud information provided by a stereo camera. We generate a diverse and rich
dataset for the network training and testing, assessing the e�ect of a broad selection of hyperparameters
and values. Results show F1-scores of up to 97.2% for a test set containing images with similar
characteristics to the training set and up to 89.3% for a secondary test set containing images taken at
di�erent environments and with distinct characteristics from the training set. This work demonstrates
the validity and robust training of the PointNet neural in underwater scenarios and its applicability for
AUV intervention tasks.

1. Introduction
During the past few decades, the interest in underwa-

ter intervention has grown exponentially as more often it
is necessary to perform underwater tasks like surveying,
sampling, archaeology exploration or industrial infrastruc-
ture inspection and maintenance of o�shore oil and gas
structures, submerged oil wells or pipeline networks, among
others [2, 7, 11, 24, 52].

Historically, scuba diving has been the prevailing method
of conducting the aforementioned tasks. However, perform-
ing these missions in a harsh environment like open water
scenarios is slow, dangerous, and resource consuming. More
recently, thanks to technological advances such as Remotely
Operated Vehicles (ROVs) equipped with manipulators,
more deep and complex underwater scenarios are accessible
for scientific and industrial activities.

Nonetheless, these ROVs have complex dynamics that
make their piloting a di�cult and error-prone task, requir-
ing trained operators. In addition, these vehicles require a
support vessel, which leads to expensive operational costs.
To mitigate that, some research centres have started work-
ing towards intervention Autonomous Underwater Vehicles
(AUVs) [20, 35, 48]. In addition, due to the complexity of the
Underwater Vehicle Manipulator Systems (UVMS), recent
studies have been published towards its control [19, 39].

Traditionally, when operating in unknown underwater
environments, acoustic bathymetric maps are used to get a
first identification of the environment. Once the bathymetric
information is available, ROVs or AUVs can be sent to obtain
more detailed information using short distance sensors with
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miguel.martin@uib.es (M. Martin-Abadal)

higher resolution. The two main perception modalities used
at close range are laser and video, thanks to their high resolu-
tion. They are used during the approach, object recognition
and intervention phases. Existing solutions for all perception
modalities are reviewed in Section 2.1.

The underwater environment is one of the most prob-
lematic in terms of sensing in general and in terms of object
perception in particular. The main challenges of underwa-
ter perception include distortion in signals, light propaga-
tion artefacts like absorption and scattering, water turbidity
changes or depth-depending colour distortion.

Accurate and robust object detection, identification of
target objects in di�erent experimental conditions and pose
estimation are essential requirements for the execution of
manipulation tasks.

In this work, we propose a deep learning based approach
to recognise pipes and valves in multiple underwater scenar-
ios , using the 3D RGB point cloud information provided by
a stereo camera, for real-time AUV inspection and manipu-
lation tasks.

The remainder of this paper is structured as follows:
Section 2 reviews related work on underwater perception
and pipe and valve identification and highlights the main
contributions of this work. Section 3 describes the adopted
methodology and materials used in this study. The exper-
imental results are presented and discussed in Section 4.
Finally, Section 5 outlines the main conclusions and future
work.

2. Related Work and Contributions
2.1. State of the Art

Even though computer vision is one of the most com-
plete and used perception modalities in robotics and object
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recognition tasks, it has not been widely used in underwater
scenarios. Light transmission problems and water turbidity
a�ect the images clarity, colouring and produce distortions;
these factors have favoured the usage of other perception
techniques.

Sonar sensing has been largely used for object localisa-
tion or environment identification in underwater scenarios
[4, 27]. In [29], Kim et al. present an AdaBoost based
method for underwater object detection, while Wang et al.
[51] propose a combination of non-local spatial information
and frog leaping algorithm to detect underwater objects in
sonar images. More recently, object detection deep learn-
ing techniques have started to apply over sonar imaging
in applications such as detection of underwater bodies in
[33, 34] or underwater mine detection in [12]. Sonar imaging
also presents some drawbacks as it tends to generate noisy
images, losing texture information; and are not capable
of gathering colour information, which is useful in object
recognition tasks.

Underwater laser scans are another perception technique
used for object recognition, providing accurate 3D data. In
[43], Palomer et al. present the calibration and integration of
a laser scanner on an AUV for object manipulation. Himri
et al. [21, 22] use the same system to detect objects using
a recognition and pose estimation pipeline based on point
cloud matching. Inzartsev et al. [23] simulate the use of
a single beam laser paired with a camera to capture its
deformation and track an underwater pipeline. Laser scans
are also a�ected by light transmission problems, have a very
high initial cost and can only provide colourless point clouds.

The only perception modality that allows gathering of
colour information for the scene is computer vision. Fur-
thermore, some of its aforementioned weaknesses can be
mitigated by adapting to the environmental conditions, ad-
justing the operation range, calibrating the cameras or colour
correcting the obtained images.

Traditional computer vision approaches have been used
to detect and track submerged artifacts [1, 9, 41, 44], cables
[13, 38, 42] and even pipelines [15, 38, 50, 53]. Some
works are based on shape and texture descriptors [15, 38]
or template matching [30, 32], while others exploit colour
segmentation to find regions of interest in the images, which
are later further processed [3, 44].

On pipeline detection, Kallasi et al. in [28] and Razzini
et al. in [35, 36] present traditional computer vision methods
combining shape and colouring information to detect pipes
in underwater scenarios and later project them into point
clouds obtained from stereo vision. In these works, the point
cloud information is not used to assist the pipe recognition
process.

The first found trainable system to detect pipelines is
presented in [47] by Rekik et al. using the objects structure
and content features along a Support Vector Machine to clas-
sify between positive and negative underwater pipe images
samples. Later, Nunes et. al introduced the application of a
Convolutional Neural Network in [40] to classify up to five
underwater objects, including a pipeline. In both of these

works, no position of the object is given, but simply a binary
output on the object’s presence.

The application of computer vision approaches based
on deep learning in underwater scenarios has been limited
to the detection and pose estimation of 3D-printed objects
in [26] or for living organisms detection like fishes [25] or
jellyfishes [37]. Few research studies involving pipelines are
restricted to damage evaluation [10, 31] or valve detection
for navigation [46] working with images taken from inside
the pipelines. The only known work addressing pipeline
recognition using deep learning is from Guerra et al. in [17],
where a camera-equipped drone is used to detect pipelines
in industrial environments.

To the best knowledge of the authors, there are not works
applying deep learning techniques in underwater computer
vision pipeline and valve recognition, nor implementing the
usage of point cloud information on the detection process
itself.

2.2. Main Contributions
The main contributions of this paper are composed of:

1. Generation of a novel point cloud dataset containing
pipes and di�erent types of valves in varied under-
water scenarios, providing enough data to perform a
robust training and testing of the selected deep neural
network.

2. Implementation and testing of the PointNet architec-
ture in underwater environments to detect pipes and
valves.

3. Studying the suitability of the PointNet network on
real-time autonomous underwater recognition tasks in
terms of detection performance and inference time by
tuning diverse hyperparameter values.

4. The datasets (point clouds and corresponding ground
truths) along with a trained model are provided to the
scientific community.

3. Materials and Methods
This section presents an overview of the selected net-

work; explains the acquisition, labelling and organisation of
the data; and details the studied network hyperparameters,
the validation process and the evaluation metrics.

3.1. Deep Learning Network
To perform the pipe and valve 3D recognition from point

cloud segmentation, we selected the PointNet deep neural
network [8]. This is a unified architecture for applications
ranging from object classification and part segmentation to
scene semantic segmentation. PointNet is a highly e�cient
and e�ective network, obtaining great metrics in both object
classification and segmentation tasks in indoor and outdoor
scenarios [8]. However, it has never been tested in underwa-
ter scenarios. The whole PointNet architecture is shown in
Figure 1.
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Figure 1: PointNet architecture. Reproduced from [8], with permission from publisher Hao Su, 2020.

In this paper, we use the Segmentation Network of Point-
Net. This network is an extension to the Classification Net-
work, as it can be seen in Figure 1. Some of its key features
include:

• The integration of max pooling layers as symmetric
function to aggregate the information from each point,
making the model invariant to input permutations.

• Being able to predict per point features that rely both
on local structures from nearby points and global in-
formation which makes the prediction invariant to ob-
ject transformations such as translations or rotations.
This combination of local and global information is
obtained by concatenating the global point cloud fea-
ture vector with the local per point features.

• Making the semantic labeling of a point cloud in-
variant to the point cloud geometric transformations
by aligning all input set to a canonical space before
feature extraction. To achieve this, an a�ne transfor-
mation matrix is predicted using a mini-network (T-
net in Figure 1) and directly applied to the coordinates
of input points.

The PointNet architecture takes as input point clouds and
it outputs a class label for each point. During the training, the
network is also fed with ground truth point clouds, where
each point is labelled with its pertaining class. The labelling
process is further detailed in Section 3.2.2.

As the original PointNet implementation, we used a
softmax cross-entropy loss along an Adam optimiser. The
decay rate for batch normalisation starts with 0.5 and is
gradually increased to 0.99. In addition, we applied a dropout
with keep ratio 0.7 on the last fully connected layer, before
class score prediction. Other hyperparameters values such
as learning rate or batch size are discussed, along other
parameters, on Section 3.3.

Furthermore, to improve the network performance, we
implemented an early stopping strategy based on the work of

Prechelt in [45], assuring that the network training process
stops at an epoch that ensures minimum divergence be-
tween validation and training losses. This technique allows
for obtaining a more general and broad training, avoiding
overfitting.

3.2. Data
This subsection explains the acquisition, labelling and

organisation of the data used to train and test the PointNet
neural network.

3.2.1. Acquisition

As mentioned in Section 3.1, the PointNet uses point-
clouds for its training and inference. To obtain the point
clouds, we set up a Bumblebee2 Firewire stereo rig [14]
on an Autonomous Surface Vehicle (ASV) through a Robot
Operating System (ROS) framework.

First, we calibrated the stereo rig both on fresh and salt
water using the ROS package image_pipeline/camera_calibration
[5, 6]. It uses a chessboard pattern to obtain the camera,
rectification and projection matrices along the distortion
coe�cients for both cameras.

The acquired synchronised pairs of left-right images
(resolution: 1024 ù 768 pixels) are processed as follows by
the image_pipeline/stere_image_proc ROS package [49] to
calculate the disparity between pairs of images based on
epipolar matching [18], obtaining the corresponding depth
of each pixel from the stereo rig.

Finally, combining this depth information with the RGB
colouring from the original images, we generate the point
clouds. An example of the acquisition is pictured in Figure
2

3.2.2. Ground Truth Labelling

Ground truth annotations are manually built from the
point clouds, where the pixels corresponding to each class
are marked with a di�erent label. The studied classes and
their RGB labels are: Pipe (0, 255, 0), Valve (0, 0, 255) and
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(a) (b) (c)

Figure 2: Data acquisition process. (a) left and right stereo
images, (b) disparity image, (c) point cloud.

(a) (b)

Figure 3: (a) Original point cloud; (b) ground truth annota-
tions, points corresponding to pipes are marked in green; to
valves, in blue; and to background, in black.

Background (0, 0, 0). Figure 3 shows a couple of point clouds
along with their corresponding ground truth annotations.

3.2.3. Dataset Managing

Following the steps described in the previous section,
we generated two datasets. The first one includes a total of
262 point clouds along with their ground truths. It was ob-
tained on an artificial pool and contains diverse connections
between pipes of di�erent diameters and 2/3 way valves.
It also contains other objects such as cement blocks and
ceramic vessels, always over a plastic sheeting simulating
di�erent textures. This dataset is split into a train-validation
set (90% of the data, 236 point clouds) and a test set (10%
of the data, 26 point clouds). The di�erent combinations of
elements and textures increase its diversity, helping to assure
the robustness in the training and reduce overfitting. From
now on, we will refer to this dataset as the Pool dataset.

The second dataset includes a total of 22 point clouds and
their corresponding ground truths. It was obtained in the sea
and contains di�erent pipe connections and valves positions.
In addition, these 22 point clouds were obtained over diverse
types of seabed, such as sand, rocks, algae, or a combination
of them. This dataset is used to perform a secondary test, as
it contains point clouds with di�erent characteristics of the
ones used to train and validate the network, allowing us to
assess how well the network generalises its training to new
conditions. From now on, we will refer to this dataset as the
Sea dataset.

SeaPool

Figure 4: Dataset managing.

(a) (b)

Figure 5: Examples of point clouds from (a) Pool dataset and
(b) Sea dataset.

Figure 4 illustrates the dataset managing, while in Figure
5 some examples of point clouds from both datasets are
shown.

3.3. Hyperparameter Study
When training a neural network, there are hyperparam-

eters which can be tuned, changing some of the features of
the network or the training process itself. We selected some
of these hyperparameters and trained the network using
di�erent values to study their e�ect over its performance
in underwater scenarios. The considered hyperparameters
were:

• Batch size: number of training samples utilised in one
iteration before backpropagating.

• Learning rate: a�ects the size of the matrix changes
that the network takes when searching for an optimal
solution.

• Block (B) and stride (S) size: to prepare the network
input, the point clouds are sampled into blocks of BxB
meters, with a sliding window of stride S meters.

• Number of points: maximum number of allowed
points per block. If it exceeds, random points are
deleted. Used to control the point cloud density.

The tested values for each hyperparameter are shown in
Table 1. In total, 13 experiments are conducted, one using
the hyperparameter values used in the original PointNet im-
plementation [8] (marked in bold in Table 1); and 12 more,
each one fixing three of the aforementioned hyperparameters
to their original values and using one of the other tested
values for the fourth hyperparameter. This way, the e�ect of
each hyperparameter and its value over the performance is
isolated.
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Table 1

Tested hyperparameter values. Original values are marked in
bold.

Hyperparameter Tested values

Batch size 16 24 32

Learning rate 0.005 0.001 0.0002
Block-stride 2-2 2-1 1-1 1-0.75
Num. points 4096 2048 1024 512 256 128

SeaPool
Train

...
k1

k2

k10

Train

Train

Figure 6: Implementation of the 10k-fold cross-validation
method.

3.4. Validation
3.4.1. Validation Process

To ensure the robustness of the results generated for
the 13 experiments, we used the 10 k-fold cross-validation
method [16]. Using this method, the train-validation set of
the Pool dataset is split into ten equally sized subsets. The
network is trained ten times as follows, each one using a
di�erent subset as validation (23 point clouds) and the nine
remaining as training (213 point clouds), generating ten
models which are tested against both Pool and Sea test sets.
Finally, each experiment performance is computed as the
mean of the results of its 10 cross-validation models. This
method reduces the variability of the results, as these are less
dependent on the selected training and validation subsets,
therefore obtaining a more accurate performance estimation.
Figure 6 depicts the k-fold cross-validation technique ap-
plied to the dataset managing described in Section 3.2.3

3.4.2. Evaluation Metrics

To evaluate a model performance, we make a point-wise
comparison between its predictions and their corresponding
ground truth annotations, generating a multi-class confusion
matrix. This confusion matrix indicates, for each class: the
number of points correctly identified belonging to that class,
True Positives (TP) and not belonging to it, True Negatives
(TN); the number of points misclassified as the studied class,
False Positives (FP); and the number of points belonging
to that class misclassified as another one, False Negatives
(FN). Finally, the TP, FP and FN values are used to calculate
the Precision, Recall and F1-score for each class, following
Equations (1)–(3):

Precision = TP
TP + FP

, (1)

Recall = TP
TP + FN

, (2)

Table 2

Pool test set F1-scores.
Experiment F1_Pipe F1_Valve F1_Background F1_Mean

Base 97.0% 93.1% 99.8% 96.6%

Batch 24 96.8% 92.7% 99.8% 96.4%
Batch 16 96.7% 92.3% 99.8% 96.2%

Lr 0005 96.4% 91.0% 99.7% 95.7%
Lr 00002 96.5% 92.5% 99.7% 96.2%

BS 2_2 96.0% 90.8% 99.7% 95.5%
BS 2_1 96.9% 93.3% 99.8% 96.7%
BS 1_075 97.1% 94.9% 99.7% 97.2%

Np 2048 96.7% 92.2% 99.8% 96.2%
Np 1024 96.9% 93.2% 99.8% 96.6%
Np 512 96.8% 92.6% 99.8% 96.4%
Np 256 96.9% 93.4% 99.8% 96.7%
Np 128 96.7% 92.8% 99.8% 96.4%

F1-score = 2 ù Recall ù Precision
Recall + Precision

. (3)

Additionally, the mean time that a model takes to per-
form the inference of a point cloud is calculated. This metric
is very important, as it defines the frequency that information
is provided to the system. In underwater applications, it
would directly a�ect the agility and responsiveness of the
AUV that this network could be integrated in, having an
impact over the final operation time.

4. Experimental Results and Discussion
This section reports the performance obtained for each

experiment over the Pool and Sea test sets and discusses the
e�ect of each hyperparameter over it. The notation used to
name each experiment corresponds as follows: “Base” for
the experiment conducted using the original hyperparameter
values, marked in bold in Table 1; the other experiments are
notated as an abbreviation of the modified hyperparameter
for that experiment (“Batch” for batch size, “Lr” for learning
rate, “BS” for block-stride and “Np” for number of points)
followed by the actual value of the hyperparameter for that
experiment. For instance, experiment Batch 24 uses all orig-
inal hyperparameter values except for the batch size, which
in this case is 24.

4.1. Pool Dataset Results
Table 2 shows the F1-scores obtained for the studied

classes and its mean for all experiments when evaluated
over the Pool test set. The mean inference time for each
experiment is showcased in Figure 7 as follows.

The results presented in Table 2 show that all experi-
ments achieved a mean F1-score greater than 95.5%, with
the highest value of 97.2% for the experiment BS 1_075,
which has a smaller block stride than its size, overlapping
information. Considering the figures of mean F1-score for
all experiments, it is safe to say that no hyperparameter
seemed to represent a major shift in the network behaviour.

Martin-Abadal et al. Page 5 of 9

37



Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation

B
a
s
e

B
a
t
c
h

2
4

B
a
t
c
h

1
6

L
r

0
0
0
5

L
r

0
0
0
0
2

B
S

2
_

2

B
S

2
_

1

B
S

1
_

0
7
5

N
p

2
0
4
8

N
p

1
0
2
4

N
p

5
1
2

N
p

2
5
6

N
p

1
2
8

0

10

20

11.3
12.8 12.8 12.8 12.8

4

10.9

22.7

7

4
2.5 1.8 1.5M

ea
n

in
fe

re
nc

e
tim

e
(s

)

Figure 7: Pool test set mean inference time.

Looking at the metrics presented by the best performing
experiment for each class, it can be seen that the Pipe
class achieved an F1-score of 97.1%, outperforming other
state-of-the-art methods for underwater pipe segmentation:
[28]—traditional computer vision algorithms over 2D un-
derwater images achieving an F1-score of 94.1%, [35]—
traditional computer vision algorithms over 2D underwa-
ter images achieving a mean F1-score over three datasets
of 88.0% and [17]—deep leaning approach for 2D drone
imagery achieving a pixel-wise accuracy of 73.1%. For the
valve class, the BS 1_075 experiment achieved a F1-score of
94.9%, being a more challenging class due to its complex ge-
ometry. As far as the authors know, no comparable work on
underwater valve detection has been identified. Finally, for
the more prevailing Background class, the best performing
experiment achieved an F1-score of 99.7%.

The results on mean inference time for each experiment
presented in Figure 7 shows that the batch size and learning
rate hyperparameter values do not influence the inference
time or have little impact, as their value is very similar to
the one obtained in the Base experiment. On the contrary,
the block and stride size highly a�ect the inference time, the
bigger the information block or the stride between blocks,
the faster the network can analyse a point cloud, and vice
versa. Finally, the maximum number of allowed points per
block also has a direct impact over the inference time, the
lower it is, the faster the network can analyse a point cloud,
as it becomes less dense. The time analysis was carried out
in a computer with the following specs—processor: Intel i7-
7700, RAM: 16 GB, GPU: NVIDIA GeForce GTX 1080.

Taking into account both metrics, BS 1_075 presented
the best F1-score and has the highest inference time. In
this experiment, the network uses a small block size and
stride, being able to analyse the data and extract its features
better, at the cost of taking longer. The hyperparameter
values of this experiment are a good fit for a system in
which quick responsiveness to changes and high frequency
of information are not a priority, allowing for maximising
the recognition performance.

On the other hand, experiments such as BS 2_2 or Np
1024, 512, 256, 128 were able to maintain very high F1-
scores while significantly reducing the inference time. The
hyperparameter values tested in these experiments are a

(a) (b) (c)

Figure 8: Qualitative results for the Pool test set. (a) original
point cloud, (b) ground truth annotations, (c) network predic-
tion.

Table 3

Sea test set F1-scores.
Experiment F1_Pipe F1_Valve F1_Background F1_Mean

Base 85.9% 79.5% 98.8% 88.1%

Batch 24 87.2% 79.9% 98.9% 88.7%
Batch 16 88.1% 80.9% 99.0% 89.3%

Lr 0005 86.2% 81.2% 98.8% 88.7%
Lr 00002 85.2% 76.3% 98.7% 86.8%

BS 2_2 80.7% 77.2% 97.9% 85.3%
BS 2_1 80.2% 79.7% 97.6% 85.8%
BS 1_075 86.7% 73.9% 99.0% 86.5%

Np 2048 85.2% 80.1% 98.5% 87.9%
Np 1024 86.1% 77.8% 98.8% 87.6%
Np 512 85.4% 70.7% 98.8% 85.0%
Np 256 87.1% 80.2% 98.9% 88.8%
Np 128 84.5% 71.5% 98.7% 84.9%

good fit for more agile systems that need a higher frequency
of information and responsiveness to changes.

Figure 8 shows some examples of original point clouds
from the Pool test set along with their corresponding ground
truth annotations and network predictions.

4.2. Sea Dataset Results
Table 3 shows the F1-scores obtained for the studied

classes and its mean, for all experiments when evaluated over
the Sea test set. The mean inference time for each experiment
is showcased in Figure 9 as follows.

The results presented in Table 3 show that all experi-
ments achieved a mean F1-score greater than 84.9% with
the highest value of 89.3% for the experiment Batch 16.
On average, the mean F1-score was around 9% lower than
for the Pool test set. Even so, all experiments maintained
high F1-scores. Again, the F1-scores of the Pipe and Valve
classes are relatively lower than for the Background class.
Even though the Sea test set is more challenging, as it
contains unseen pipe and valve connections and environment
conditions, the network was able to generalise its training
and avoid overfitting.
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Figure 9: Sea test set mean inference time.

(a) (b) (c)

Figure 10: Qualitative results for the Sea test set. (a) original
point cloud; (b) ground truth annotations; (c) network predic-
tion.

The results on mean inference time for each experiment
presented in Figure 9 shows that the mean inference times
for the Sea test set are proportionally lower than the Pool
test set for all experiments. This occurs because the Sea test
set contains smaller point clouds with fewer points.

Figure 10 shows some examples of original point clouds
from the Sea test set along with their corresponding ground
truth annotations and network predictions.

5. Conclusions and Future Work
This work studied the implementation of the PointNet

deep neural network in underwater scenarios to recognise
pipes and valves from point clouds. First, two datasets of
point clouds were gathered, providing enough data for the
training and testing of the network. From these, a train-
validation set and two test sets were generated, a primary
test set with similar characteristics as the training data and
a secondary one containing unseen pipe and valve links
and environment conditions to test the network training
generalisation and overfitting. Then, diverse hyperparameter
values were tested to study their e�ect over the network
performance, both in the recognition task and inference time.

Results from the recognition task concluded that the
network was able to identify pipes and valves with high

accuracy for all experiments in both Pool and Sea test
sets, reaching F1-scores of 97.2% and 89.3%, respectively.
Regarding the network inference time, results showed that it
is highly dependent on the size of information block and its
stride; and to the point clouds density.

From the performed experiments, we obtained a range
of models covering di�erent trade-o�s between detection
performance and inference time, enabling the network im-
plementation into a wider spectrum of systems, adapting
to its detection and computational cost requirements. The
BS 1_075 experiment presented metrics that fitted a slower,
more still system, while experiments like BS 2_2 or Np 1024,
512, 256, 128 are a good fit for more agile and dynamic
systems.

The implementation of the PointNet network in under-
water scenarios presented some challenges, like ensuring
its recognition performance when trained with point clouds
obtained from underwater images, and its suitability to be
integrated on an AUV due to its computational cost. With
the results obtained in this work, we have demonstrated the
validity of the PointNet deep neural network to detect pipes
and valves in underwater scenarios for AUV manipulation
and inspection tasks.

The datasets and code, along with one of the Base ex-
periment trained models, are publicly available at UIB-SRV-
3D-pipes for the scientific community to test or replicate our
experiments.

Further steps need to be taken in order to achieve an
underwater object localisation and positioning for ROV and
AUV intervention using the object recognition presented in
this work. We propose the following future work:

1. Performing an instance-based detection from the pre-
sented pixel-based one, allowing for recognition of
pipes and valves as a whole object and to classify them
by type (two or three way) or status (opened or closed).

2. Using the depth information provided by the stereo
cameras along with the instance detection to achieve
a spatial 3D positioning of each object. Once the net-
work is implemented in an AUV, this would provide
the vehicle with the information to manipulate and
intervene with the recognised objects.
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A B S T R A C T

Nowadays, more frequently, it is necessary to perform underwater operations like surveying an
area or inspecting and intervening on industrial infrastructures such as o�shore oil and gas rigs or
pipeline networks. Recently, the use of Autonomous Underwater Vehicles (AUV) has grown as a
way to automate these tasks, reducing risks and execution time. One of the used sensing modalities
is vision, providing RGB high-quality information in the mid to low range, making it appropriate
for manipulation or detail inspection tasks. This work presents the usage of a deep neural network
to perform pixel-wise 3D segmentation of pipes and valves on underwater point clouds generated
using a stereo pair of cameras. In addition, two novel algorithms are built to extract information from
the detected instances, providing pipe vectors, gripping points, the position of structural elements
like elbows or connections, and valve type and orientation. The information extracted on spatially
referenced point clouds can be unified to form an information map of an inspected area. Results
show outstanding performance on the network segmentation task, achieving a mean F1-score value
of 88.0% at a pixel-wise level and of 95.3% at an instance level. The information extraction algorithm
also showcased excellent metrics when extracting information from pipe instances and their structural
elements and good enough metrics when extracting data from valves. Finally, the neural network and
information algorithms are implemented on an AUV and executed in real-time, validating that the
output information stream frame rate of 0.72fps is high enough to perform manipulation tasks and
to ensure full seabed coverage during inspection tasks. The used dataset, along with a trained model
and the information extraction and mapping algorithms, are provided to the scientific community in
http://srv.uib.es/3d-pipes-2/.

1. Introduction
The need for conducting underwater intervention tasks

has grown significantly in recent decades. More often it
is necessary to perform underwater operations in di�erent
fields like archaeology, biology, rescue and recovery or
industry that include not only inspection but also interaction
with the environment. One of the most relevant cases con-
cerns to manipulation tasks performed on o�shore oil and
gas rigs or pipeline networks [2, 5, 10, 22, 54].

In the past, the aforementioned tasks were mostly carried
out, manually, by scuba divers. Nonetheless, conducting
these missions in a hard-to-reach scenario like open waters
tends to be slow, dangerous and resource consuming. Re-
cently, Remotely Operated Vehicles (ROVs) equipped with
diverse sensing systems and manipulators have been used
to access deeper and more complex underwater scenarios,
allowing to eliminate some of the drawbacks of human
intervention.

However, ROVs still presented downsides such as its hard
and error-prone piloting due to complex water dynamics,
requiring trained operators; or the need of a support vessel,
leading to expensive operational costs. To ease these draw-
backs, there has been increasing research towards interven-
tion Autonomous Underwater Vehicles (AUVs) [19, 32, 48]
and Underwater Vehicle Manipulator Systems (UVMS) [18,
38].

<Corresponding author
miguel.martin@uib.es (M. Martin-Abadal)

Other challenges faced in underwater environments are
presented regarding its sensing in general and object percep-
tion in particular. Underwater sensing presents several chal-
lenges like distortion in signals, light absorption and scat-
tering, water turbidity changes or depth-depending colour
distortion.

Intervention ROVs and AUVs are often equipped with
a variety of sensing systems. When operating in unknown
underwater environments, sonar systems are usually pre-
ferred as it is able to obtain bathymetric maps of large
areas in a short time. Even though sonar is mostly used
to provide general information of the environment or used
in a first stage approach to the area of interest, it also has
been used to perform object detection by itself. Nonetheless,
the preferred sensing modalities to obtain detailed, short-
distance information with higher resolution are laser and
video. These modalities are often used during the approach,
object recognition and intervention phases. The usage of
the presented sensing systems towards object detection and,
specifically, pipe and valve recognition is reviewed in Sec-
tion 2.1.

To execute manipulation tasks, the sensing systems of a
ROV or AUV must be able to provide enough information to
perform accurate and robust scene understanding, including
object detection, target recognition and pose estimation,
under di�erent experimental conditions.
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This paper is a continuation of our previous work [35]
where we proposed a deep learning-based approach to per-
form a pixel-wise segmentation of underwater pipes and
valves from 3D RGB point cloud information.

In this paper, we make use of an improved evolution
of the deep neural network used in our previous work to
perform the pixel-wise 3D segmentation. Additionally, we
implement an object detection over the segmented pixels,
grouping them and being able to detect diverse pipe and
valve instances in a point cloud. We develop an algorithm
to extract information from the detected instances provid-
ing pipe vectors, gripping points, structural elements like
elbows or connections, and valve type (2-way or 3-way) and
orientation. Furthermore, if the point clouds are spatially
referenced, its information can be unified, forming an infor-
mation map of an inspected area. Finally, the 3D segmen-
tation, along with the information extraction and mapping
algorithms, are executed online on an AUV, performing real-
time underwater pipe and valve recognition, characterisation
and mapping for inspection and manipulation tasks.

The remainder of this paper is structured as follows:
Section 2 reviews the related work on underwater perception
and pipe and valve identification, and highlights the main
contributions of this work. Section 3 describes the method-
ology and materials adopted in this study. The experimental
results are presented and discussed in Section 4. Section 5
details the network and information algorithms online imple-
mentation. Finally, Section 6 outlines the main conclusions
and future work.

2. Related Work and Contributions
2.1. State of the Art

This section reviews the usage of diverse sensing sys-
tems for underwater inspection, object detection and, specif-
ically, pipe and valve recognition. The three most used
sensing systems in underwater environments are sonar, laser
and vision.

Sonar sensing is the preferred method when working in
large, unknown environments, providing broad information
in a quick manner [4, 25]. It has also been used for ob-
ject localisation in underwater scenarios [27, 52]. Object
detection deep learning techniques have been applied to
underwater sonar imaging for diverse applications like the
detection of human bodies [31] or war mines [11]. Some of
the drawbacks presented by the sonar imaging are the noisy
nature of the images, which generates texture information
losses; and the fact that it is not able to capture colour
information, which is useful in object recognition tasks.

Underwater laser scans can provide high resolution 3D
data that can be used for environment inspection and object
recognition. Some studies on underwater pipeline detection
include the works of Palomer et al. [42] where a laser scanner
is integrated on an AUV for object detection and manipula-
tion, or the works of Himri et al. [20, 21] and Villacrosa et. al.
[51], where a recognition and pose estimation pipeline based
on point cloud matching is built. As for downsides, laser
systems tend to have a very high initial cost, are a�ected by

light transmission problems and neither can provide colour
information.

Vision is one of the most complete and used perception
modalities in robotics and object recognition tasks thanks to
its accessibility, easiness to use and the fact that produces
RGB high-quality information. It also has disadvantages as
the obtained images are a�ected by light transmission prob-
lems, colouring distortions or environmental factors such
as water turbidity. Nonetheless, some of these weaknesses
can be alleviated by adapting the acquisition system to the
environmental conditions, adjusting the operation range,
calibrating the cameras or colour correcting the obtained
images.

In the past, traditional computer vision approaches have
been used to detect and track multiple submerged objects
such as artifacts [1, 8, 40, 43], cables [13, 37, 41] or pipelines
[15, 37, 50, 55]. Some works rely on texture and shape
descriptors [15, 37], others on template matching [28, 30]
or use colour segmentation to find and process regions of
interest in the images [3, 43].

Other works use a combination of multiple sources of
information, Kallasi et al. in [26] and Razzini et al. in [32, 33]
present traditional computer vision methods that combine
texture, shape and colour information to detect underwater
pipelines and project them into point clouds obtained from
stereo vision. In these works, the point cloud information is
not used to assist the pipe recognition process.

Rekik et al. [47] developed the first trainable system
to detect underwater pipelines, extracting several features
and using a Support Vector Machine to classify between
positive and negative underwater pipe images samples. Con-
volutional Neural Networks were introduced by Nunes et.
al [39] to classify diverse underwater objects, including a
pipeline. None of these works determined the position of
the object within the image, only a binary classification of
the object’s presence was given.

Some studies introduced deep learning solutions applied
to underwater computer vision, but are limited to the de-
tection and pose estimation of 3D-printed objects [24] or
living organisms like fishes [23] or jellyfishes [36]. Few
research studies involving pipelines are restricted to damage
evaluation [9, 29] or pipeline navigation from the inside [46].
Guerra et al. in [17] presents one of the most advanced works
on pipeline recognition using deep learning, where a drone
equipped with a monocular camera is used to perform 2D
detection of pipelines in industrial environments.

Therefore, with the exception of the later works of Himri
et al. [21] and Villacrosa et al. [51], which will be later
discussed in Section 4.1, the remaining works su�er from
crucial drawbacks when tackling pipe and valve recognition
for inspection and manipulation tasks. The most significant
drawbacks from previous implementations, which are solved
in our work, are listed below:

– Only recognising pipes, no valves, connections or
elbows are detected.
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– Not being able to detect multiple elements simultane-
ously, due to the nature of its data processing, only
isolated objects can be detected.

– Not gathering information from the detected objects,
such as pipe length, gripping points, orientation or
valve type and position.

– Not being able, or no demonstration, of being able to
be executed online on a inspecting or manipulating
robot.

Finally, to the best knowledge of the authors, the only
prior know research on underwater pipeline and valve 3D
recognition using deep learning is our previous work pre-
sented in [35], upon which we build the research introduced
in this paper.

2.2. Main Contributions
The main contributions of this paper are composed of:

1. Expansion of our novel point cloud dataset of under-
water pipe and valve structures, adding point clouds
obtained with a new pair of cameras mounted on an
AUV. This dataset is used to train and test the selected
deep neural network and information algorithms.

2. Development of novel algorithms to extract informa-
tion from detected pipe and valve instances, providing
data on pipe vectors, gripping points, structural ele-
ments like elbows or connections, and valve type and
orientation. The information from spatially referenced
point clouds can be unified to create information maps
of inspected areas.

3. Neural network and information algorithms valida-
tion by conducting underwater experiments where the
point cloud segmentation, the information extraction
algorithm and the mapping algorithm are executed on-
line in an AUV, performing real-time underwater pipe
and valve recognition, characterisation and mapping
for inspection and manipulation tasks.

4. The updated dataset (point clouds and corresponding
ground truths) along with a trained model and the code
of the algorithms used to perform the information
extraction and mapping are provided to the scientific
community in [34].

3. Methodology
This section presents an overview of the selected net-

work; explains the acquisition, labelling and organisation of
the data; details the information extraction and mapping al-
gorithms; and exposes the validation process and evaluation
metrics.

3.1. Deep Learning Network and Training Deatils
Even though most applications in the field work with 2D

information, which some later project to the 3D space, we
decided to use a 3D segmentation network using point clouds
as input for diverse reasons. First of all, the introduction of

depth data provides extra information to work with, allowing
to extract more features, helping to the segmentation. Sec-
ondly, as we extract information from the segmented point
clouds for inspection and manipulation tasks, 3D positioning
would be a must. Thus, it would not make sense to use 2D
segmentation to avoid possible matching failures in the 3D
point cloud generation if the extracted information could not
be projected into a 3D space.

In this work, we select the Dynamic Graph Convolu-
tional Neural Network (DGCNN) [53] to perform the pipe
and valve 3D segmentation. This network is an evolution of
the PointNet deep neural network [7] that we used in our
previous work, surpassing its performance on several bench-
mark datasets [53]. Like its predecessor, this network has a
unified architecture that allows it to perform multiple tasks,
ranging from object classification and part segmentation to
scene semantic segmentation.

The novelty of the DGCNN architecture is the intro-
duction of the named EdgeConv modules, which can be
integrated into existing deep learning models such as Point-
Net. These modules capture local geometric structure infor-
mation by generating edge features that describe relations
between a point and its neighbours, while being invariant
to input permutations. Since proximity in the feature space
di�ers from proximity in the input point cloud, the set of
neighbours of a point changes from layer to layer. This
results in a network graph that is updated after each network
layer, leading to non-local di�usion of information over the
whole point cloud. This allows the EdgeConv modules to
capture global shape information.

Furthermore, to make the prediction invariant to the
point cloud geometric transformations, all input sets are
aligned to a canonical space before feature extraction. To
achieve this a 3x3 matrix is applied, obtained from a tensor
concatenating the coordinates of each point and the coordi-
nate di�erence between its neighbours.

The DGCNN architecture takes point clouds as input
and outputs a class label for each point. While training the
network, it is also fed with ground truth labels, indicating the
real class of each point from the point cloud. The labelling
process is further detailed in Section 3.2.2.

As the original DGCNN implementation, we use a soft-
max cross-entropy loss along with an Adam optimiser. The
decay rate for batch normalisation starts with 0.5 and is
gradually increased to 0.99. In addition, we apply a dropout
with a keep ratio of 0.7 on the last fully connected layer,
before class score prediction.

Other hyperparameters are selected based on the experi-
ments conducted on our previous work [35]. For the training,
we use stochastic gradient descent with a learning rate of
0.001, a batch size of 16; block and stride distances of 1
meter; and, finally, a maximum number of allowed points
per block of 128. These hyperparameters have proven to
o�er very good metrics in terms of point cloud segmentation
while greatly reducing inference time, a key factor in the
online execution of this network in an AUV to perform
real-time inspection and manipulation tasks. Details on the
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Figure 1: DGCNN architecture. Taken from [53], with permission from author Yue Wang, 2021.

network and algorithms online execution in an AUV are
given in Section 5.

To improve the network performance, we implement an
early stopping strategy based on the work of L. Prechelt
in [44], ensuring that the network training process stops
when the divergence between validation and training losses
is minimum. This technique allows to obtain a more general
and broad training, avoiding overfitting. The DGCNN archi-
tecture is presented in Figure 1.

3.2. Data
This subsection explains the acquisition, labelling and

managing of the data used to train and test the deep neural
network.

3.2.1. Acquisition

The used point clouds come from two di�erent sources.
First, we reuse our previous dataset from [35], consisting
of 192 underwater point clouds containing diverse pipe and
valve structures and connections. This dataset was gathered
on an artificial pool using a Bumblebee2 Firewire stereo rig
mounted on an Autonomous Surface Vehicle and using the
Robot Operating System (ROS) middleware [45].

The second source of point clouds is another stereo pair
rig, composed of two Manta G283 cameras mounted on an
AUV, gathering point clouds through ROS once again. We
performed up to six immersions with the AUV to record
di�erent pipe structures and valve connections, two of them
at an artificial pool, and the remaining four at di�erent
locations at the sea. The acquisition process is pictured in
Figure 2.

3.2.2. Ground Truth Labelling

  

,ô ,ô

(a) (b) (c)

Figure 2: Data acquisition process. (a) left and right stereo
images from a calibrated stereo rig. (b) Disparity depth image
obtained using ROS stereo processing [49]. (c) Point cloud
generated by merging depth and colour information (Blank
spaces correspond to areas where no matching between stereo
images could be found or to covered areas).

In order to train and test the network, ground truth label
maps are manually built from the obtained point clouds.
The points corresponding to each class are marked with a
di�erent label. The studied classes and their RGB labels
are: Pipe (Green: 0, 255, 0), Valve (Blue: 0, 0, 255) and
Background (Black: 0, 0, 0). Figure 3 shows a couple of
point clouds along with their corresponding ground truth
label maps.

3.2.3. Dataset Managing

To configure our dataset, we gather the point clouds ob-
tained from the two previously mentioned sources in Section
3.2.1. First, we take 192 point clouds from our previous
dataset (from now on, referred as set SASV). And second,
we extract point clouds from the AUV immersions. From
the two pool immersions we extract 104 and 51 point clouds
(from now on, referred as sets SPOOL-1/2, respectively). From
the four sea immersions, we extract 45, 56, 36 and 30 point
clouds (from now on referred as sets SSEA-1/2/3/4, respec-
tively).
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(a) (b)

Figure 3: Point cloud labelling. (a) Original point cloud.
(b) Ground truth annotations. Points corresponding to pipes,
valves and background, are marked in green, blue and black,
respectively.

In order to build the dataset used for the training, valida-
tion and test, we decide to gather the point clouds from the
sets SASV, SPOOL-1 and SSEA-1/2, conforming a total of 397
point clouds along their corresponding ground truth label
maps.

This dataset contains point clouds gathered using two
di�erent pairs of stereo cameras, in fresh and salt water,
under di�erent environmental conditions and showcasing
a wide variety of pipe structures and valve connections
over di�erent backgrounds, such as a plastic lone, sand or
rocks. This represents a broad spectrum of scenarios to
assure robustness in the network training and reduce its
overfitting. The dataset is split into a train-validation set
(90% of the data, 357 point clouds) and a test set (10% of
the data, 40 point clouds), which will be referred as TBASE.
Additionally, sets SPOOL-2 and SSEA-3 are used to perform a
secondary test, from now on referred as TEXTRA, containing
a total of 87 point clouds. The point clouds from this test
are from immersions whose data has not been used for the
network training or validation, and contain di�erent, unseen
environmental conditions, pipe structures, valve connections
and backgrounds. Hence, this test allows to assess how well
the network generalises its training to new data.

Finally, set SSEA-4 contains point clouds gathered by the
AUV navigating over a larger structure containing multiple
pipes and valves. This set will be used to test the mapping
algorithm presented in Section 3.3. This test set will be
referred as TMAP.

Figure 4 illustrates the dataset managing, while in Figure
5 some examples of point clouds are shown.

3.3. Segmentation Understanding Algorithms
Once the deep neural network has processed a point

cloud and generated its semantic segmentation, we need to

SASV

ASV AUV

SPOOL-1 SSEA-1 SSEA-2 SPOOL-2 SSEA-3 SSEA-4

TMAPTEXTRATrain / Validation TBASE

Figure 4: Dataset managing.

Figure 5: Point clouds from the dataset showcasing diverse pipe
structures and valve connections over different backgrounds.

further process this segmentation and extract information
to use it in inspection and manipulation tasks. To do that,
we develop two algorithms. The first algorithm, referred as
Information Extraction Algorithm (IEA), takes the network
output and extracts information such as the number of pipes
and valves present in the point cloud, its position, orientation
or even pipe connections and valve type (2-way or 3-way).
The second algorithm, referred as Information Unification
Algorithm (IUA), unifies the information extracted from
multiple localised point clouds taken on a studied area and
generates a global information map. Next, both IEA and IUA
algorithms are detailed.

3.3.1. Information Extraction Algorithm

The starting point of this algorithm is the semantic
segmentation outputted by the deep neural network. Its first
step is to transform the pixel-wise segmentation into an
instance-based one using a Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), clustering pixels of
the same class that are closer than a distance threshold,
clusters that do not contain enough points to be considered as
instances are deleted. This way, the di�erent pipe and valve
instances present in a point cloud are detected. Additionally,
when a cluster belonging to a valve instance is found, it
is set to "steal" the points belonging to pipe instances that
are within a determined radius of the valve instance central
point. This is due to the fact that, as the main body of
the valve is very similar to the actual pipes, it sometimes
gets missclassified as pipe and only the handle of the valve
is correctly classified, this way, the body of the valve is
reclassified. Figure 6 shows the point clustering and valve
reclassification on a segmented point cloud.

The following step of the algorithm is to extract infor-
mation from the detected valve instances. First, the central
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(a) (b)

(c) (d)

Figure 6: Point cloud clustering and valve reclassification. (a)

Original point cloud. (b) Deep neural network segmentation.
(c) Pipe and valve point clustering. (d) Valve reclassification.

point of the valve instances is calculated as the average
XYZ coordinate values of all its belonging points, noting the
valve position. Second, the algorithm performs a point cloud
registration between each valve instance and five point cloud
models of 2-way and 3-way valves, obtaining the rotation
matrix and model that provides a maximum registration
score, inferring its pose and type. Using the valves registra-
tion data and its pre-known shape, a vector is generated to
indicate each valve size and orientation.

Valve instances that do not reach a certain registration
score threshold with any point cloud model are discarded.
Consequently, the previously mentioned "stolen" points cor-
responding to discarded valve instances are returned to their
corresponding original pipe instances.

Figure 7 showcases the described valve information ex-
traction process.

The next step is to extract information from the detected
pipe instances. First, the point cloud instances are voxelized
and flattened into a 2D matrix, where closing and opening
morphology operations are performed to consolidate the
instance as a unique object.

At this point, the skeleton of the instance is computed,
obtaining a chain of linked matrix coordinates, depicting the
pipe shape. Also, coordinates with up to three neighbours are
marked as connection points between di�erent pipes. Once
the smaller chains are discarded, the remaining chains and
connection points are reprojected into the original instance
3D points.

Then, the algorithm calculates the 3D vector between
each chain point and its linked points, providing information
about the chain curvature. From there, pipe elbows can be
established on point sequences with greater curvature than a
selected threshold. Also, these vectors provide information
on the chain length, allowing to locate the position of a
determined percentage of pipe length, this information is
very useful to provide grabbing points for pipe manipulation.
Finally, a vector describing each straight portion of a chain is

(a)

(b) (c)

(d)

Figure 7: Valve information extraction process. (a) Original
point cloud (area of interest highlighted in red square). (b)

Deep neural network segmentation. (c) Instance clustering and
best valve model registration (light green points). (d) Instance
clustering along resulting valve central point (blue point) and
vector (black line between the two gray points).

calculated between its first and last point, giving information
on the corresponding pipe orientation and length.

Figure 8 showcases the described pipe information ex-
traction process.

Finally, the valve and pipe information is refined. For
the valves, its vector direction is recalculated taking into
account the presence of pipes near the valve central point. If
only one pipe is near, the valve vector is aligned to the pipe
vector, if two or three pipes are present and two of them have
parallel vectors, the valve pipe is aligned with that vector.
Additionally, if three pipes are found near its central point,
the valve type is set automatically to 3-way. For the pipes,
vectors belonging to pipes of di�erent instances that are near
and parallel, are unified.

Figure 9 shows examples of valve and pipe refinement.

3.3.2. Information Unification Algorithm

This algorithm is built on top of the information provided
by the previously detailed IEA and its end is to generate uni-
fied information maps by merging information from di�erent
point clouds. It is strictly necessary that the point clouds
are referenced to a localised frame, whether it is an absolute
frame like geolocalisation or a relative one such as odometry.

Di�erent methods are used to merge the pipe and valve
information from new upcoming point clouds to the one
already present in the information map. For the pipes, the
algorithm checks if upcoming pipe chains are near chains
present in the information map. Near chains are merged
and new vectors and elbows are computed as explained in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Pipe information extraction process. (a) Original point cloud. (b) Deep neural network segmentation. (c) Instance
clustering. (d) 3D voxelization. (e) 2D matrix flattening. (f) Morphological operations: closing and opening. (g) Morphological
operation: skeletonization. (h) Information reprojection overlapped onto original point cloud (light green: skeleton, dark green:
pipe start-end, red: elbow, black: connection, lines: pipe vectors).

the IEA description. Also, a validation count is assigned
to each pipe chain, indicating the number of times it has
appeared in di�erent point cloud information extractions,
merged chains add up their validation counts. This validation
count is used further into the algorithm to decide whether or
not a detection is a spurious false positive or a certain true
positive.

For the connection points, the algorithm checks if new
upcoming connections are situated near prior registered
connections. Near connections are merged, averaging its
3D position. A validation count is also assigned to each
connection point.

For the valves, the procedure is the same as for the
connection points, with the addition that the valve vector
direction is also averaged between the prior valve vector and
the upcoming one.

Finally, each K processed point clouds, the algorithm
runs a validation count check, where pipes, connection
points and valves with lower validation count than a deter-
mined threshold are discarded.

Figure 10 presents the IUA output when implemented
over a series of point clouds containing two pipes, a valve
and an elbow. It can be seen how a false positive valve
appears on the original information extracted near the elbow,
but it is later eliminated by the algorithm count check as it is
not found in any other point cloud information.

Figure 11 presents a flowchart of both IEA and IUA
algorithms, describing their workflow and interrelation. Ad-
ditionaly, the commented code of both algorithm implemen-
tations is provided in [34], which o�ers a deeper insight into
the diverse algorithms steps and their numerous parameters
that can be tweaked.

3.4. Validation and Evaluation Metrics
DGCNN is a highly e�cient and e�ective network,

obtaining great metrics in both object classification and
segmentation tasks in indoor and outdoor scenarios [53].
However, it has never been tested and validated in under-
water scenarios.

In order to validate the DGCNN, we use the 10k-fold
cross-validation method [16]. Whit it, the train-validation
partition of our dataset (see Figure 4) is split into ten equally
sized subsets. Next, the network is trained ten times, each one
using a di�erent subset as validation and the nine remaining
as training, generating ten models, which are then tested
against the TBASE and TEXTRA test sets. The final performance
is computed as the average results for the ten models. This
method reduces the variability of the results, making them
less dependent on the selected training and validation data,
and therefore obtaining a more accurate performance esti-
mation.

To evaluate a model performance we make a point-
wise comparison between the network predictions and their
corresponding ground truth annotations. For each class,
the number of correctly segmented points, True Positives
(TP); and the number of incorrectly segmented points, False
Positives (FP) or False Negatives (FN) is computed. The
number of TP, FP and FN are used to calculate the Precision,
Recall and F1-score for each class, following Equations (1),
(2) and (3).

Precision = TP
TP + FP

, (1)
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(a) (b)

Figure 9: Information refinement. (a) Valve vector reorienta-
tion, (b) Pipe vector unification. Top: Original point cloud.
Middle: information before refinement. Bottom: information
after refinement.

Recall = TP
TP + FN

, (2)

F1-score = 2 � Recall � Precision
Recall + Precision

. (3)

The goal of this work is not to work on a pixel-level
segmentation, but to group pixels into instances from which
extract information. Therefore, it makes sense to evaluate the
network performance on an instance level as well. In order
to achieve that, we apply the clustering method explained
in Section 3.3.2 to the network segmentation output and
ground truth annotations. From there, we make use of the
Intersection over Union (IoU) metric, which provides the
similarity between two instances. The IoU value between
two instances is calculated following Equation (4).

IoU = inst1 „ inst2
inst1 ‰ inst2 =

Pshared
Pinst1 + Pinst2 * Pshared

. (4)

Where Pinst1_2 denotes the number of points forming
instance one or two and Pshared the number of points shared
by both instances.

To determine whether a predicted instance is a TP or a
FP, an IoU threshold value needs to be established. Follow-
ing the criteria applied in the PASCAL VOC challenge [12],

Figure 10: IUA implementation. Top: Overlapped point clouds.
Middle: Overlapped extracted information from IEA. Bottom:
Unified information from IUA.

we set this threshold at thriou= 0.5. A predicted instance
is classified as TP if the IoU value with any ground truth
instance is greater than the thriou and the prediction class
(Cpred) is the same as the ground truth instance class (Cgt).
Otherwise, the predicted instance is classified as a FP (Equa-
tion (5)).

Inst. =
T

TP, if IoU >= thriou & Cpred == Cgt ,
FP, otherwise .

(5)

Ground truth instances that do not have an IoU>thriou
with any predicted instance are counted as undetected in-
stances, FN.

Once each prediction instance is classified as either TP
or FP, and the number of FN is obtained, the instance-
level Precision, Recall and F1-score metrics are computed
following the previous Equations (1), (2) and (3).

Finally, to evaluate the information provided by the IEA
and IUA, information ground truths are built, manually, over
the TBASE, TEXTRA and TMAP test sets point cloud network
segmentations, annotating the same information generated
by the IEA. The extracted information is compared to the
ground truth annotations using di�erent metrics for each
type of information.

For the pipe information, the vectors are compared in
terms of magnitude and direction, for the elbows and connec-
tions points the distance di�erence from their ground truth
annotation counterparts is measured.

For the valve information, the describing vector is com-
pared only in terms of direction, since its magnitude is fixed
by parameter, central valve point diversion is also measured.
Lastly, the correct valve type classification is checked.
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Figure 11: IEA and IUA algorithms flowchart, describing their workflow and interrelation.

Table 1

DGCNN pixel-level metrics on TBASE test set.

Class F1(%) mF1(%) 2mF1(%)
Pipe 92.4

92.3 88.7Valve 84.9
Background 99.7

4. Experimental results and Discussion
This section reports the results obtained by the DGCNN

segmentation at pixel and instance levels. The IEA and IUA
are also evaluated, checking the validity of the proportioned
information.

4.1. DGCNN Segmentation Results
The results presented in this section are the average

values obtained from the ten models generated when using
the 10k-fold cross-validation method previously explained in
Section 3.4.

Table 1 presents the pixel-level metrics when evaluating
the DGCNN over the TBASE test set. The presented metrics
are the per-class F1-score (F1) and its mean value (mF1).
Additionally, since the background class is not converted
into instances nor used by the IEA or IUA, it makes sense
to only focus on the pipe and valve classes when conducting
the per-pixel evaluation of the network. The 2mF1 metric
measures the mean F1-score only taking into account those
two classes.

The DGCNN reaches a F1-score value of 92.4% for the
pipe class, an 84.9% for the less represented and harder to
identify valve class and a 99.7% for the prevailing back-
ground class, resulting in a mean F1-score of 92.3%. When
only taking into account the pipe and valve classes, the
network scores an 2mF1 of 88.7%.

Table 2 presents the instance-level metrics when eval-
uating the DGCNN over the TBASE test set. The presented
metrics are the per-class Intersection over Union (IoU) and
its mean value (mIoU) along the per-class F1-score (F1) and
its mean value (mF1).

Table 2

DGCNN instance-level metrics on TBASE test set.

Class IoU(%) mIoU(%) F1(%) mF1(%)
Pipe 83.4 80.4 96.7

95.1Valve 77.4 93.5

Table 3

DGCNN pixel-level metrics on TEXTRA test set.

Class F1(%) mF1(%) 2mF1(%)
Pipe 91.4

91.4 87,2Valve 83.0
Background 99.7

Table 4

DGCNN instance-level metrics on TEXTRA test set.

Class IoU(%) mIoU(%) F1(%) mF1(%)
Pipe 82.7 79.7 96.3

95.4Valve 76.8 94.6

The achieved mIoU value is 80.4%, which indicates a
high overlap between predicted and ground truth instances.
This similarity is reflected on the mF1 score, reaching a
value of 95.1%. The reached instance-level mF1 score is
higher than the obtained pixel-level 2mF1 score, this in-
dicates that the applied pixel clustering allows to match
predicted and ground truth instances even when there exist
pixel di�erences between them.

Tables 3 and 4 present the pixel-level and instance-level
metrics, respectively, when evaluating the DGCNN over the
TEXTRA test set.

The results for the TEXTRA test set at both pixel-level
and instance-level evaluations are equally good as the ones
obtained for the TBASE test set, reaching a pixel-level 2mF1
of 87.2% and an instance-level mF1 of 95.4%. This means
that the DGCNN is able to generalise its training and avoid
overfitting, being able to correctly segment more challenging
point clouds with unseen pipe and valve connections and
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Table 5

IEA metrics on TBASE and TEXTRA test sets.

Info. �CPoint(cm) �VMagnitude(cm) �VDirection(˝)
Pipe - 1.94 4.20
Elbow 2.70 - -
Conn. 1.69 - -
Valve 1.63 - 13.31

environment conditions like the ones present in the TEXTRA
test set.

The metrics presented in this section outperform other
state of the art methods for pipe recognition: [26] - tra-
ditional computer vision algorithms over 2D underwater
images achieving an F1-score of 94,1%, [32] - traditional
computer vision algorithms over 2D underwater images
achieving a mean F1-score over three datasets of 88.0% and
[17] - deep leaning approach for 2D drone imagery achieving
a pixel-wise accuracy of 73.1%.

For the valve recognition, the only works that consider
this class are [21, 51]. The metrics presented in these works
are not comparable as their main focus is the classification
of di�erent types of valves without providing information
about detection rates.

4.2. IEA Results
Table 5 shows the evaluation metrics obtained by the IEA

when applied over the network segmentation of the TBASE
and TEXTRA test sets altogether.

The IEA was able to detect all pipes, elbows, connections
and valves present in the network segmentation, without
generating any false positives.

For the pipe information, the vector magnitude (pipe
length) and direction (pipe orientation) are evaluated. The
di�erence between IEA output and ground truth for the mag-
nitude is 1.94cm, and 4.2˝ for the direction. For the elbow
and connection information, only the central point position
is evaluated, for which the di�erences are 2.7cm and 1.69cm,
respectively. With these metrics, it can be determined that
the IEA is able to determine pipe length, orientation and its
di�erent structural elements with high accuracy.

For the valve information, the central point (valve posi-
tion) and its vector direction (valve orientation) are evalu-
ated, obtaining a divergence of 1.63cm and 13.31˝, respec-
tively. Furthermore, the valve type is correctly identified
73.6% of the time. Even though the valve position is detected
with high accuracy, it exists a small error when determining
its orientation and a higher one when classifying its type.

Qualitative results of the neural network segmentation
and IEA output over diverse point clouds are shown in Figure
12.

4.3. IUA Results
Table 6 shows the evaluation metrics obtained after

applying the IUA on the information extracted by the IEA
from the network segmentation of the TMAP test set. For
this execution, the validation count check was executed each

Table 6

IUA metrics on TMAP test set.

Info. �CPoint(cm) �VMagnitude(cm) �VDirection(˝)
Pipe - 3.12 2.42
Elbow 3.40 - -
Conn. - - -
Valve 3.59 - 13.92

five analysed point cloud information (K = 5) with a count
threshold of 2.

All pipes, elbows and valves were detected without gen-
erating any false positives. Additionally, the presented met-
rics are very similar to the ones obtained by the IEA execu-
tion on the TBASE and TEXTRA test sets, which implies that
the IUA is able to merge the information from diverse point
clouds while preserving its quality.

Figure 13 shows the TMAP test set original point clouds
along the IEA information extraction output and the final
unified information by the IUA.

5. AUV Online Implementation
An objective of this work is to implement the semantic

segmentation network and information algorithms on an
AUV and execute them online during manipulation and
inspection tasks. This section describes the used AUV char-
acteristics, the online implementation of the neural network
and information algorithms, and its validation.

5.1. AUV Description
The used AUV is a SPARUS II model unit [6] (Figure 14)

equipped with three motors, granting it three degrees of mo-
bility (surge, heave and yaw). Its navigation payload is com-
posed by: 1) a Doppler Velocity Logger (DVL) to get linear
and angular speeds and altitude, 2) a pressure sensor which
provides depth measurements, 3) an Inertial Measurement
Unit (IMU) to measure accelerations and angular speeds, 4)
a Compass for heading, 5) a GPS to be georeferenced during
surface navigation, and 6) a Short Baseline acoustic Link
(USBL) used for localisation and data exchange between the
robot and a remote station. Additionally, it has installed a
stereo pair of Manta G283 cameras facing downwards.

The robot has two computers. One is dedicated to receive
and manage the navigation sensor data and run the main
robot architecture, developed under ROS (Intel i7 processor
at 2.2 GHz, Intel HD Graphics 3000 engine and 4 GB of
RAM). The second computer is used to capture the images
from the stereo cameras and execute the online semantic
segmentation and information algorithms (Intel i7 processor
at 2.5 GHz, Intel Iris Graphics 6100 and 16GB of RAM).

The localisation of the vehicle is obtained through the
fusion of multiple state estimations produced by the DVL,
IMU, Compass, GPS, USBL, visual odometry and a nav-
igation filter [14]. This localisation can be integrated into
the point clouds generated from the images captured by the
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(a) (b) (c) (d)

Figure 12: Neural network segmentation and IEA qualitative results. (a) Original point cloud. (b) Deep neural network
segmentation. (c) Instance clustering. (d) Information extracted from IEA.

stereo pair of cameras to spatially reference them, which is
a requirement to execute the IUA.

5.2. Implementation
To perform the online implementation we design a

pipeline based on ROS.
The first step is to transform the images published from

the stereo pair into point clouds to be processed by the
neural network. To do so, diverse C++ ROS nodes are set
up to: 1) rectify the raw images using the camera calibra-
tion parameters, 2) decimate the rectified images from their
original size (1920 ù 1440pixels) to 960 ù 720pixels, 3)
calculate the disparity map and generate the point clouds
and 4) downsample the point clouds using a voxel grid.
Additionally, a python ROS node is set up to subscribe to
the downsampled point clouds.

Following, the point cloud is fed into a previously loaded
inference graph of a DGCNN trained model, performing the
semantic segmentation. From there, the IEA and IUA can
be executed. Finally, a publishing python ROS node is set
up to publish the extracted information back into ROS to be
accessed by other robots, sensors or actuators.

5.3. Validation
To validate the online execution, the frame rate of the

output information stream is evaluated. An online execu-
tion was performed during the immersions conforming the

SPOOL-2 and SSEA-3 sets. In total, the online workflow was
tested for 15’23”. For each execution the achieved output
information stream frame rate and the time that each online
execution step described in 5.2 takes are calculated.

For each immersion, the inspected pipe and valve con-
figuration are di�erent, making the IEA and IUA algorithms
execution time vary, as the number and shape of pipe and
valves is di�erent, making the time analysis more robust as
it covers a wider variety of scenarios.

The average output information stream frame rate and
times for each online execution step are calculated as the
mean value from both executions. Figure 15 presents a
breakdown of the total average online execution time into
its di�erent steps.

The total average online execution time is 1.39 seconds,
which results in an output information stream frame rate of
0.72fps. The preprocessing step takes a mean of 68ms (4.9%
of the total time) and includes all operations to transform the
images published from the stereo pair into point clouds to
be processed by the neural network. The network inference
takes the biggest amount of time with a mean of 690ms
(49.8% of the total time). Following, the IEA and IUA take
a mean of 411ms and 210ms, accounting for 29.7% and
15.1% of the total time, respectively. Finally, the information
publication takes a mean of 7ms (0.5% of the total time).
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Figure 13: IUA implementation over TMAP test set. Top: Overlapped point clouds. Middle: Overlapped extracted information
from IEA. Bottom: Unified information from IUA.
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Figure 15: Online execution time breakdown.

The achieved output information stream frame rate is
more than enough to perform manipulation tasks, as this
kind of operations in underwater scenarios tend to have slow
and controlled dynamics. Additionally, for most manipula-
tions tasks the IUA may not be executed, lowering the overall

online execution time to 1.18 seconds, and thus increasing
the achieved frame rate to 0.85fps.

Regarding inspections tasks, a way to validate the achieved
output information stream frame rate is to check if exists
an overlap between the analysed point clouds, ensuring full
coverage of the inspected area. To do so, overlap between the
original images from analysed point clouds is checked. This
overlap depends on the camera displacement between the
images from two consecutive analysed point clouds (dKF )
and on the height of the image footprint (hFP ). Then, the
overlap can be expressed as:

overlap = (hFP * dKF ) � h*1FP , (6)

dKF = v � frame_rate*1 , (7)

hFP = (a � himage) � f*1 . (8)

Where v denotes the AUV velocity, a the navigation
altitude, himage the image height pixels and f the camera
focal length.

During inspection tasks, an AUV like the SPARUS II
can achieve velocities up to v = 0.4m_s and navigate at
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a minimum altitude of a = 1.5m. Using these parameters
along the Manta G283 camera intrinsic focal length of f =
1505.5p and image height resolution of himage = 1440p,
the obtained overlap is 61.4%. Thus, the output information
stream frame rate is high enough to get point clouds to
overlap even in the most adverse navigation conditions.

6. Conclusions and Future Work
This paper presented the implementation of the DGCNN

deep neural network to perform pixel-wise 3D segmentation
of underwater pipes and valves from point clouds. To train
the network, multiple immersions were conducted with an
AUV to gather point clouds containing diverse pipe and valve
configurations.

Two information algorithms have been developed, the
first one groups the segmented pixels into instances and
implements an object detection, detecting pipe and valve
instances in a point cloud. Following, it extracts information
from the detected instances providing pipe vectors, gripping
points, structural elements like elbows or connections, and
valve type and orientation. The second algorithm unifies
information from spatially referenced point clouds, forming
an information map of an inspected area.

Lastly, a ROS pipeline is build to execute the 3D segmen-
tation and information extraction and unification algorithms
online on an AUV, performing real-time underwater pipe
and valve recognition, characterisation and mapping for
inspection and manipulation tasks.

The neural network evaluation presented good results,
reaching a mean F1-score value of 88.0% between the two
conducted tests at a pixel-wise level and of 95.3% at an
instance-level. Validating the usage of the DGCNN deep
neural network on underwater scenarios.

The information extraction algorithm results showcased
excellent metrics when extracting information from pipe
instances and its structural elements (elbows and connec-
tions), and good metrics when extracting valves position,
orientation and type. The mapping algorithm was able to
merge information from diverse point clouds, preserving its
quality and deleting spurious false positive detections.

Finally, the online execution validation demonstrated
that the output information stream frame rate is high enough
to perform manipulation tasks and to get point clouds to
overlap, permitting an adequate implementation of the in-
formation unification algorithm and ensuring a full area
coverage during inspection tasks.

It is important to point out that the whole workflow
presented in this work is executed using a simple point cloud
as an input, no matter what its source is (i.e. stereo vision,
sonar, laser, ...). Thus, it can be implemented and utilised in
multiple scenarios covering a wide range of applications.

Further developments will focus on studying the im-
plementation of new deep neural networks to improve its
segmentation performance and reduce the inference time, as
this is the most time consuming step of the online execution.

Additionally, new ways of extracting pipe and valve informa-
tion will be studied to improve pose and type detection [20],
maybe even being able to detect the valve handle position,
providing the valve state and allowing the generation of
pipeline flow diagrams.
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Chapter 4

Jellyfish detection and quantification

This chapter presents the work carried out on jellyfish control.
Jellyfish have been recognised as an important part of marine ecosystems, providing multiple benefits

(Hays, Doyle, and Houghton, 2018; Lamb et al., 2019). Recently, an increase in its numbers has been linked
to global change scenarios such as high fishing pressure (Richardson et al., 2009) and global warming (Brotz
et al., 2012). This increase can create a multitude of impacts on human wellbeing, such as clogging seawater
intake systems in water desalination and power plants (Lee et al., 2006), killing farmed fish in pens (Pur-
cell, Baxter, and Fuentes, 2013) or creating negative impacts on coastal tourism (Fenner, Lippmann, and
Gershwin, 2010).

Jellyfish monitoring efforts using underwater video observations tend to have limited spatial and tem-
poral coverage due to human-based data logging approaches ranging from quantitative to presence/absence
and relative abundance indices (Condon et al., 2013). The scarcity of consistent long-term temporal and
spatial data on jellyfish is such that there is uncertainty about its population growth (Pitt et al., 2018).

The objective of this work is to develop a tool that can automatically detect and quantify different species
of jellyfish based on a deep object detection neural network, recording jellyfish presence over long periods.

The first step was to collect the required data. Hundreds of images containing three species of jellyfish
were gathered from publicly available videos on diverse social media sites. Next, an object detection CNN
architecture was trained, and the best hyperparameters were selected. Then, a quantification algorithm was
developed to track jellyfish occurrence on video recordings. Finally, the neural network and quantification
algorithms were adapted to be executed online on stationary marine buoys, being able to log the presence
of jellyfish in real-time.

This work is presented in detail in a journal article describing the data collection, network and hyper-
parameter selection and validation, quantification algorithms, and online implementation.

Title: Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection
Authors: M. Martin-Abadal, A. Ruiz-Frau, H. Hinz and Y. Gonzalez-Cid
Journal: Sensors
Published: 19 March 2020
Quality index: JCR2020 Engineering, electrical & electronic, IF 3.735, Q2 (82/273)
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A B S T R A C T

During the past decades, the composition and distribution of marine species have changed due to
multiple anthropogenic pressures. Monitoring these changes in a cost-e�ective manner is of high
relevance to assess the environmental status and evaluate the e�ectiveness of management measures.
In particular, recent studies point to a rise of jellyfish populations on a global scale, negatively
a�ecting diverse marine sectors like commercial fishing or the tourism industry. Past monitoring
e�orts using underwater video observations tended to be time-consuming and costly due to human-
based data processing. In this paper, we present Jellytoring, a system to automatically detect and
quantify di�erent species of jellyfish based on a deep object detection neural network, allowing
us to automatically record jellyfish presence during long periods of time. Jellytoring demonstrates
outstanding performance on the jellyfish detection task, reaching an F1 score of 95.2%; and also on
the jellyfish quantification task, as it correctly quantifies the number and class of jellyfish on a real-time
processed video sequence up to a 93.8% of its duration. The results of this study are encouraging and
provide the means towards an e�cient way to monitor jellyfish, which can be used for the development
of a jellyfish early-warning system, providing highly valuable information for marine biologists and
contributing to the reduction of jellyfish impacts on humans.

1. Introduction
During the past decades, the marine environment has

been under increased pressure by human activities, such as
the over-exploitation of marine species [55], the destruction
and modifications of habitats [34], the introduction of alien
species [18], as well as pollution [33] and human-induced
climate change [32, 35]. These pressures have caused highly
relevant changes in the composition and distribution of
marine organisms [26].

The detection and quantification of changes in marine
species are of vital importance to monitor environmental
status and its change over time, in particular, the benefits
society derives from ecosystems, known as ecosystem ser-
vices [50]. Furthermore, the capacity to monitor is critical
in the assessment of the e�ectiveness of control or recovery
measures implemented through management.

Visual observations of marine organisms using video
cameras are increasingly adopted to monitor the marine en-
vironment due to the low cost of this technology and the wide
applicability within a challenging environment for humans.
Until recently, video observations have been processed and
classified by human observers, which in many instances is
time-consuming and consequently financially costly [6, 10].

In addition, the underwater environment is a highly dy-
namic environment, where a wide range of variables such as
water turbidity, scale deformations, illumination variations,
presence of flares, color distortions or light can a�ect the
quality of the images collected, making data extraction a
challenging undertaking.

<Corresponding author
miguel.martin@uib.es (M. Martin-Abadal)

Over the last decade, automatic detection methods have
arisen as a cost-e�ective way for image location and classi-
fication [51], this is highly relevant in regards to the increas-
ing amount of image data that is being collected from the
marine environment. In general, images of animal species
are used to record and quantify their density, distribution
and behaviour [4, 22, 30, 68]. Getting to determine where
objects are located in a given image (object localization) and
which category each object belongs to (object classification)
can be useful in a multitude of scenarios and implemented
for multiple applications. In the marine environment object
detection and classification has been used among others
to record fish presence and recognition [39, 40, 69, 72],
to monitor marine turtles [25] or in the classification of
planktonic organisms [59].

General existing solutions for organisms automatic de-
tection can be roughly classified into two groups: traditional
computer vision algorithms or artificial intelligence based
approaches.

Traditional computer vision algorithms use feature de-
tection algorithms (SIFT, SURF, BRIEF, etc.) to extract
feature information from the image (position of corners,
edges, blobs, etc.). An object is recognized in a new image by
individually comparing its features to a database and finding
candidate matching features. The di�culty with these tradi-
tional approaches is the necessity to choose which features
are important for each task. As the number of organisms to
classify increases, feature extraction becomes more complex
[53].

Artificial intelligence approaches, in turn, can be divided
into two groups, machine learning and deep learning ap-
proaches:
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Machine learning based approaches perform an informa-
tive region selection followed by a feature extraction of the
selected regions (e.g., SIFT [45], HOG [9], Haar-like [41])
and finally a region classification using a determined method
(e.g., Supported Vector Machine [7], AdaBoost [17], De-
formable Part-based Model [14]). Still, the feature extraction
process needs to be determined manually.

Deep learning based frameworks for image processing
and object detection specifically, mostly rely on region-
based Convolutional Neural Networks (CNN) like R-CNN
[21] or its performance evolutions: Fast R-CNN [20] and
Faster R-CNN [61], to generate deeper neural networks
with more layers, able to learn and extract more complex
features. Here, the full process is automated, with no need of
a previous feature extraction, as the network inputs an image
and is able to extract its own features.

In this paper, we present Jellytoring, a system to auto-
matically detect and quantify di�erent species of jellyfish
based on a deep object detection neural network. Within
the context of human–environment interactions, jellyfish are
organisms that can create a multitude of impacts on human
wellbeing. Among others, the presence of jellyfish aggrega-
tions can clog seawater intake screens in water desalination
and power plants, causing power reductions and shutdowns
[38, 48], leaving entire populations without electrical supply.
In aquaculture, large aggregations of jellyfish can cause
important socio-economic impacts by killing farmed fish in
pens [49, 57]. In commercial fishing, jellyfish can interfere
with fishing operations by constituting a health hazard to
fishermen when retrieving the nets, by splitting the fishing
nets due to the weight of the jellyfish in the nets or by
ruining the catch [58]. Additionally, jellyfish are known to
create negative impacts on coastal tourism by generating
unpleasant experiences among coastal users with associated
impacts on tourism revenues and the tourism industry [15].

The development of an automatic jellyfish detection and
identification system could contribute to the reduction of
jellyfish impacts on humans, providing the means towards an
e�ective acquisition of jellyfish presence surveillance data
which could be used for the development of a jellyfish early-
warning system. The nature and characteristics of jellyfish,
however, are challenging aspects to overcome in the de-
velopment of such a system. Jellyfish are often translucent
organisms whose bodies can adopt significantly di�erent
configurations, due to the movement of their tentacles in re-
lation to their main body structure, i.e., the bell or umbrella.
These aspects, translucent nature and changing shapes, to-
gether with the added di�culties of object detection in
underwater environments, represent challenging conditions
for the development of a jellyfish detection system.

We focused on the North-Western Mediterranean sea, an
area with a high human population and a popular tourism
destination, where human–jellyfish interactions are frequent.
Specifically, we studied three jellyfish species which are
common during the summer months and which often cause
undesired e�ects on tourism satisfaction, namely Pelagia
noctiluca, Cotylorhiza tuberculata and Rhizostoma pulmo.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work on jellyfish detection, quantifica-
tion and monitoring and highlights our main contributions.
Section 3 describes the used neural network architecture and
its training details. Section 4 describes the adopted method-
ology and materials used in this study. The experimental
results are presented in Section 5. Finally, Section 6 presents
the main conclusions and outlines future work.

2. Related Work and Contributions
This section briefly describes the existing related e�orts

on jellyfish detection and monitoring. The main contribu-
tions of this paper are highlighted at the end of this section.

2.1. State-Of-The-Art
During the last decades, the monitoring of jellyfish

species has mostly been carried out manually, relying on
human visual observations to detect, identify and quantify
specimens; that is either by direct observations made in the
field [56] or by using video recordings that subsequently
needed manual analysis [24]. The use of aerial vehicles
has also been adopted, to cover a larger study areas [31].
However in general, visual observations tend to be slow,
labour and resource intensive, thus restricting the spatial and
temporal extent of the studies [29, 37].

Some studies have used the aid of traditional computer
vision techniques to automate the detection of jellyfish.
Rife et al. [62] tested various image filtering techniques
and segmentation algorithms to track deep-ocean jellyfish
on conventional camera imagery. However, this implemen-
tation only considers a generic jellyfish class, not distin-
guishing between di�erent species. Moreover, the selected
combination of filtering and segmentation algorithm does
not allow for a real-time tracking application.

As in many other research areas, the recent development
of deep learning architectures has o�ered major improve-
ments in accuracy for observational ecological studies [70],
dealing at the same time with the spatial and temporal
limitations of human visual observation [71]. Even so, the
application of deep learning for jellyfish detection has been
very limited. To our knowledge, only two peer-reviewed
publications have focused on the subject.

Kim et al. [36] make use of an unspecified CNN along
with collaborative filters to build a jellyfish recognition
algorithm for sea surface imagery taken by an unmanned
aerial vehicle. Similar to the studies mentioned above, this
study does also not distinguish between di�erent species of
jellyfish. Furthermore, limiting image capture to the water
surface underestimates jellyfish numbers, as jellyfish dis-
tribution is not limited to surface waters only and tend to
occupy a large extent of the underlying water column.

French et al. [16] implement a 10-layer VGG-style CNN
architecture to detect jellyfish in underwater sonar imagery,
correctly classifying up to a 90% of the jellyfish for the test
set. The use of sonar imagery presents some advantages, like
the usability at deeper areas where light does not reach. On
the other hand, it su�ers from some drawbacks versus the
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usage of normal camera imagery, like lower resolution or
grey-scale coloring, complicating the detection task. This
study did not di�erentiate between di�erent jellyfish species.

Finally, we found that none of these works performed
a jellyfish quantification to provide information of occur-
rences over time, nor used time series processing techniques
to improve the detection rate that allowed for the implemen-
tation of a monitoring algorithm.

2.2. Main Contributions
The main contributions of this paper are composed of:

1. A real-time jellyfish monitoring system based on deep
learning object detection named Jellytoring, which
provides highly valuable information to biologists,
ecologists and conservationists on the presence and
occurrence of di�erent species of jellyfish in an stud-
ied area.

2. The usage of a deep CNN, trained several times to
fine tune its hyperparameters to detect and classify up
to three di�erent species of jellyfish on underwater
images. We evaluated the network on a test set of
images, comparing its results to other neural networks.

3. First system to achieve real-time automatic quantifica-
tion and identification of di�erent species of jellyfish.
We designed and tested an algorithm that can be
executed in real-time and uses the network detection
to quantify and monitor jellyfish presence on video
sequences.

4. The creation of a publicly available dataset used for
the training and testing of the neural network and
the quantification algorithm, containing the original
images and corresponding annotations.

3. Deep Learning Approach
This section describes the framework and network selec-

tion process along with its architecture and training details.

3.1. Framework and Network Selection
There are several deep learning frameworks based on

CNN that can be used to extract instance information from
images. They go from the standard region proposal based
object detection frameworks of Faster R-CNN [61] or some
of its direct evolutions like FPN [42], mask R-CNN [27]
or RFCN [8]; to regression-based ones like YOLO [60] or
SSD [44]; or even more specific frameworks like deep salient
object detection [1].

In our case, we aim to implement an object detection
framework able to detect and classify up to three species
of jellyfishes present in underwater images, with no need
of obtaining the pixel-wise segmentation of the detected
instances nor any extra feature that could slow the process.
We wanted to ensure that the system is able to perform real-
time quantification on a wide spectrum of setups, widening
its applicability.

Taking into account both the computational cost along
with the features of the aforementioned frameworks and

the requirements of our application, we opted for the usage
of the Faster R-CNN framework. This framework allow
us to obtain the jellyfish instances bounding boxes and its
classification, while balancing the detection performance
and computational cost trade o� by selecting an adequate
deep learning architecture for this specific task.

Due to the slow movement of the jellyfish, an architec-
ture with high detection performance, despite having a rela-
tively high image analysis time is suitable. Therefore, based
on the performance metrics provided by Google on tests [23]
conducted for diverse object detection architectures over the
COCO dataset [43], we selected the Faster R-CNN-based
implementation of the Inception ResNet v2 [63] architecture.
It uses a region proposal network to generate object position
instances and then the Inception ResNet v2 to fine-tune these
proposals and output a final prediction, presenting a two-
stage detection framework.

Inception ResNet v2 is a very deep CNN with over
450 layers that can e�ciently learn to identify objects in
images, outputting instance bounding boxes and classifying
them into one of the specified classes with a confidence
percentage.

Selecting appropriate kernel sizes for the convolutional
layers is a crucial aspect when detecting objects in an image,
as the same object may show variations in shape and size.
Larger kernels are preferred for the detection of bigger
objects while smaller kernels are favored for smaller ones.
To address this variation, Inception-ResNet V2 architecture
performs multiple parallel convolutions using di�erent ker-
nel sizes, making the network “wider” rather than “deeper”.
The blocks of layers containing these convolutions are called
Inception Modules [64].

The network also uses Residual Connections [28], through
which the output of the convolution operation of the In-
ception Module is added to the input. This introduces
shortcuts in the model resulting in more optimal and accurate
networks. This architecture combines Inception Modules
and Residual Connections which results in the Inception-
ResNet modules. Figure 1 shows a compressed view of
the whole Inception ResNet v2 architecture. More in-depth
information about this architecture can be found in [63].

3.2. Training Details
The Inception-ResNet V2 architecture is trained by

means of readjusting the kernel values in the convolutional
layer filters, back-propagating the loss computed over the
predictions obtained on the softmax layers.

Due to the high number of layers, the loss becomes
small and insu�cient to update the kernel values properly.
To prevent the middle part of the network from “dying out”
during the backpropagation process, an auxiliary classifier
is applied at the output of the second block of Inception-
ResNet modules. In this way, an auxiliary loss is computed
and added to the prior one as shown in Equation (1).

T otal_loss = main_loss + aux_loss ù 0.3 . (1)
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Figure 1: Inception ResNet v2 architecture. Credit: Google AI Blog.

To train the network and adjust the kernel weights, the
smooth L1 location backpropagation loss function is used,
which loss increases as the predicted bounding box location
diverges from the ground truth. Additionally, the Momentum
optimizer algorithm together with gradient clipping strate-
gies [54] are utilized to achieve a minimum global error.

The architecture used for this application had already
been trained over the COCO dataset [43]. To retrain the
network, it is needed a set of images containing di�erent
species of jellyfish and their corresponding ground truth
annotations, where the position and class of each jellyfish
instance are indicated.

4. Methodology
This section introduces the general workflow of Jelly-

toring and subsequently provides details of each work step
taken i.e., the acquisition and labeling of the data from the
training and testing sets, the tested network hyperparameters
and studied combinations, the validation process and evalu-
ation metrics and finally, the quantification algorithm.

4.1. Workflow
First, a set of images containing jellyfish needs to be

forwarded into a frozen version of a trained model of the
deep object detection neural network. After its inference, the
network generates the jellyfish detection.

Following, this detection is optimized by a non-maxima
suppression (nms) algorithm [52], deleting overlapping
ones. Then, the final predictions for each analyzed image
are obtained by deleting instances with an associated con-
fidence lower than a selected threshold value (Cthr1). These
predictions can be used to measure jellyfish occurrences and
species recognition in the forwarded images on its own.

Furthermore, if the initial source of data is a video
sequence, the network detection can be forwarded into the
quantification algorithm to obtain the evolution of number
and species of jellyfish present on the video sequence. This

algorithm first deletes instances with an associated confi-
dence lower than a selected threshold value (Cthr2) and then
applies time series processing techniques. More in depth
information about the quantification algorithm is provided
in Subsection 4.6.

Figure 2 represents the workflow of Jellytoring.

4.2. Data collection
The present study focuses on three jellyfish species,

namely Pelagia noctiluca, Rhizostoma pulmo and Cothy-
loriza tuberculata. To obtain the needed data to train and
test the neural network, we extracted images containing
instances of the studied jellyfish from underwater video
recordings.

The first source of data consisted of a series of recordings
we generated by mounting a GoPro camera onto a platform
and deploying it at the seafloor, pointing upwards. In or-
der to obtain a variety of exposure conditions, recordings
were done during di�erent times of the day, over di�erent
seabed types and weather conditions. Using this method
we generated up to 4 hours of recordings. Secondly, to
obtain additional data, we examined diverse social media
sites publicly available videos where appeared instances of
the three studied jellyfish. From these sources, we extracted a
total of 842 images, each one containing at least one jellyfish
instance. When possible, images containing more than one
instance were extracted. The resolution of the images range
from 320x240 to 1920x1080pixels, they can be forwarded
into the network without any processing, as the network is
able to process di�erent image and bounding boxes sizes
thanks to its multiple feature extraction kernels sizes and
shapes.

We built a varied dataset containing jellyfish instances
under di�erent conditions, such as jellyfish coloration, po-
sition and size; or water illumination, depth and turbidity.
We obtained a varied and robust dataset to train the neural
network without overfitting the training data and to test it
on di�erent scenarios to ensure its wide usability. Figure 3
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Figure 2: Jellytoring workflow.

Figure 3: Images from the dataset showing the three jellyfish
species under different environmental conditions. Left: P.

noctiluca, center: R. pulmo, right: C. tuberculata.

<annotation>
<folder>Tuberculata</folder>
<filename>IMG_00012.jpg</filename>
<path>D:\Jellyfish\Tuberculata\IMG_00012.jpg</path>
<source>

<database>Unknown</database>
</source>
<size>

<width>1280</width>
<height>720</height>
<depth>3</depth>

</size>
<segmented>0</segmented>
<object>

<name>tuberculata</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>616</xmin>
<ymin>127</ymin>
<xmax>973</xmax>
<ymax>525</ymax>

</bndbox>
</object>

</annotation>

Figure 4: Left: Original image. Right: Corresponding ground
truth ".xml" file, specifying the jellyfish location and class.

shows sample images from the dataset show-casing di�erent
environmental conditions.

To log the presence of the di�erent jellyfish species,
annotation files were generated using the LabelImg tool [67].
For each image, a bounding box around each jellyfish in-
stance was drawn and was classified according to its species.
The LabelImg tool then generates an ".xml" file containing
the position and classification of each instance within the
corresponding image. A total of 962 jellyfish occurrences
were recorded, 327 corresponding to Pelagia noctiluca, 292
to Rhizostoma pulmo and 343 to Cothyloriza tuberculata.
Figure 4 shows an original image along with its ground truth
".xml" text file.

Table 1

Hyperparameter values and combinations.

Index Data aug. Learn. rate Iterations

1

No

5e-04
10k

2 20k
3 40k
4

decay
10k

5 20k
6 40k
7

Yes

5e-04
10k

8 20k
9 40k
10

decay
10k

11 20k
12 40k

4.3. Hyperparameter Selection
When training a neural network the value of specific

hyperparameters can determine some of the network features
and the training process itself. To find the values of these
hyperparameters that o�er the best performance, the network
was trained using di�erent values and combinations.

The considered hyperparameters were:

• Data augmentation: it is a technique that consists of
applying random rotations and horizontal and vertical
transformations to the training images in order to train
over more diverse data, helping to reduce overfitting
[66].

• Learning rate: this hyperparameter modifies the train-
ing step size the network uses when searching for an
optimal solution. We also studied the e�ect of apply-
ing a decay learning rate, which consists of lowering
the learning rate value as the training progresses [2].

• Number of iterations: this hyperparameter sets the
number of times the network back-propagates and
trains [2].

Table 1 shows the values and combinations of hyperpa-
rameters that we used to train the neural network.
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Figure 5: Experiment K validation process. For each one of the twelve hyperparameter combinations, the network was trained
ten times using the k-fold cross-validation method, outputting ten models. These models were run and evaluated over the test
data. Finally, the results of the models were obtained and its mean performance calculated.

4.4. Validation
We conducted twelve di�erent experiments, each one

assessing the performance of hyperparameter combination.
When training the network, we made use of the 10k-fold
cross-validation method [19]. Through this method, the
dataset is split into ten equally sized subsets and the network
is trained ten times, each time using two di�erent subsets
as the test data (20% of the dataset) and the remaining
eight subsets as training data (80% of the dataset). This
method reduces the variability of the results, as these are
less dependent on the selected test and training datasets,
therefore obtaining a more accurate performance estimation.

Using the 10k-fold cross-validation, ten models were
generated for each experiment, Mi

K , where K=1..12 repre-
sents the experiment number and i=1..10 the model index.
We ran the ten output models with their corresponding test
subsets, obtaining jellyfish detection of all the models.

To remove overlapped detection and obtain the final
predictions of each model, P i

K , an nms algorithm is applied.
This algorithm computes the intersection area between de-
tection and eliminates the least confident ones when the in-
tersection area is greater than a threshold. Threshold values
for this type of application are usually set between 30%–70%
[3, 5], in our case, we selected a fairly restrictive threshold
of 40%, as it is not common that two or more jellyfish appear
superimposed in the images.

From these predictions, each model is evaluated in terms
of detection performance, obtaining its results metrics Ri

K .
Finally, the detection performance RK of each experiment
is computed as the mean of its ten Ri

K models performance.
The best model M corresponding to the experiment that
presented the best results is selected to generate the quantifi-
cation and monitoring predictions. The validation process of
the experiments is shown in Figure 5.

4.5. Model Evaluation
The first step to evaluate a model and measure its per-

formance is to classify each one of the predictions over the
test set data as either correct (True Positive, TP) or incorrect
(False Positive, FP). To do so, we used the Intersection over
Union (IoU) measure, which provides the similarity between
the predicted and the ground-truth bounding-boxes areas.

The IoU value is defined as the area of the intersection be-
tween bounding-boxes divided by the union of the bounding-
boxes areas (Equation (2)).

IoU =
Aintersection
Aunion

. (2)

To determine whether a prediction is a TP or an FP, an
IoU threshold value needs to be established. Following the
criteria applied in the PASCAL VOC challenge [12], this
threshold was set at thriou= 0.5. A prediction is classified
as TP if the IoU value with any ground truth bounding-box
is greater than the thriou and the predicted class matches
the corresponding one specified in the ground truth box.
Otherwise, the prediction is classified as an FP (Equation
(3)).

Prediction =
T

TP , if IoU >= thriou & Classpred = Classgt ,
FP , otherwise .

(3)

Finally, ground-truth instances that do not have a IoU>thriou
with any prediction are counted as undetected instances
(False Negatives, FN).

Once each prediction is classified as either TP or FP,
and the number of FN is obtained, evaluation metrics are
computed.

Average Precision (AP) [73] is one the most frequently
used metrics in object detection applications. It is largely
used in object detection competitions such as PASCAL
VOC [12], ImageNet [11] or COCO [43]. This metric takes
into account all predictions, o�ering a solid comparative
standard between networks and applications. Once the AP
is obtained for each class, a mean Average Precision (mAP)
for all classes is computed.

Following, a threshold sweep over the prediction confi-
dence from 0% to 100% in 1% steps was performed (Cthr1).
For each step, the predictions with an associated confidence
level lower than the Cthr1 were removed; and the Precision
and Recall metrics from the TP, FP and FN values were
calculated.
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<annotation>
<folder>Pelagia</folder>
<filename>IMG_00006.jpg</filename>

<path>D:\Jellyfish\Pelagia\IMG_00006.jpg</path>
<source>

<database>Unknown</database>
</source>
<size>

<width>1280</width>
<height>720</height>
<depth>3</depth>

</size>
<segmented>0</segmented>
<object>

<name>pelagia</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>507</xmin>
<ymin>211</ymin>
<xmax>789</xmax>
<ymax>405</ymax>

</bndbox>
</object>

</annotation>

NOCTILUCA 99%

ANALIZE

Figure 6: Model evaluation process. The final predictions
are compared to their corresponding ground truth using the
Intersection over Union (IoU) method and obtaining the False
Positive (FP), False Negative (FN) and True Positive (TP)
values. From these, the F1 score at the optimal threshold Cthr1,
altogether with the mean Average Precision (mAP) values are
calculated.

Precision represents the percentage of TP predictions
with respect to all predictions (Equation (4)). Recall refers
to the percentage of TP predictions with respect to all real
instances present in the ground-truth data (Equation (5)).

Precision = TP
TP + FP

, (4)

Recall = TP
TP + FN

. (5)

Finally, the F1 score [13] is calculated for each sweep
step from its corresponding Precision and Recall values
(Equation (6)). The F1 score is a measure of overall accu-
racy. The Cthr1 associated to the step with the highest F1
score is selected as the optimal Cthr1, obtaining the best
Precision and Recall metrics.

F1score = 2 ù Recall ù Precision
Recall + Precision

. (6)

Since the main aim in our application is to detect and
count the number of jellyfish, finding the optimal Cthr1 is
critical as we need a good trade-o� between maximizing the
prediction of jellyfish (TP) while minimizing the number of
wrongly detected jellyfish (FP). The process that evaluated
the prediction performance of the model is represented in
Figure 6.

4.6. Real-Time Quantification
After training the network and selecting the best hyper-

parameter values and combination, we assessed the capabil-
ity of the network at real-time jellyfish monitoring tasks. To
do so, a video sequence was manually labeled, indicating
the number and classes of jellyfish present at each frame.
Subsequently, the same video was analyzed by the neural
network. Each time that the network was able to analyze
a frame for the video sequence, it generated a predicted
information point, containing the number and classes of
jellyfish present at the analyzed frame.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

Figure 7: Representation of the window analysis and over-
lapping techniques (Wsize = 8, Wover = 50%). The black
squares represent the predicted information points, the blue
lines represent the windows and the orange dots are the
resulting information point of each window.

The neural network detection may be a�ected by spo-
radic changes in luminosity, strange jellyfish positions, water
reflexes, etc., resulting in the loss of TP detection or the
appearance of FN detection. To minimize the e�ect of spo-
radic changes in the detection and improve the quantification
performance of the neural network, we implemented diverse
time series processing techniques.

Firstly, we performed a window analysis over the pre-
dicted information points. This technique takes the infor-
mation of Wsize number of predicted information points
and processes it to generate a resulting information point
(R_I_point). In our case, the value of the resulting informa-
tion point was taken as the most occurring value from the
analyzed window predicted information points. The applica-
tion of this technique helps to eliminate sporadic detection
errors. Three di�erent window sizes were tested: Wsize =
4, 8, 12 information points.

Secondly, we decided to apply an overlap between the
information windows in order to preserve the significance
of the predicted information points in the transition between
windows. This overlap allows us to obtain resulting informa-
tion points more frequently. Three di�erent window overlaps
were tested: Wover = 25%, 50%, 75%. A representation of
the application of these time series processing techniques
over a series of predicted information points can be seen in
Figure 7.

Due to the implementation of these techniques, the op-
timal confidence threshold to obtain the best Similarity is
bound to diverge from the previously selected Cthr1. So, fol-
lowing the procedure explained in Section 4.5, we performed
a threshold sweep over the confidence of the video sequence
detection. For each threshold, we applied all combinations
of windowing parameters. Finally, for each combination, the
Cthr2 that resulted in the best Similarity was selected.

The comparison between the manual and network pre-
dictions was carried out by computing the Similarity be-
tween the manual and neural network quantification, ex-
pressed as the percentage of correct resulting information
points over the total number of resulting information points
(Equation (7)). We classify an information point as correct
when it correctly indicates the number and classes of jelly-
fish present in a determined time of the analyzed video.

Similarity = correct R_I_point
total R_I_point

. (7)
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Table 2

Results obtained from the evaluation of each experiment K, indicating the hyperparameters used along with the AP obtained for
each class, the mAP value, optimal Cthr1 and corresponding F1 score.

Exp. D. aug. Lr. Iter.
AP

mAP Cthr1 F1 score
P. noct. R. pulmo C. tuber.

1

No

0.0005
10k 85.3% 98.2% 97.2% 93.6% 85% 93.7%

2 20k 86.3% 97.7% 97.3% 93.8% 85% 94.0%
3 40k 86.1% 97.6% 97.1% 93.6% 93% 94.1%
4

decay
10k 86.5% 98.1% 97.5% 94.0% 82% 94.1%

5 20k 86.3% 98.4% 97.3% 94.0% 95% 94.2%
6 40k 85.8% 98.9% 96.6% 93.8% 91% 94.2%
7

Yes

0.0005
10k 84.4% 97.5% 96.7% 92.9% 79% 93.6%

8 20k 86.5% 98.8% 96.7% 94.0% 91% 94.5%
9 40k 86.8% 99.0% 96.5% 94.1% 89% 94.8%
10

decay
10k 87.1% 98.5% 96.9% 94.1% 69% 94.6%

11 20k 87.6% 99.0% 97.5% 94.7% 86% 95.0%
12 40k 88.2% 99.0% 97.7% 95.0% 90% 95.2%

5. Results and Discussion
This section reports the performance obtained for each

experiment in the final predictions and discusses the e�ect
of each hyperparameter over it. Also, it exposes the real-
time quantification results obtained from analyzing a video
sequence and the conclusions that can be extracted from
these. Finally, it presents a comparison between the per-
formance of the selected Inception-ResNet V2 architecture
versus two of its main competitors in both final predictions
and quantification.

5.1. Experiment Performance
Average results obtained from the ten models corre-

sponding to each one of the K=1..12 experiments are shown
in Table 2.

All experiments showed mAP values in the 93%–95%
range, reaching a maximum of 95.0% for experiment 12
and a minimum value of 92.9% for experiment 7. The
comparison of AP values for the three species shows that
R. pulmo and C. tuberculata have higher AP values than P.
noctiluca. This might be related to the fact that R. pulmo and
C. tuberculata are bigger specimens and the shape of their
bodies remains relatively unchanged while swimming and
therefore they might be easier to identify. On the contrary, in
P. noctiluca the relative position of the tentacles in relation
to the main body (umbrella) changes to a greater extent with
the movement of the animal, adopting a multitude of shapes,
making it more di�cult to identify. Regarding the Cthr1 and
F1 score values, most experiments found the best F1 score
when applying relatively high Cthr1 values, indicating that
most TP detection had high confidence levels. Experiments
showed F1 scores ranged from of 93% to 95%, reaching a
maximum of 95.2% for experiment 12 again.

The comparison of the di�erent experiments on a hy-
perparameter basis indicates that the application of data
augmentation, the use of a higher number of iterations and
the decay technique application resulted into increased per-
formances. Experiment 12, which featured all three hyperpa-
rameters, presented the best performance. Figure 8 illustrates

Figure 8: Jellyfish detection examples over test set images.
Left: green bounding boxes over P. noctiluca; center: blue
boxes over R. pulmo; right: orange bounding boxes over C.

tuberculata.

an example of the detection of jellyfish over images from the
test set.

5.2. Real-Time Quantification
To perform the quantification task and obtain its results,

we made use of the best model M from experiment 12, con-
taining the previously selected best-performing hyperparam-
eters. We forwarded a 1920x1080 video sequence recorded
by the authors using the procedures mentioned in Section
4.2 and analyzed it in real-time. No images from this video
had been used either for training nor for testing the network.
The duration of the video is approximately 5 minutes and
contains a single jellyfish species (P. noctiluca) as, despite
the best e�orts, no videos with more than one of the studied
jellyfish species could be located. This analysis was carried
out in a computer with the following specs—processor: Intel
i7-7700, RAM: 16 GB, GPU: NVIDIA GeForce GTX 1080).

Table 3 shows the obtained results for all windowing
parameter combinations. The third column of the table
indicates the time between resulting information points
(TR_I_point) in seconds after applying the time series pro-
cessing techniques, obtained from Equation (8).
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Table 3

Quantification results obtained from analyzing a video se-
quence for all windowing parameter combinations.

Wsize Wover TR_I_point Cthr2 Similarity

4
25% 1.87 11% 87.7%
50% 1.25 12% 87.9%
75% 0.62 20% 87.5%

8
25% 3.75 36% 90.5%
50% 2.50 36% 92.2%
75% 1.25 36% 90.5%

12
25% 5.62 20% 93.8%

50% 3.75 27% 92.7%
75% 1.87 27% 92.1%

TR_I_point =
w_size ù (1 *w_overlap)

fps
, (8)

where fps indicates the frame rate at which the network was
able to analyze the forwarded video. The Inception ResNet
V2 architecture was able to perform the inference of a frame
each 0.625 seconds (1.6 fps).

TR_I_point can be adjusted to meet the monitoring target
requirements. The Wsize could be lowered and the Wover
raised to reduce this time, or the other way around to increase
it.

It can be seen that all combinations showed high Simi-
larity values, reaching a maximum of 93.8% when using a
Wsize = 12 predicted information points and an overlapping
between windows of Wover = 25%. Selecting these win-
dowing parameters, a resulting information point is obtained
each 5.62 seconds (following Equation (8)), endorsing that
this value is adequate for the monitoring of slow-moving
organisms such as jellyfish.

It can also be appreciated that the best Similarity for
all combinations was achieved when applying much lower
Cthr2 than the Cthr1 values obtained during the pure predic-
tion task presented in Table 2. The time series processing
techniques eliminate spurious FP predictions, allowing us to
reduce the Cthr2 values and introducing low confidence TP
predictions while not being punished by low confidence FP.

The solidity of results using the quantification algorithm
can be appreciated in Figure 9, which shows the di�erence
between the jellyfish count obtained when using the final
predictions versus the application of the quantification al-
gorithm algorithm over the Inception ResNet V2 detection.

Figure 9a shows the count of each studied jellyfish
species calculated from the final predictions. It can be seen
how this value highly varies in time. Figure 9b shows the
count obtained after the quantification algorithm using the
windowing parameters that showed the best performance.
The count is stable over time and closer to reality.

Additionally, the manually generated jellyfish count, act-
ing as ground truth, for the same video is presented in
Figure 10a along with its comparison against the obtained
quantification in Figure 10b. The comparison has been made
only for the Pelagia noctiluca species, as it was the only

Table 4

Summary of detection performance metrics of Inception-
ResNet V2, Inception V2 and ResNet101 neural network
architectures.

Architecture mAP F1 score

Inception V2 76.5% 80.2%
ResNet 93.9% 94.2%

Incep.-ResNet V2 95.2% 95.2%

species present in the video sequence, thus, there is no
quantification of errors for the other two species.

Figure 10 shows that some of the divergences can be
found when the jellyfish count changes, where the network
quantification shows a slower reaction compared to the man-
ual quantification, caused by the computational time of the
network and the TR_I_point introduced by the time series
processing techniques. Also, some other quantification error
are due to some timely close resulting information points
containing detection errors.

An illustrative video of Jellytoring analyzing the studied
video sequence can be seen on the SRV research group web
page [47].

5.3. Neural Network Performance Comparison
To evaluate the e�ectiveness of the selected neural net-

work and address its adequacy to our application in terms
of detection performance and computational cost, we per-
formed a comparison between the Inception-ResNet V2
architecture and two other object detection architectures, the
InceptionV2 [65] and the ResNet101 [28].

These architectures were selected as they are close com-
petitors to Inception-ResNet V2 in terms of detection perfor-
mance and computational cost trade-o� [23].

First, the three architectures were trained and tested over
the dataset presented in Subsection 4.2 with the selected best
hyperparameters from Subsection 5.1 and the 10k-fold cross-
validation strategy. The detection performance comparison
was conducted using the mAP and F1 score evaluation
metrics. Table 4 shows the comparison between detection
performance metrics.

The mAp and F1 score comparison among the three
architectures indicates that Inception-ResNet V2 o�ers the
highest detection performance. ResNet101 architecture shows
detection metrics close to those of Inception-ResNet V2
albeit slightly lower. Conversely, Inception V2 shows worse
mAP and F1 score values.

Following, the video sequence presented in Section 5.2
was forwarded into the three architectures and their detec-
tion’s were processed by the quantification algorithm.

Table 5 exposes the comparison between quantification
results. The presented Similarity results are from the best
Cthr2 for each combination. The Wsize values were adjusted,
taking into account each network fps, to maintain the same
time between resulting information points as the ones ob-
tained in Table 3

In terms of fps achieved, the Inception V2 architecture
was able to analyze 25.2 frames per second, while the
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Figure 9: Results of the jellyfish count from Inception ResNet V2 final predictions (a) and quantification algorithm (b) over a
video showcasing nearly 5 minutes of footage of up to two P. noctiluca jellyfish going in and out of the frame.
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Figure 10: Results of the jellyfish count from manually generated ground truth (a) and its comparison against the results from
the Inception ResNet V2 network quantification algorithm (b).

ResNet101 managed to process 10 frames per second. Both
architectures achieve higher fps values than the Inception-
ResNet V2 architecture (1.6), meaning that higher Wsize
values can be used to incorporate more predicted infor-
mation points in each window, helping to reduce spurious
detection errors. Nevertheless, it can be seen that neither the
Inception V2 nor the ResNet101 architectures were able to

obtain higher Similarity values than the Inception ResNet
V2, reaching 73.3% and 90.0%, respectively.

Figures 11a and 12a show the results of the jellyfish
count from the ResNet101 and Inception V2 network final
predictions, respectively. In the same way, Figure 11b and
12b present the corresponding network quantification when
using the best windowing parameters.
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Table 5

Quantification results of Inception-ResNet V2, Inception V2 and ResNet101 neural network architectures.

.

Inception-V2
fps achieved: 25.2

Wsize Wover Similarity

63
25% 70.3%
50% 70.7%
75% 72.1%

126
25% 70.0%
50% 72.0%
75% 71.3%

189
25% 69.9%
50% 73.3%

75% 70.9%

ResNet101
fps achieved: 10.0

Wsize Wover Similarity

25
25% 90.0%

50% 89.3%
75% 89.0%

50
25% 87.8%
50% 87.5%
75% 86.7%

75
25% 87.8%
50% 86.3%
75% 84.8%

Inception-ResNet V2
fps achieved: 1.6

Wsize Wover Similarity

4
25% 87.7%
50% 87.9%
75% 87.5%

8
25% 90.5%
50% 92.2%
75% 90.5%

12
25% 93.8%

50% 92.7%
75% 92.1%
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Figure 11: Results of the jellyfish count from the ResNet101 network final predictions (a) and quantification algorithm (b).

The high detection and quantification metrics shown by
the Inception-ResNet V2 network make it the most suit-
able for jellyfish monitoring. The ResNet101 architecture
o�ers a moderate trade-o� between computational cost and
quantification performance, still reaching good detection and
quantification metrics at higher frames per second, making
it suitable for detecting and quantifying faster species. The
Inception V2 architecture o�ers a more extreme trade-o�
between computation cost and quantification performance,
providing much lower inference time at still reasonably good
detection and quantification metrics.

6. Conclusions and Future Work
This paper presents Jellytoring, a system for real-time

jellyfish monitoring from underwater video recordings. Jel-
lytoring uses a deep object detection neural network to
detect and classify jellyfish instances, combined with a quan-
tification algorithm. A main advantage of this system is

that it is able to automatically monitor jellyfish presence
without the need for any human interaction, allowing us to
generate continuous and precise records. Additionally, the
information can be fed to the system in real-time, generating
live records.

The neural network evaluation presented very high met-
rics in the prediction task, reaching a maximum F1 score of
95.2% when the data augmentation and learning rate decay
techniques were applied and the network was trained for
40,000 iterations. On the same page, the best quantification
results were obtained when choosing a Wsize of 12 informa-
tion points and a Wover of 25%, being able to analyze a video
sequence with a Similarity of 93.8% between the manually
generated ground truth and the output of the quantification
algorithm. These results indicate that the presented system
is able to detect, quantify and monitor jellyfish with high ac-
curacy, thanks to the quantification algorithm that improves
the neural network detection.
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Figure 12: Results of the jellyfish count from the Inception V2 network final predictions (a) and quantification algorithm (b).

Additionally, Jellytoring can be customized, widening
the applicability of the system. This can be done either by
using other network architectures or changing the window-
ing parameters from the time series processing techniques.
Some other possible applications could be the monitoring
of other jellyfish species, faster species such as fish, or even
other objects like marine waste.

Further developments will focus on lightening the sys-
tem computational load while maintaining high accuracy
levels. Also, we will work on increasing the number of
jellyfish species the network can distinguish, widening its
spatial application. Our final goal is to implement this system
on a floating station and be executed online to monitor the
presence and class of jellyfish and relate it to determined
water conditions.

We provide our dataset and code, along with the best
trained inference frozen model in a GitHub repository [46].
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Chapter 5

Conclusions

This chapter summarises the contributions of this thesis and analyses the research relevance, main findings,
and drawn conclusions. Finally, it presents some areas of improvement and possible future lines of research.

5.1 Contributions and discussion

The main objective of this thesis was to develop deep learning-based tools using CNNs for image and
video processing and to implement them in real-world scenarios for marine ecosystem services preserva-
tion tasks. It also aimed to design, test, and validate a methodology for the development and efficient
implementation of these tools.

This thesis presents three different tools, each tackling a specific task with varying requirements. Di-
verse types of deep CNNs were used, and their applicability was tested across a wide range of scenarios.

Following, the main objectives and contributions for each task are presented. Specific scenarios where
CNNs have been implemented are also detailed, discussing the selected CNNs architecture types, data
gathering methods, and deployment platforms.

1. Posidonia oceanica monitoring

The objective was to develop a tool to automatically perform high-precision semantic segmentation
of Posidonia oceanica meadows and their habitat in sea-floor images using deep learning techniques. The
following work was carried out:

– Dataset generation: 483 images containing Posidonia oceanica meadows and their habitat were gath-
ered from six immersions conducted on different Mediterranean sea locations at depths ranging from
2-20 meters. The images were taken using multiple cameras mounted on an AUV and under diverse
environmental conditions such as sunlight or water turbidity, ensuring robust network training. Ad-
ditionally, semantic segmentation ground truths were generated.

– CNN implementation: Considering that Posidonia oceanica grows in dense meadows of irregular
shapes and, equally, sea-floor substrates do not have a defined shape, CNN semantic segmentation
architectures were selected as the most adequate approach. These architectures are able to perform
pixel-wise classification, distinguishing multiple areas in an image without shape restrictions. The
selected network was the VGG16-FCN8 (Simonyan and Zisserman, 2014) and, after selecting the best-
performing hyperparameters, it achieved AUC values of 97.7% when performing a binary classifica-
tion between Posidonia oceanica and background, and of 96.8% when distinguishing between Posidonia
oceanica, rock and sand substratum.

– Deployment: The output layer of the CNN was adapted to reduce the inference time, allowing online
execution. Additionally, integration into AUV and ASV platforms was performed using the ROS
middleware.

This work was developed under the "DEvelopment of new TEChnologies for the automatic and periodic
assessment of changes in POSidonia meadows due to anthropogenic causes" (DETECPOS) project (SRV,
2020) and has been used to generate offline Posidonia oceanica semantic maps of large areas for its control
and monitoring (Gonzalez-Cid et al., 2021). Additionally, it has been deployed in an AUV, performing
online image segmentation, serving as an input source to a generation of online semantic coverage maps
(Guerrero-Font et al., 2021b) and to a decision-time adaptive replanning algorithm to dynamically adapt the
robot exploration using the visual information gathered online (Guerrero, Bonin-Font, and Oliver, 2021).
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The generated dataset, trained models, and additional code are provided to the scientific community in
(Martin-Abadal, Miguel, 2018).

2. Pipeline Characterisation

The objective was to design a system able to automatically identify and characterise valves, pipes, and
structural elements on underwater pipeline networks and position them in a 3D space to provide informa-
tion during inspection and manipulation tasks. The following work was carried out:

– Dataset generation: 606 point clouds showcasing a wide variety of pipe structures and valve con-
nections over different backgrounds were gathered. The point clouds were generated from pairs of
images provided by different stereo camera rigs mounted on an AUV and an ASV. The images were
taken under diverse environmental conditions to ensure robust training. Additionally, 3D semantic
segmentation ground truths were generated.

– CNN implementation: Underwater pipeline structures range from simpler ones, like pipelines laid on
the seabed covering large distances, to more complex ones, such as the pipe and valve layouts found
in oil rigs. In all cases, it is important to analyse and extract 3D information from unknown-shaped
objects and calculate sizes, gripping points, lengths, etc. Thus, 3D CNN semantic segmentation ar-
chitectures were selected as the most adequate approach. These architectures are able to perform
pixel-wise classification, distinguishing multiple areas in a point cloud without shape restrictions.
The selected network was the Dynamic Graph Convolutional Neural Network (DGCNN) (Wang et
al., 2019) and, after selecting the best-performing hyperparameters, it reached a pixel-wise segmenta-
tion F1-score of 87.2%.

– Information processing: Generation of an information extraction algorithm that clusters the pixel-
wise information to an instance level, raising the instance-level segmentation F1-score to 95.4%. This
algorithm also draws information from the detected pipes and valves, providing lengths, centre and
gripping points, and detecting pipe elbows and connections, with very little positioning error.

– Information processing: Generation of an information unification algorithm that merges the informa-
tion of diverse point clouds provided by the information extraction algorithm and generates informa-
tion maps of an inspected area.

– Deployment: Adapt the neural network and information algorithms for online execution and integra-
tion into AUV and ASV platforms using ROS middleware, for surveying and manipulation tasks.

This work was framed on the "TWIN roBOTs for cooperative underwater intervention missions" (TWIN-
BOT) project (SRV, 2018), which aimed to achieve a step forward beyond the current underwater interven-
tion state of the art and the development of a new kind of I-AUVs, able to work autonomously, alone or in
a cooperative way. Currently, the "COOPErative Resident robots for Autonomous ManipulatiOn Subsea"
(COOPERAMOS) project (SRV, 2021) has taken its place and aims to use at least three I-AUVs, cooperating
to enable complex underwater intervention tasks, such as bulky load transport and cooperative complex
structure assembly, in a priori unknown area, including obstacles, with high autonomy. The generated
dataset, trained models and additional code are provided to the scientific community in (Martin-Abadal,

Miguel et al., 2021a; Martin-Abadal, Miguel, Oliver-Codina, and Gonzalez-Cid, 2022a).

3. Jellyfish detection and quantification

The objective was to develop a tool able to automatically detect and quantify different species of jellyfish
and log their presence during long periods of time. The following work was carried out:

– Dataset generation: 842 images containing instances of three different species of jellyfish were gath-
ered. The images were extracted from publicly available videos on diverse social media sites. Addi-
tionally, object detection ground truths were generated.

– CNN implementation: Monitoring jellyfish populations and trends requires an effective system ca-
pable of identifying the number and species of jellyfish present in an area, enabling temporal quan-
tification. To do so, CNN object detection architectures were selected as the most suitable approach.
These architectures can localise and classify different object instances in an image. The selected net-
work was the Inception ResNet v2 (Szegedy, Ioffe, and Vanhoucke, 2016) and, after selecting the
best-performing hyperparameters, it reached an F1-score of 95.2% in the jellyfish detection task.
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– Information processing: Generation of a quantification algorithm based on windowing techniques to
log the presence of jellyfish over video sequences.

– Deployment: Adapt the neural network and quantification algorithm for an online execution, ready
for integration into stationary marine buoys equipped with cameras.

This work has generated great interest among biologists. A second implementation of this tool has
been developed (Ruiz-Frau et al., 2022), including a larger number of jellyfish species and a division be-
tween different oceanic regions, with specifically trained models, considering determined jellyfish species.
Furthermore, a web page that will allow uploading images for online jellyfish detection and quantifica-
tion, while providing extra data to enrich the dataset, is under development (Bustos, 2022). The generated
dataset, trained models, and additional code are provided to the scientific community in (Martin-Abadal,

Miguel, 2020).

These implementations cover a wide spectrum of scenarios where deep CNN have been applied with
good results, obtaining high accuracy metrics and even surpassing humans in certain applications. They
automate the data analysis process, allowing for temporal and spatial extension of the scope of analysis or
surveys, and improve the repeatability of experiments to detect evolution trends. Additionally, all imple-
mentations have been, or are ready to be, deployed and executed in real-time on diverse platforms. Finally,
they have proved their usefulness, as biologists have used them to obtain information during exploration
campaigns, and have been integrated into other scientific works as a source of information. Thus, vali-
dating the methodology presented in Section 1.2 and proving the feasibility of implementing deep CNNs
in challenging environments like marine environments, where data is often scarce and affected by light
transmission artefacts or other environmental factors.

5.2 Future Work

Besides the specific future research lines identified for each presented tool, which are described in the
"Conclusion" or "Future Work" sections of their corresponding publications, this thesis has identified sev-
eral potential lines of future work and points for improvement in the design and implementation of deep
learning tools for environmental applications.

• Improve data storage and accessibility with enriched metadata and ground truth annotations. Deep
learning architectures need to be trained with lots of data, which sometimes can be scarce or inaccessi-
ble. It is important that the community moves towards open-source approaches, facilitating progress
in the field.

• Study techniques to increase contact between biologists or environment experts and developers. It is
crucial that both parties provide continuous feedback in order to assure a good understanding of the
problem and the required system characteristics and features.

• Explore the implementation of semi-supervised or unsupervised deep learning approaches. Data
curation and ground truth generation can be a time-consuming and tedious task due to the high vol-
ume of required data. These approaches could improve the obtained results and ease the workload,
focusing the research on the exploration of new applications or solutions.

• Study the implementation of 3D information in deep learning environmental applications. During
the work carried out for pipeline characterisation, the usefulness of working with 3D information was
featured. Most CNN applications in the fields of biology and conservation use 2D information, albeit
the many benefits 3D information can provide. In object detection and classification, 3D information
could be used to identify new features on the studied species or objects, to size them, or to detect their
pose. On broader analysis, using semantic segmentation, like seafloor inspection and identification,
3D information could provide the dimensions of a covered area, or even allow to calculate the volume
of areas of interest, such as seagrass meadows.

77





Bibliography

Ahmad, Sajjad, Zahoor Ahmad, Cheol-Hong Kim, and Jong-Myon Kim (2022). “A Method for Pipeline
Leak Detection Based on Acoustic Imaging and Deep Learning”. In: Sensors 22.4. ISSN: 1424-8220. DOI:
10.3390/s22041562. URL: https://www.mdpi.com/1424-8220/22/4/1562.

Alonso, Iñigo, Matan Yuval, Gal Eyal, Tali Treibitz, and Ana C. Murillo (2019). “CoralSeg: Learning coral
segmentation from sparse annotations”. In: Journal of Field Robotics 36.8, pp. 1456–1477. DOI: https:
//doi.org/10.1002/rob.21915. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.
21915. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21915.

Ani, Chinenye J. and Barbara Robson (2021). “Responses of marine ecosystems to climate change impacts
and their treatment in biogeochemical ecosystem models”. In: Marine Pollution Bulletin 166, p. 112223.
ISSN: 0025-326X. DOI: https://doi.org/10.1016/j.marpolbul.2021.112223. URL: https://www.
sciencedirect.com/science/article/pii/S0025326X21002575.

Antao, Laura, Amanda Bates, Shane Blowes, Conor Waldock, Sarah Supp, Anne Magurran, Maria Dornelas,
and Aafke Schipper (July 2020). “Temperature-related biodiversity change across temperate marine and
terrestrial systems”. In: Nature Ecology & Evolution 4, 927–933. DOI: 10.1038/s41559-020-1185-7.

Bacheler, Nathan M., Nathan R. Geraldi, Michael Ladd Burton, Roldan C Muñoz, and G. Todd Kellison
(2017). “Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous
underwater visual census, video, and trap sampling”. In: Marine Ecology Progress Series 574, pp. 141–155.

Barbier, Edward B. (2017). “Marine ecosystem services”. In: Current Biology 27.11, R507–R510. ISSN: 0960-
9822. DOI: https://doi.org/10.1016/j.cub.2017.03.020. URL: https://www.sciencedirect.com/
science/article/pii/S0960982217302890.

Bennett, Elena M., Garry D. Peterson, and Line J. Gordon (2009). “Understanding relationships among
multiple ecosystem services”. In: Ecology Letters 12.12, pp. 1394–1404. DOI: https://doi.org/10.1111/
j.1461-0248.2009.01387.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-
0248.2009.01387.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.
2009.01387.x.

Bermant, Peter, Michael Bronstein, Robert Wood, Shane Gero, and David Gruber (Aug. 2019). “Deep Ma-
chine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics”. In: Scien-
tific Reports 9, pp. 1–10. DOI: 10.1038/s41598-019-48909-4.

Bharti, Vibhav, David Lane, and Sen Wang (2020). “Learning to Detect Subsea Pipelines with Deep Segmen-
tation Network and Self-Supervision”. In: Global Oceans 2020: Singapore – U.S. Gulf Coast, pp. 1–7. DOI:
10.1109/IEEECONF38699.2020.9389226.

Borja, Angel (2014). “Grand challenges in marine ecosystems ecology”. In: Frontiers in Marine Science 1.
ISSN: 2296-7745. DOI: 10.3389/fmars.2014.00001. URL: https://www.frontiersin.org/articles/
10.3389/fmars.2014.00001.

Brotz, Lucas, William W L Cheung, Kristin Kleisner, Evgeny Pakhomov, and Daniel Pauly (2012). “Increas-
ing jellyfish populations: trends in Large Marine Ecosystems”. In: Hydrobiologia 690 (1). PT: J; TC: 9,
pp. 3–20. DOI: 10.1007/s10750-012-1039-7.

Buonocore, Elvira, Luigia Donnarumma, Luca Appolloni, Antonino Miccio, Giovanni F. Russo, and Pier
Paolo Franzese (2020). “Marine natural capital and ecosystem services: An environmental accounting
model”. In: Ecological Modelling 424, p. 109029. ISSN: 0304-3800. DOI: https://doi.org/10.1016/
j . ecolmodel . 2020 . 109029. URL: https : / / www . sciencedirect . com / science / article / pii /
S0304380020301010.

Burguera, Antoni (2020). “Segmentation through patch classification: A neural network approach to detect
Posidonia oceanica in underwater images”. In: Ecological Informatics 56, p. 101053. ISSN: 1574-9541. DOI:
https://doi.org/10.1016/j.ecoinf.2020.101053. URL: https://www.sciencedirect.com/
science/article/pii/S1574954120300030.

Burguera, Antoni and Francisco Bonin-Font (2020). “On-Line Multi-Class Segmentation of Side-Scan Sonar
Imagery Using an Autonomous Underwater Vehicle”. In: Journal of Marine Science and Engineering 8.8.
ISSN: 2077-1312. DOI: 10.3390/jmse8080557. URL: https://www.mdpi.com/2077-1312/8/8/557.

79

https://doi.org/10.3390/s22041562
https://www.mdpi.com/1424-8220/22/4/1562
https://doi.org/https://doi.org/10.1002/rob.21915
https://doi.org/https://doi.org/10.1002/rob.21915
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21915
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21915
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21915
https://doi.org/https://doi.org/10.1016/j.marpolbul.2021.112223
https://www.sciencedirect.com/science/article/pii/S0025326X21002575
https://www.sciencedirect.com/science/article/pii/S0025326X21002575
https://doi.org/10.1038/s41559-020-1185-7
https://doi.org/https://doi.org/10.1016/j.cub.2017.03.020
https://www.sciencedirect.com/science/article/pii/S0960982217302890
https://www.sciencedirect.com/science/article/pii/S0960982217302890
https://doi.org/https://doi.org/10.1111/j.1461-0248.2009.01387.x
https://doi.org/https://doi.org/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2009.01387.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2009.01387.x
https://doi.org/10.1038/s41598-019-48909-4
https://doi.org/10.1109/IEEECONF38699.2020.9389226
https://doi.org/10.3389/fmars.2014.00001
https://www.frontiersin.org/articles/10.3389/fmars.2014.00001
https://www.frontiersin.org/articles/10.3389/fmars.2014.00001
https://doi.org/10.1007/s10750-012-1039-7
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109029
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2020.109029
https://www.sciencedirect.com/science/article/pii/S0304380020301010
https://www.sciencedirect.com/science/article/pii/S0304380020301010
https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101053
https://www.sciencedirect.com/science/article/pii/S1574954120300030
https://www.sciencedirect.com/science/article/pii/S1574954120300030
https://doi.org/10.3390/jmse8080557
https://www.mdpi.com/2077-1312/8/8/557


Bustos, Rubén (2022). Jellyfish Object Detection. https://jellytoring.uib.es/.
Caughlan, L (2001). “Cost considerations for long-term ecological monitoring”. In: Ecological Indicators 1.2,

pp. 123–134.
Chai, Junyi, Hao Zeng, Anming Li, and Eric W.T. Ngai (2021). “Deep learning in computer vision: A crit-

ical review of emerging techniques and application scenarios”. In: Machine Learning with Applications
6, p. 100134. ISSN: 2666-8270. DOI: https://doi.org/10.1016/j.mlwa.2021.100134. URL: https:
//www.sciencedirect.com/science/article/pii/S2666827021000670.

Character, Leila, Agustin Ortiz JR, Tim Beach, and Sheryl Luzzadder-Beach (2021). “Archaeologic Machine
Learning for Shipwreck Detection Using Lidar and Sonar”. In: Remote Sensing 13.9. ISSN: 2072-4292. DOI:
10.3390/rs13091759. URL: https://www.mdpi.com/2072-4292/13/9/1759.

Chen, Fu-Chen and Mohammad R. Jahanshahi (2018). “NB-CNN: Deep Learning-Based Crack Detection
Using Convolutional Neural Network and Naïve Bayes Data Fusion”. In: IEEE Transactions on Industrial
Electronics 65.5, pp. 4392–4400. DOI: 10.1109/TIE.2017.2764844.

Condon, Robert H, Carlos M Duarte, Kylie A Pitt, Kelly L Robinson, Cathy H Lucas, Kelly R Sutherland,
Hermes W Mianzan, Molly Bogeberg, Jennifer E Purcell, Mary Beth Decker, Shin-ichi Uye, Laurence P
Madin, Richard D Brodeur, Steven H D Haddock, Alenka Malej, Gregory D Parry, Elena Eriksen, Javier
Quinones, Marcelo Acha, Michel Harvey, James M Arthur, and William M Graham (2013). “Recurrent
jellyfish blooms are a consequence of global oscillations”. In: Proceedings of the National Academy of Sci-
ences of the United States of America 110.3, pp. 1000–1005.

Coro, Gianpaolo and Matthew Bjerregaard Walsh (2021). “An intelligent and cost-effective remote under-
water video device for fish size monitoring”. In: Ecological Informatics 63, p. 101311. ISSN: 1574-9541.
DOI: https://doi.org/10.1016/j.ecoinf.2021.101311. URL: https://www.sciencedirect.com/
science/article/pii/S1574954121001023.

Dai, Jialun, Ruchen Wang, Haiyong Zheng, Guangrong Ji, and Xiaoyan Qiao (2016). “ZooplanktoNet: Deep
convolutional network for zooplankton classification”. In: OCEANS 2016 - Shanghai, pp. 1–6. DOI: 10.
1109/OCEANSAP.2016.7485680.

Del Vecchio, Silvia, Edy Fantinato, Giulia Silan, and Gabriella Buffa (2018). “Trade-offs between sampling
effort and data quality in habitat monitoring”. In: Biodiversity and Conservation 28.1, pp. 55–73.

Denos, Killian, Mathieu Ravaut, Antoine Fagette, and Hock-Siong Lim (2017). “Deep learning applied to
underwater mine warfare”. In: OCEANS 2017 - Aberdeen, pp. 1–7. DOI: 10.1109/OCEANSE.2017.8084910.

Diaz-Almela, E. and C. Duarte (2008). Management of Natura 2000 Habitats 1120, (Posidonia Oceanicae). Tech.
rep. European Commission.

EEA (Nov. 2020). Europe’s seas and coasts. https://www.eea.europa.eu/themes/water/europes-seas-
and-coasts. Accessed: Sept. 2022.

Fenner, Peter J., John Lippmann, and Lisa-Ann Gershwin (Mar. 2010). “Fatal and Nonfatal Severe Jellyfish
Stings in Thai Waters”. In: Journal of Travel Medicine 17.2, pp. 133–138. ISSN: 1195-1982. URL: https:
//academic.oup.com/jtm/article-lookup/doi/10.1111/j.1708-8305.2009.00390.x.

Gao, Le, Xiaofeng Li, Fanzhou Kong, Rencheng Yu, Yuan Guo, and Yibin Ren (2022). “AlgaeNet: A Deep-
Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery”. In: IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 15, pp. 2782–2796. DOI: 10.1109/JSTARS.
2022.3162387.

Girshick, Ross (2015). “Fast R-CNN”. In: 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 1440–1448. DOI: 10.1109/ICCV.2015.169.

Gonzalez-Cid, Yolanda, Francisco Bonin-Font, Eric Guerrrero Font, Antoni Martorell Torres, Miguel Mar-
tin Abadal, Gabriel Oliver Codina, Hilmar Hinz, Laura Pereda Briones, and Fiona Tomas (2021). “Au-
tonomous Marine Vehicles and CNN: Tech Tools for Posidonia Meadows Monitoring”. In: OCEANS
2021: San Diego – Porto, pp. 1–8. DOI: 10.23919/OCEANS44145.2021.9705792.

Gonzalez-Cid, Yolanda, Antoni Burguera, Francisco Bonin-Font, and Alejandro Matamoros (2017). “Ma-
chine learning and deep learning strategies to identify Posidonia meadows in underwater images”. In:
OCEANS 2017 - Aberdeen, pp. 1–5. DOI: 10.1109/OCEANSE.2017.8084991.

González-Ortegón, Enrique and Javier Moreno-Andrés (2021). “Anthropogenic Modifications to Estuar-
ies Facilitate the Invasion of Non-Native Species”. In: Processes 9.5. ISSN: 2227-9717. DOI: 10.3390/
pr9050740. URL: https://www.mdpi.com/2227-9717/9/5/740.

Guerrero, Eric, Francisco Bonin-Font, and Gabriel Oliver (2021). “Adaptive Visual Information Gathering
for Autonomous Exploration of Underwater Environments”. In: IEEE Access 9, pp. 136487–136506. DOI:
10.1109/ACCESS.2021.3117343.

80

https://jellytoring.uib.es/
https://doi.org/https://doi.org/10.1016/j.mlwa.2021.100134
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://doi.org/10.3390/rs13091759
https://www.mdpi.com/2072-4292/13/9/1759
https://doi.org/10.1109/TIE.2017.2764844
https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101311
https://www.sciencedirect.com/science/article/pii/S1574954121001023
https://www.sciencedirect.com/science/article/pii/S1574954121001023
https://doi.org/10.1109/OCEANSAP.2016.7485680
https://doi.org/10.1109/OCEANSAP.2016.7485680
https://doi.org/10.1109/OCEANSE.2017.8084910
https://www.eea.europa.eu/themes/water/europes-seas-and-coasts
https://www.eea.europa.eu/themes/water/europes-seas-and-coasts
https://academic.oup.com/jtm/article-lookup/doi/10.1111/j.1708-8305.2009.00390.x
https://academic.oup.com/jtm/article-lookup/doi/10.1111/j.1708-8305.2009.00390.x
https://doi.org/10.1109/JSTARS.2022.3162387
https://doi.org/10.1109/JSTARS.2022.3162387
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.23919/OCEANS44145.2021.9705792
https://doi.org/10.1109/OCEANSE.2017.8084991
https://doi.org/10.3390/pr9050740
https://doi.org/10.3390/pr9050740
https://www.mdpi.com/2227-9717/9/5/740
https://doi.org/10.1109/ACCESS.2021.3117343


Guerrero-Font, Eric, Francisco Bonin-Font, Miguel Martin-Abadal, Yolanda Gonzalez-Cid, and Gabriel
Oliver-Codina (2021b). “Sparse Gaussian process for online seagrass semantic mapping”. In: Expert Sys-
tems with Applications 170, p. 114478. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2020.
114478. URL: https://www.sciencedirect.com/science/article/pii/S095741742031126X.

Hassan, Rashid, Robert Scholes, Neville Ash, Millennium Condition, and Trends Group (Jan. 2005). Ecosys-
tems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group
(Millennium Ecosystem Assessment Series). Island Press.

Hays, Graeme C., Thomas K. Doyle, and Jonathan D.R. Houghton (2018). “A Paradigm Shift in the Trophic
Importance of Jellyfish?” In: Trends in Ecology and Evolution 33 (11), pp. 874–884. ISSN: 01695347. DOI:
10.1016/j.tree.2018.09.001.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017). “Mask R-CNN”. In: 2017 IEEE In-
ternational Conference on Computer Vision (ICCV), pp. 2980–2988. DOI: 10.1109/ICCV.2017.322.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classification”. In: 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034. DOI: 10.1109/ICCV.2015.123.

Heshmati-Alamdari, Shahab, Charalampos P. Bechlioulis, George C. Karras, Alexandros Nikou, Dimos V.
Dimarogonas, and Kostas J. Kyriakopoulos (2018). “A robust interaction control approach for underwa-
ter vehicle manipulator systems”. In: Annual Reviews in Control 46, pp. 315 –325. ISSN: 1367-5788. DOI:
https://doi.org/10.1016/j.arcontrol.2018.10.003.

Huang, Xudong, Biao Zhang, William Perrie, Yingcheng Lu, and Chen Wang (2022). “A novel deep learn-
ing method for marine oil spill detection from satellite synthetic aperture radar imagery”. In: Marine
Pollution Bulletin 179, p. 113666. ISSN: 0025-326X. DOI: https://doi.org/10.1016/j.marpolbul.2022.
113666. URL: https://www.sciencedirect.com/science/article/pii/S0025326X22003484.

Häyhä, Tiina and Pier Paolo Franzese (2014). “Ecosystem services assessment: A review under an ecological-
economic and systems perspective”. In: Ecological Modelling 289, pp. 124–132. ISSN: 0304-3800. DOI:
https://doi.org/10.1016/j.ecolmodel.2014.07.002. URL: https://www.sciencedirect.
com/science/article/pii/S0304380014003299.

ISA (2020). Protection of the Marine Environment. https://isa.org.jm/our-work/protection-marine-
environment. Accessed: Sept. 2022.

Jacobi, M. and D. Karimanzira (2013). “Underwater pipeline and cable inspection using autonomous un-
derwater vehicles”. In: 2013 MTS/IEEE OCEANS - Bergen, pp. 1–6. DOI: 10.1109/OCEANS-Bergen.2013.
6608089.

Juliani, Cyril and Eric Juliani (2021). “Deep learning of terrain morphology and pattern discovery via
network-based representational similarity analysis for deep-sea mineral exploration”. In: Ore Geology
Reviews 129, p. 103936. ISSN: 0169-1368. DOI: https://doi.org/10.1016/j.oregeorev.2020.103936.
URL: https://www.sciencedirect.com/science/article/pii/S0169136820311215.

Kartal, Mesut and Osman Duman (2019). “Ship Detection from Optical Satellite Images with Deep Learn-
ing”. In: 2019 9th International Conference on Recent Advances in Space Technologies (RAST), pp. 479–484.
DOI: 10.1109/RAST.2019.8767844.

Kremen, Claire (2005). “Managing ecosystem services: what do we need to know about their ecology?”
In: Ecology Letters 8.5, pp. 468–479. DOI: https://doi.org/10.1111/j.1461-0248.2005.00751.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00751.x. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00751.x.

Küpper, Frithjof C. and Nicholas A. Kamenos (2018). “The future of marine biodiversity and marine ecosys-
tem functioning in UK coastal and territorial waters (including UK Overseas Territories) – with an em-
phasis on marine macrophyte communities”. In: Botanica Marina 61.6, pp. 521–535. DOI: doi:10.1515/
bot-2018-0076. URL: https://doi.org/10.1515/bot-2018-0076.

Lamb, Philip D., Ewan Hunter, John K. Pinnegar, Thomas K. Doyle, Simon Creer, Martin I. Taylor, and
Marta Coll (Dec. 2019). “Inclusion of jellyfish in 30+ years of Ecopath with Ecosim models”. In: ICES
Journal of Marine Science 76 (7), pp. 1941–1950. ISSN: 10959289. DOI: 10.1093/icesjms/fsz165.

Lee, JH, Choi HW, J Chae, DS Kim, and SB Lee (2006). “Performance analysis of intake screens in power
plants on mass impingement of marine organisms”. In: Ocean and polar research 28, pp. 385–393.

Li, Daoliang and Ling Du (June 2022). “Recent advances of deep learning algorithms for aquacultural ma-
chine vision systems with emphasis on fish”. In: Artificial Intelligence Review 55. DOI: 10.1007/s10462-
021-10102-3.

Li, Xiu, Min Shang, Hongwei Qin, and Liansheng Chen (2015). “Fast accurate fish detection and recognition
of underwater images with Fast R-CNN”. In: OCEANS 2015 - MTS/IEEE Washington, pp. 1–5. DOI: 10.
23919/OCEANS.2015.7404464.

81

https://doi.org/https://doi.org/10.1016/j.eswa.2020.114478
https://doi.org/https://doi.org/10.1016/j.eswa.2020.114478
https://www.sciencedirect.com/science/article/pii/S095741742031126X
https://doi.org/10.1016/j.tree.2018.09.001
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.10.003
https://doi.org/https://doi.org/10.1016/j.marpolbul.2022.113666
https://doi.org/https://doi.org/10.1016/j.marpolbul.2022.113666
https://www.sciencedirect.com/science/article/pii/S0025326X22003484
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2014.07.002
https://www.sciencedirect.com/science/article/pii/S0304380014003299
https://www.sciencedirect.com/science/article/pii/S0304380014003299
https://isa.org.jm/our-work/protection-marine-environment
https://isa.org.jm/our-work/protection-marine-environment
https://doi.org/10.1109/OCEANS-Bergen.2013.6608089
https://doi.org/10.1109/OCEANS-Bergen.2013.6608089
https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103936
https://www.sciencedirect.com/science/article/pii/S0169136820311215
https://doi.org/10.1109/RAST.2019.8767844
https://doi.org/https://doi.org/10.1111/j.1461-0248.2005.00751.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2005.00751.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2005.00751.x
https://doi.org/doi:10.1515/bot-2018-0076
https://doi.org/doi:10.1515/bot-2018-0076
https://doi.org/10.1515/bot-2018-0076
https://doi.org/10.1093/icesjms/fsz165
https://doi.org/10.1007/s10462-021-10102-3
https://doi.org/10.1007/s10462-021-10102-3
https://doi.org/10.23919/OCEANS.2015.7404464
https://doi.org/10.23919/OCEANS.2015.7404464


Li, Yan, Jiahong Guo, Xiaomin Guo, Zhiqiang Hu, and Yu Tian (2021). “Plankton Detection with Adversarial
Learning and a Densely Connected Deep Learning Model for Class Imbalanced Distribution”. In: Journal
of Marine Science and Engineering 9.6. ISSN: 2077-1312. DOI: 10.3390/jmse9060636. URL: https://www.
mdpi.com/2077-1312/9/6/636.

Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C. Berg (2016). “SSD: Single Shot MultiBox Detector”. In: Computer Vision – ECCV 2016. Ed. by Bas-
tian Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Cham: Springer International Publishing, pp. 21–37.
ISBN: 978-3-319-46448-0.

Lohia, Aditya, Kalyani Kadam, Rahul Joshi, and Dr Bongale (2021). “Bibliometric Analysis of One-stage
and Two-stage Object Detection”. In: Library Philosophy and Practice. URL: https://digitalcommons.
unl.edu/libphilprac/4910/. (Accessed: Sept. 2022).

Marba, Nuria and Carlos Duarte (2010). “Mediterranean warming triggers seagrass (Posidonia oceanica)
shoot mortality”. English. In: Global Change Biology 16.8, pp. 2366–2375. ISSN: 1354-1013.

Maurer, Brian A. (2009). “Ecological complexity”. In: Encyclopedia of Complexity and Systems Science. Ed. by
Robert A. Meyers. New York, NY: Springer New York, pp. 2697–2711. ISBN: 978-0-387-30440-3. DOI:
10.1007/978-0-387-30440-3_162. URL: https://doi.org/10.1007/978-0-387-30440-3_162.

Mohamed, Hassan, Kazuo Nadaoka, and Takashi Nakamura (2022). “Automatic Semantic Segmentation of
Benthic Habitats Using Images from Towed Underwater Camera in a Complex Shallow Water Environ-
ment”. In: Remote Sensing 14.8. ISSN: 2072-4292. DOI: 10.3390/rs14081818. URL: https://www.mdpi.
com/2072-4292/14/8/1818.

Morales, Eduardo, Rafael Murrieta-Cid, Israel Becerra, and Marco Esquivel Basaldua (Nov. 2021). “A sur-
vey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement
learning”. In: Intelligent Service Robotics 14. DOI: 10.1007/s11370-021-00398-z.

Nassif, Ali Bou, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan (2019). “Speech
Recognition Using Deep Neural Networks: A Systematic Review”. In: IEEE Access 7, pp. 19143–19165.
DOI: 10.1109/ACCESS.2019.2896880.

Nayak, Nandeeka, Makoto Nara, Timmy Gambin, Zoë Wood, and Christopher M. Clark (2021). “Machine
Learning Techniques for AUV Side-Scan Sonar Data Feature Extraction as Applied to Intelligent Search
for Underwater Archaeological Sites”. In: Field and Service Robotics. Ed. by Genya Ishigami and Kazuya
Yoshida. Singapore: Springer Singapore, pp. 219–233. ISBN: 978-981-15-9460-1.

Nguyen, Huu-Thu, Eon-Ho Lee, and Sejin Lee (2020). “Study on the Classification Performance of Under-
water Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged
Human Body”. In: Sensors 20.1. ISSN: 1424-8220. DOI: 10.3390/s20010094. URL: https://www.mdpi.
com/1424-8220/20/1/94.

Norgaard, Richard B. (2010). “Ecosystem services: From eye-opening metaphor to complexity blinder”. In:
Ecological Economics 69.6. Special Section - Payments for Environmental Services: Reconciling Theory
and Practice, pp. 1219–1227. ISSN: 0921-8009. DOI: https://doi.org/10.1016/j.ecolecon.2009.11.
009. URL: https://www.sciencedirect.com/science/article/pii/S0921800909004583.

Otter, Daniel W., Julian R. Medina, and Jugal K. Kalita (2021). “A Survey of the Usages of Deep Learning
for Natural Language Processing”. In: IEEE Transactions on Neural Networks and Learning Systems 32.2,
pp. 604–624. DOI: 10.1109/TNNLS.2020.2979670.

Park, Jungsu, Jiwon Baek, Jongrack Kim, Kwangtae You, and Keugtae Kim (2022). “Deep Learning-Based
Algal Detection Model Development Considering Field Application”. In: Water 14.8. ISSN: 2073-4441.
DOI: 10.3390/w14081275. URL: https://www.mdpi.com/2073-4441/14/8/1275.

Pitt, Kylie A., Cathy H. Lucas, Robert H. Condon, Carlos M. Duarte, and Ben Stewart-Koster (Nov. 2018).
“Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been Amplified Beyond the
Available Evidence: A Systematic Review”. In: Frontiers in Marine Science 5. ISSN: 22967745. DOI: 10.
3389/fmars.2018.00451.

Pizarro, Oscar, Ariell Friedman, Mitch Bryson, Stefan B. Williams, and Joshua Madin (2017). “A simple,
fast, and repeatable survey method for underwater visual 3D benthic mapping and monitoring”. In:
Ecology and Evolution 7.6, pp. 1770–1782. DOI: https://doi.org/10.1002/ece3.2701. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.2701. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/ece3.2701.

Politikos, D., Elias Fakiris, Athanasios Davvetas, Iraklis Klampanos, and George Papatheodorou (Mar.
2021). “Automatic detection of seafloor marine litter using towed camera images and deep learning”.
In: Marine Pollution Bulletin 164, p. 111974. DOI: 10.1016/j.marpolbul.2021.111974.

82

https://doi.org/10.3390/jmse9060636
https://www.mdpi.com/2077-1312/9/6/636
https://www.mdpi.com/2077-1312/9/6/636
https://digitalcommons.unl.edu/libphilprac/4910/
https://digitalcommons.unl.edu/libphilprac/4910/
https://doi.org/10.1007/978-0-387-30440-3_162
https://doi.org/10.1007/978-0-387-30440-3_162
https://doi.org/10.3390/rs14081818
https://www.mdpi.com/2072-4292/14/8/1818
https://www.mdpi.com/2072-4292/14/8/1818
https://doi.org/10.1007/s11370-021-00398-z
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.3390/s20010094
https://www.mdpi.com/1424-8220/20/1/94
https://www.mdpi.com/1424-8220/20/1/94
https://doi.org/https://doi.org/10.1016/j.ecolecon.2009.11.009
https://doi.org/https://doi.org/10.1016/j.ecolecon.2009.11.009
https://www.sciencedirect.com/science/article/pii/S0921800909004583
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.3390/w14081275
https://www.mdpi.com/2073-4441/14/8/1275
https://doi.org/10.3389/fmars.2018.00451
https://doi.org/10.3389/fmars.2018.00451
https://doi.org/https://doi.org/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.2701
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.2701
https://doi.org/10.1016/j.marpolbul.2021.111974


Purcell, J. E., E. J. Baxter, and V. L. Fuentes (2013). “Jellyfish as products and problems of aquaculture”. In:
Advances in Aquaculture Hatchery Technology, pp. 404–430. ISSN: 0966-0461. URL: https://linkinghub.
elsevier.com/retrieve/pii/B9780857091192500139.

Py, Ouyang, Hu Hong, and Shi Zhongzhi (2016). “Plankton classification with deep convolutional neural
networks”. In: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference,
pp. 132–136. DOI: 10.1109/ITNEC.2016.7560334.

Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and An-
drew Ng (Jan. 2009). “ROS: an open-source Robot Operating System”. In: ICRA Workshop on Open Source
Software. Vol. 3.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi (2016). “You Only Look Once: Unified,
Real-Time Object Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 779–788. DOI: 10.1109/CVPR.2016.91.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun (2015). Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. DOI: 10.48550/ARXIV.1506.01497. URL: https://arxiv.org/
abs/1506.01497.

Richardson, Anthony J, Andrew Bakun, Graeme C Hays, and Mark J Gibbons (2009). “The jellyfish joyride:
causes, consequences and management responses to a more gelatinous future”. In: Trends in Ecology &
Evolution 24.6, pp. 312–322.

Ridao, Pere, Marc Carreras, David Ribas, Pedro J. Sanz, and Gabriel Oliver (Nov. 2015). “Intervention AUVs:
The Next Challenge”. In: Annual Reviews in Control 40, pp. 227–241. DOI: 10.1016/j.arcontrol.2015.
09.015.

Ruiz-Frau, Ana, Martin-Abadal, Miguel, Charlotte L. Jennings, Yolanda Gonzalez-Cid, and Hilmar Hinz
(2022). “The potential of Jellytoring 2.0 smart tool as a global jellyfish monitoring platform”. In: Ecology
and Evolution 12.11. e9472 ECE-2022-04-00522.R2, e9472. DOI: https://doi.org/10.1002/ece3.9472.

Simonyan, Karen and Andrew Zisserman (Sept. 2014). “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: arXiv 1409.1556.

SRV (2018). Project webpage for "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Under-
water Intervention Tasks". http://srv.uib.es/twinbot-twin-robots-for-cooperative-underwater-
intervention-missions/. Accessed: Sept. 2022.

— (2020). Project webpage for "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Under-
water Intervention Tasks". http://srv.uib.es/detecpos/. Accessed: Sept. 2022.

— (2021). Project webpage for "Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwa-
ter Intervention Tasks". http://srv.uib.es/project-cooperamos-subproject-vi-smart/. Accessed:
Sept. 2022.

St. John, Michael A., Angel Borja, Guillem Chust, Michael Heath, Ivo Grigorov, Patrizio Mariani, Adrian P.
Martin, and Ricardo S. Santos (2016). “A Dark Hole in Our Understanding of Marine Ecosystems and
Their Services: Perspectives from the Mesopelagic Community”. In: Frontiers in Marine Science 3. ISSN:
2296-7745. DOI: 10.3389/fmars.2016.00031. URL: https://www.frontiersin.org/articles/10.
3389/fmars.2016.00031.

Strong, James Asa, Eider Andonegi, Kemal Can Bizsel, Roberto Danovaro, Mike Elliott, Anita Franco, Es-
ther Garces, Sally Little, Krysia Mazik, Snejana Moncheva, Nadia Papadopoulou, Joana Patrício, Ana M.
Queirós, Chris Smith, Kremena Stefanova, and Oihana Solaun (2015). “Marine biodiversity and ecosys-
tem function relationships: The potential for practical monitoring applications”. In: Estuarine, Coastal
and Shelf Science 161, pp. 46–64. ISSN: 0272-7714. DOI: https://doi.org/10.1016/j.ecss.2015.04.008.
URL: https://www.sciencedirect.com/science/article/pii/S0272771415001389.

Szegedy, Christian, Sergey Ioffe, and Vincent Vanhoucke (Feb. 2016). “Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning”. In: AAAI Conference on Artificial Intelligence.

Tang, Gang, Shibo Liu, Iwao Fujino, Christophe Claramunt, Yide Wang, and Shaoyang Men (2020). “H-
YOLO: A Single-Shot Ship Detection Approach Based on Region of Interest Preselected Network”. In:
Remote Sensing 12.24. ISSN: 2072-4292. DOI: 10.3390/rs12244192. URL: https://www.mdpi.com/2072-
4292/12/24/4192.

Telesca, Luca, Andrea Belluscio, Alessandro Criscoli, Giandomenico Ardizzone, Eugenia T. Apostolaki,
Simonetta Fraschetti, Michele Gristina, Leyla Knittweis, Corinne S. Martin, Gérard Pergent, Adriana
Alagna, Fabio Badalamenti, Germana Garofalo, Vasilis Gerakaris, Marie Louise Pace, Christine Pergent-
Martini, and Maria Salomidi (2015). “Seagrass meadows (Posidonia oceanica) distribution and trajecto-
ries of change”. In: Scientific reports.

Martin-Abadal, Miguel (2018). Posidonia oceanica Segmentation. https://github.com/srv/Posidonia-
semantic-segmentation.

83

https://linkinghub.elsevier.com/retrieve/pii/B9780857091192500139
https://linkinghub.elsevier.com/retrieve/pii/B9780857091192500139
https://doi.org/10.1109/ITNEC.2016.7560334
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/ARXIV.1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://doi.org/10.1016/j.arcontrol.2015.09.015
https://doi.org/10.1016/j.arcontrol.2015.09.015
https://doi.org/https://doi.org/10.1002/ece3.9472
http://srv.uib.es/twinbot-twin-robots-for-cooperative-underwater-intervention-missions/
http://srv.uib.es/twinbot-twin-robots-for-cooperative-underwater-intervention-missions/
http://srv.uib.es/detecpos/
http://srv.uib.es/project-cooperamos-subproject-vi-smart/
https://doi.org/10.3389/fmars.2016.00031
https://www.frontiersin.org/articles/10.3389/fmars.2016.00031
https://www.frontiersin.org/articles/10.3389/fmars.2016.00031
https://doi.org/https://doi.org/10.1016/j.ecss.2015.04.008
https://www.sciencedirect.com/science/article/pii/S0272771415001389
https://doi.org/10.3390/rs12244192
https://www.mdpi.com/2072-4292/12/24/4192
https://www.mdpi.com/2072-4292/12/24/4192
https://github.com/srv/Posidonia-semantic-segmentation
https://github.com/srv/Posidonia-semantic-segmentation


Martin-Abadal, Miguel (2020). Jellyfish Object Detection. https://github.com/srv/jf_object_detection.
Martin-Abadal, Miguel, Gabriel Oliver-Codina, and Yolanda Gonzalez-Cid (2022a). Project webpage for

"Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Intervention Tasks".
http://srv.uib.es/3d-pipes-2/. Accessed: Sept. 2022.

— (2022b). “Real-Time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Inter-
vention Tasks”. In: Sensors 22.21. ISSN: 1424-8220. DOI: 10.3390/s22218141.

Martin-Abadal, Miguel, Manuel Piñar-Molina, Antoni Martorell-Torres, Gabriel Oliver-Codina, and Yolanda
Gonzalez-Cid (2021a). Project webpage for "Underwater Pipe and Valve 3D Recognition Using Deep Learning
Segmentation". http://srv.uib.es/3d-pipes-1/. Accessed: Sept. 2022.

Thum, Guan Wei, Sai Hong Tang, Siti Azfanizam Ahmad, and Moath Alrifaey (2020). “Toward a Highly
Accurate Classification of Underwater Cable Images via Deep Convolutional Neural Network”. In: Jour-
nal of Marine Science and Engineering 8.11. ISSN: 2077-1312. DOI: 10.3390/jmse8110924. URL: https:
//www.mdpi.com/2077-1312/8/11/924.

Villon, Sébastien, Marc Chaumont, Gérard Subsol, Sébastien Villéger, Thomas Claverie, and David Mouil-
lot (2016). “Coral Reef Fish Detection and Recognition in Underwater Videos by Supervised Machine
Learning: Comparison Between Deep Learning and HOG+SVM Methods”. In: Advanced Concepts for In-
telligent Vision Systems. Ed. by Jacques Blanc-Talon, Cosimo Distante, Wilfried Philips, Dan Popescu, and
Paul Scheunders. Cham: Springer International Publishing, pp. 160–171. ISBN: 978-3-319-48680-2.

Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon (Oct.
2019). “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM Trans. Graph. 38.5. ISSN: 0730-
0301. DOI: 10.1145/3326362.

Yang, Yi-Jie, Suman Singha, and Roberto Mayerle (2022). “A deep learning based oil spill detector using
Sentinel-1 SAR imagery”. In: International Journal of Remote Sensing 43.11, pp. 4287–4314. DOI: 10.1080/
01431161.2022.2109445. eprint: https://doi.org/10.1080/01431161.2022.2109445. URL: https:
//doi.org/10.1080/01431161.2022.2109445.

Yu, Mengxi, Joshiba Ariamuthu Venkidasalapathy, Yueqi Shen, Noor Quddus, and M. Sam Mannan (Jan.
2017). “Bow-tie Analysis of Underwater Robots in Offshore Oil and Gas Operations”. In: Offshore Tech-
nology Conference. DOI: 10.4043/27818-MS.

Zhang, Hui, Yonglin Tian, Kunfeng Wang, Wensheng Zhang, and Fei-Yue Wang (2020). “Mask SSD: An
Effective Single-Stage Approach to Object Instance Segmentation”. In: IEEE Transactions on Image Pro-
cessing 29, pp. 2078–2093. DOI: 10.1109/TIP.2019.2947806.

84

https://github.com/srv/jf_object_detection
http://srv.uib.es/3d-pipes-2/
https://doi.org/10.3390/s22218141
http://srv.uib.es/3d-pipes-1/
https://doi.org/10.3390/jmse8110924
https://www.mdpi.com/2077-1312/8/11/924
https://www.mdpi.com/2077-1312/8/11/924
https://doi.org/10.1145/3326362
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.4043/27818-MS
https://doi.org/10.1109/TIP.2019.2947806

	List of Acronyms
	Introduction
	Context
	Ecosystem services
	Deep learning
	Deep learning implementation in marine ecosystems

	Objectives
	Document Overview

	Posidonia oceanica monitoring
	Deep Semantic Segmentation in an AUV for Online Posidonia oceanica Meadows Identification
	A deep learning solution for Posidonia oceanica seafloor habitat multiclass recognition

	Pipeline characterisation
	Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation
	Real-time Pipe and Valve Characterisation and Mapping for Autonomous Underwater Intervention Tasks

	Jellyfish detection and quantification
	Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection

	Conclusions
	Contributions and discussion
	Future Work

	Bibliography

